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The complexity and variability mapping
for prediction and explainability
of the sleep apnea syndrome

Ireneusz Jabtonski, Rosario Morello, Member IEEE, Janusz Mroczka

Abstract—The paper introduces a research program
formulated to uncover and describe a complex nature of the sleep
apnea disorders. This study include the physiological sensing and
the signal processing oriented towards the mapping of a
dynamical profile of physiological system represented by its
complexity and variability. To reconstruct a heatmap of the
dynamical features significant for triggering sleep disorders we
collected a set of procedures dedicated to qualitative and
quantitative depiction of the intra- and inter-events, and then
adapted them to the use with a polysomnography data. Research
protocol was organized with reference to the patients and
modified PNEUMA model, and the COMPASS Toolbox devoted
to time series exploration. The outcome novelty consists in the
complementary characterization of the sleep apnea dynamics,
measured at various levels of the system, but also the original
statements on the sensitivity of fractal and network oriented
algorithms applied to physiological data has been formulated in
the report in reference to the temporal patterns encoded in
polysomnography data, e.g. a detection of the central sleep apnea
with the use of nasal airflow has been documented. The
complementary approach proposed in the paper is a prerequisite
to understand the SAS phenotyping, predict that modes and the
SAS states, and formulate an efficient procedures for
personalized patient care.

Index Terms— Biological system modeling, complexity theory,
health informatics, sleep apnea, time series analysis

I. INTRODUCTION

ETROLOGY as the interdisciplinary science
cumulates knowledge across many theoretical and
experimental disciplines. As a result, it offers the new strategies
for object inspection, each concerning the concept of an
efficient measurement scheme, i.e. minimal invasive, quick,
reliable, cheap and easy accessible (e-access) protocol.

Manuscript received September XX, 2020; revised January XX, 2020;
accepted XXXX XX, 2020.

Author thanks the Biomedical Simulation Resource at USC, which is
supported by NIH Grant P41-EB001978, for permission to the use of the
PNEUMA model.

1. Jabtonski and J. Mroczka are with the Chair of Electronic and Photonic
Metrology, Department of Electronics, Wroclaw University of Science and
Technology, 50-317 Wroclaw, ul. B. Prusa 53/55, Poland (phone: +48 71 320
64 19; e-mail: ireneusz.jablonski@pwr.edu.pl).

R. Morello is with the Department of Information Engineering,
Infrastructure and Sustainable Energy (DIIES), University Mediterranea of
Reggio Calabria, 89122 Reggio Calabria, Italy (e-mail:
rosario.morello@unirc.it).

Physiological systems can be characterized in a context of
complex dynamical processes that are continuously subjected to
and updated by nonlinear feedforward and feedback inputs [1].
Information coded in system outputs usually exhibit wide
varieties of behaviors due to dynamical interactions between
system components, external noise perturbations, and
physiological state changes. Complicated interactions occur at a
variety of hierarchical levels and involve a number of
interacting variables, many of which are unavailable for
experimental measurement [1]. The challenge is to disentangle
the individual channels of knowledge about the object when the
record of experimental data additionally includes several types of
variability at various levels, e.g.: random uncorrelated, random
correlated, periodic, and nonlinear deterministic. So that, saying
about complexity and variability one should take a transitivity
between the system and data acquired into it into consideration.

Important support for complexity and variability analysis can
be the tool of modeling, computer simulation and exploration of
massive data, including the artificial intelligence (Al)/ machine
learning (ML) approach. Describing the both sides of the
measurement experiment: measured object and measurement
path (with data processing procedures), it enables access to
indirect source of data and reduces the observational scales
through the virtual reality, among other things. But the problem
in this domain very often can be too sophisticated abstract ideas
and tools, limiting the access of clinicists to novel strategies of
the system observation. Meanwhile, complexity and fluctuation
analysis shows some potential to predict and diagnose
pathological events through the subjects [2] giving also the
chance to design of the procedures for their control [3], [4].
Joining these domains is one of the tasks for contemporary health
informatics and personalized medicine.

