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Abstract: The design of spatially varying lens antennas based on artificial materials is of high interest
for their wide range of applicability. In this paper, we propose a novel design procedure relying
on an inverse formulation of the scattering matrix method (SMM). Differently from many adopted
approaches, which resort to global optimizations or homogenization procedures, the inverse SMM
(I-SMM) allows the synthesis of optimal parameters (geometrical and/or electromagnetic) for the
inclusions realizing the overall device in a very effective manner. With reference to the 2D TM case,
the proposed tool has been successfully assessed through the synthesis of different kinds of lenses
radiating a pencil beam.
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1. Introduction

Lens antennas whose electromagnetic characteristics vary in space deserve a high interest in the
literature because of their potential application to different purposes, starting from the enhancement of
antenna performance, to imaging or automotive radar applications [1]. In fact, the peculiar feature of
lenses is the manipulation of phase or amplitude (or both), as well as of the primary feed radiation in
order to modify the latter according to some initial specification.

The Luneburg lens [2] and the (Half) Maxwell Fish Eye lens [3] are the two most famous types of
graded dielectric lenses accomplishing useful goals. In fact, the radially varying dielectric permittivity
allows the conversion of a plane wave into a spherical wave (Luneburg and Half Maxwell Fish Eye),
and vice-versa, while in the case of the Luneburg lens (and the full Maxwell Fish Eye), their circular
symmetry allows the radiation properties to obey a rigid steering of the field in the case of an angular
variation of the primary source.

On the other hand, at least two issues have to be carefully considered. First, a practical fabrication
of such a graded index permittivity distribution is not an easy task. In fact, it usually requires the
discretization of the structure with a finite number of shells [4–6], with unavoidable performance
deterioration. Second, since the permittivity function is represented by an analytical expression arising
from the solution of the Maxwell’s equations, both the Luneburg lens and the Maxwell Fish Eye
lens can be considered canonical lenses operating in a strictly given fashion, i.e., with assigned and
well-defined properties on the radiated patterns.

As far as the fabrication challenge is concerned, in recent years great interest has been devoted to
metamaterials-based lenses [7–12]. In fact, by properly adjusting shape, dimension, and arrangement
of the constituting sub-wavelength unit cells, it is possible to engineer an effective medium emulating
the original permittivity distribution of the lens.

The possibility of changing the lens’s response with respect to canonical solutions has been
also investigated in the literature in recent years. In this case, the problem becomes how to modify
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the permittivity distribution of a lens in order to generate patterns different from the canonical
ones. The transformation optics (TO) theory [13] is the most adopted tool in this contest. In fact,
TO aims at tailoring the spatial constitutive profile of a material to properly control the electromagnetic
wave propagation. This rigorous formulation has been proved to be effective for a number of
applications [14–19], with the relevant drawback being the bi-anisotropy of the arising material.

Recently, a possibility to manage the lens permittivity distribution to achieve desired radiation
characteristics has been offered by the inverse scattering problem (ISP) framework [20–23].

It is well known that an ISP [24] is solved if the electromagnetic parameters of an object are
determined, in a non-invasive manner, from the knowledge of its scattered field. However, it has been
demonstrated in [25] that by substituting the scattered field with assigned field specifications (as long
as the specified scattered field has a number of degrees of freedom compatible with the dimensions of
the lens), which could be, for example, an enhancement of the field radiated by the Luneburg lens, it is
possible to determine the electromagnetic parameters of an object (f.i. the dielectric permittivity of
a lens) in such a way to realize the given field (or power pattern) specifications. Recently, a design
approach based on the ISP in conjunction with artificial material technology was proposed in [26].
By still adopting the contrast source inversion (CSI) [27] method for the solution of the ISP, in [26]
the possibility of enforcing desired properties on the permittivity distribution, as well as of realizing
multi-modality lenses, was explored for the first time. Last, but not least, it has been shown that the
adoption of a proper representation basis for the unknown, allowing for the direct synthesis of an
artificial-materials-based lens, is able to overcome results based on the search of a smoothly varying
profile followed by homogenization procedures.

