This is the peer reviewed version of the following article:

Synowiec, A., Możdżeń, K., Krajewska, A., Landi, M., \& Araniti, F. (2019). Carum carvi L. essential oil: A promising candidate for botanical herbicide against Echinochloa crus-galli (L.)
P. Beauv. in maize cultivation. Industrial Crops and Products, 140, 111652.
which has been published in final doi: https://doi.org/10.1016/j.indcrop.2019.111652 https://www.sciencedirect.com/science/article/pii/S0926669019306624

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website

Carum carvi essential oil: a promising candidate for botanical
\section*{herbicide against Echinochloa crus-galli in maize cultivation}
Synowiec A. ${ }^{\text {a, }}$, Możdżén K..$^{\text {b }}$, Krajewska A. ${ }^{\text {c }}$, Marco Landi ${ }^{\text {d }}$, Fabrizio Aranitie, ${ }^{\text {e, }}$
${ }^{\text {a Department }}$ of Agrotechnology and Agricultural Ecology, University of Agriculture, Poland
${ }^{\mathrm{b}}$ Department of Plant Physiology, Pedagogical University of Krakow, Poland
${ }^{\text {c Department of Biotechnology and Food Science, Lodz University of Technology, Poland }}$
${ }^{\text {d Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy }}$ ${ }^{\mathrm{e}}$ Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, - Località Feo di Vito, SNC I-89124 Reggio Calabria RC, Italy

Corresponding authors:

Agnieszka Synowiec: a.synowiec @urk.edu.pl
Fabrizio Araniti: fabrizio.araniti@unirc.it

Highlights (3 to 5 bullets, max 85 caracters per point including spaces

Abstract

In this study we tested the possibility that foliar-applied caraway or peppermint essential oils (EOs) can selectively inhibit the growth of Echinochloa crus-galli (a typical maize weed) but not that of maize plants, attempting to develop an eco-friendly botanical herbicide.

We tested the phytotoxic potential of oil-in-water emulsions of each EO with addition of commercial adjuvant mainly composed of fatty acids methyl esters, studying their effect on

visible plants injuries, biomass accumulation, chlorophyll a fluorescence and changes to biochemical patterns of both the main crop (maize) and the weed (E. crus-galli) via an untargeted metabolomic approach. We found that oil-in-water emulsion containing 2.5% of adjuvant and of caraway EO did not affect significantly the growth of maize plants, did not induce foliar symptoms and did not alter the status of the photosynthetic apparatus, as revealed by chlorophyll a fluorescence. On the contrary, this emulsion exerted significantly negative effects against E. crus-galli growth, inducing foliar injuries and reducing the photosynthetic efficiency of photosystem II. We also found that the studied emulsions caused a series of biochemical changes in the plant tissues, with caraway emulsion being more phytotoxic, as compared to the peppermint EO-emulsion. We conclude that oil-in-water emulsion containing 2.5% of caraway EO could be used in future as a foliar-applied botanical herbicide against E. crus-galli in maize cultivation.

Keywords: Bio-herbicide; biochemical process; chlorophyll a fluorescence; leaf injury; metabolomics; phytotoxicity

1. Introduction

Numerous studies shown that essential oils (EOs), especially those for which the main compounds are monoterpene alcohols or oxygenated monoterpenes, are promising substances for production of botanical herbicides, since they can cause significant inhibition of weed germination and growth (Benvenuti et al., 2017; Synowiec et al., 2017, Rolli 2014, Vokou et al., 2003), as well as they provoke, severe leaf burns in foliar applications (Bainard et al., 2006, Stokłosa et al., 2012). Considering the chemical composition of their EOs, peppermint (Mentha x piperita L :) and caraway (Carum carvi L.) can be promising candidates for the production of bioherbicides in a temperate European climate (Synowiec et al., 2017). Both species are widely cultivated in Europe (Oroian et al., 2017; Seidler-Łożykowska and Bocianowski 2012) and are characterized by high EO yields. In particular, in plants cultivated in Poland, EOs extraction from peppermint leaves and caraway seeds could give a yield around 2.3% and $3.4-4.8 \%$, respectively (Pisulewska et al., 2010; Seidler-Łożykowska et al., 2013). Both EOs are rich in oxygenated monoterpenes ($>80 \%$ for peppermint and $>60 \%$ for caraway EO) (SeidlerŁożykowska et al., 2013; Fejér et al., 2017). The main chemical compounds of these EOs are menthol and menthone in peppermint (Guidi and Landi, 2014), and carvone and limonene in caraway EOs (Chemat et al., 2017).

However, physical and chemical properties of EOs, such as high volatility or poor water solubility make difficult a wider use of them as natural herbicides. These disadvantages can be overcome by creating appropriate emulsions. As shown by Hazrati et al. (2017), garden savory (Satureja hortensis) EOs applied as oil-in-water (o/w) nanoemulsion, with 2\% (v/v) Tween 80, displayed adequate physical properties and posed a strong phytotoxic potential on germination and early growth of Amaranthus retroflexus and Chenopodium album. In turn, Synowiec et al. (2017) showed satisfactory effectiveness of o/w emulsion of peppermint EO (2.5\%) applied with the addition of oilseed rape fatty acid methyl esters ($1.5 \mathrm{~L} \mathrm{ha}^{-1}$) against E. crus-galli.

Foliar-applied EOs display a contact action and induce visible injuries caused as early as few hours following their application (Hazrati et al., 2017; Synowiec et al., 2015). In general, foliar-applied EOs mixture leads to a general impairment of plant metabolism due to multispectrum targets (Synowiec et al., 2015). Conversely, application of a single or a few compounds isolated from EO may act selectively via inhibition of a specific metabolic pathway (Araniti et al., 2017a; Araniti et al., 2016; Graña et al., 2013), but this approach is often more important for obtaining a total herbicide rather than a selective herbicide. Many experiments showed that one of the main effects of EOs is the inhibition of photosynthesis, resulting from a decrease in the chlorophyll content (Hazrati et al., 2017) and alterations of the light phase of photosynthesis (Synowiec et al., 2015). In some cases, EOs lead to the production of uncontrolled level of reactive oxygen species, thereby promoting oxidative stress and oxidative burst (Ahuja et al., 2015) as well as loss of the efficiency of cellular respiration (Kaur et al., 2010). Recently, Araniti et al. (2018), through a physiological and metabolomic approach, described in detail the physiological response of Arabidopsis thaliana seedlings to the EO of oregano. The authors observed a reduction of plant growth and leaf chlorosis of A. thaliana seedlings as a result of series of metabolic alterations, including principally the inability to incorporate assimilated nitrogen into amino acids, especially the nitrogen devoted to the biosynthesis of one of the first precursors of other amino acids, namely glutamine.

The metabolomic approach allows to analyze simultaneously hundreds of metabolites in a given biological sample (Nicholson and Lindon, 2008), yielding a comprehensive picture of changes in the metabolism of plants under different types of stresses (Mosa et al., 2017, Ghatak et al., 2018). Therefore, untargeted metabolomics could consent to characterize the phytotoxic effects of foliar application of EOs emulsion on key metabolic pathways, in order to understand the main biochemical/physiological processes altered in the plant. For this reason, this research aimed at: i) assessing the phytotoxic potential of foliar-sprayed peppermint or caraway EOs,
applied as o / w emulsions with addition of a commercial adjuvant in maize (Zea mays L.) and barnyardgrass [Echinochloa crus-galli (L.) P.Beauv.], and ii) employ the imaging of chlorophyll a fluorescence and an untargeted metabolomic approach to dissect plant responses to foliar application of EOs emulsions.

2. Materials and Methods

2.1. Characteristic of essential oils and adjuvant

The EOs isolated from caraway (Carum carvi L.) seeds was purchased from the AvicennaOil company (Wrocław, Poland), whereas the essential oil of peppermint (Mentha \times piperita L.) was steam-distilled for 2 h in the laboratory conditions using Deryng-type apparatus (Baj et al., 2015) from the air-dry mass of herbs collected from the production fields in Michałowice, Poland ($50^{\circ} 37^{\prime} 45^{\prime}{ }^{\prime} \mathrm{N}, 20^{\circ} 48^{\prime} 03^{\prime}$ 'E), in summer 2015.

Commercial multifunctional adjuvant ATPOLAN BIO 80 EC (Producer: AGROMIX Niepołomice, Poland) was chosen as adjuvant and emulsifier of EOs. This adjuvant is mainly composed of fatty acid methyl esters of oilseed rape oil (80%), surfactants and a pH buffer (according to the product label provided by the producer). It was chosen as in previous experiments this adjuvant displayed good herbicidal potential as an emulsifier of peppermint or caraway EOs (Synowiec and Drozdek, 2016).

2.2. Chemical analysis of essential oils

The chemical composition of the EOs was analyzed by gas chromatography coupled with mass spectrometry (GC-FID-MS). After dilution in diethyl ether ($10 \mu \mathrm{~L}$ in 1 mL), the EOs were analyzed using a Trace GC Ultra gas chromatograph coupled with DSQ II mass spectrometer (Thermo Electron Corporation). The operating conditions were as follows: non-polar capillary column Rtx-1ms ($60 \mathrm{~m} \times 0.25 \mathrm{~mm}, 0.25 \mathrm{~mm}$ film thickness), programmed temperature: 50 (3
$\min)-300^{\circ} \mathrm{C}, 4^{\circ} \mathrm{C} / \mathrm{min}$, injector (SSL) temperature $280^{\circ} \mathrm{C}$, flame ionization detector temperature $300^{\circ} \mathrm{C}$, transfer line temperature $250^{\circ} \mathrm{C}$, carrier gas - helium, flow with constant pressure 200 kPa , split ratio $1: 20$. The mass spectrometer parameters: ion source temperature $200^{\circ} \mathrm{C}$, ionization energy 70 eV (EI), scan mode: full scan, mass range 33-420. The percentages of constituents were computed from the GC peak area without using a correction factor.

