
1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3065908, IEEE Sensors
Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

1 

  

Abstract—The paper introduces a research program 

formulated to uncover and describe a complex nature of the sleep 

apnea disorders. This study include the physiological sensing and 

the signal processing oriented towards the mapping of a 

dynamical profile of physiological system represented by its 

complexity and variability. To reconstruct a heatmap of the 

dynamical features significant for triggering sleep disorders we 

collected a set of procedures dedicated to qualitative and 

quantitative depiction of the intra- and inter-events, and then 

adapted them to the use with a polysomnography data. Research 

protocol was organized with reference to the patients and 

modified PNEUMA model, and the COMPASS Toolbox devoted 

to time series exploration. The outcome novelty consists in the 

complementary characterization of the sleep apnea dynamics, 

measured at various levels of the system, but also the original 

statements on the sensitivity of fractal and network oriented 

algorithms applied to physiological data has been formulated in 

the report in reference to the temporal patterns encoded in 

polysomnography data, e.g. a detection of the central sleep apnea 

with the use of nasal airflow has been documented. The 

complementary approach proposed in the paper is a prerequisite 

to understand the SAS phenotyping, predict that modes and the 

SAS states, and formulate an efficient procedures for 

personalized patient care. 

 
Index Terms— Biological system modeling, complexity theory, 

health informatics, sleep apnea, time series analysis 

 

I. INTRODUCTION 

ETROLOGY as the interdisciplinary science 

cumulates knowledge across many theoretical and 

experimental disciplines. As a result, it offers the new strategies 

for object inspection, each concerning the concept of an 

efficient measurement scheme, i.e. minimal invasive, quick, 

reliable, cheap and easy accessible (e-access) protocol. 
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Physiological systems can be characterized in a context of 

complex dynamical processes that are continuously subjected to 

and updated by nonlinear feedforward and feedback inputs [1]. 

Information coded in system outputs usually exhibit wide 

varieties of behaviors due to dynamical interactions between 

system components, external noise perturbations, and 

physiological state changes. Complicated interactions occur at a 

variety of hierarchical levels and involve a number of 

interacting variables, many of which are unavailable for 

experimental measurement [1]. The challenge is to disentangle 

the individual channels of knowledge about the object when the 

record of experimental data additionally includes several types of 

variability at various levels, e.g.: random uncorrelated, random 

correlated, periodic, and nonlinear deterministic. So that, saying 

about complexity and variability one should take a transitivity 

between the system and data acquired into it into consideration. 

Important support for complexity and variability analysis can 

be the tool of modeling, computer simulation and exploration of 

massive data, including the artificial intelligence (AI)/ machine 

learning (ML) approach. Describing the both sides of the 

measurement experiment: measured object and measurement 

path (with data processing procedures), it enables access to 

indirect source of data and reduces the observational scales 

through the virtual reality, among other things. But the problem 

in this domain very often can be too sophisticated abstract ideas 

and tools, limiting the access of clinicists to novel strategies of 

the system observation. Meanwhile, complexity and fluctuation 

analysis shows some potential to predict and diagnose 

pathological events through the subjects [2] giving also the 

chance to design of the procedures for their control [3], [4]. 

Joining these domains is one of the tasks for contemporary health 

informatics and personalized medicine. 

 The respiratory system is an example of the complex object, 

working in a multidimensional network of interconnections with 

other subsystems conditioning the process of respiration. It 

meets the paradigm of physiological rhythms, which suggests 

the application of some class of representations typical for 

nonlinear dynamics. The problems with supporting the stable 

periodicity, especially during sleep, are the subjects of vast 

research as they influence the quality of life and even can lead 

to death [5], [6]. In principle, the harmful sources of sleep apnea 

syndrome (SAS) comes from the central nervous system or 

obstructive changes in airways tract (mainly upper airways), but 

the mechanism of its triggering can be quite different and 
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conditioned by various deterministic and/or stochastic internal 

or external processes [3], [7], [8]. Also mixed, 

central/obstructive scheme of apnea is possible. A typical 

strategy for attempts of description of sleep apnea scheme as a 

dynamical process very often uses selected (and even isolated) 

theoretical tool for mapping its complex and varying nature [6], 

[9]. Meanwhile, application of set of (modern) procedures with 

various levels and kinds of sensitivity could be more efficient in 

the circumstances of lack of versatile algorithm. This remark 

remains true also for other physiological objects.  