In the same framework, we propose in this contribution a design strategy based on a different tool;
that is, the scattering matrix method (SMM) [28]. Introduced by Maystre and co-workers, the SMM
allows evaluation in closed form of the field scattered by a set of arbitrarily shaped small inclusions.
Basically, it is an analysis tool very efficient from a computational point of view, since it does not
require the discretization of the region under test like the method of moments [29], or others.

As a novel contribution, we turn the SMM into a design tool for artificial-materials-based lenses,
i.e., we adopt the SMM formulation to retrieve the electromagnetic properties of the constituent small
inclusions allowing for the best fitting of the assigned (total) field (or power pattern) specifications.

The remainder of the paper is organized as follows. In Section 2 the SMM is recalled; the inverse
SMM (I-SMM) is introduced in Section 3 and assessed in Section 4. Conclusions follow.

2. The Scattering Matrix Method (SMM)

Consider the schematic in Figure 1a, wherein a set of scatterers with cross section Ci and invariant
along the z-direction are depicted in 2D geometry. Let Einc also be the primary source illuminating the
set of scatterers. For simplicity, we suppose a TM polarized incident field, i.e., Einc = Einc îz, so that the
problem reduces to a scalar one.

We know from the scattering theory that the scattered field obeys the non-homogenous Helmholtz’s
equation. By considering an expansion in cylindrical harmonics, the overall scattered field can be
written as [30]:

Esc(P) =
N∑

i=1

Ei
sc(P) =

N∑
i=1

+∞∑
m=−∞

bi,mH(2)
m (kbr̂i)e jmθ̂i , (1)

where (r̂i, θ̂i) represents the coordinates of a generic observation point with respect to the i-th scatterer,
kb denotes the wavenumber of the background medium, H(2)

m (·) is the second kind m-th order Hankel
function, and N is the total number of scatterers.

Equation (1) represents the scattered field as the sum of the fields scattered from each cylinder,
where each of these contributions is expressed in a reference system centered in the i-th scatterer.
By applying Graf’s formula for Hankel functions [31], it is possible to express the field scattered by the
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i-th target in a single coordinates system. For example, if we use the reference system centered in the
`-th scatterer, C`, one has [28]:

Ei
sc(P) =

+∞∑
m=−∞

bi,m

+∞∑
q=−∞

e j(m−q)θi
`H(2)

q−m

(
kbri

`

)
Jq(kbr̂`)e jqθ̂` , (2)

which holds if r̂` ≤ ri
`
. In Equation (2), ri

`
and θi

`
are the relative distance and angle between the two

systems of coordinates, respectively, while (r̂`, θ̂`) represents the coordinates of the observation point
with respect to the `-th scatterer (or reference system); see Figure 1b,c.

Electronics 2020, 9, x FOR PEER REVIEW 3 of 12 

 

𝐸௦௖௜ ൫𝑃൯ = ෍ 𝑏௜,௠ ෍ 𝑒௝(௠ି௤)ఏℓ೔ାஶ
௤ୀିஶ 𝐻௤ି௠(ଶ) ൫𝑘௕𝑟ℓ௜൯𝐽௤(𝑘௕𝑟̂ℓ)𝑒௝௤ఏ෡ℓ,ାஶ

௠ୀିஶ  (2) 

which holds if 𝑟̂ℓ ≤ 𝑟ℓ௜. In Equation (2), 𝑟ℓ௜ and 𝜃ℓ௜ are the relative distance and angle between the two 
systems of coordinates, respectively, while ൫𝑟̂ℓ, 𝜃෠ℓ൯ represents the coordinates of the observation point 
with respect to the ℓ-th scatterer (or reference system); see Figure 1b,c.  

   
(a) (b) (c) 

Figure 1. Geometrical sketch and notation involved in the scattering matrix method (SMM). In (a) 
both the cases of plane wave and line current incident fields are depicted. In (b) an enlargement of 
two generic scatterers is depicted to define reciprocal variables and highlight the annulus wherein the 
scattered field can be evaluated through the modal expansion. In (c) the coordinates of the observation 
point are defined with respect to the generic ℓ-th reference system. 