Identification of EO components was based on a comparison of their mass spectra and linear retention indices (RI, non-polar column), determined with reference to a series of n-alkanes C8C26, by comparing with those reported by Adams (2007) as well as in computer libraries: NIST 2011, and MassFinder 4.1. Percentages were obtained from the FID response without the use of correction factors.

2.3. Preparation of ofw emulsions

The emulsion (250 mL) based on 2.5% or 5% of each of EO was prepared at room temperature. For the emulsion, 6.25 g or 12.5 g of selected essential oil, respectively were weighted into a vial. Then, 6.25 g (for 2.5% solution) or 12.5 g (for 5% solution) of ATPOLAN BIO 80 EC was added. This mixture was stirred vigorously on magnetic stirrer (300 rpm) using 3 cm stir bar. Afterwards, while constant mixing 237.4 mL or 225 mL of distilled water was added in small portions. Then the stirring was increased to 500 rpm for 5 min . Prepared emulsion was homogenized using handheld homogenizer (Ingenieurbüro CAT M. Zipperer GmbH, Unidrive D, rotation speed 5000 rpm). The emulsions were stored at room temperature until use.

2.4. Pot experiment

A pot experiment was settled up in the foil tunnel (16 m long, 6 m wide and 3 m high) in Krakow-Mydlniki, south of Poland (N $50^{\circ} 08^{\prime} 54^{\prime \prime}$, E $19^{\circ} 85^{\prime} 21^{\prime \prime}$), with daily temperature
monitoring. The experiment was established in the period of $6^{\text {th }}$ April $-8^{\text {th }}$ June 2017. There were ten replications (plants) per each species and emulsion treatment.

Seven seedling palettes $\left(0.154 \mathrm{~m}^{2}\right.$ with 24 pots in 4 rows with a single pot size: $46 \times 46 \times 70$ mm per each palette), were filled up with a sieved layer $(0-15 \mathrm{~cm})$ of a sandy brown soil $(\mathrm{pH}$ 6.3; $\mathrm{P}_{2} \mathrm{O}_{5} 18.2 ; \mathrm{K}_{2} \mathrm{O} 7.5 ; \mathrm{MgO} 6.9$ [mg $100 \mathrm{~g}^{-1}$ of soil]). Two seeds of maize (cv. 'Wilga') or a few seeds of barnyard grass (Echinochloa crus-galli (L.) Beauv) were sowed into the 10 of pots per palette per species and after emergence the number of plants was thinned to one per pot. The four middle pots per palette were left empty to avoid shading between plants of maize and barnyard grass and to optimize the spraying process. Then the palettes were positioned alternately. During growth the plants were watered according to their needs.

When maize reached the growth stage of 4-6 leaves and barnyard grass the stage of 3-4 leaves, the plants were hand-sprayed with one of the following emulsions:
i) Water only (control; W);
ii) Water $+2.5 \%$ adjuvant (Control; WA2.5);
iii) Water $+5.0 \%$ adjuvant (Control; WA5.0);
iv) Water $+2.5 \%$ caraway EOs $+2.5 \%$ of adjuvant (WAC2.5);
v) Water $+5.0 \%$ caraway EOs $+5.0 \%$ of adjuvant (WAC5.0);
vi) Water $+2.5 \%$ peppermint $\mathrm{EOs}+2.5 \%$ adjuvant (WAP2.5);
vii) Water $+5.0 \%$ peppermint EOs $+5.0 \%$ of adjuvant (WAP5.0).

Each palette was sprayed with $10 \mathrm{~cm}^{3}$ of one of the emulsions (i-vii), using a 1 L volume hand pressure sprayer Kwazar Venus Super 360 PRO+ (Producer: Kwazar Corporation Sp. z o.o., Poland). The calculated amounts of the EOs in the spraying solutions were equal to $1.5 \mathrm{~g} \mathrm{~m}^{-1}$ (solutions iv and vi) and $3.0 \mathrm{~g} \mathrm{~m}^{-1}$ (solutions v and vii).

Seven days after spraying the plants were visually assessed (by one person) for the percentage of aboveground injuries ($0-100 \%$) caused by the foliar-application of emulsions (i-vii). Next,
the plants were cut at the ground level. For each plant, the aboveground parts were placed in envelopes and dried in the temperature of $50^{\circ} \mathrm{C}$ in a lab oven for 3 days. After that, their dry mass was recorded.

2.5. Chlorophyll a fluorescence imaging

The analyses were carried out on 5 plants (replications) of each species and for selected treatments:
i) Water (Control; W). The two other control treatments, namely: water plus 2.5% of adjuvant and water plus 5% of adjuvant, showed results similar to water, so for this analysis only water as a control is presented;
ii) Water $+2.5 \%$ caraway EOs $+2.5 \%$ of adjuvant (WAC2.5);
iii) Water +5.0 \% caraway EOs +5.0 \% of adjuvant (WAC5.0);
iv) Water $+2.5 \%$ peppermint EOs $+2.5 \%$ adjuvant (WAP2.5);
v) Water $+5.0 \%$ peppermint EOs $+5.0 \%$ of adjuvant (WAP5.0).

Plants of maize and barnyard grass were grown and sprayed with the emulsions similarly as in the pot experiment. A second leaf was cut 48 hours after spraying and placed flat on filter paper moistened with distilled water, and immediately placed in a lightproof measurement chamber FluorCam FC 800C (Photon Systems Instruments, Czech Republic) for 20 min of dark. The measurement was taken right after a pulse of saturation actinic light $\left(4,000 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1} \mathrm{PAR}\right.$, 800 ms), according to Lichtenthaler et al. (2005). The following parameters were analyzed: 1) Fv/Fm (aka QYmax) - maximum quantum yield of photosystem II photochemistry, 2) NPQ-non-photochemical quenching and 3) Rfd-fluorescence decrease ratio (Kalaji et al., 2014). All of the fluorescence parameters were graphically imaged using FluorCam 7, ver 1.0.20.4 software (www.psi.cz/downloads/). The color scale presents conventional values of the studied parameters of leaves subjected to treatments with the emulsions. The numeric comparisons
between the treatments were performed based on a calculation of a "mean gray value", which is the sum of the gray values of all the pixels in the selection, by converting each RGB pixel to grayscale in ImageJ software ver. 1.52a (http://imagej.nih.gov/ij).

2.6. The identification and quantification of primary metabolites in the aboveground parts of

 plantsThe selected three plants (replications) sprayed with the higher doses of emulsions for both EOs were selected for these analyses, as they displayed significant increases in injuries as well as significant reductions in plants' biomass, following their foliar applications.
i) Water $+5.0 \%$ adjuvant (control; WA5.0);
ii) Water $+5.0 \%$ caraway EOs $+5.0 \%$ adjuvant (WAC5.0);
iii) Water $+5.0 \%$ peppermint essential oil $+5.0 \%$ adjuvant (WAP5.0).

Fourty eight hours after spraying the aboveground parts of plants for each species, samples sprayed with the emulsions i), ii) or iii), were collected and freeze-dried. Each plant was frozen separately in liquid nitrogen, homogenized using a laboratory mortar and immediately lyophilized using the Freeze Dry System (Freezone 4.5, Labconco, USA).

The metabolome extraction and derivatization, as well as metabolite identification and relative quantification of maize and E. crus-galli plants treated with caraway and peppermint EOs, were carried out as previously described by Araniti et al. (2017c). Derivatized samples were injected into a gas chromatograph apparatus (Thermo Fisher G-Trace 1310), equipped with a capillary column TG-5MS ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$), coupled to a single quadrupole mass spectrometer (ISQ LT). Helium at high purity (6.0) was used as a carrier.

Injector and source were settled at the temperature of $250^{\circ} \mathrm{C}$ and $260^{\circ} \mathrm{C}$, respectively. Samples $(1 \mu \mathrm{~L})$ were injected in splitless mode with a helium flow of $1 \mathrm{~mL} \mathrm{~min}^{-1}$ and chemical separation was achieved using the following programmed temperature: isothermal 5 min at $70^{\circ} \mathrm{C}$, from
70° to $330^{\circ} \mathrm{C}$ with a ramp of $5^{\circ} \mathrm{C} \mathrm{min}^{-1}$, isothermal at $330^{\circ} \mathrm{C}$ for 5 min . Mass spectra were recorded in electronic impact (EI) mode, scanning at 45-500 amu.

The identification of the metabolites was carried out comparing the unknown mass spectra with reference spectra of several commercial libraries (NIST 2005, Wiley 7.0, Fiehn library etc.). Metabolites relative quantification was based on a pre-added internal standard (adonitol at 0.02 $\mathrm{mg} \mathrm{mL}^{-1}$), which was added during the extraction process.

2.7. Experimental design and statistical analysis

The experiments were carried out in a completely randomized design with different number of replications depending on the parameter evaluated. In particular, 10 replications for leaf injuries and dry biomass, 5 replications for chlorophyll a fluorescence and 3 replications for metabolomic experiments were used.

Estimation of plant injuries, biomass production and chlorophyll fluorescence parameters were analyzed with R software (R Core Team, 2014), using 'dplyr' package. The percentage values were Bliss transformed prior analyses. All data were tested for their homogeneity of variance (Levene test) and the normality of distribution (Kolmogorov-Smirnoff test). Data were then analyzed through one-way ANOVA using the Tukey's HSD test as post-hoc ($\mathrm{P} \leq 0.05$) ('multcomp' package).

A completely-randomized sampling, was applied for metabolomic analyses, for which three independent replicates where analyzed. Metabolite concentrations were checked for integrity and missing values were replaced by a small positive value (the half of the minimum positive number detected in the data). Data were successively normalized by a reference sample (adonitol), transformed through "Log normalization" and scaled through Pareto-Scaling. Data were then classified through Principal Component Analysis (PCA) and metabolite variations
were presented as heatmap. Significant differences among the treatments were highlighted through ANOVA using LSD test as post-hoc ($\mathrm{P} \leq 0.05$).