The respiratory system is an example of the complex object,
working in a multidimensional network of interconnections with
other subsystems conditioning the process of respiration. It
meets the paradigm of physiological rhythms, which suggests
the application of some class of representations typical for
nonlinear dynamics. The problems with supporting the stable
periodicity, especially during sleep, are the subjects of vast
research as they influence the quality of life and even can lead
to death [5], [6]. In principle, the harmful sources of sleep apnea
syndrome (SAS) comes from the central nervous system or
obstructive changes in airways tract (mainly upper airways), but
the mechanism of its triggering can be quite different and
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conditioned by various deterministic and/or stochastic internal
or external processes [3], [7], [8]. Also mixed,
central/obstructive scheme of apnea is possible. A typical
strategy for attempts of description of sleep apnea scheme as a
dynamical process very often uses selected (and even isolated)
theoretical tool for mapping its complex and varying nature [6],
[9]. Meanwhile, application of set of (modern) procedures with
various levels and kinds of sensitivity could be more efficient in
the circumstances of lack of versatile algorithm. This remark
remains true also for other physiological objects.

The creation of library of numerical procedures devoted to
the complexity and variability analysis of systems and data sets,
universal in the context of possible applications to physiological
systems, has been started. It fills the gap existing in the field of
programming tools for the complex object and gives the
clinicists and medical researchers the practical opportunity to
view the systems in the new systematics and to test prospective
hypothesis. The paper summarizes the issue by a survey of
modern and popular methods applied in the COMPASS toolbox
and indicates the possible path for its exploitation in the area of
characterization of sleep apnea pathology.

Il. OVERVIEW OF THE COMPASS TOOLBOX

A. Aims and Scopes

The COMPASS toolbox designed for complexity and
fluctuation analysis is a set of known procedures adapted to
work with experimental data in the form of time series. It
assumes coherent structure, but also is open for easy extension
with the next generation of algorithmic structures and
functionalities. The library is organized around some key
concepts working in the domain of complex dynamical
systems: initial preprocessing of data, nonlinear dynamics,
complexity and  fluctuation  analysis, inter-events
characterization, synchronization, complex  network
reconstruction and quantification. Some program codes were
adapted to the task of efficient monitoring of dynamical
processes, e.g. by introducing the mechanism of moving
window. The whole is enhanced by simple interactive demos
for training the user. For realization of the task of respiratory
complexity and variability analysis, the toolbox was supplied
with a modified PNEUMA model [10]. All components
comprised in indicated thematic segments of the library can be
used interchangeably, depending on the demands of realized
project.

B. Related Works

The recent literature has presented a growing number of
efforts focused on a qualitative and a quantitative depiction of
the complexity and the variability in physical, technical and
medical systems. They include both statistical and Al/ML-based
approaches. The fundamental problem in this range concerns
the lack of universal method suitable for the complex system
characterization. There is no unique and a concise methodology
available proper for extraction of the complex structure and
functions from an experimental dataset [11, 12]. This is also
reflected in the available IT tools dedicated to description of the
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Fig. 1. A scheme of data processing for designed COMPASS Toolbox.