Finally, by considering the representation of the incident field in the chosen reference system, the 
total field in the annulus between 𝒟ℓ (that is the minimum circle enclosing the scatterer) and the 
circle with radius 𝑅ℓ passing through the closest point of the nearest 𝑖-th cylinder (see Figure 1b) 
can be evaluated as: 𝐸௧௢௧൫𝑃൯ = 𝐸௜௡௖൫𝑃൯ + ෍ 𝐸௦௖௜ ൫𝑃൯ே

௜ୀଵ,௜ஷℓ + ෍ 𝑏ℓ,௠𝐻௠(ଶ)(𝑘௕𝑟̂ℓ)𝑒௝௠ఏ෡ℓାஶ
௠ୀିஶ  

                 = ෍ 𝑎ℓ,௠𝐽௠(𝑘௕𝑟̂ℓ)𝑒௝௠ఏ෡ℓାஶ
௠ୀିஶ + ෍ 𝑏ℓ,௠𝐻௠(ଶ)(𝑘௕𝑟̂ℓ)𝑒௝௠ఏ෡ℓ,ାஶ

௠ୀିஶ  

(3) 

where: 𝐸௜௡௖൫𝑃൯
=

⎩⎪⎨
⎪⎧𝑒ି௝௞௥ℓ௦௜௡൫ఏ೔೙೎ିఏℓ൯ ෍ 𝐽௠(𝑘௕𝑟̂ℓ)𝑒௝௠൫ఏ෡ℓିఏ೔೙೎൯ାஶ

௠ୀିஶ           𝑓𝑜𝑟 𝑝𝑙𝑎𝑛𝑒 𝑤𝑎𝑣𝑒 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑓𝑖𝑒𝑙𝑑
− 𝜔𝜇଴𝐼௦4 ෍ 𝐻௠(ଶ)(𝑘௕𝑟ℓ௦)𝐽௠(𝑘௕𝑟̂ℓ)𝑒௝௠൫ఏ෡ℓିఏℓೞ൯ାஶ

௠ୀିஶ       𝑓𝑜𝑟 𝑙𝑖𝑛𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑓𝑖𝑒𝑙𝑑 , (4a) 

𝑎ℓ,௠ = 𝒬ℓ,௠ + ෍ 𝒯ℓ,௜,௠,௤𝑏௜,௠.ே
௜ୀଵ,௜ஷℓ  (4b) 

and (by swapping 𝑞 and 𝑚) [28]: 

𝒯ℓ,௜,௠,௤ = 𝑒௝(௤ି௠)ఏℓ೔ 𝐻௠ି௤(ଶ) ൫𝑘௕𝑟ℓ௜൯, (4c) 

𝒬ℓ,௠ = ൝ 𝑒ି௝௞௥ℓ௦௜௡൫ఏ೔೙೎ିఏℓ൯𝑒ି௝௠ఏ೔೙೎                          𝑓𝑜𝑟 𝑝𝑙𝑎𝑛𝑒 𝑤𝑎𝑣𝑒 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑓𝑖𝑒𝑙𝑑− ఠఓబூೞସ 𝐻௠(ଶ)(𝑘௕𝑟ℓ௦)𝑒ି௝௠ఏℓೞ                          𝑓𝑜𝑟 𝑙𝑖𝑛𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑓𝑖𝑒𝑙𝑑 , 
(4d) 

Figure 1. Geometrical sketch and notation involved in the scattering matrix method (SMM). In (a) both
the cases of plane wave and line current incident fields are depicted. In (b) an enlargement of two
generic scatterers is depicted to define reciprocal variables and highlight the annulus wherein the
scattered field can be evaluated through the modal expansion. In (c) the coordinates of the observation
point are defined with respect to the generic `-th reference system.