The analysis of the pathways perturbed by the treatments was carried out using MetPA, a web-based tool that combines the results from pathway enrichment analysis with the pathway topology analysis. Pathway analysis was carried out using the pathway library built on the metabolome of Oryza sativa japonica since the two plants studied (Z. mays and E. crus-galli) are monocots. All the metabolomic analysis were carried out using the software Metaboanalyst 3.0 (Xia et al., 2015).

3. Results and discussion

3.1. The chemical composition of essential oils

In Table 1 the chemical composition of caraway and peppermint EOs is reported. In caraway EO the 99.7% of the total ion chromatogram was identified. In particular, the main compounds were limonene (32.5\%) and carvone (66.4%), whereas in peppermint EO the main components were represented by menthol (42.7%) and menthone (25.5%) (Table 1). The process of emulsification did not change the chemical composition of EOs (data not shown). These results are in agreement with Synowiec et al. (2017) who observed a similar chemical profile of EOs isolated from both species.

The phytotoxicity of the major molecules identified is largely known in literature. Menthone and carvone strongly affected germination and growth of several crops and weeds, including monocotyledonous Triticum aestivum and Zea mays, Lolium multiflorum and Digitaria sanguinalis and also dicotyledonous Lactuca sativa (Vaughn et al., 1993; Sunohara et al., 2015). Among monoterpenes, limonene is one of the most phytotoxic. In fact, recent studies reported that this molecule strongly affected carrot and cabbage growth and development causing leaf injuries and affecting the photosynthetic apparatus (Ibrahim et al., 2004). Similarly,

Vaid et al. (2011) observed an inhibition of germination, root growth, pigment content and respiration on Amaranthus viridis. Finally, Schults et al. (2007) observed that menthol was affecting Arabidopsis growth, dewaxed the leaf cuticular layer and altered stomatal anatomy and function. Moreover, it has been demonstrated that also minor compounds in the EO blend could act synergistically improving the phytotoxicity of the major chemicals (Araniti et al., 2013).

3.2. Effect of the emulsions on maize and E. crus-galli plant injuries and biomass

Thermal conditions in the foil tunnel during the course of experiment, both before and after spraying the plants with emulsions (April-June) were similar and in a range of $19-23^{\circ} \mathrm{C}$.

Spraying maize with emulsions containing only water and adjuvant did not cause any injuries of maize leaves (Fig. 1A). On the other hand, addition of EOs to the emulsions caused injuries of maize leaves (in the form of necroses) by $8-40 \%$, as compared to control (W), with significant injuries caused by the emulsions containing 5.0% of caraway or peppermint oil (Fig. 1A). The leaf-spraying of emulsions containing EOs caused a significant reduction of maize dry mass, especially with treatments containing 5% of caraway (57% reduction) or peppermint EO (41\% reduction) (Fig. 1B). Should be noted that treatment WAC2.5 did not affect both leaf integrity and plant biomass.
E. crus-galli, plants sprayed with emulsions, which contained only water and adjuvant (both WA2.5 and WA5.0), did not cause any visible injury (Fig. 2A). Addition of caraway EO to the emulsion caused a significant increase of leaf injuries, as compared to W and WA2.5 controls, ranging from 20 to 42% for WAC2.5 and WAC5.0, respectively. Both WAC2.5 and WAC5.0 induced a decrease of plant biomass with respect to W controls and WA2.5 (Fig. 2b). Noteworthy, the use of the adjuvant alone at the higher dose, WA5.0, promoted a reduction of E. crus-gallis biomass with a similar extent to those observed with WAC2.5 and WAC5.0,
suggesting a negative effect of the adjuvant alone. However, the adjuvant alone did not cause visible injuries at any concentration(Fig. 2A).. On the contrary, WAP2.5 and WAP5.0 treatments similarly affected leaf integrity causing leaf injuries on the 30% of the leaf surface (no statistical differences were observed between the two treatments) (Fig. 2). Among treatments, the emulsion containing 5% of caraway oil was the most harmful for E. crus-galli leaves (Fig. 2A). Concerning plant biomass, the most significant decrease was observed on plant sprayed with both emulsions containing peppermint oil, which caused a 50% reduction in dry biomass compared to control (W) (Fig. 2B).

Therefore, biometric analyses revealed that water emulsions of EOs and a commercial adjuvant composed of FAME of oilseed rape caused a significant reduction of biomass of maize and E. crus-galli, with emulsions containing EO of peppermint being more toxic than those of caraway. Notably, a significant reduction of biomass was observed in maize for the dose of EO in emulsions as high as 5% by using caraway oil, whereas for E. crus-galli the negative effects occurred even when the lower dose was applied (WAC2.5). For the sack of the truth, reduction of plant biomass could be partially attributable to the effect of the adjuvant alone (see WA5.0 biomass reduction) but that WAC5.0 did not cause any visible injury and plant damage (whilst WAC2.5 and WAC 5.0 did) is a valuable result of the effectiveness of caraway EO. Our dataset cannot explain the physiological reasons behind the side effect of adjuvant on E. crus-gallis biomass reduction and further research is needed to clarify this point. In any case, visible injuries were only detected in WAC 2.5 plants of E. crus-galli and not in maize plants, which is a promising result in the attempt to develop a selective botanical herbicide. One should also consider that the selective 20% damage over E. crus-galli leaves (which is seems not a negligible result for an ecofriendly botanical herbicide bioassayed at such low concentrations) can strongly reduce the competition between the crop and the pest in the field in an early developmental stage, thus allowing maize to be more competitive and to grow faster. After the
first stage, E. crus-galli would suffer for the fast-growing maize developing, this resulting in a further reduction of the possibility to compete with maize plants. In addition, our experiment describes the use of a single treatment with WAC2.5 EO, but repetitive treatments could further increase the effectiveness of this EO at 2.5 concentration. Finally, addition of other coformulants could also increase the effect of WAC EO. For all these reasons, we proposed that the use of WAC 2.5 lead to interesting results which could be exploited proficiently for developing an eco-friendly herbicide. About possible mechanism of action, below we propose the physiological and biochemical reasons on the base of our data. For example, it has been demonstrated that essential oils might act as a desiccant herbicide which alters the leaf cuticular wax layer causing alterations in leaf membrane integrity, dehydration and death (Bainard et al., 2006). Moreover, considering that some species are affected more than others by the same EOs, varying the concentration of a given EOs might be useful to increase/reduce its selectivity allowing weed control without damaging crop growth and production. Recent studies demonstrated that the impairment of photosynthetic process is one of the main cascade effects of multi-target EOs (Araniti et al., 2018). Therefore, in principle we decided to investigate the effects of peppermint and caraway EOs in relation to changes induced in chlorophyll fluorescence parameters.

3.3. The effect of emulsions on chlorophyll a fluorescence

In Figures 3-6 the detailed images of chlorophyll a fluorescence parameters monitored on both maize and E. crus-galli leaves after spraying are displayed.

In particular, three specific fluorescence parameters were monitored: i) $\mathrm{Fv} / \mathrm{Fm}$ - maximum quantum yield of photosystem II, that is the most common fluorescence parameter to measure response of plants to different kinds of stress (Kalaji et al., 2014) ii) NPQ - non-photochemical quenching, a parameter which is principally associated with the dissipation of the excess of
excitation energy in the form of heat (Müller et al., 2001), and iii) Rfd - fluorescence decrease ratio, which can be considered as a measure of the photosynthetic activity of a whole leaf (Lichtenthaller et al., 2005).

False color images of chlorophyll fluorescence suggest a decline of all these parameters in leaves of maize when treated with peppermint EO at 5% and with caraway EO at both 2.5 and 5%, as revealed by the reduced surface of the leaves which still emits a fluorescence signal (Fig. 7). It is conceivable that this is related to the occurrence of symptoms over the leaf and to the pre-symptomatic reduction of photosynthetic efficiency in areas of the leaf laminae where symptoms will consequently appear. Similar results can be observed in E. crus-galli leaves, which differently from maize leaves, had a lower chlorophyll fluorescence signal, even when sprayed with 2.5 \% of peppermint EO (Fig. 8). A conversion of these false color-RGB images into the "mean grey value" enabled a statistical comparison between treatments (Figs 7-8) that included both the area of a living leaf-tissue and the intensity of color. The statistical analysis in "mean grey values" confirms our previous observation made by false color images revealing that photosystem II performances, a key indicator of photosynthetic efficiency, was less affected by the treatment with caraway as compared to peppermint EO. Moreover, it confirms that the lower dose of caraway emulsion (WAC2.5) did not alter two out of the three fluorescence parameters in maize leaves (Fig. 7). On the contrary, Fv/Fm and Rfd declined in a dose-dependent manner in E. crus-galli, whose photosynthetic apparatus seems much more susceptible than that of maize to peppermint EOs emulsions (Fig. 8). A reduction in Fv/Fm as well as alteration of other chlorophyll fluorescence parameters have been observed by several authors on plants treated with both EOs or their pure constituents. Araniti et al. (2017c, 2018) reported that oregano essential oils as well as D. viscosa volatiles strongly affected the photosynthetic machinery of Arabidopsis and lettuce, principally reducing the efficiency of both dark and light adapted PSII and NPQ. Similar results were observed by Graña et al. (2013)
and Araniti et al. (2017b) on Arabidopsis plants treated with the terpenoids citral and transcaryophyllene, respectively. Finally, Synowiec et al. (2015) highlighted that leaf-application of clove oil and its main constituents caused a significant alteration of fluorescence parameters. Therefore, the results of both experiments showed that fluorescence parameters are not only indicative of the early reaction of the photosynthetic apparatus to the stress caused by the foliar application of EOs, but also allow to display differences in the sensitivity of plant species to the individual EOs.

As a next step, a more detailed metabolomic analyses revealed differences in key biochemical pathways altered by the foliar-applied emulsions of caraway or peppermint EOs.