complex systems and datasets, i.e. there are plenty of papers
dedicated for the respiratory system complexity measurements
which apply much or less original procedures and data
collections, many of them exploring the problem at the various
angles of its perception and with the tools of different sensitivity
to extract and depicts the complex conditions of interplaying
features and/or processes [13-16]. Even the recent advancement
in AI/ML has shown the significant limitations in explainability
of inference obtained with these algorithms, which has triggered
the research polarized towards a causality depiction and the
interpretability in the artificial intelligence, e.g. an explainable
artificial intelligence (XAIl) [17, 18]. Much of this work uses
physical objects as the subjects for the study, and understanding
the complex interrelations between the elements distinguished
in these systems shed a light to the effectiveness of the
procedure for data and object explorations. Here, the complex
networks approach, a branch of the machine learning domain
motivated by the mathematical theory of graphs, brings to some
original statements, which in feedback contribute to the
fundamental findings in the system-oriented research (e.g. [19-
21]), the algorithms (e.g. graph neural networks [22]), and also
the applications (e.g. [23, 24]). This regime of the complex
system depiction tends to a reliable reconstruction of the
structure of interplaying quantities and to depict reliably a
complex character of the interactions governing the systems,
which can be observed at various levels of the physical systems
as the emergence of their unique features and behaviors [20,
21]. That network-oriented depiction can be used
independently, providing the qualitative and/or quantitative
insights into the complex nature of the systems, but the complex
networks output(s) can be also used for further processing, both
in regression and classification tasks, e,g, with the use of the
(deep) learning schemes (Fig. 1). In physiological applications,
a preliminary demonstration for duality between times series
data and network-like modeling has been shown by
Campanharo et. al. for the case of cardio applications [25]. To
date, there is lack of a thorough studies in the network
representation of the sleep apnea syndrome, and especially
when a multimodal and multilevel data recorded in humans and
surrounding environment are used. Only two representative
works has been published which unveil the potential for
differentiation between the sleep apnea phenotyping and
severity prediction [26, 27]. Still there is no regular
contributions to the interpretation-oriented research in this
range. In fact, there are plenty of challenges in a range of the
complex networks fundamentals, e.g. how the network can be
reconstructed reliably from the experimental data, but also
many of these problems — especially for non-specialists — arise
between a non-trivial formalism of the complex network
mathematics and its computer applications.

The paper joins the above-mentioned methodological
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stream, providing a preliminary demonstration of the possible
path of studies for depiction of the sleep apnea complexity,
using a multimodal data recorded during polysomnography
and the set of procedures sensitive to uncover a diversity of
patterns contained in the experimental data. These patterns can
be studied further, e.g. using the intelligent-based procedures
configured for regression and/or classification tasks, and most
and foremost to understand and interpret the mechanisms
governing the sleep apnea phenotyping.

C. Initial Processing of the Data

Working with long sets of data can be ineffective and
requires allocation of important memory resources in a
computational unit. Additionally, very often it is a need of
transformation of the whole string of data or its parts. To
facilitate the task of initial preprocessing of data to complexity
and fluctuation analysis, a dedicated application with a
graphical interface was designed. Its main tasks are:

- loading the data from ASCII file containing the one-
column data format or multi-column record of
polisomnography (application identifies the channel for a
built-in data format and a given device),

- viewing the analyzed time series (in a whole range or
zoomed),

- windowing the data for further processing (the number of
first sample and the whole number of samples in the
window can be chosen optionally),

- enabling access to numerous procedures of initial data
preprocessing (e.g. filtering, extracting the special
features of time series, etc.),

- writing the transformed data to the file(-es), also in the
mode of multi-window division of data (windows can
overlaps each other with the defined number of samples).

In a case of biomedical signals, the character of periodicity
very often is a subject of observation. For example, in
respiratory measurements the trend of respiratory rate
variability (RRV) or inter-breath interval (IBI) is formed,
where the length of respiratory cycles or time interval between
two significant tidal excursions is extracted from an original
time series, e.g. airflow or abdominal movement [13]. The
question is not trivial for signals with changing and individual
dynamics, variations in amplitude and level of (external and
internal) noise. The case can be a polisomnography record
during sleep with the symptoms of apnea. The COMPASS
toolbox implements some dedicated algorithms designed and
tested for reliable solution of such tasks [14]. Their operation
is simple and boils down to the introduction of the input
arguments to the functions.

D. Nonlinear Dynamics Assessment

Apart from the typical actions of time series data loading and
its graphical presentation, the interface dedicated to nonlinear
dynamics analysis of systems and data sets makes available the
functionalities for reconstruction of 2-D and 3-D phase portraits.
It offers also access to the algorithms devoted to estimation of
measures typical for chaotic systems, i.e. Lyapunov exponent,
capacity dimension and correlation dimension [14]. Moreover,

it is possible to characterize the statistics of events, which is
coded in recorded time series. In this case, the algorithm is
based on power law rule described in [19].

The exploitation of the options of windowing of data sets,
similarly to the initial preprocessing block of procedures,
enables calculation of the values for the measures defined in
nonlinear dynamics class in a mode of moving window. It
gives the opportunity to follow the fluctuation of these indexes
in a chosen horizon of time.