The creation of library of numerical procedures devoted to 

the complexity and variability analysis of systems and data sets, 

universal in the context of possible applications to physiological 

systems, has been started. It fills the gap existing in the field of 

programming tools for the complex object and gives the 

clinicists and medical researchers the practical opportunity to 

view the systems in the new systematics and to test prospective 

hypothesis. The paper summarizes the issue by a survey of 

modern and popular methods applied in the COMPASS toolbox 

and indicates the possible path for its exploitation in the area of 

characterization of sleep apnea pathology. 

II. OVERVIEW OF THE COMPASS TOOLBOX 

A. Aims and Scopes 

The COMPASS toolbox designed for complexity and 

fluctuation analysis is a set of known procedures adapted to 

work with experimental data in the form of time series. It 

assumes coherent structure, but also is open for easy extension 

with the next generation of algorithmic structures and 

functionalities. The library is organized around some key 

concepts working in the domain of complex dynamical 

systems: initial preprocessing of data, nonlinear dynamics, 

complexity and fluctuation analysis, inter-events 

characterization, synchronization, complex network 

reconstruction and quantification. Some program codes were 

adapted to the task of efficient monitoring of dynamical 

processes, e.g. by introducing the mechanism of moving 

window. The whole is enhanced by simple interactive demos 

for training the user. For realization of the task of respiratory 

complexity and variability analysis, the toolbox was supplied 

with a modified PNEUMA model [10]. All components 

comprised in indicated thematic segments of the library can be 

used interchangeably, depending on the demands of realized 

project. 

B. Related Works 

The recent literature has presented a growing number of 

efforts focused on a qualitative and a quantitative depiction of 

the complexity and the variability in physical, technical and 

medical systems. They include both statistical and AI/ML-based 

approaches. The fundamental problem in this range concerns 

the lack of universal method suitable for the complex system 

characterization. There is no unique and a concise methodology 

available proper for extraction of the complex structure and 

functions from an experimental dataset [11, 12]. This is also 

reflected in the available IT tools dedicated to description of the 

complex systems and datasets, i.e. there are plenty of papers 

dedicated for the respiratory system complexity measurements 

which apply much or less original procedures and data 

collections, many of them exploring the problem at the various 

angles of its perception and with the tools of different sensitivity 

to extract and depicts the complex conditions of interplaying 

features and/or processes [13-16]. Even the recent advancement 

in AI/ML has shown the significant limitations in explainability 

of inference obtained with these algorithms, which has triggered 

the research polarized towards a causality depiction and the 

interpretability in the artificial intelligence, e.g. an explainable 

artificial intelligence (XAI) [17, 18]. Much of this work uses 

physical objects as the subjects for the study, and understanding 

the complex interrelations between the elements distinguished 

in these systems shed a light to the effectiveness of the 

procedure for data and object explorations. Here, the complex 

networks approach, a branch of the machine learning domain 

motivated by the mathematical theory of graphs, brings to some 

original statements, which in feedback contribute to the 

fundamental findings in the system-oriented research (e.g. [19-

21]), the algorithms (e.g. graph neural networks [22]), and also 

the applications (e.g. [23, 24]). This regime of the complex 

system depiction tends to a reliable reconstruction of the 

structure of interplaying quantities and to depict reliably a 

complex character of the interactions governing the systems, 

which can be observed at various levels of the physical systems 

as the emergence of their unique features and behaviors [20, 

21]. That network-oriented depiction can be used 

independently, providing the qualitative and/or quantitative 

insights into the complex nature of the systems, but the complex 

networks output(s) can be also used for further processing, both 

in regression and classification tasks, e,g, with the use of the 

(deep) learning schemes (Fig. 1). In physiological applications, 

a preliminary demonstration for duality between times series 

data and network-like modeling has been shown by 

Campanharo et. al. for the case of cardio applications [25]. To 

date, there is lack of a thorough studies in the network 

representation of the sleep apnea syndrome, and especially 

when a multimodal and multilevel data recorded in humans and 

surrounding environment are used. Only two representative 

works has been published which unveil the potential for 

differentiation between the sleep apnea phenotyping and 

severity prediction [26, 27]. Still there is no regular 

contributions to the interpretation-oriented research in this 

range. In fact, there are plenty of challenges in a range of the 

complex networks fundamentals, e.g. how the network can be 

reconstructed reliably from the experimental data, but also 

many of these problems – especially for non-specialists – arise 

between a non-trivial formalism of the complex network 

mathematics and its computer applications.  