3.4. Differential effects of essential oils on plant metabolism

The GC-MS analysis was performed to identify differentially produced metabolites, following leaf spraying with EO emulsions and adjuvant. In particular, we screened the effect of the highest concentration of both EOs (5\%), which caused significant increase of leaf injury, and in consequence the reduction of biomass, in order to inspect the main compounds as well as the pathway differentially affected by EOs treatments in both maize and E. crus-galli (Tables 2-5 and Figures 9-10).

In order to assess the influence of the treatments on overall metabolites, raw data were analyzed through principal component analysis (PCA) and successively significant features were identified through the univariate analysis ANOVA (analysis of variance). Finally, to get more insights into the metabolic pathways affected by the treatments, data were analyzed through the "pathway analysis" (Tables 2-5 and Figures 9-10).

GC-MS analysis led to the identification of 51 and 52 compounds in Z. mays and E. crusgalli, respectively (Table 2, 4 and Figures 9, 10). In particular (out of the parenthesis are reported the number of metabolites annotated in Z. mays, whereas in the parenthesis those in E.
curs-galli), 10 (13) amino acids, 13 (12) organic acids, 12 sugars, 3 (1) sugar acid, 5 (4) sugar alcohols, 3 (4) amines, 2 (4) fatty acids, 1 glycan, 1 glycoside and 1 lactone for maize and 1 inorganic acid for E. crus-galli have been annotated (Tables 2, 4 and Figures 9, 10).

3.4.1. Metabolic characterization of treated and non-treated maize

Concerning the results obtained from Z. mays, the PCA analysis pointed out a clear separation among all treatments and the combination of the two principal components PC1 (55.2\%) vs PC2 (26.3\%) explained a total variance of 81.5% (Fig. 9A).

In Z. mays experiments the PCA loading plot highlighted that sample separation was mainly due to lactose, erythritol, ribono-1,4-lactone, glyceryl-glicoside, 2-oxoglutaric acid, silanamine, sedoheptulose, tagatose and fructose for the PC1, whereas in PC2 it was due to malonic acid, galactinol, acotinic acid, tagatose, maltose, valine, aspartic acid and arabitol (Fig. 9B). Both Z. mays PCA and heatmap visualization of metabolomic data showed distinct segregation between control and treated seedlings (Fig. 9C). At a higher level the metabolome of WAC5.0-treated seedlings and the peppermint treatment (WAP5.0) clustered together, suggesting that the treatments completely changed the metabolic profile of treated plants compared to control plants (Fig. 9C). The univariate analysis of variance (ANOVA), carried out on Z. mays seedlings treated with both caraway (WAC5.0) and peppermint (WAP5.0) EOs, pointed out several statistical and contrasting differences among control and treatments (Table 2). In particular, in seedlings treated with WAC5.0 three amino acids were significantly stimulated (glutamate, serine and L-alanine), whereas aspartic acid and norvaline were significantly reduced (Table 2). On the contrary, in WAP5.0 treated plants only the aspartic acid and valine were significantly reduced, whereas serine was accumulated (Table 2). A similar trend was also observed in organic acids and sugars contents which were differentially
affected by the treatments (Table 2), suggesting that the two EOs were able to interfere with different metabolic pathways.

This hypothesis was confirmed by the pathway analysis, which highlighted that caraway EOs significantly affected more metabolic pathways than peppermint EO (11 vs 7) (Table 3). In particular, both treatments significantly interfered with the amino acid metabolism (e.g. alanine, aspartate and glutamate metabolism as well as glycine, serine and threonine metabolism). On the contrary, the citrate cycle, the inositol phosphate metabolism, the starch and sucrose metabolism as well as the glycerolipid metabolism were only affected by caraway treatment (Table 3).

The highest accumulation of metabolites observed in maize plants treated with caraway EOs suggests that plants were less affected by this treatment as compared to those treated with peppermint EOs, which is in agreement with chlorophyll fluorescence data and the biomass changes observed in this study. In fact, the increase in glutamic acid, serine and alanine as well as the increments in sugars has been reported as an adaptation strategy adopted by resistant plants to cope with abiotic stress since they act as osmoprotectants (Kovàcs et al., 2012; Good and Zaplachinski, 1994; Rhodes et al., 1986). Moreover, the accumulation of maltose might hint at an enhanced potential for starch mobilization in plants when exposed to EO stress. It has been suggested that in plants β-amylase induction during biotic stress could lead to starchdependent maltose accumulation, and that maltose might contribute in protecting proteins and the electron transport chain in the chloroplast stroma during acute stress (Kaplan and Guy, 2005).

The high accumulation in maltose only observed in maize plants treated with caraway EOs suggests that this species has a higher ability to cope with the stress induced by this EOsformulation. This hypothesis is strongly supported also by the weaker effects (in terms of leaf
injuries, reduction in biomass, impact to PSII efficiency etc.) induced by WAC treatment when assayed at the lower concentration (WAC2.5).

3.4.2. Metabolic characterization of treated and non-treated E. crus-galli

The score plot of the unsupervised PCA (Fig. 10a) highlights a clear separation among control and treatments. In the experiments carried on E. crus-galli (Fig. 10a) the separation was achieved using the principal components (PCs) PC1 vs PC2, which explained a total variance of 80.2%. In particular, PC1 explained the highest variance (54.3 \%) while PC2 explained 25.9% of the total variance. In Fig. 10b is reported the PCA loading plot which highlighted that the PC1 was dominated by maltose, asparagine, glucose, mannose, fructose, tagatose, arabinose and tyrosine, whereas PC2 was dominated by turanose, galactinol, lactic acid, malonic acid, quinic acid and glutamine.

In the heatmap reported in Fig. 10c visualization of metabolomic data showed distinct segregation and a peculiar clusterization among control and treatments WAC5.0 and WAP5.0. Agglomerative hierarchical clustering begins with each sample as separate cluster and then proceeds to combine them until all samples belong to one cluster. At a higher level the metabolome of control seedlings (WA) and the treatment WAC5.0 clustered together.

As for Z. mays, the ANOVA pointed out a high number of statistically affected metabolites in E. crus galli WAP5.0-treated plants. Interestingly, in plants treated with caraway EO a general reduction in both amino acids and sugars content was observed, whereas in plants treated with caraway EO an opposite behavior was observed, which was also characterized by a general reduction of both classes of compounds (Table 4). The strong downregulation of different metabolic pathways leading to the biosynthesis of amino acid and sugars are likely on the bases of the strong effectiveness of the caraway EO treatment, confirming again the multitarget nature of this EO. Concerning the organic acids, in both treatments it was observed a reduction in
acotinic acid, malate and malonate as well as an accumulation of citric acid and glycolic acid (Table 4). In addition, in WAP5.0-treated plants it was also observed an increment in galactinol and glycerol content, while myo-inositol was reduced by both treatments and sorbitol content was increased only in WAC5.0-treated plants (Table 4).

Finally, the pathway analysis highlighted that treatments carried out on the plants of E. crus-galli differentially affected several pathways (Table 5). In particular, both emulsions with caraway and peppermint EOs affected alanine, aspartate and glutamate metabolism as well as the galactose metabolism (Table 5). On the other hand, glycine, serine and threonine metabolism as well as isoquinoline alkaloid biosynthesis was significantly affected only by the emulsions with peppermint EOs (Table 5).

Interestingly, both EOs had a quite completely different effects on E. curs-galli seedlings. In fact, in WAP5.0 treatment a high accumulation of almost all the amino acids and sugars was observed, whereas in WAC5.0 treated plants an opposite behavior was observed. On the contrary, organic acid content followed a similar trend in both treatments. As previously reported amino acid and sugar accumulation plays a pivotal role in protecting plants from oxidative stress acting as osmoprotectants (Kovàcs et al., 2012; Good and Zaplachinski, 1994; Rhodes et al., 1986). Moreover, in plants treated with peppermint EOs (WAP5.0) a higher increase in sucrose, galactinol and glycerol was observed. These molecules are important plant protectors during several abiotic stress such as salinity, heat- and cold-shock stress (Nishizawa et al., 2008; Eastmond, 2004; Taji et al., 2002; Santarius, 1992). Satarius (1992) reported that sucrose and glycerol, which easily penetrate across chloroplast membranes, strongly protected isolated thylakoid membranes from cold shock preventing membrane damages and stabilizing protein complex. In addition, Eastmod (2004) demonstrated that Arabidopsis mutants, which accumulate glycerol, were more resistant to abiotic stresses associated with leaf dehydration. Concerning galactinol, it has been suggested that this molecule not only acts as osmoprotectant
and stabilizer of cellular membranes, but is also a pivotal ROS scavenger playing a novel role in the protection of cellular metabolism, in particular the photosynthetic apparatus, from oxidative damages caused by several abiotic stress factors (Nishizawa et al., 2008; Taji et al., 2002).

These results suggest that E. curs-galli plants exposed to peppermint EOs were able to cope with EO-promoting stress by activating some metabolic strategy aiming to enable plant protection. These results are in agreement with leaf injuries and plant biomass results. In fact, leaf injuries induced by WAP5.0 treatment were significantly lower compared to those exhibited by WAC5.0-treated plants. On the other hand, biomass in plants treated with peppermint EO was significantly lower than that of WAC5.0-treated plants. Probably, as also suggested by Good and Zaplachinsky (1992) plants underwent a series of reaction which finally lead to a reduction of protein synthesis in order to increase the amino acid content to cope and protect themselves from EOs-induced osmotic and oxidative stress.

5. Conclusions

The dataset presented here offers clear evidence that foliar-applied oil-in-water (o/w) emulsions containing peppermint EO and fatty acid methyl esters strongly affect both species, maize and barnyard grass at the growth phases of leaves development, from both a physiological and biochemical point of view. On the contrary, o/w emulsions containing caraway EOs (WAC) were more effective on E. crus-galli at both concentrations, causing leaf injuries and reduction in biomass as well as significant alterations on the photosynthetic apparatus and plant metabolism, whereas biomass as well as photosynthetic apparatus of Z. mays seedlings were not affected by WAC2.5, as compared to control plants. Moreover, despite the presence of some injuries on leaf blades after WAC5.0 treatment, maize seedlings were able to activate metabolic mechanisms, such as amino acids and sugars accumulation, to protect
themselves from EOs-induced stress. Taken together these results suggests that the o / w emulsion based on caraway EO and fatty acids methyl esters represents a potential candidate for the development of a commercial botanical herbicide against E. crus-galli in maize cultivation.