E. Procedures for Complexity and Fluctuation Analysis

The group of procedures adapted to the complexity and
fluctuation analysis of systems and data sets was provided with
some algorithms: a multiscale fluctuation analysis — detrended
fluctuation analysis (DFA), accessible also in a version of
multifractal DFA, the Hurst rescaled range analysis, the
procedure of description of event statistics (it uses the power
law described for probability density function or power
spectrum of the signal), estimation of Fano and Allan factor, a
measure of Shannon entropy (ShanEn), sample entropy
(SampEn) and approximate entropy (AppEn) — possible also in a
mode of moving window (appropriate bibliography can be
found, e.g. in [14]). Additionally, the set of tools associated with
recurrence plots strategy (RP) [28], including cross recurrence
plots (CRP) and joint recurrence plots (JRP), was programmed.
Qualitative and quantitative description of complexity and
variability of systems is possible in this class of projection. The
first one according to the graphical representation in a
multidimensional space, which expresses repeated states of
behavior in phase space of the system, second by numerous
quantitative indexes defined for recurrent plots (see e.g. [28]).
Very promising direction for physiological research can be the
exploitation of the family of RP tools in notation of the complex
network [23]. It also expresses the planned strategy for
characterization of the sleep apnea events.

F. Inter-Events Characterization Tools

Existence of power law scaling has been observed in
numerous physical, economical, social, etc. systems. It was
stated that existence of this rule is strictly connected with a
complex nature of the object [19]. First step in such procedure is
distinguishing some clear and characteristic occurrences on the
time axis of history of system evolution when the system is in a
state, which can be called as an event. The essence of the power
law is the observation that probability density of time distances
between such events can be described with the power formula
[13], [19]. For oscillating physiological systems, e.g. expressed
in polysomnographic recordings of respiratory flow or
abdominal movements during sleep, this measure is able to
differentiate irregularities, their origin and statistical properties
[13]. Other functions described in this paper are proper for the
use during operation in this section of the COMPASS Toolbox,
i.e. the procedure of IBIs extraction, algorithm devoted to the
calculation of frequency distribution or plotting the log-log
dependence of power spectrum density for input time series.

G. Algorithms for Measurement of Synchronization
The other keywords suggestive here for complex systems
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Fig. 3. Time series perceived as a network of (consecutive) states.

analysis can be synchronization. From a system theory point of
view, this conception describes the adjustment of rhythms of
oscillating objects due to their weak interaction [16]. Using the
appropriate function, started in Matlab editor, or designed
graphical interface, it is possible to represent the data in 2-D or
3-D phase space, obtain a Poincare map, make spectral analysis
of the data, to assess the level of correlation between the
subsystems and the value of mutual information and delayed
mutual information [29], estimate Lyapunov exponent from the
data and also explore the interrelations between subsystems by
calculation the qualitative-quantitative markers typical for
recurrence plots (RP, CRP and JRP are accessible here together
with appropriate RQA). Additionally, the procedures which
support the evaluation of coupling between subsystems were
inserted in this part of the COMPASS library. They are, e.g. the
visualization of time series loaded from file (in original or
zoomed scale), working with synthetic data simulated in models
for the equation of oscillators given by user, removing the
constant trends from signals, filtering or zero-padding operation
during spectral analysis.

H. Complex Network Reconstruction and Quantification

The amount of available data and improvement in computer
efficiency has raised a new field of algorithmic research with
the fundamental assumptions in mathematical theory of graph
[20, 21]. The complex network theory operates on network
structures g = (N, E) which consist of nodes or vertices N = {ns,
Ny, ..., Nn} and links or edges between them E = {ey, ey, ..., em}.
Complex network can be undirected or directed, unweighted or
weighted (Fig. 2), uni- or multilayered, etc. [20, 21, 30, 31].
Mathematically, complex network can be represented by
adjacency matrix Ajj [20, 21, 30] and this representation makes
operation with real reconstructions of complex networks much
more easy, due to their sparsity [21]. Modern science and
engineering adapted complex network theory as an efficient tool
for complex system characterization. In fact, there are numerous
examples of complex network occurrences in real world. To
analyze system in the mode of complex network theory it is