Finally, by considering the representation of the incident field in the chosen reference system,
the total field in the annulus betweenD` (that is the minimum circle enclosing the scatterer) and the
circle with radius R` passing through the closest point of the nearest i-th cylinder (see Figure 1b) can be
evaluated as:

Etot(P) = Einc(P) +
N∑

i=1,i,`
Ei

sc(P) +
+∞∑

m=−∞
b`,mH(2)

m (kbr̂`)e jmθ̂`

=
+∞∑

m=−∞
a`,m Jm(kbr̂`)e jmθ̂` +

+∞∑
m=−∞

b`,mH(2)
m (kbr̂`)e jmθ̂` ,

(3)

where:

Einc(P) =


e− jkr`sin(θinc−θ

`)
+∞∑

m=−∞
Jm(kbr̂`)e jm(θ̂`−θinc) f or plane wave incident f ield

−
ωµ0Is

4

+∞∑
m=−∞

H(2)
m (kbr`s)Jm(kbr̂`)e jm(θ̂`−θ`s) f or line current incident f ield

(4a)

a`,m = Q`,m +
N∑

i=1,i,`

T`,i,m,qbi,m. (4b)

and (by swapping q and m) [28]:

T`,i,m,q = e j(q−m)θi
`H(2)

m−q

(
kbri

`

)
, (4c)
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Q`,m =

 e− jkr`sin(θinc−θ
`)e− jmθinc f or plane wave incident f ield

−
ωµ0Is

4 H(2)
m (kbr`s)e− jmθ`s f or line current incident f ield

(4d)

where θinc is the incidence angle with respect to the y-axis, while Is indicates the intensity of the line
current and (r`s,θ`s) its coordinates with respect to the `-th reference system (see Figure 1a).

It is worth noting that the two series in the last row of Equation (3) have a different physical
meaning. As a matter of fact, while the second term is simply the field scattered by the `-th target, the
first series represents the ‘local’ incident field on the `-th target, that is, the sum of the primary incident
field Einc and the field scattered from all other targets (which acts as a secondary incident field) in the
`-th region at hand.

Equation (4b) can be turned into a matrix relation for any scatterer C` as:

a` = Q` +
N∑

i=1,i,`

T`,ibi, (5)

where a`, bi, and Q` are the column matrices with elements a`,m, bi,m, and Q`,m, respectively, while T`,i
is a square blocks matrix of the (m, q)-th element T`,i,m,q.

Moreover, b` = S`a`, that is, the so-called scattering matrix S`, relates the coefficients of the
scattered and incident fields. Hence, by multiplying Equation (5) by S`, we finally obtain a linear
system in the unknown scattering coefficients b` [28]:

b` −
N∑

i=1,i,`

S`T`,ibi = S`Q`. (6)

Once Equation (6) is solved, the scattered field in the region of space outside scatterers can be
finally evaluated through Equation (1).

Some comments highlighting the advantages of using the SMM are now in order. As long as we
are dealing with an analysis problem, the electromagnetic parameters of each scatterer, encoded in the
scattering matrix S`, are known. Hence, the individual S` matrix can be evaluated independently from
the main code once and for all. Moreover, if all the scatterers are identical, matrices S` will also be
identical because they are defined in the local coordinate system centered in each cylinder. Finally, in
case of scatterers with circular symmetry (which is the case considered in this paper), each S` reduces
to a diagonal matrix whose elements can be expressed in closed form.

3. Inverse Design Through the Scattering Matric Method (I-SMM)

Solving an inverse design problem concerns the retrieval of geometrical, electromagnetic, and/or
other parameters of an object. In this respect, the adoption of the SMM as a design tool implies that,
besides the scattering coefficients b`, the scattering matrices S` are also unknown. Consequently,
Equation (6) turns into a system of non-linear equations, like the usual ISP. However, since we are
not dealing with a diagnosis problem, the so called ‘false solutions’ [32] related to the non-linearity
of the problem are no longer an issue. In fact, whatever solution is able to satisfy the assigned
specifications is an admissible solution. This means that one can achieve several solutions obeying the
same specifications. Interestingly, through the I-SMM we are also able to handle different kinds of
scatterers by just considering the pertinent formulation for the scattering matrices entries sm.