Conflict of interest statement

The authors declare no conflicts of interest.

Acknowledgements

This work was supported by the Polish Ministry of Science and Higher Education as part of the statutory activities of the University of Agriculture in Krakow [grant number DS 3124].

Authors contribution

AS designed and performed the pot experiment, statistically analyzed results and wrote part of the manuscript; FA designed, performed and statistically analyzed the results of metabolomic analyses, and wrote part of the manuscript; KM and ML performed and analyzed the chlorophyll fluorescence analysis and wrote part of the manuscript; AK performed the chemical analyses of essential oils and wrote methodological part for this analysis.

References

Adams, R.P., 2007. Alphabetical listing of compounds with their retention time and arithmetic retention index on DB-5. Identification of essential oil components by gas chromatography/mass spectrometry 4,401 .

Ahuja, N., Singh, H.P., Batish, D.R., \& Kohli, R.K., 2015. Eugenol-inhibited root growth in Avena fatua involves ROS-mediated oxidative damage. Pest. Biochem. Physiol. 118, 6470.

Araniti, F., Bruno, L., Sunseri, F., Pacenza, M., Forgione, I., Bitonti, M.B., \& Abenavoli, M.R., 2017a. The allelochemical farnesene affects Arabidopsis thaliana root meristem altering auxin distribution. Plant Physiol. Biochem. 121, 14-20.

Araniti, F., Graña, E., Krasuska, U., Bogatek, R., Reigosa, M.J., Abenavoli, M.R., \& SánchezMoreiras, A.M., 2016. Loss of gravitropism in farnesene-treated arabidopsis is due to microtubule malformations related to hormonal and ROS unbalance. PloS one 11(8), e0160202.

Araniti, F., Graña, E., Reigosa, M.J., Sánchez-Moreiras, A.M., \& Abenavoli, M.R., 2013. Individual and joint activity of terpenoids, isolated from Calamintha nepeta extract, on Arabidopsis thaliana. Nat. Prod. Res. 27(24), 2297-2303.

Araniti, F., Landi, M., Lupini, A., Sunseri, F., Guidi, L., \& Abenavoli, M.R., 2018. Origanum vulgare essential oils inhibit glutamate and aspartate metabolism altering the photorespiratory pathway in Arabidopsis thaliana seedlings. J. Plant Physiol. 231, 297309.

Araniti, F., Sánchez-Moreiras, A.M., Graña, E., Reigosa, M.J., \& Abenavoli, M.R., 2017b. Terpenoid trans-caryophyllene inhibits weed germination and induces plant water status alteration and oxidative damage in adult Arabidopsis. Plant Biol. 19(1), 79-89.

Araniti. F., Lupini. A., Sunseri. F., Abenavoli. M.R., 2017c. Allelopatic Potential of Dittrichia viscosa (L.) W. Greuter Mediated by VOCs: A Physiological and Metabolomic Approach. PloS one. 12(1). e0170161.

Bainard, L. D., Isman, M. B., \& Upadhyaya, M. K., 2006. Phytotoxicity of clove oil and its primary constituent eugenol and the role of leaf epicuticular wax in the susceptibility to these essential oils. Weed Sci. 54(5), 833-837.

Baj, T., Sieniawska, E., Kowalski, R., Wesołowski, M., \& Ulewicz-Magulska, B., 2015. Effectiveness of the Deryng and Clevenger-type apparatus in isolation of various types of components of essential oil from the Mutelina purpurea Thell. flowers. Acta Pol. Pharm. 72, 507-515.

Benvenuti, S., Cioni, P. L., Flamini, G., \& Pardossi, A., 2017. Weeds for weed control: Asteraceae essential oils as natural herbicides. Weed Res. 57(5), 342-353.

Chemat, S., Lagha, A., AitAmar, H., Bartels, P.V., \& Chemat, F., 2004. Comparison of conventional and ultrasound-assisted extraction of carvone and limonene from caraway seeds. Flav. Fragr. J. 19(3), 188-195.

Eastmond, P. J., 2004. Glycerol-insensitive Arabidopsis mutants: glil seedlings lack glycerol kinase, accumulate glycerol and are more resistant to abiotic stress. Plant J. 37(4), 617625.

Fejér, J., Grul’ová, D., \& De Feo, V., 2017. Biomass production and essential oil in a new bred cultivar of peppermint (Menthax piperita L.). Ind. Crops and Prod. 109, 812-817.

Ghatak, A., Chaturvedi, P., \& Weckwerth, W., 2018. Metabolomics in Plant Stress Physiology: 1-50.

Good, A.G., \& Zaplachinski, S. T., 1994. The effects of drought stress on free amino acid accumulation and protein synthesis in Brassica napus. Physiol. Plantarum 90(1), 9-14.

Graña, E., Sotelo, T., Díaz-Tielas, C., Reigosa, M.J., \& Sánchez-Moreiras, A.M., 2013. The phytotoxic potential of the terpenoid citral on seedlings and adult plants. Weed Sci. 61(3), 469-481.

Guidi, L., \& Landi, M., 2014. Aromatic plants: use and nutraceutical properties. Novel Plant Bioresources: Applications in Food, Medicine and Cosmetics, 303-345.

Hazrati, H., Saharkhiz, M.J., Niakousari, M., \& Moein, M., 2017. Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotox. Environ. Safe. 142, 423-430.

Ibrahim, M.A., Oksanen, E.J., \& Holopainen, J.K., 2004. Effects of limonene on the growth and physiology of cabbage (Brassica oleracea L) and carrot (Daucus carota L) plants. J. Sci. Food Agricul. 84(11), 1319-1326.

Kalaji, H.M., Schansker, G., Ladle, R.J., Goltsev, V., Bosa, K., Allakhverdiev, S., I, Brestic, M., Bussotti, F., Calatayud, A., Dąbrowski, P., Elsheery, N.I., Ferroni, L., Guidi, L., Hogewoning, S.W., Jajoo, A., Misra, A.N., Nebauer, S.G., Pancaldi, S., Penella, C., Poli, D.B., Pollastrini, M., Romanowska-Duda, Z.B., Rutkowska, B., Serôdio, J., Suresh, K., Szulc, W., Tambussi, E., Yanniccari, M., Zivcak, M., 2014. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth. Res. 122, 121-158.

Kaplan, F., \& Guy, C.L., 2005. RNA interference of Arabidopsis beta-amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. Plant J. 44(5), 730-743.

Kaur, S., Singh, H.P., Mittal, S., Batish, D.R., \& Kohli, R.K., 2010. Phytotoxic effects of volatile oil from Artemisia scoparia against weeds and its possible use as a bioherbicide. Ind. Crops and Prod. 32(1), 54-61.

Kovács, Z., Simon-Sarkadi, L., Vashegyi, I., \& Kocsy, G., 2012. Different accumulation of free amino acids during short-and long-term osmotic stress in wheat. Sci. World J. 2012: 110.

Lichtenthaler, H.K., Buschmann, C., Knapp, M., 2005. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio Rfd of leaves with the PAM fluorometer. Photosynthetica 43, 379-393.

Mosa, K.A., Ismail, A., \& Helmy, M., 2017. Omics and system biology approaches in plant stress research. In: Plant Stress Tolerance (pp. 21-34). Springer, Cham.

Müller, P., Li, X.P., Niyogi, K.K., 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 125, 1558-1566.

Nicholson, J. K., \& Lindon, J.C., 2008. Systems biology: metabolomics. Nature, 455(7216), 1054.

Nishizawa, A., Yabuta, Y., \& Shigeoka, S., 2008. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 147(3), 1251-1263.

Oroian, C., Covrig, I., Odagiu, A., Mălinaș, C., Moldovan, C., \& Fleșeriu, A., 2017. Effects of cultivation systems and environmental conditions on peppermint (Menthax piperita L.) biomass yield and oil content. Notulae botanicae horti agrobotanici cluj-napoca, 45(2), 576-581.

Pisulewska E., Fijołek M., Witkowicz R., 2010. The share of peppermint (Mentha piperita L.) in the cropping structure and its cultivation technology in the Michalow commune. Zeszyty Problemowe Postępów Nauk Rolniczych 549, 149-156.

R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Rhodes, D., Handa, S., \& Bressan, R.A., 1986. Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol. 82(4), 890-903.

Rolli, E., Marieschi, M., Maietti, S., Sacchetti, G., Bruni, R., 2014. Comparative phytotoxicity of 25 essential oils on pre-and post-emergence development of Solanum lycopersicum L.: a multivariate approach. Ind. Crops and Prod. 60, 280-290.

Santarius, K.A., 1992. Freezing of isolated thylakoid membranes in complex media. VIII. Differential cryoprotection by sucrose, proline and glycerol. Physiol. Plantarum, 84(1), 87-93.

Schulz, M., Kussmann, P., Knop, M., Kriegs, B., Gresens, F., Eichert, T., Ulbrich, A., Marx, F., Fabricius, H., Goldbach, H. \& Noga, G., 2007. Allelopathic monoterpenes interfere with Arabidopsis thaliana cuticular waxes and enhance transpiration. Plant signaling \& behavior, 2(4), 231-239.

Seidler-Łożykowska, K., \& Bocianowski, J., 2012. Evaluation of variability of morphological traits of selected caraway (Carum carvi L.) genotypes. Ind. Crops and Prod. 35(1), 140145.

Seidler-Łożykowska, K., Kędzia, B., Karpińska, E., \& Bocianowski, J., 2013. Microbiological activity of caraway (Carum carvi L.) essential oil obtained from different origin. Acta Sci. Agr. 35(4), 495-500.