The paper joins the above-mentioned methodological 

 
 

Fig. 1.  A scheme of data processing for designed COMPASS Toolbox. 
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stream, providing a preliminary demonstration of the possible 

path of studies for depiction of the sleep apnea complexity, 

using a multimodal data recorded during polysomnography 

and the set of procedures sensitive to uncover a diversity of 

patterns contained in the experimental data. These patterns can 

be studied further, e.g. using the intelligent-based procedures 

configured for regression and/or classification tasks, and most 

and foremost to understand and interpret the mechanisms 

governing the sleep apnea phenotyping. 

C. Initial Processing of the Data 

Working with long sets of data can be ineffective and 

requires allocation of important memory resources in a 

computational unit. Additionally, very often it is a need of 

transformation of the whole string of data or its parts. To 

facilitate the task of initial preprocessing of data to complexity 

and fluctuation analysis, a dedicated application with a 

graphical interface was designed. Its main tasks are: 

- loading the data from ASCII file containing the one-

column data format or multi-column record of 

polisomnography (application identifies the channel for a 

built-in data format and a given device), 

- viewing the analyzed time series (in a whole range or 

zoomed), 

- windowing the data for further processing (the number of 

first sample and the whole number of samples in the 

window can be chosen optionally), 

- enabling access to numerous procedures of initial data 

preprocessing (e.g. filtering, extracting the special 

features of time series, etc.), 

- writing the transformed data to the file(-es), also in the 

mode of multi-window division of data (windows can 

overlaps each other with the defined number of samples). 

In a case of biomedical signals, the character of periodicity 

very often is a subject of observation. For example, in 

respiratory measurements the trend of respiratory rate 

variability (RRV) or inter-breath interval (IBI) is formed, 

where the length of respiratory cycles or time interval between 

two significant tidal excursions is extracted from an original 

time series, e.g. airflow or abdominal movement [13]. The 

question is not trivial for signals with changing and individual 

dynamics, variations in amplitude and level of (external and 

internal) noise. The case can be a polisomnography record 

during sleep with the symptoms of apnea. The COMPASS 

toolbox implements some dedicated algorithms designed and 

tested for reliable solution of such tasks [14]. Their operation 

is simple and boils down to the introduction of the input 

arguments to the functions. 

D. Nonlinear Dynamics Assessment  

Apart from the typical actions of time series data loading and 

its graphical presentation, the interface dedicated to nonlinear 

dynamics analysis of systems and data sets makes available the 

functionalities for reconstruction of 2-D and 3-D phase portraits. 

It offers also access to the algorithms devoted to estimation of 

measures typical for chaotic systems, i.e. Lyapunov exponent, 

capacity dimension and correlation dimension [14]. Moreover, 

it is possible to characterize the statistics of events, which is 

coded in recorded time series. In this case, the algorithm is 

based on power law rule described in [19]. 

The exploitation of the options of windowing of data sets, 

similarly to the initial preprocessing block of procedures, 

enables calculation of the values for the measures defined in 

nonlinear dynamics class in a mode of moving window. It 

gives the opportunity to follow the fluctuation of these indexes 

in a chosen horizon of time. 

E. Procedures for Complexity and Fluctuation Analysis 

The group of procedures adapted to the complexity and 

fluctuation analysis of systems and data sets was provided with 

some algorithms: a multiscale fluctuation analysis – detrended 

fluctuation analysis (DFA), accessible also in a version of 

multifractal DFA, the Hurst rescaled range analysis, the 

procedure of description of event statistics (it uses the power 

law described for probability density function or power 

spectrum of the signal), estimation of Fano and Allan factor, a 

measure of Shannon entropy (ShanEn), sample entropy 

(SampEn) and approximate entropy (AppEn) – possible also in a 

mode of moving window (appropriate bibliography can be 

found, e.g. in [14]). Additionally, the set of tools associated with 

recurrence plots strategy (RP) [28], including cross recurrence 

plots (CRP) and joint recurrence plots (JRP), was programmed. 