sufficient to identify edges as a kind of system properties or
states and links as interrelations between them. But especially
interesting and advantageous for measurement is to operate
directly on measured samples of data, e.g. on time series
datasets. Here, one can also find some analogies to the complex
network since time series can be perceived as structure of states
(dots in Fig. 3) evolving in time. In result, the transformation of
time series into complex network is defined and used for
depiction of complex system behavior and properties [32-36].
From the metrology point of view, the measurement can be
realized as qualitative and/or quantitative in the complex
network regime.

COMPASS Toolbox implements time series—complex
network transformation according to the rules defined in [25]. It
means that complex network structure can be reconstructed for
input time series, e.g. signal acquired during biomedical
measurements in patient suffering from sleep apnea syndrome.
Applied approach is simple in use, i.e. it is sufficient for user to
set the number of quantiles (Q) as the input parameter for time
series processing [25]. What is more, several quantitative
coefficients can be calculated, e.g. the average shortest path
length (L), the average node degree ((k)), clustering coefficient
(C) [20, 21, 30].

I1l. SLEEP APNEA SCHEME — DESCRIPTION AND PREDICTION

Physiological time series show alterations to complexity and
fluctuation properties with disease. Mackey and Glass [37]
coined the term “dynamical disease” to describe diseases in
which the temporal pattern of physiological variables differs
from normal, reflecting some possible change to the
mechanisms controlling these variables [38]. There are some
individualized symptoms that sleep process can be depicted in
the paradigm of complex systems. For example, inter-breath
intervals from sleeping adults analyzed using DFA were more
random during both deep and light non-REM sleep when
compared to wakefulness and REM sleep [15]. However, IBIs
in infants analyzed using Fano factor showed no differences
between sleep stages [16], a disparity which may arise out of
differences in control between the age groups, but which also
highlights the need to account for the use of different
techniques. Also, in obstructive sleep apnea, it was found that
fractal analyses of heart rate variability were more sensitive than
spectral analysis in detecting severity of disease [6]. Already
there are the examples of methods devoted to complexity
analysis being used to predict future risk or outcomes in disease
[2], [39]. SAS is still poorly represented in this sense, while this
may have direct implications on interventions, see e.g. results
from [40] on continuous positive airways pressure (CPAP).
These facts substantiate the multithread studies of sleep apnea
scheme, with the use of spontaneous and provocative strategies
and for various accessible measures, like in the COMPASS
Toolbox.

Multi-scale and multi-compartment modeling studies can
considerable support hypothesizing about respiratory properties
during sleep. They enhance physiological interpretations of the
results and provide specific information on the calibration of the
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theoretical tools used during investigations. The PNEUMA
model [10] supplemented with more precise description of
respiratory mechanics (like in [41]) is exploited for
differentiation between various scenarios of breathlessness.
Patients with stated symptoms of respiratory diseases during
sleep and their general mathematical equivalent is used at the
one side of experiment, and the COMPASS Toolbox at the
other (which is connected with processing of experimental
data). Comprehensive studies are aimed at broad aspects of
apnea, which should provide a map of this transitive disorder
and possible scenarios of its treatment. Only exemplary and
preliminary results are given in the short form of the letter,
prepared for chosen signals and measures. Detailed aspects of
used methodologies and obtained results will be the subjects of
forthcoming papers.

IV. RESULTS

The multi-scale analysis of processes observed in patients
during sleep are possible with the COMPASS Toolbox, with
reference both to single physiological signal and measures
operating on interdependencies between two sets of data.
Exemplary results of mapping of SAS properties, showed in
Fig. 4-Fig. 9, exhibit preliminarily the potential of the
COMPASS library to differentiate qualitatively and
quantitatively between normal and pathological cases. The
patterns of textures generated in RPs, and the trends and levels
of complexity and variability measures defined for data sets
[23], [28], when considered them directly [13], [14] and in the
networking context [23], can be the proof of this statement.
Obtained results promote also the prospective idea of prediction
and control of future states of the respiratory system during
sleep.