Stokłosa, A., Matraszek, R., Isman, M.B., \& Upadhyaya, M.K., 2012. Phytotoxic activity of clove oil, its constituents, and its modification by light intensity in broccoli and common lambsquarters (Chenopodium album). Weed Sci. 60(4), 607-611.

Sunohara, Y., Baba, Y., Matsuyama, S., Fujimura, K., \& Matsumoto, H., 2015. Screening and identification of phytotoxic volatile compounds in medicinal plants and characterizations of a selected compound, eucarvone. Protoplasma, 252(4), 1047-1059.

Synowiec, A. \& Drozdek, E. 2016. Physicochemical and herbicidal properties of emulsions of essential oils against Avena fatua L. and Chenopodium album L. J. Plant Dis. Prot. 123(2), 65-74.

Synowiec, A., Kalemba, D., Drozdek, E., \& Bocianowski, J., 2017. Phytotoxic potential of essential oils from temperate climate plants against the germination of selected weeds and crops. J. Pest Sci. 90(1), 407-419.

Synowiec, A., Możdżeń, K., \& Skoczowski, A., 2015. Early physiological response of broccoli leaf to foliar application of clove oil and its main constituents. Ind. Crops and Prod. 74, 523-529.

Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-Shinozaki, K. \& Shinozaki, K., 2002. Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29(4), 417-426.

Vaid, S., Batish, D.R., Singh, H.P., \& Kohli, R.K., 2011. Phytotoxicity of limonene against Amaranthus viridis L. The Bioscan, 6(1), 163-165.

Vaughn, S.F., \& Spencer, G.F., 1993. Volatile monoterpenes as potential parent structures for new herbicides. Weed Sci. 41(1), 114-119.

Vokou, D., Douvli, P., Blionis, G.J., \& Halley, J.M., 2003. Effects of monoterpenoids, acting alone or in pairs, on seed germination and subsequent seedling growth. J. Chem. Ecol. 29(10), 2281-2301.

Xia. J., Sinelnikov. I.V.. Han. B.. \& Wishart. D.S., 2015. MetaboAnalyst 3.0—making metabolomics more meaningful. Nucl. Acids Res. 43(W1). W251-W257.

Table 1
Main constituents (\%) of caraway seed and peppermint herb essential oils distilled from plants grown in the temperate climate.

Caraway oil (WAC5.0)				Peppermint oil (WAP5.0)			
RI	R ${ }_{\text {lit }}$	Constituent	\%	RI	RI ${ }_{\text {lit }}$	Constituent	\%
927	934	α-Pinene	0.1	927	924	α-Thujene	0.3
963	970	Sabinene	0.1	939	934	α-Pinene	t
966	974	β-Pinene	0.1	962	970	Sabinene	0.2
982	983	Myrcene	0.1	965	974	β-Pinene	0.7
1001	1006	Car-3-ene	t	982	983	Myrcene	0.1
1011	1016	p-Cymene	t	994	998	α-Phellandrene	t
1023	1025	Limonene	32.5	1006	1006	Car-3-ene	0.1
1086	1086	Linalool	t	1009	1015	p-Cymene	0.2
1101		p-Mentha-2,8-					
	1103	dien-1-ol	t	1016	1025	1.8-Cyneol	5.2
1112		cis-Limonen					
	1116	oxide	0.1	1018	1025	Limonene	2.1
1117		trans-Limoene					
	1121	oxide	t	1026	1025	(Z)- β-Ocimene	t
1168		cis-					
	1172	Dihydrocarvone	0.1	1046	1055	γ-Terpinene	0.2
1174		trans-					
	1177	Dihydrocarvone	0.1	1049	1053	trans-Sabinene hydrate	0.3
1201		Dihydrocarveol					
		(isomer)	t	1076	1081	Terpinolene	0.1
1206	1210	cis-Carveol	0.1	1080	1082	cis-Sabinene hydrate	t

1224	1218	Carvone	66.4	1084	1087	Linalool	0.1
1413		(E) $-\beta$ -				2-Methylbutyl-2-methyl	
	1421	Caryophyllene	t	1087	1091	isobutyrate	t
1446	1446	(E)- β-Farnesene	t	1091	1094	2-Methylbutylisovalerate	t
1565		β-Caryophyllene					
	1546	oxide	t	1105	1108	cis-p-Menth-2-en-1-ol	t
				1125	1129	trans-Sabinol	t
				1134	1139	Menthone	25.5
				1140	1146	Isomenthone	4.0
				1144	1150	Menthofuran	2.0
				1148	1056	Neomenthol	3.3
				1163	1163	Menthol	42.7
				1167	1176	Isomenthol	0.4
				1171	1176	α-Terpineol	0.4
				1188	1176	Neoisomenthol	t
				1210	1215	Pulegone	0.8
				1223	1226	Piperiton	0.4
						Isopulegol acetate (Isomer	
				1253	1259	I)	t
				1256	1263	Neomenthyl acetate	0.3
				1276	1280	Menthyl acetate	5.9
				1289	1298	Isomenthyl acetate	0.2
				1372	1380	α-Copaene	t
				1379	1386	β-Bourbonene	0.2
				1384	1389	β-Elemene	0.1

14141421 (E)- β-Caryophyllene 2.2
$1422 \quad 1430 \quad \beta$-Copaene t
14361445 Isogermacrene D t
14441446 (E)- β-Farnesene 0.1
$14461455 \quad \alpha$-Humulene 0.1
14661474γ-Muurolene t
14711479 Germacrene D 0.9
14861494 Bicyclogermacrene 0.1
14891496α-Muurolene t
14911497α-Cuprenene 0.1
15091507γ-Cadinene t
15611572 Spathulenol t
15651578 Caryophyllene oxide 0.1
15761589 Globulol 0.1
Sum of 99.7 Sum of constituents 99.5

Table 2

677 Effects of water plus adjuvant (WA), caraway (WAC5.0) and peppermint 678 (WAP5.0) essential oil on Zea mays metabolites content.

Feature	WA	WAC5.0	WAP5.0	Class
Isoleucine	1.32	0.81	0.71	
Aspartic acid	$8.65{ }^{\text {b }}$	$7.96{ }^{\text {b }}$	$4.88{ }^{\text {a }}$	
Glutamic acid	$15.15^{\text {a }}$	$20.68{ }^{\text {b }}$	$13.78{ }^{\text {a }}$	
Valine	$0.82{ }^{\text {b }}$	$0.88{ }^{\text {b }}$	$0.48{ }^{\text {a }}$	
Serine	$4.07{ }^{\text {a }}$	$9.44{ }^{\text {b }}$	$10.72^{\text {b }}$	
L-Alanine	$9.94{ }^{\text {a }}$	$17.82^{\text {b }}$	$10.00^{\text {a }}$	Amino acid
Norvaline	$1.22^{\text {b }}$	$0.72{ }^{\text {a }}$	$1.16^{\text {b }}$	
Threonine	2.32	4.16	2.07	
Glycine	3.76	3.49	3.46	
Pyroglutamic acid	5.24	7.67	6.35	
Aconitic acid	$217.97^{\text {c }}$	$170.33{ }^{\text {b }}$	$90.75{ }^{\text {a }}$	
Cinnamic acid	2.51	2.65	2.49	
Carbamate	$17.69{ }^{\text {b }}$	$9.82^{\text {a }}$	$15.81{ }^{\text {b }}$	
Citric acid	$16.13{ }^{\text {b }}$	$13.23{ }^{\text {a }}$	$12.26^{\text {a }}$	
cyclohexanecarboxylicacid	108.71	116.03	71.46	
Itaconic acid	1.68	5.81	2.83	
Malic acid	105.73	110.11	112.04	
Malonic acid	$1.09{ }^{\text {b }}$	$0.33^{\text {a }}$	$0.19^{\text {a }}$	Organic acid
Oxalic acid	$50.38^{\text {a }}$	$66.47^{\text {b }}$	$73.63{ }^{\text {b }}$	
2-Oxoglutaric acid	$0.77^{\text {a }}$	$3.00{ }^{\text {b }}$	$1.94{ }^{\text {b }}$	
Quinic acid	282.40	249.73	250.44	
Succinic acid	3.41	6.79	5.51	
Threonic acid	18.48	18.13	12.98	
Glycolic acid	$2.25{ }^{\text {b }}$	$0.93{ }^{\text {a }}$	$0.93{ }^{\text {a }}$	
Lactate	$15.75{ }^{\text {a }}$	$24.15{ }^{\text {b }}$	$15.32^{\text {a }}$	
Arabinose	$4.35{ }^{\text {a }}$	$8.30{ }^{\text {b }}$	$9.29{ }^{\text {b }}$	
Fructose	$763.56^{\text {c }}$	$223.89{ }^{\text {a }}$	$479.78^{\text {b }}$	Sugar
Glucose	$1128.24^{\text {c }}$	$352.92^{\text {a }}$	$907.93{ }^{\text {b }}$	