Qualitative and quantitative description of complexity and 

variability of systems is possible in this class of projection. The 

first one according to the graphical representation in a 

multidimensional space, which expresses repeated states of 

behavior in phase space of the system, second by numerous 

quantitative indexes defined for recurrent plots (see e.g. [28]). 

Very promising direction for physiological research can be the 

exploitation of the family of RP tools in notation of the complex 

network [23]. It also expresses the planned strategy for 

characterization of the sleep apnea events. 

F. Inter-Events Characterization Tools 

Existence of power law scaling has been observed in 

numerous physical, economical, social, etc. systems. It was 

stated that existence of this rule is strictly connected with a 

complex nature of the object [19]. First step in such procedure is 

distinguishing some clear and characteristic occurrences on the 

time axis of history of system evolution when the system is in a 

state, which can be called as an event. The essence of the power 

law is the observation that probability density of time distances 

between such events can be described with the power formula 

[13], [19]. For oscillating physiological systems, e.g. expressed 

in polysomnographic recordings of respiratory flow or 

abdominal movements during sleep, this measure is able to 

differentiate irregularities, their origin and statistical properties 

[13]. Other functions described in this paper are proper for the 

use during operation in this section of the COMPASS Toolbox, 

i.e. the procedure of IBIs extraction, algorithm devoted to the 

calculation of frequency distribution or plotting the log-log 

dependence of power spectrum density for input time series. 

G. Algorithms for Measurement of Synchronization 

The other keywords suggestive here for complex systems 
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analysis can be synchronization. From a system theory point of 

view, this conception describes the adjustment of rhythms of 

oscillating objects due to their weak interaction [16]. Using the 

appropriate function, started in Matlab editor, or designed 

graphical interface, it is possible to represent the data in 2-D or 

3-D phase space, obtain a Poincare map, make spectral analysis 

of the data, to assess the level of correlation between the 

subsystems and the value of mutual information and delayed 

mutual information [29], estimate Lyapunov exponent from the 

data and also explore the interrelations between subsystems by 

calculation the qualitative-quantitative markers typical for 

recurrence plots (RP, CRP and JRP are accessible here together 

with appropriate RQA). Additionally, the procedures which 

support the evaluation of coupling between subsystems were 

inserted in this part of the COMPASS library. They are, e.g. the 

visualization of time series loaded from file (in original or 

zoomed scale), working with synthetic data simulated in models 

for the equation of oscillators given by user, removing the 

constant trends from signals, filtering or zero-padding operation 

during spectral analysis. 

H. Complex Network Reconstruction and Quantification 

The amount of available data and improvement in computer 

efficiency has raised a new field of algorithmic research with 

the fundamental assumptions in mathematical theory of graph 

[20, 21]. The complex network theory operates on network 

structures g = (N, E) which consist of nodes or vertices N = {n1, 

n2, …, nN} and links or edges between them E = {e1, e2, …, eM}. 

Complex network can be undirected or directed, unweighted or 

weighted (Fig. 2), uni- or multilayered, etc. [20, 21, 30, 31]. 

Mathematically, complex network can be represented by 

adjacency matrix Aij [20, 21, 30] and this representation makes 

operation with real reconstructions of complex networks much 

more easy, due to their sparsity [21]. Modern science and 

engineering adapted complex network theory as an efficient tool 

for complex system characterization. In fact, there are numerous 

examples of complex network occurrences in real world. To 

analyze system in the mode of complex network theory it is 

sufficient to identify edges as a kind of system properties or 

states and links as interrelations between them. But especially 

interesting and advantageous for measurement is to operate 

directly on measured samples of data, e.g. on time series 

datasets. Here, one can also find some analogies to the complex 

network since time series can be perceived as structure of states 

(dots in Fig. 3) evolving in time. In result, the transformation of 

time series into complex network is defined and used for 

depiction of complex system behavior and properties [32-36]. 

From the metrology point of view, the measurement can be 

realized as qualitative and/or quantitative in the complex 

network regime. 

COMPASS Toolbox implements time series–complex 

network transformation according to the rules defined in [25]. It 

means that complex network structure can be reconstructed for 

input time series, e.g. signal acquired during biomedical 

measurements in patient suffering from sleep apnea syndrome. 