Applied in the COMPASS Toolbox the algorithms proper
for complex network approach provide for user hardly
unexploited (in clinical practice) domain of the complex
system measurement. In implemented version, the procedure
offers qualitative and quantitative description for networks
reconstructed with time series data. Results from Fig. 8 and
Tab. 1 show that complex network theory enables
differentiation between two dynamical systems - here
exemplary theoretical objects have been used and defined by
Lorenz and Réssler [42]. The complex network reconstructed
for the Lorentz system exhibit two clear modules (Fig. 10a),
whereas the complex network identified for the Rdssler
system is elongated due to periodic character of time series
(Fig. 10b). Some differences in patterns of nodes degrees are
visible in both system: in the Lorentz network equivalent
nodes with relatively high degree are deployed quite
uniformly throughout the network, and information in the
Rossler network need to be transmitted through the several
nodes of highest degree, which are located in the middle of the
network (Fig. 10b). In result, the Lorentz system as a network
is more efficient (E = 10.22) than the Rossler one (E = 2.43).
Quantitative factors prove also that first network is more
clustered (C = 0.101) than the second one (C = 0.025) — see
Tab. 1.
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Studies with real data and COMPASS Toolbox bring to
further original observations. ECG recordings stored in
PhysioNet [43, 44] for healthy subjects (Subject 1 and Subject
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Fig. 7. Link density p and clustering coefficient of nodes (C) [23] in the
recurrence network of a time series of chest wall movement (CM) and nasal
airflow (NF) acquired in healthy subject; w,_ = 3000, and ws = 300 (in samples).
2) and patients with sleep apnea syndrome (Subject 3 and
Subject 4) were used for complex network reconstruction
(Tab. 2). For time series of 6000 samples length and number
of quantiles Q = 77 directed networks were calculated (Fig. 11
and Fig. 12) together with their parametric characteristics
(Tab. 3).

The results prove that complex network theory has potential
to differentiate between complex biological systems. Both

TABLE |
PARAMETRIC CHARACTERISTICS MEASURED FOR COMPLEX NETWORK
RECONSTRUCTED FROM TIME SERIES DATA GENERATED IN LORENTZ AND

ROSSLER SYSTEMS
Sample | Quantiles
L E C k
no. ©Q il
Lorentz | 599 32 013 | 102 | 010 | 31.25
system
Rossler | 599 32 118 | 243 | 002 | 31.25
system
TABLE II

CHARACTERISTICS FOR HEALTHY SUBJECTS AND PATIENTS SUFFERING FROM
SLEEP APNEA SYNDROME; Al — APNEA INDEX (NUMBER OF APNEA EVENTS
PER HOUR), HI — HYPOPNEA INDEX (NUMBER OF HYPOPNEA BREATHS
COUNTED PER HOUR), AHI — TOTAL APNEA/HYPOPNEA INDEX (SUM OF Al

AND AHI)
Subject Age Sex Height  Weight Al HI AHI
no. [yrs] [cm] [kel
1 28 F 169 57 0 0 0
2 27 M 184 72 0 0 0
3 29 F 183 100 86.8 6.7 93.5
4 39 M 180 120 61.2 18.3 79.5
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Fig. 8. Link density p and clustering coefficient of nodes (C) [23] in the
recurrence network of CM and NF time series acquired in patient with mixed
(central/obstructive) apnea events; w; = 3000, and w; = 300 (in samples).
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Fig. 9. Time series of IBI_AM (case: obstructive apnea patient) formulated

from 2 hrs recording of abdominal wall movements AM(t) and « parameter

calculated with DFA algorithm implemented in the COMPASS Toolbox.