In this paper, we focus on cylindrical scatterers with circular symmetry, so that S` are diagonal
matrices. Then, by changing the expression for sm, we can deal with dielectric, magnetic, metallic,
stratified, or other kinds of scatterers. For the sake of completeness, analytic expressions for a number
of cases of interest are reported in Appendix A.

Let Ẽtot(R) be the assigned specification for the total field on a surface identified by R. For the
sake of generality, also consider ξ to be the vector containing the unknowns relative to inclusion
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properties; in more detail, entries of ξ can be dielectric permittivity, magnetic permeability, radii, or
any combination of these. The unknown τ is related instead to the complex amplitude of the (fixed
pattern) primary source. Therefore, the design problem can be formulated as it follows:

min
ξ,τ

‖Ẽtot(R) − Eopt
tot (R)‖

2
2

‖Ẽtot(R)‖
2
2

subject to physical constraints on ξ, (7a)

where:
Eopt

tot (R) = τEinc(R) + Eopt
scat(R), (7b)

Eopt
scat(R) =

N∑
i=1

+∞∑
m=−∞

bopt
i,mH(2)

m (kbr̂i)e jmθ̂i , (7c)

bopt
`
−

N∑
i=1,i,`

Sopt
`
(ξ)T`,ib

opt
i = Sopt

`
(ξ)Q`. (7d)

In more detail, the optimization problem of Equation (7a) based on the I-SMM aims at retrieving
optimal values for ξ and τ such to minimize the mismatch between the assigned field and the optimal
field, while fitting the model of the SMM through the conditions of Equations (7b)–(7d). Note the
complex amplitude τ of the primary source(s) has been inserted within the unknowns of the CSI
functional, as such an additional degree of freedom allows an easier fitting of specifications (see [22,33]
for more details).

As far as the unknown vector ξ is concerned, note that whatever the quantities one is looking for
(permittivities, radii, or permeabilities), they implicitly define the entries sm of the matrices S`, (see
Appendix A). Hence, physical constraints on ξ have to guarantee positive values for radii and feasible
values for permittivity and permeability.

It is worth highlighting that a number of advantages are in order in using I-SMM rather than
the usual inverse scattering formulation [26] for the design of artificial-materials-based devices. First,
by virtue of the embedded SMM, the I-SMM is more efficient with respect to [26] from a computational
point of view. In fact, in [26] we were forced into a very fine discretization of the region of interest in
order to accurately represent the small circular inclusions at hand, while in this case the computational
burden just depends on the number of cylinders and on their diameters. Secondly, by exploiting
the scattering matrices of the scatterers in the present approach, differently from [26] where just e.m.
parameters were looked for, it is possible to look for either electromagnetic or geometrical parameters
(radii), or even both.

4. Design of a Lens Radiating a Pencil Beam: Numerical Assessment

The proposed design approach has been tested through the synthesis of a circular lens antenna
radiating a pencil beam. The lens is supposed to be composed of small (with respect to the operating
wavelength) inclusions arranged on eight concentric rings plus the central one. Its overall dimension
is 3λ with N = 217 inclusions in total. We refer to this kind of structure as a graded artificial material
(GAM) based lens. The primary incident field is a z-invariant source having a pattern of the kind
Einc(r) = −

ωµ0Is
4 H(2)

0 (kbr)cos2ϑ, with Is = 0.001 and r = (r,ϑ) being the coordinate of a generic point
in the reference system centered on the source, located 0.4λ far from the lens’s rim.