Applied approach is simple in use, i.e. it is sufficient for user to 

set the number of quantiles (Q) as the input parameter for time 

series processing [25]. What is more, several quantitative 

coefficients can be calculated, e.g. the average shortest path 

length (L), the average node degree (〈𝑘〉), clustering coefficient 

(C) [20, 21, 30]. 

III. SLEEP APNEA SCHEME – DESCRIPTION AND PREDICTION 

Physiological time series show alterations to complexity and 

fluctuation properties with disease. Mackey and Glass [37] 

coined the term “dynamical disease” to describe diseases in 

which the temporal pattern of physiological variables differs 

from normal, reflecting some possible change to the 

mechanisms controlling these variables [38]. There are some 

individualized symptoms that sleep process can be depicted in 

the paradigm of complex systems. For example, inter-breath 

intervals from sleeping adults analyzed using DFA were more 

random during both deep and light non-REM sleep when 

compared to wakefulness and REM sleep [15]. However, IBIs 

in infants analyzed using Fano factor showed no differences 

between sleep stages [16], a disparity which may arise out of 

differences in control between the age groups, but which also 

highlights the need to account for the use of different 

techniques. Also, in obstructive sleep apnea, it was found that 

fractal analyses of heart rate variability were more sensitive than 

spectral analysis in detecting severity of disease [6]. Already 

there are the examples of methods devoted to complexity 

analysis being used to predict future risk or outcomes in disease 

[2], [39]. SAS is still poorly represented in this sense, while this 

may have direct implications on interventions, see e.g. results 

from [40] on continuous positive airways pressure (CPAP). 

These facts substantiate the multithread studies of sleep apnea 

scheme, with the use of spontaneous and provocative strategies 

and for various accessible measures, like in the COMPASS 

Toolbox. 

Multi-scale and multi-compartment modeling studies can 

considerable support hypothesizing about respiratory properties 

during sleep. They enhance physiological interpretations of the 

results and provide specific information on the calibration of the 

 
Fig. 2.  Undirected (A) unweighted and directed (B) and weighted and 

undirected (C) graphs. 

  

 
 

Fig. 3.  Time series perceived as a network of (consecutive) states. 
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theoretical tools used during investigations. The PNEUMA 

model [10] supplemented with more precise description of 

respiratory mechanics (like in [41]) is exploited for 

differentiation between various scenarios of breathlessness. 

Patients with stated symptoms of respiratory diseases during 

sleep and their general mathematical equivalent is used at the 

one side of experiment, and the COMPASS Toolbox at the 

other (which is connected with processing of experimental 

data). Comprehensive studies are aimed at broad aspects of 

apnea, which should provide a map of this transitive disorder 

and possible scenarios of its treatment. Only exemplary and 

preliminary results are given in the short form of the letter, 

prepared for chosen signals and measures. Detailed aspects of 

used methodologies and obtained results will be the subjects of 

forthcoming papers.  

IV. RESULTS 

The multi-scale analysis of processes observed in patients 

during sleep are possible with the COMPASS Toolbox, with 

reference both to single physiological signal and measures 

operating on interdependencies between two sets of data.  

Exemplary results of mapping of SAS properties, showed in 

Fig. 4−Fig. 9, exhibit preliminarily the potential of the 

COMPASS library to differentiate qualitatively and 

quantitatively between normal and pathological cases. The 

patterns of textures generated in RPs, and the trends and levels 

of complexity and variability measures defined for data sets 

[23], [28], when considered them directly [13], [14] and in the 

networking context [23], can be the proof of this statement. 

Obtained results promote also the prospective idea of prediction 

and control of future states of the respiratory system during 

sleep. 