TABLE Il
PARAMETRIC CHARACTERISTICS MEASURED IN COMPLEX NETWORKS
RECONSTRUCTED FROM ECG DATA ACQUIRED IN HEALTHY SUBJECTS
(SUBJECT 1 AND SUBJECT 2) AND PATIENTS WITH SLEEP APNEA SYNDROME
(SUBJECT 3 AND SUBJECT 4)

S“r?é_ed S’;‘rﬂp fgs Quantiles (Q) | L E c (k)
1 6000 77 044 | 121 | 033 | 779
2 6000 77 044 | 120 | 042 | 779
3 6000 77 021 | 185 | 036 | 808
4 6000 77 022 | 277 | o2 | s29
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Fig. 10. Directed complex networks (also with inserted the clustering marks)
reconstructed from time series data generated in Lorentz (A) and Réssler
system (B).

qualitative (topologies of reconstructed networks) and
guantitative information can be exploited to uncover hidden
patterns in time series data recorded in healthy subjects and
patients with SAS. The highest AHI (more advanced sleep
respiratory disorders) the network architecture is more focused
and the average shortest path length is smaller. The average
node degree ((k)) in healthy subjects is lower than in diseased
ones and the same network interconnections are more
homogeneously organized, which results in improved network

efficiency (E), respectively (Tab. 3). Fig. 11. Directed complex networks (also with inserted the clustering marks)
reconstructed from time series data recorded in healthy subjects: a) Subject 1
and b) Subject 2.

V. SUMMARY

Although the experimental data processing is a well based A) B)
domain of science and engineering, access to modern and ‘ [ I ' 1
universal algorithms adjusted to observed object is not so
obvious. First of all, original research need to test the newest
achievements in data science, which uses actualizations in
mathematics and computer sciences. What is more,
generalization of processing techniques is relatively slow
process and typically modern methods are dedicated to
selected applications [45-47]. This implicates some difficulties
for potential users who are not directly associated with
designing of procedures for data/object exploration, e.g.
clinicists and medical researchers. Accessibility is not the only
problem here, since results of observations are conditioned by
multiple  functional factors associated to algorithm
performance [43, 48]. Validation of analysis algorithms (their
software implementation) is not the routine practice, and in - =
local use typically avoids peer review scheme, using private : ; ? ‘
dataset for self-evaluations and unclear measures of
performance.

To date, a major obstacle to the dynamic analysis of
physiological signals has been the unavailability of open
source computational tools necessary to  promote
multidisciplinary and collaborative efforts to find “hidden  Fig 12. Directed complex networks (also with inserted the clustering marks)
information” in such complex recordings. Also procedures  reconstructed from time series data recorded in patients with sleep apnea
included in the “PhysioToolkit” (Research Resource for ~ Syndromes:a) Subject3and b) Subject 4.

Complex Physiologic Signals [35]) form a library with limited  fynctions around some conceptual issues, typical for
access to modern algorithmic solutions dedicated to Comp|exity analysis (|e initial preprocessing of datal
complexity and variability analysis of the systems and data.  nonlinear dynamics, complexity and variability, inter-event
These arguments have promoted the idea of creation of the  characterization, synchronization), but its structure is open to
COMPASS Toolbox, which fills the gap in this area. The  fyture development. It is universal as regards application to
library, designed and described in the letter, assembles the  the multidisciplinary objects and processes, provide the simple
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examples for educational purposes (training of the staff),
includes both well established, verified algorithms and the
novel structures for experimental testing and original
investigations leading to potential breakthroughs.

To realize the overriding research aim — creation of a map of
dynamic disease of sleep apnea process, the general idea of
programming tools was associated with the extended PNEUMA
model. The research protocol supplemented with a database of
physiological system (this task is under realization) is oriented
towards proposing the tools and strategy for forecasting,
diagnosis/interpretation and original treatment in a case of sleep
disorders in children and adult patients, also in a mode of e-
health.