The aim of the design is to find optimal electromagnetic and/or geometrical parameters for the
lens such that its radiated field matches a given field Ẽtot(R) in a certain region of space. As far as
the definition of Ẽtot(R) is concerned, it has been done by first solving an optimal synthesis problem
as in [34] (and using a properly truncated cylindrical harmonics expansion for the overall scattered
field [35]) and then performing a back-propagation of the so-obtained far field pattern to a circumference
located in the near-field of the lens [26]. To avoid effects due to the primary feed, the fitting is pursued
on an arc of about 215◦ in front of the lens. The GAM-based lens is instead supposed to be circularly
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symmetric, i.e., the parameters looked for are supposed to be identical for all the inclusions of the same
ring; consequently, there is a number of unknown matrices S` equal to 9.

Finally, before applying the I-SMM, the series involved in the mathematical formulation have to
be conveniently truncated. Hence, because of the small dimensions of cylinders, just three harmonics
are considered to represent the scattered field (i.e., m = −1, 0, 1; q = −1, 0, 1). The optimization problem
of Equations (7a)–(7d) was solved through the fmincon routine of MATLAB.

To demonstrate the flexibility of the I-SMM approach, we dealt with the design of different types of
GAM-based lens by considering different possibilities for the unknown vector ξ in Equations (7a)–(7d).
In particular, by following the same terminology as in [26], we can:

• fix the radius ρ for all cylinders and suppose the entries of ξ as the permittivity of inclusions for
each ring, i.e., ε`r , and hence carry out the design of a GAMR-based lens (GAM-based lens with a
gradient of the refractive index in the radial direction);

• fix the permittivity εr for all cylinders and suppose the entries of ξ as the radius of inclusions for
each ring, i.e., ρ`, and hence carry out the design of a GAMF-based lens (GAM-based lens with a
gradient of the filling factor);

• consider ξ =
[
ε`r ; ρ

]
, that is, search for the radius of all inclusions and their permittivity for each

ring at the same time. This kind of structure is still a GAMR-based lens;
• opposite to the previous case, consider ξ =

[
ρ` ; εr

]
, i.e., search for the unique permittivity value

for all inclusions and their radius for each ring contemporarily. We still achieve a GAMF-based lens.

Then, a fifth case where the inclusions are cylindrically stratified (two layers) is also considered.
In all cases, specifications on the total far field have been chosen in such a way to maximize the separation
amongst the maximum field (in the target direction) and the peak sidelobe (for a given beamwidth).

Results for the above cases are separately reported in the following subsections. For the first two
cases, comparisons with results achieved by means of the approach in [26] are carried out; this can
be quantitatively appraised in Table 1 in terms of beamwidth (BW) and side lobes level (SLL) of the
radiated far field. For the other instances, a comparison cannot be performed since the CSI-based tool
does not allow a straightforward design of inclusions’ dimensions.

Table 1. Quantitative comparison of performance of different kinds of synthesized lenses.

BW [deg] SLL [dB]

Requirements CSI I-SMM Requirements CSI I-SMM

Device Sect. 4.1 40.32 37.5 41.8 −25 −17.62 −23.45
Device Sect. 4.2 40.32 39 (@-20dB) 38.8 −25 −17.41 −19.15
Device Sect. 4.3 40.32 - 43.2 −25 - −24.29
Device Sect. 4.4 40.32 - 40.3 −25 - −19.33
Device Sect. 4.5 40.32 - 41.7 −25 - −24.72

4.1. GAMR-Based Lens with Fixed Radius

Consider lossless non-magnetic cylinders with radius ρ = λ/12 and fixed arrangement.
The synthesized permittivity of the lens is depicted in Figure 2a and was achieved by considering as a
starting point of the I-SMM optimization problem the permittivity distribution of the Luneburg lens
as discretized on the set of inclusions. By solving the direct problem with the synthesized lens and
the obtained value of τ, the radiated far field can be finally computed. It is shown with a green curve
in Figure 2b from which is possible to appraise the fulfillment of constraints on SLL (SLL ≤ −25 dB).
A comparison with the CSI-based design tool [26] demonstrates the capability of the I-SMM to better
handle GAM-based devices, as also evidenced by Table 1.
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Figure 2. Synthesis of permittivity values for a GAMR-based lens with fixed radius [τ = −1.3697 +

j0.4214]. (a) Real part of the permittivity function; (b) comparison on radiated far field.