Applied in the COMPASS Toolbox the algorithms proper 

for complex network approach provide for user hardly 

unexploited (in clinical practice) domain of the complex 

system measurement. In implemented version, the procedure 

offers qualitative and quantitative description for networks 

reconstructed with time series data. Results from Fig. 8 and 

Tab. 1 show that complex network theory enables 

differentiation between two dynamical systems – here 

exemplary theoretical objects have been used and defined by 

Lorenz and Rössler [42]. The complex network reconstructed 

for the Lorentz system exhibit two clear modules (Fig. 10a), 

whereas the complex network identified for the Rössler 

system is elongated due to periodic character of time series 

(Fig. 10b). Some differences in patterns of nodes degrees are 

visible in both system: in the Lorentz network equivalent 

nodes with relatively high degree are deployed quite 

uniformly throughout the network, and information in the 

Rössler network need to be transmitted through the several 

nodes of highest degree, which are located in the middle of the 

network (Fig. 10b). In result, the Lorentz system as a network 

is more efficient (E = 10.22) than the Rössler one (E = 2.43). 

Quantitative factors prove also that first network is more 

clustered (C = 0.101) than the second one (C = 0.025) – see 

Tab. 1. 

Studies with real data and COMPASS Toolbox bring to 

further original observations. ECG recordings stored in 

PhysioNet [43, 44] for healthy subjects (Subject 1 and Subject 

 
Fig. 4.  Time series of nasal airflow NF(t) and its recurrence plots in case of 
lack of apnea events (A) and with stated the central apnea episodes (B). 

  

 
Fig. 5.  Recurrence quantification analysis for nasal airflow measured in 

healthy subject; the length of time window wL = 1000, moving step ws = 100 

(samples). 
  

 
Fig. 6.  Recurrence quantification analysis for nasal airflow measured (moving 
window) in patient with central apnea; wL = 1000, and ws = 100. 
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2) and patients with sleep apnea syndrome (Subject 3 and 

Subject 4) were used for complex network reconstruction 

(Tab. 2). For time series of 6000 samples length and number 

of quantiles Q = 77 directed networks were calculated (Fig. 11 

and Fig. 12) together with their parametric characteristics 

(Tab. 3). 

The results prove that complex network theory has potential 

to differentiate between complex biological systems. Both 

 
Fig. 7.  Link density  and clustering coefficient of nodes (C) [23] in the 

recurrence network of a time series of chest wall movement (CM) and nasal 

airflow (NF) acquired in healthy subject; wL = 3000, and ws = 300 (in samples). 

  

 
Fig. 8.  Link density  and clustering coefficient of nodes (C) [23] in the 

recurrence network of CM and NF time series acquired in patient with mixed 
(central/obstructive) apnea events; wL = 3000, and ws = 300 (in samples).  
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Fig. 9.  Time series of IBI_AM (case: obstructive apnea patient) formulated 

from 2 hrs recording of abdominal wall movements AM(t) and  parameter 

calculated with DFA algorithm implemented in the COMPASS Toolbox. 
  

TABLE I 
PARAMETRIC CHARACTERISTICS MEASURED FOR COMPLEX NETWORK 

RECONSTRUCTED FROM TIME SERIES DATA GENERATED IN LORENTZ AND 

RÖSSLER SYSTEMS 

 
Sample 

no. 
Quantiles 

(Q) 
L E C 〈𝑘〉 

Lorentz 

system 
1000 32 0.13 10.2 0.10 31.25 

Rössler 
system 

1000 32 1.18 2.43 0.02 31.25 

 

 TABLE II 

CHARACTERISTICS FOR HEALTHY SUBJECTS AND PATIENTS SUFFERING FROM 

SLEEP APNEA SYNDROME; AI – APNEA INDEX (NUMBER OF APNEA EVENTS 

PER HOUR), HI – HYPOPNEA INDEX (NUMBER OF HYPOPNEA BREATHS 

COUNTED PER HOUR), AHI – TOTAL APNEA/HYPOPNEA INDEX (SUM OF AI 

AND AHI) 

Subject 
no. 

Age 
[yrs] 

Sex 
Height 
[cm] 

Weight 
[kg] 

AI HI AHI 

1 28 F 169 57 0 0 0 
2 27 M 184 72 0 0 0 
3 29 F 183 100 86.8 6.7 93.5 
4 39 M 180 120 61.2 18.3 79.5 

 

 

TABLE III 
PARAMETRIC CHARACTERISTICS MEASURED IN COMPLEX NETWORKS 

RECONSTRUCTED FROM ECG DATA ACQUIRED IN HEALTHY SUBJECTS 

(SUBJECT 1 AND SUBJECT 2) AND PATIENTS WITH SLEEP APNEA SYNDROME 

(SUBJECT 3 AND SUBJECT 4) 

Subject 

no. 