Inosose	6.96	7.49	5.40	
Lactose	$3.23{ }^{\text {a }}$	$21.00^{\text {c }}$	$5.44{ }^{\text {b }}$	
Lyxose	$1.95{ }^{\text {b }}$	$0.86{ }^{\text {a }}$	$2.52^{\text {b }}$	
Maltose	$10.77^{\text {a }}$	$29.16^{\text {b }}$	$7.54{ }^{\text {a }}$	
Mannobiose	$4.20^{\text {a }}$	$8.43{ }^{\text {b }}$	$3.44{ }^{\text {a }}$	
Sedoheptulose	$3.88{ }^{\text {a }}$	$12.89^{\text {b }}$	$4.09^{\text {a }}$	
Sucrose	409.95	283.04	363.48	
Tagatose	$23.08{ }^{\text {b }}$	$4.97{ }^{\text {a }}$	$3.78{ }^{\text {a }}$	
Threose	$76.50{ }^{\text {c }}$	$41.85{ }^{\text {a }}$	$65.47{ }^{\text {b }}$	
Glyceric acid	6.45	11.80	7.86	
Threonic acid	18.48	18.13	12.98	Sugar Acid
Erythronic acid	$7.57^{\text {a }}$	$15.37^{\text {b }}$	$8.65{ }^{\text {a }}$	
Arabitol	$1.58{ }^{\text {a }}$	$1.47{ }^{\text {a }}$	$2.98{ }^{\text {b }}$	
Dithioerythritol	$2.69{ }^{\text {a }}$	$14.42^{\text {c }}$	$6.69{ }^{\text {b }}$	
Galactinol	$2.32{ }^{\text {b }}$	$3.03{ }^{\text {b }}$	$0.93{ }^{\text {a }}$	Sugar alcohol
Glycerol	2.76	4.86	2.84	
Myoinositol	$59.06{ }^{\text {a }}$	$70.17^{\text {b }}$	$53.75{ }^{\text {a }}$	
Ethanolamine	6.12	7.00	5.26	
Silanamine	$1.82{ }^{\text {a }}$	$6.30{ }^{\text {b }}$	$5.54{ }^{\text {b }}$	Amine
Hydroxylamine	91.68	110.88	93.80	
Octadecanoic acid	$9.75{ }^{\text {a }}$	$16.62^{\text {b }}$	$14.78{ }^{\text {b }}$	
Palmitic acid	$17.72^{\text {a }}$	$22.34^{\text {b }}$	$20.79^{\text {b }}$	Fatty acid
Galacturonic acid	$20.35^{\text {b }}$	$16.31^{\text {a }}$	$17.48^{\text {a }}$	Glycan
Ribono-1,4-lactone	$0.21^{\text {a }}$	$1.08{ }^{\text {b }}$	$0.70{ }^{\text {b }}$	Lactone
Glyceryl-glycoside	$10.05^{\text {a }}$	$58.02^{\text {c }}$	$34.41^{\text {b }}$	Glycoside
Phosphoric acid	21.85	22.32	21.88	Inorganic acid

Different letters along the rows indicate statistical differences with $\mathrm{P} \leq 0.05$ (LSD's test). $\mathrm{N}=3$.

Table 3

Pathway analysis: result from "Pathway Analysis" carried on the concentrations of metabolite identified in Zea mays treated with water plus adjuvant (WA), caraway (WAC5.0) and peppermint (WAP5.0) essential oils. In the table are reported the results obtained through the ingenuity pathway analysis carried out with MetPa.

Pathways	WA $v s$ WAC5.0			WA vs WAP5.0	
	$\begin{aligned} & \hline \mathrm{T} \\ & \text { Cmpd } \end{aligned}$	Hits	Raw \mathbf{p}	Raw \mathbf{p}	Impact
Alanine, aspartate and glutamate metabolism	21	5	0.014344	0.034342	0.66439
Glycine, serine and threonine metabolism	29	4	0.0034682	0.012128	0.53477
Citrate cycle (TCA cycle)	20	4	0.012643	//	0.24667
Inositol phosphate metabolism	17	1	0.039874	//	0.24503
Glyoxylate and dicarboxylate metabolism	17	4	0.0057461	0.0054114	0.23944
Galactose metabolism	26	6	0.0003485	0.0030181	0.1668
Methane metabolism	11	2	0.0052073	0.0089587	0.16667
Arginine and proline metabolism	37	2	0.053811	0.0056003	0.1268
Starch and sucrose metabolism	25	4	$3.59 \mathrm{E}-01$	//	0.11156
Glycerolipid metabolism	14	2	0.053595	//	0.09402
Aminoacyl-tRNA biosynthesis	67	8	0.0052887	0.013395	0.09302

T Cmpd: the total number of compounds in the pathway; Hits: is the actually matched number from the uploaded data; Raw P: is the original p value calculated from the enrichment analysis; Impact: is the pathway impact value calculated from pathway topology analysis.

Table 4

Effects of caraway (WAC5.0) and peppermint (KWAP5.0) essential oil on Echinocloa curs-galli metabolites content.

Feature	WA	WAC5.0	WAP5.0	Class
Asparagine	$1.53{ }^{\text {b }}$	$0.61{ }^{\text {a }}$	$9.66{ }^{\text {c }}$	
Aspartic acid	18.66	21.13	14.78	
GABA	$4.79{ }^{\text {a }}$	$7.18{ }^{\text {a }}$	$16.91{ }^{\text {b }}$	
Glutamic acid	$46.32^{\text {b }}$	$24.34^{\text {a }}$	$25.91{ }^{\text {a }}$	
Glutamine	$3.7{ }^{\text {a }}$	$12.09^{\text {b }}$	$24.30^{\text {c }}$	
Glycine	$2.60{ }^{\text {a }}$	$2.80{ }^{\text {a }}$	$5.90{ }^{\text {b }}$	
L-Alanine	24.22	20.72	35.24	Amino acid
Leucine	2.50	4.06	6.62	
Proline	$19.69^{\text {a }}$	$32.08^{\text {a }}$	$53.85{ }^{\text {b }}$	
Serine	$12.21{ }^{\text {a }}$	$15.94{ }^{\text {a }}$	$34.27^{\text {b }}$	
Threonine	$5.45^{\text {a }}$	$4.59{ }^{\text {a }}$	$7.10{ }^{\text {b }}$	
Tyrosine	$2.37^{\text {a }}$	$1.88{ }^{\text {b }}$	$8.52^{\text {c }}$	
Valine	19.30	17.49	19.24	
Aconitic acid	$380.50{ }^{\text {b }}$	$219.48^{\text {a }}$	$219.13{ }^{\text {a }}$	
Carbamate	16.72	12.20	13.76	
Citric acid	$8.63{ }^{\text {a }}$	$11.19^{\text {b }}$	$16.45{ }^{\text {c }}$	
Malic acid	$37.11^{\text {b }}$	$21.64{ }^{\text {a }}$	$24.30^{\text {a }}$	
Malonic acid	$0.93{ }^{\text {b }}$	$0.39^{\text {a }}$	$0.50^{\text {a }}$	
Methylmaleic acid	1.01	0.89	1.11	
Oxalic acid	$105.06^{\text {b }}$	$90.40^{\text {b }}$	$71.51{ }^{\text {a }}$	Organic acid
Quinic acid	$91.96{ }^{\text {b }}$	$15.23{ }^{\text {a }}$	$124.41^{\text {c }}$	
Succinic acid	$6.68{ }^{\text {a }}$	$4.10^{\text {a }}$	$9.42{ }^{\text {b }}$	
Threonic acid	8.21	4.13	7.09	
Glycolic acid	$0.77^{\text {a }}$	$1.43{ }^{\text {b }}$	$2.12{ }^{\text {c }}$	
Lactic acid	159.93	27.43	34.14	
Arabinose	$10.11^{\text {b }}$	$5.79{ }^{\text {a }}$	$28.41^{\text {c }}$	
Cellobiose	1.46	0.16	0.85	Sugar
Fructose	$150.39^{\text {b }}$	$46.45{ }^{\text {a }}$	$391.27^{\text {c }}$	

Galactose	$0.64{ }^{\text {b }}$	$0.42^{\text {a }}$	$1.05{ }^{\text {c }}$	
Glucose	$120.19{ }^{\text {b }}$	$38.83{ }^{\text {a }}$	$428.70^{\text {c }}$	
Lactose	$5.45{ }^{\text {b }}$	$2.16{ }^{\text {a }}$	$7.26{ }^{\text {c }}$	
Maltose	$1.90^{\text {a }}$	$2.29{ }^{\text {a }}$	$31.11^{\text {b }}$	
Mannose	$66.59{ }^{\text {b }}$	$28.87^{\text {a }}$	$240.91^{\text {c }}$	
Sucrose	$404.63{ }^{\text {b }}$	$243.74{ }^{\text {a }}$	$792.80^{\text {c }}$	
Tagatose	$179.38^{\text {b }}$	$52.78{ }^{\text {a }}$	$410.22^{\text {c }}$	
Turanose	$1.23{ }^{\text {c }}$	$0.27{ }^{\text {b }}$	$0.09^{\text {a }}$	
Levoglucosan	$8.54{ }^{\text {a }}$	$19.95{ }^{\text {c }}$	$11.24{ }^{\text {b }}$	
Glyceric acid	$5.89{ }^{\text {a }}$	$4.15^{\text {a }}$	$9.95{ }^{\text {b }}$	Sugar acid
Galactinol	$7.48{ }^{\text {b }}$	$0.75{ }^{\text {a }}$	$14.71^{\text {c }}$	Sugar alcohol
Glycerol	$8.38{ }^{\text {a }}$	$9.41^{\text {a }}$	$31.16^{\text {b }}$	
Myoinositol	$52.02^{\text {c }}$	$26.33{ }^{\text {a }}$	$45.41^{\text {b }}$	
Sorbitol	$59.40^{\text {a }}$	$137.32^{\text {b }}$	$60.22^{\text {a }}$	
Urea	5.97	2.61	4.85	Amine
Silanamine	$0.47{ }^{\text {a }}$	$2.06{ }^{\text {b }}$	$8.94{ }^{\text {c }}$	
Hydroxylamine	$120.87^{\text {a }}$	$181.72^{\text {b }}$	$126.36^{\text {a }}$	
Urea	5.97	2.61	4.85	
Palmitoleic acid	$4.10{ }^{\text {b }}$	$2.64{ }^{\text {a }}$	$6.20{ }^{\text {c }}$	Fatty acid
Palmitic acid	30.66	32.40	29.09	
Oleic acid	$1.72^{\text {a }}$	$1.45{ }^{\text {a }}$	$3.18{ }^{\text {b }}$	
Stearic acid	$18.08{ }^{\text {b }}$	$18.41^{\text {b }}$	$15.47^{\text {a }}$	
Glucuronic acid γ-lactone	$10.60^{\text {b }}$	$4.72^{\text {a }}$	$22.54{ }^{\text {c }}$	Glycan
Glyceryl-glycoside	$11.20^{\text {a }}$	$15.50{ }^{\text {b }}$	$44.31^{\text {c }}$	Glycoside
Phosphoric acid	32.98	48.08	40.04	Inorganic acid

Different letters along the rows indicate statistical differences with $\mathrm{P} \leq 0.05$ (LSD's test). $\mathrm{N}=3$.