4.2. GAMF-Based Lens with Fixed Permittivity

Consider lossless non-magnetic cylinders whose permittivity is εr = 4.5 and with fixed
arrangement. The lens with the synthesized radii is depicted in Figure 3a and was achieved by
considering as a starting point of the I-SMM optimization problem cylinders with the same radius
λ/12.
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Figure 3. Synthesis of radius values for a GAMF-based lens with fixed permittivity
[τ = −1.1991 − j0.4658]. (a) Real part of the permittivity function; (b) comparison on radiated far field.

As can be seen from curves in Figure 3b, the performance of the novel I-SMM method and the
CSI-based method are comparable in this case (see Table 1). However, it is worth noting that the
CSI-based method does not allow the direct synthesis of radii, but the intermediate step of GAMR

design is required to obtain an equivalent GAMF device [26].

4.3. GAMR-Based Lens with Unknown (Common) Radius

In this case the problem is analogous to the one reported in Section 4.1, but with the difference
that the radius ρ of the lossless non-magnetic cylinders is also unknown. The achieved value from
the synthesis procedure is ρ = 0.0867λ, which is only slightly different from the one considered in
Section 4.1, but which also allows the further reduction of the SLL; see Figure 4b and Table 1.
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Figure 4. Synthesis of permittivity values for a GAMR-based lens with unknown radius
[τ = −1.2995 + j0.6573]. (a) Real part of the permittivity function; (b) radiated far field.

4.4. GAMF-Based Lens with Unknown(Common) Permittivity

The same circumstances of Section 4.2 are considered in the present section, but with also
considering unknown the constant permittivity value for all the inclusions. The synthesized value is
εr = 3.3591 in this case, allowing a slight reduction of SLL with respect to Section 4.2; see Figure 5b
and Table 1.Electronics 2020, 9, x FOR PEER REVIEW 8 of 12 
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Figure 5. Synthesis of radius values for a GAMF-based lens with unknown permittivity
[τ = −0.9369 − j0.8722]. (a) Real part of the permittivity function; (b) comparison on radiated far field.

4.5. Stratified GAM-Based Lens with Fixed Radii

The last example concerns the design of a GAM-based lens composed of layered inclusions.
By considering lossless and non-magnetic cylinders composed of two layers and with fixed positions,
two unknowns for each ring have to be synthesized in this case, i.e., the permittivity of the inner
and outer layer, while their radii are supposed to be ρin = λ/24 and ρin = λ/12, respectively.
The synthesized lens is shown in Figure 6a and the corresponding radiated field is depicted with
a green curve in Figure 6b. A quantitative comparison can be appraised from Table 1. As can be
observed, very good fulfillment of specifications is achieved with the designed lens. Although the
CSI-based tool could deal with the present design problem, a comparison with that is not reported
because of the non-reasonable time required for the synthesis in this case, due to the extremely fine
discretization required for representing the smaller layer.
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Figure 6. Synthesis of permittivity values for a GAM-based lens composed of layered inclusions [τ =

−0.8116 + j1.3241]. (a) Real part of the permittivity function; (b) Radiated far field.

5. Conclusions

In this paper, a design tool for artificial-materials-based lens antennas has been proposed.
In particular, the well-known scattering matrix method (SMM), usually adopted for the analysis of
structures composed of a set of inclusions, has been conveniently turned into a design tool for the
synthesis of inclusions. The proposed inverse SMM (I-SMM) is very flexible in handling different types
of artificial-materials-based devices (such as lenses exhibiting gradient in the refractive index or in the
filling factor) thanks to the exploitation of the scattering matrices relating the coefficients of incident
and scattered fields for each inclusion. Stratified inclusions can be also considered, and possible
applications are not limited to antennas. In fact, encouraged by the present outcomes, work is in
progress for the optimization of EBG (2D) waveguides and components.