The paper summarizes the work in the programming domain
for health (health informatics) and gives the methodological
hints and some preliminary and exemplary results for a chosen
subject with stated the syndromes of sleep apnea (personalized
medicine). First of all, the set of procedures enclosed in the
authorial COMPASS Toolbox has enabled reconstruction of
numerous patterns encoded in the polysomnographic signals.
This has been possible since a bunch of algorithms available in
the COMPASS library are able to look into the experimental
dataset at various angles, and in consequences provide a
diversification in sensitivity to various factors triggering
singular behaviors classified by medical doctors as the sleep
apnea. What is more, apart from clear and direct patterns
contained in time series, these algorithms are suitable to identify
the hidden and multilevel patterns in multimodal datasets,
which have never been studied in common for the sleep apnea
disorders. Inference obtained in this way can open the
possibility of fusion-like studies oriented towards interpretative
and prescriptive actions, accompanied with ability to sleep
apnea phenotyping identification and understanding.

In a presented stage of the project, reported results should
be perceived rather as a demonstrative and only a partial
findings of qualitative and quantitative nature can be
compared to the other works in sleep/respiratory research. For
example, qualitative depiction from Fig. 4 and quantitative
statements from Fig. 5 and Fig. 6 enable reliable
differentiation between healthy and patients with the central
sleep apnea using only nasal airflow. The population sample
used in our study is too small to conclude about the statistical
properties of that clustering and to compare obtained results to
the other works reported in literature (e.g. [26, 49]). On the
other hand, the nasal airflow typically has been used for
detection of the obstructive sleep apnea, which is easier in
description than the central one, better understanded so far,
and available naturally at the level of mouth and/or nose.
Thus, demonstrated results show an increased sensitivity of
the recurrence plots and RQA on the patterns detection in
nasal airflow data and associated to the central sleep apnea. In
analogy, application of the moving window functionality to
the complex network description (realized in the COMPASS
Toolbox) has enabled uncovering different temporal patterns
in fused nasal airflow and chest wall movement, recorded in
healthy and subjects with mixed (central/obstructive) sleep
apnea — see Fig. 7 and Fig 8, respectively. Following the

amplitude and the ordering in the link density p (differences of
at least one order in signal amplitude has been observed here)
and clustering coefficient C (the ordering in data can be
quantified, e.g. with the use of entropy measures included in
the COMPASS Toolbox, i.e. the approximate, sample and
Shannon entropy [14]). This intra and/or inter-event
characterization can be further extended with the multiscale
view like in Fig. 9 — here, formulated the IBIs time series have
exhibited a unique pattern in physiological data of abdominal
movement, quantified with the value of the exponent
coefficient calculated in DFA algorithm. Finally, the sleep
apnea can be viewed from the angle of the performance of the
cardiological subsystem in a human body. Although there
have been numerous studies realized in this range (e.g. [49,
50]), they have not used the complex networks theory to
uncover patterns associated with sleep disorders. In reported
studies, we demonstrated that the application of that
algorithms can provide additional information of qualitive and
quantitative nature — see Fig. 11, Fig. 12, Tab. Il and Tab. IlI.
In this way, using the procedures implemented so far in the
COMPAS Toolbox, we are able to map the complexity and
variability associated to the sleep apnea syndrome much more
completely during one experiment than it is available in other
works. What is more, obtained results pave the way to the
complementary system-oriented research for the example of
the sleep disorders, including the interpretative approach (e.g.
with the XAl scenarios, like in the scheme from Fig. 1)
significant for identification of the causal factors, driving the
singularities in sleep states, the SAS phenotype classification,
prediction and prescription, including the intra- and the inter-
subsystems sensing/measurements.

Demonstrated methodologies and tolls are universal and
suitable to supplement the measurement pipeline consisting of
multisensory set-up devoted to medical monitoring and
diagnostics, including wearable devices orchestrated in cloud-
based telemedical system. What is more, graph-based learning
tools like the complex networks direct possible data
explorations, thus medical treatment, toward designing of the
personalized medicine services. In the paper, this methodology
presented for the problem of sleep apnea syndrome contributes
to description of complex structural-functional interrelations,
which still has not been fully understanded. Finally, obtained
results prove that the complex nature of the respiratory system
and SAS process can be reconstructed in fusion-like scenario
of multisensing signal processing, and the graph neural
networks can be used to depict and predict this complexity in
the next steps of the research actions [48]. Regarding human
wellness and patient monitoring during sleep, reported results
requires further interpretations and translation to objective
medical actions.
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