			WA $\boldsymbol{v s}$ WAC5.0	WA $\boldsymbol{v s}$ WAP5.0	
Pathways	Cmpd	Hits	Raw p	Raw p	Impact
Alanine, aspartate and glutamate metabolism	21	7	0.021001	$2.72 \mathrm{E}-01$	0.74658
Glycine, serine and threonine metabolism	29	4	//	$6.20 \mathrm{E}-01$	0.53477
Galactose metabolism	26	9	$1.04 \mathrm{E}-01$	0.0001071	0.51278
Isoquinoline alkaloid biosynthesis	6	1	//	$1.65 \mathrm{E}-01$	0.5
Tyrosine metabolism	18	2	//	$4.41 \mathrm{E}-01$	0.27273
Inositol phosphate metabolism	17	1	0.0001203	0.048818	0.24503
Glyoxylate and dicarboxylate					
metabolism	17	4	0.0032152	0.00069149	0.23944
Citrate cycle (TCA cycle)	20	3	0.0093208	$8.05 \mathrm{E}-01$	0.17418
Methane metabolism	11	2	//	0.00056205	0.16667
Arginine and proline metabolism	37	6	0.0089378	$2.58 \mathrm{E}-01$	0.14946
Starch and sucrose metabolism	25	4	$1.51 \mathrm{E}-02$	4.42E-01	0.11156
Glycerolipid metabolism	14	2	//	0.014229	0.09402
Aminoacyl-tRNA biosynthesis	67	12	0.043696	0.00037297	0.09302
Valine, leucine and isoleucine					
biosynthesis	26	4	//	//	0.03645
Glutathione metabolism	26	2	0.003328	$7.52 \mathrm{E}-01$	0.03345

T Cmpd: the total number of compounds in the pathway; Hits: is the actually matched number from the uploaded data; Raw P : is the original p value calculated from the enrichment analysis; Impact: is the pathway impact value calculated from pathway topology analysis.

Fig. 1. Leaf injuries and effects of different doses of adjuvant and essential oils on maize biomass: The average leaf injuries (A) and plant biomass (B) of maize sprayed in the stage of 4-6 leaves with the oil-in-water emulsions containing caraway or peppermint essential oil and commercial adjuvant in the concentrations of 2.5% or 5.0%. Different letters refer to significant differences between means, as separated by post-hoc Tukey HSD test. Abbreviations: W - water; A - adjuvant; C - caraway oil; P - peppermint oil. The bars represent mean value \pm standard error; $\mathrm{N}=10$.

Fig. 2. Leaf injuries and effects of different doses of adjuvant and essential oils on E. crusgalli biomass: The average leaf injuries (A) and plant biomass (B) of E.crus-galli sprayed in the stage of 3-4 leaves with the oil-in-water emulsions containing caraway or peppermint essential oil and commercial adjuvant in the concentrations of 2.5% or 5.0%. Different letters refer to significant differences between means, as separated by post-hoc Tukey HSD test. Abbreviations: W - water; A - adjuvant; C - caraway oil; P - peppermint oil. The bars represent mean value \pm standard error; $\mathrm{N}=10$.

Fig. 3. Pseudo-colour images of PSII parameters after the treatments of Z. mays with essential oils: The selected parameters of chlorophyll a fluorescence of maize second leaf 48 hours after spraying with water (control) or with the oil-in-water emulsions containing caraway essential oil and commercial adjuvant in the concentrations of 2.5% or 5.0%. A conventional color scale for the comparisons is on the right. Abbreviations: W - water; $\mathrm{A}-\operatorname{adjuvant}$; C caraway oil; Fv/Fm - maximum quantum yield of photosystem II photochemistry parameter; NPQ - non-photochemical quenching; Rfd -fluorescence decrease ratio. $\mathrm{N}=5$.

Fig. 4. Pseudo-colour images of PSII parameters after the treatments of Z. mays with essential oils: The selected parameters of chlorophyll a fluorescence of maize second leaf 48 hours after spraying with water (control) or with the oil-in-water emulsions containing peppermint essential oil and commercial adjuvant in the concentrations of 2.5% or 5.0%. A conventional color scale for the comparisons is on the right. Abbreviations: W - water; A adjuvant; P - peppermint oil; $\mathrm{Fv} / \mathrm{Fm}$ - maximum quantum yield of photosystem II photochemistry parameter; NPQ - non-photochemical quenching; Rfd - fluorescence decrease ratio. $\mathrm{N}=5$.

Control
WAC2.5
WAC5.0

Fig. 5. Pseudo-colour images of PSII parameters after the treatments of E. crusgalli with essential oils: The selected parameters of chlorophyll a fluorescence of E. crusgalli second leaf 48 hours after spraying with water (control) or with the oil-in-water emulsions containing caraway essential oil and commercial adjuvant in the concentrations of 2.5% or 5.0%. A conventional color scale for the comparisons is on the right. Abbreviations: W - water; A adjuvant; C - caraway oil; $\mathrm{Fv} / \mathrm{Fm}$ - maximum quantum yield of photosystem II photochemistry parameter; NPQ - non-photochemical quenching; Rfd-fluorescence decrease ratio. $\mathrm{N}=5$.

Fig. 6. Pseudo-colour images of PSII parameters after the treatments of E. crus-galli with essential oils: The selected parameters of chlorophyll a fluorescence of E. crus-galli second leaf 48 hours after spraying with water (control) or with the oil-in-water emulsions containing peppermint essential oil and commercial adjuvant in the concentrations of 2.5% or 5.0%. A conventional color scale for the comparisons is on the right. Abbreviations: W - water; A adjuvant; P - peppermint oil; $\mathrm{Fv} / \mathrm{Fm}$ - maximum quantum yield of photosystem II photochemistry parameter; NPQ - non-photochemical quenching; Rfd - fluorescence decrease ratio. $\mathrm{N}=5$.

Fig. 7. Effects of essential oils on Z. mays photosystem II parameters: A mean gray values for the selected parameters of chlorophyll a fluorescence of maize. Different letters refer to significant differences between means, as separated by post-hoc Tukey HSD test. Line represents a mean value, box - a mean value \pm standard error, and whiskers - a mean value \pm 2*standard deviation. $\mathrm{N}=5$. Abbreviations: W - water; $\mathrm{A}-$ adjuvant; C - caraway oil; P peppermint oil; Fv/Fm - maximum quantum yield of photosystem II photochemistry parameter; NPQ - non-photochemical quenching; Rfd - fluorescence decrease ratio.

- Mean; \square Mean SE; I Mean 2*SD

Fig. 8. Effects of essential oils on E. crus-galli photosystem II parameters: A mean gray values for the selected parameters of chlorophyll a fluorescence of E. crus-galli. Different letters refer to significant differences between means, as separated by post-hoc Tukey HSD test. Line represents a mean value, box - a mean value \pm standard error, and whiskers - a mean value $\pm 2^{*}$ standard deviation. $\mathrm{N}=5$. Abbreviations: $\mathrm{W}-$ water; $\mathrm{A}-$ adjuvant; $\mathrm{C}-$ caraway oil; $\mathrm{P}-$ peppermint oil; $\mathrm{Fv} / \mathrm{Fm}$ - maximum quantum yield of photosystem II photochemistry parameter; NPQ - non-photochemical quenching; Rfd - fluorescence decrease ratio.

Fig. 9. Effects of essential oils on Z. mays metabolome: Principal component analysis (PCA) carried on the metabolite identified in maize plants 48 hours after spraying with water (control) or with the oil-in-water emulsions containing caraway (WAC5.0) or peppermint (WAP5.0) essential oil and commercial adjuvant in the concentrations of 5.0%. A) PCA analysis model scores A) and loading plot B) of metabolite profile of control plants [red dots (0) - WA; green dots (1) - WAC5.0; blue dots (3) - WAP5.0]. Both score and loading plots were generated using the first two PCs, PC1 vs PC2, with the explained variances shown in brackets; C)

Overlay heat map of metabolite profiles in seedlings exposed to caraway (WAC5.0) and peppermint (WAP5.0) essential oils. Each square represents the effect of the essential oils on the amount of every metabolite using a false-color scale. Red and green regions indicate increase or decrease of metabolite content, respectively. WA (1-3), indicate control replicates; WAC5.0 (1-3) indicate the replicates of seedlings treated with caraway essential oils; WAP5.0 (1-3) C-24 and C-48 indicate the replicates of seedlings treated with peppermint essential oils. $\mathrm{N}=3$.

Fig. 10. Effects of essential oils on E.curs-galli metabolome: Principal component analysis carried (PCA) on the metabolite identified in E. crus-galli plants 48 hours after spraying with water (control) or with the oil-in-water emulsions containing caraway (WAC5.0) or peppermint (WAP5.0) essential oil and commercial adjuvant in the concentrations of 5.0%. A) PCA model scores A) and loading plot B) of metabolite profile of control plants [red dots (0) - WA; green dots (1) - WAC5.0; blue dots (3) - WAP5.0]. Both score and loading plots were generated using the first two PCs, PC1 vs PC2, with the explained variances shown in brackets; C)

Overlay heat map of metabolite profiles in seedlings exposed to caraway (WAC5.0) and peppermint (WAP5.0) essential oils. Each square represents the effect of the essential oils on the amount of every metabolite using a false-color scale. Red and green regions indicate increase or decrease of metabolite content, respectively. WA (1-3), indicate control replicates; WAC5.0 (1-3) indicate the replicates of seedlings treated with caraway essential oils; WAP5.0 (1-3) C-24 and C-48 indicate the replicates of seedlings treated with peppermint essential oils. $\mathrm{N}=3$.