Besides the formulation of the SMM for synthesis is a novelty per se, the proposed approach
has shown advantages in terms of both performance and computational burden with respect to
the literature, because of its intrinsic nature of naturally dealing with a set of inclusions that is the
basic structure of artificial materials. For all the above reasons, the I-SMM is viable in designing
metamaterials-based or photonic-crystals-based devices when a 2D scalar problem and an in-plane
propagation can be applied. An extension to the out-of-plane propagation and full 3D structures,
which would of course further extend the range of possible applications (including the very popular
invisibility problem), is deferred to future works.
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Appendix A

This appendix is devoted to report the analytical formulation of the scattering coefficient sm, i.e.,
the entries of the scattering matrix S`, in case of circularly symmetric cylindrical scatterers with radius
ρ. Note that, under such hypotheses, S` is a diagonal matrix.

To derive the following expressions, harmonic expansions must be written for the electric and
magnetic scattered fields in each region (e.g., inside and outside the cylinder) and continuity conditions
then applied for the tangential components of both the electric and magnetic fields.

In the following formulas, the subscript “1” refers to the outer medium (usually air) and “2” to the
scatterer. In case of stratified inclusions with two layers, we consider the additional subscript “3” to
refer to the inner layer of the scatterer; radii will be denoted ρin and ρout. Finally, Jn(·) and H(2)

n (·) are
the n-th order Bessel function and Hankel function of the second kind, respectively, while the apex on
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them stands for the first derivative operation. In case of non-magnetic cylinders and air outer medium,
µ3 = µ2 = µ1 = 1.

Analytical form of the scattering coefficients for a metallic cylinder [30]

sm = −
Jn(k1ρ)

H(2)
n (k1ρ)

(A1)

Analytical form of the scattering coefficients for a dielectric cylinder [30]

sm =

µ1
µ2

k2 J′m(k2ρ)Jm(k1ρ) − k1 Jm(k2ρ)J′m(k1ρ)

k1 Jm(k2ρ)H
(2)′
m (k1ρ) −

µ1
µ2

k2 J′m(k2ρ)H
(2)
m (k1ρ)

(A2)

Analytical form of the scattering coefficients for a dielectric cylinder with a dielectric (non-magnetic)
cover [36]

sm =
αβ+γδ
αε+γζ

α =
[
−

k3
µ3

H(2)
m (k2ρin)J′m(k3ρin) +

k2
µ2

H(2)′
m (k2ρin)Jm(k3ρin)

]
β =

[
k2
µ2

Jm(k1ρout)H
(1)′
m (k2ρout) −

k1
µ1

J′m(k1ρout)H
(1)
m (k2ρout)

]
γ =

[
−

k3
µ3

H(1)
m (k2ρin)J′m(k3ρin) +

k2
µ2

H(1)′
m (k2ρin)Jm(k3ρin)

]
δ =

[
k1
µ1

H(2)
m (k2ρout)J′m(k1ρout) −

k2
µ2

H(2)′
m (k2ρout)Jm(k1ρout)

]
ε =

[
−

k2
µ2

H(2)
m (k1ρout)H

(1)′
m (k2ρout) +

k1
µ1

H(2)′
m (k1ρout)H

(1)
m (k2ρout)

]
ζ =

[
−

k1
µ1

H(2)
m (k2ρout)H

(2)′
m (k1ρout) +

k2
µ2

H(2)′
m (k2ρout)H

(2)
m (k1ρout)

]
(A3)

Analytical form of the scattering coefficients for a metallic cylinder with a dielectric cover [36]

sm =

µ2
µ1

k1αJ′m(k1ρout)−k2βJm(k1ρout)

−
µ2
µ1

k1αH(2)′
m (k1ρout)+k2βH(2)

m (k1ρout)

β = H(2)
m (k2ρin)H

(1)′
m (k2ρout)−H(2)′

m (k2ρout)H
(1)
m (k2ρin)

α = H(1)
m (k2ρout)H

(2)
m (k2ρin) −H(1)

m (k2ρin)H
(2)
m (k2ρout)

(A4)
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