No. of 

samples 
Quantiles (Q) L E C 〈𝑘〉 

1 6000 77 0.44 12.1 0.33 77.9 

2 6000 77 0.44 12.9 0.42 77.9 

3 6000 77 0.21 18.5 0.36 80.8 

4 6000 77 0.22 27.7 0.21 82.9 
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qualitative (topologies of reconstructed networks) and 

quantitative information can be exploited to uncover hidden 

patterns in time series data recorded in healthy subjects and 

patients with SAS. The highest AHI (more advanced sleep 

respiratory disorders) the network architecture is more focused 

and the average shortest path length is smaller. The average 

node degree (〈𝑘〉) in healthy subjects is lower than in diseased 

ones and the same network interconnections are more 

homogeneously organized, which results in improved network 

efficiency (E), respectively (Tab. 3). 

V. SUMMARY 

Although the experimental data processing is a well based 

domain of science and engineering, access to modern and 

universal algorithms adjusted to observed object is not so 

obvious. First of all, original research need to test the newest 

achievements in data science, which uses actualizations in 

mathematics and computer sciences. What is more, 

generalization of processing techniques is relatively slow 

process and typically modern methods are dedicated to 

selected applications [45-47]. This implicates some difficulties 

for potential users who are not directly associated with 

designing of procedures for data/object exploration, e.g. 

clinicists and medical researchers. Accessibility is not the only 

problem here, since results of observations are conditioned by 

multiple functional factors associated to algorithm 

performance [43, 48]. Validation of analysis algorithms (their 

software implementation) is not the routine practice, and in 

local use typically avoids peer review scheme, using private 

dataset for self-evaluations and unclear measures of 

performance. 

To date, a major obstacle to the dynamic analysis of 

physiological signals has been the unavailability of open 

source computational tools necessary to promote 

multidisciplinary and collaborative efforts to find “hidden 

information” in such complex recordings. Also procedures 

included in the “PhysioToolkit” (Research Resource for 

Complex Physiologic Signals [35]) form a library with limited 

access to modern algorithmic solutions dedicated to 

complexity and variability analysis of the systems and data. 

These arguments have promoted the idea of creation of the 

COMPASS Toolbox, which fills the gap in this area. The 

library, designed and described in the letter, assembles the 

functions around some conceptual issues, typical for 

complexity analysis (i.e. initial preprocessing of data, 

nonlinear dynamics, complexity and variability, inter-event 

characterization, synchronization), but its structure is open to 

future development. It is universal as regards application to 

the multidisciplinary objects and processes, provide the simple 

 
Fig. 10.  Directed complex networks (also with inserted the clustering marks) 

reconstructed from time series data generated in Lorentz (A) and Rössler 
system (B). 

  

 
Fig. 11.  Directed complex networks (also with inserted the clustering marks) 

reconstructed from time series data recorded in healthy subjects: a) Subject 1 
and b) Subject 2. 

  

 
Fig. 12.  Directed complex networks (also with inserted the clustering marks) 

reconstructed from time series data recorded in patients with sleep apnea 
syndromes: a) Subject 3 and b) Subject 4. 
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examples for educational purposes (training of the staff), 

includes both well established, verified algorithms and the 

novel structures for experimental testing and original 

investigations leading to potential breakthroughs. 

To realize the overriding research aim – creation of a map of 

dynamic disease of sleep apnea process, the general idea of 

programming tools was associated with the extended PNEUMA 

model. The research protocol supplemented with a database of 

physiological system (this task is under realization) is oriented 

towards proposing the tools and strategy for forecasting, 

diagnosis/interpretation and original treatment in a case of sleep 

disorders in children and adult patients, also in a mode of e-

health. 

The paper summarizes the work in the programming domain 

for health (health informatics) and gives the methodological 

hints and some preliminary and exemplary results for a chosen 

subject with stated the syndromes of sleep apnea (personalized 

medicine). First of all, the set of procedures enclosed in the 

authorial COMPASS Toolbox has enabled reconstruction of 

numerous patterns encoded in the polysomnographic signals. 

This has been possible since a bunch of algorithms available in 

the COMPASS library are able to look into the experimental 

dataset at various angles, and in consequences provide a 

diversification in sensitivity to various factors triggering 

singular behaviors classified by medical doctors as the sleep 

apnea. What is more, apart from clear and direct patterns 

contained in time series, these algorithms are suitable to identify 

the hidden and multilevel patterns in multimodal datasets, 

which have never been studied in common for the sleep apnea 

disorders. Inference obtained in this way can open the 

possibility of fusion-like studies oriented towards interpretative 

and prescriptive actions, accompanied with ability to sleep 

apnea phenotyping identification and understanding. 

In a presented stage of the project, reported results should 

be perceived rather as a demonstrative and only a partial 

findings of qualitative and quantitative nature can be 

compared to the other works in sleep/respiratory research. For 

example, qualitative depiction from Fig. 4 and quantitative 

statements from Fig. 5 and Fig. 6 enable reliable 

differentiation between healthy and patients with the central 

sleep apnea using only nasal airflow. The population sample 

used in our study is too small to conclude about the statistical 

properties of that clustering and to compare obtained results to 

the other works reported in literature (e.g. [26, 49]). On the 

other hand, the nasal airflow typically has been used for 

detection of the obstructive sleep apnea, which is easier in 

description than the central one, better understanded so far, 

and available naturally at the level of mouth and/or nose. 

Thus, demonstrated results show an increased sensitivity of 

the recurrence plots and RQA on the patterns detection in 

nasal airflow data and associated to the central sleep apnea.  In 

analogy, application of the moving window functionality to 

the complex network description (realized in the COMPASS 

Toolbox) has enabled uncovering different temporal patterns 

in fused nasal airflow and chest wall movement, recorded in 

healthy and subjects with mixed (central/obstructive) sleep 

apnea – see Fig. 7 and Fig 8, respectively. Following the 

amplitude and the ordering in the link density ρ (differences of 

at least one order in signal amplitude has been observed here) 

and clustering coefficient C (the ordering in data can be 

quantified, e.g. with the use of entropy measures included in 

the COMPASS Toolbox, i.e. the approximate, sample and 

Shannon entropy [14]). This intra and/or inter-event 

characterization can be further extended with the multiscale 

view like in Fig. 9 – here, formulated the IBIs time series have 

exhibited a unique pattern in physiological data of abdominal 

movement, quantified with the value of the exponent 

coefficient calculated in DFA algorithm. Finally, the sleep 

apnea can be viewed from the angle of the performance of the 

cardiological subsystem in a human body. Although there 

have been numerous studies realized in this range (e.g. [49, 

50]), they have not used the complex networks theory to 

uncover patterns associated with sleep disorders.  In reported 

studies, we demonstrated that the application of that 

algorithms can provide additional information of qualitive and 

quantitative nature – see Fig. 11, Fig. 12, Tab. II and Tab. III. 

In this way, using the procedures implemented so far in the 

COMPAS Toolbox, we are able to map the complexity and 

variability associated to the sleep apnea syndrome much more 

completely during one experiment than it is available in other 

works. What is more, obtained results pave the way to the 

complementary system-oriented research for the example of 

the sleep disorders, including the interpretative approach (e.g. 

with the XAI scenarios, like in the scheme from Fig. 1) 

significant for identification of the causal factors, driving the 

singularities in sleep states, the SAS phenotype classification, 

prediction and prescription, including the intra- and the inter-

subsystems sensing/measurements. 

Demonstrated methodologies and tolls are universal and 

suitable to supplement the measurement pipeline consisting of 

multisensory set-up devoted to medical monitoring and 

diagnostics, including wearable devices orchestrated in cloud-

based telemedical system. What is more, graph-based learning 

tools like the complex networks direct possible data 

explorations, thus medical treatment, toward designing of the 

personalized medicine services. In the paper, this methodology 

presented for the problem of sleep apnea syndrome contributes 

to description of complex structural-functional interrelations, 

which still has not been fully understanded. Finally, obtained 

results prove that the complex nature of the respiratory system 

and SAS process can be reconstructed in fusion-like scenario 

of multisensing signal processing, and the graph neural 

networks can be used to depict and predict this complexity in 

the next steps of the research actions [48]. Regarding human 

wellness and patient monitoring during sleep, reported results 

requires further interpretations and translation to objective 

medical actions. 
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