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Abstract. Inverse design procedures aim at determining optimal parameters for a given device in order to
satisfy assigned specifications. In this contribution, the design of optimal EBG waveguides through inverse
problems tools is addressed. In particular, an inversion tool based on the so called ‘scattering matrices’ is
proposed and assessed to optimize the guiding effect for straight and bent waveguides.
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1 Introduction

The ever-growing interest in artificial materials, including
metamaterials/metasurfaces and photonic crystals, is
related to their very intriguing properties and possibilities
allowing very numerous and even exotic applications in all
ranges of the electromagnetic spectrum including optics [1],
microwaves [2] and millimeter-waves frequencies [3].

In this contest, devices based on electromagnetic
bandgap (EBG) structures result very attractive and are
exploited for a wide class of applications, ranging from
radiation [4] and propagation [5] applications, to particle
accelerators [6]. Amongst them, in this contribution we
focus on EBG waveguides.

EBG structures [7] are periodic arrangement of
inclusions usually adopted to improve the performance
of devices or to realize ad-hoc functionalities for a given
device. In particular, EBG structures have the fascinating
property of suppressing field propagation within a
frequency band (depending on the structure itself) while
allowing it in other bands. If a defect is introduced in the
periodic arrangement by removing some inclusions, such a
defect will support an electromagnetic mode and hence it is
possible to generate localized or guided fields [7].

Despite the very large number of analysis tools for this
kind of structures, both at ‘macroscopic’ (like homogeni-
zation techniques) and ‘microscopic’ (as finite-element-
methods) level, as well as at a ‘mesoscale’ level [§],
formalized synthesis and design tools are quite limited in
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literature. Basic approaches are founded on trial-and-error
cyclic processes, making extensive use of numerical
simulations that are occasionally combined with genetic-
algorithms-based optimizations [9]. Obviously, because of
the huge number of involved parameters and the
corresponding high number of trials, this is a far-from
effective way to proceed. More rigorous design approaches
are those based on inverse design, such as the inverse
homogenization problems [10,11] which are mainly devoted
to synthesizing effective electromagnetic properties of unit
cells. Unfortunately, the arising dielectric profiles exhibit a
complex distribution which is difficult to fabricate [10], so
that fabrication-oriented tools are needed. In this respect,
topology optimization [12] based design tools have been
widely adopted during the years. As the name suggest, this
kind of techniques aims at modifying the topology of the
device at hand, that is, the geometrical and e.m.
characteristics of the object being designed, in such a
way some assigned specifications are satisfied. Developed
design tools based on topology optimization [13-17] or the
like [18,19] are able to realize binary devices wherein just
two materials (one of which is usually air) are involved.
Other types of design tools based on group theory [9] and
the emerging concept of deep neural network [20] have been
also proposed.

Recently, the design of artificial materials through an
inverse design approach has been introduced within the
framework of inverse scattering problems for antennas
[21] and cloaking [22,23] applications, showing very
promising performance compared to homogenization-
based approaches, but also evidencing limitations as far
as the computational burden is concerned. In fact, the
adopted tools in [21] require very small mesh elements to
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correctly represent small scatterers and hence the field they
scatter.

As an alternative to above techniques and with the aim
of overcoming relates issues, we have recently proposed, for
a completely different problem concerned with antennas
(see below), a novel inverse design approach based on
inverse scattering co-adjuvated by the use of the so called
Scattering Matrix Method (SMM) [24]. The SMM is a very
accurate and fast analysis tool for structures made of
multiple dielectric or metallic scatterers. In fact, it allows to
exploit analytical (or off-line numerical) results related to
the ‘response’ of each single inclusion to have an accurate
modelling of the overall device. Notably, it operates
somehow at a ‘mesoscale’ level, as the modelling is not
based on the microscopic level of numerical simulations
acting on a dense grid, and avoids the macroscopic but
possibly approximated way of thinking based on homoge-
nization techniques. Notably, the basic SMM method can
be eventually improved (see [8] for more details) by
introducing aggregations of elementary scatterers and
computing the scattering matrix of the larger scatterer
which is obtained.

As we are going to summarize in the next section, the
scattering matrix, through proper expansions of the
incident field (acting as input) and scattered fields
(acting as output), allows to take into account in a very
effective fashion the ‘response’ of each single scatter at
hand. Then, one is left with a system of equations
governing (just) the interactions amongst the different
scatterers, while interactions internal to the single
scatterers constituting the device are taken into account
through the corresponding scattering matrix. Of course,
the number of equations and the dimension and
structure of the scattering matrices depend on the
number of scatterers as well as on their geometrical and
electromagnetic characteristics.

With the aim of pursuing the design of EBG devices, the
SMM formulation can be conveniently turned into an
inverse problem. More in detail, the role of data and
unknowns is inverted so that the scattering matrices of
each inclusion can be considered the new unknowns of the
problem, while expansion coefficients of the scattered fields
must be determined in such a way to obey assigned field
specifications, depending on the device at hand.

Very recently, we have proposed our Inverse SMM
(I-SMM) tool in the framework of innovative antennas
design. In fact, we have successfully applied it in [25] for the
same design problem considered in [21]. Note that in the
antenna applications above, the specifications were derived
starting from an optimal synthesis of the coefficients of a
representation of the scattered and total field, and the
pursuing of such a field is then the goal of the inverse
scattering step, so that such a field substitute the field
measurements which are the usual data of inverse
scattering for reconstruction problems.

In this contribution, we consider a completely different
problem with a completely different kind of design goal. As
a matter of fact, EBG guiding structures are considered
rather than antennas, and the actual goal is the
optimization of the Voltage Standing Wave Ratio (VSWR)
along the structure in such a way to avoid undesired

reflections in case of bends, rather than the realization of a
given field.

Notwithstanding the completely different problem and
the different kind of goals, it is shown that scattering
matrices, as well as the kind of (state and data) equation
which are the core of inverse scattering procedure can still
be used.

As well known, the electromagnetic response of a class of
EBG devices can be understood by analysing the bands
diagram which depends in turn on the kind of lattice,
polarization, and the used defects (if any). On the other side,
such a ‘basic’ way of thinking does not exploit a number of
degrees of freedom which can be gained by changing (for
example) the permittivity or dimensions of (some of) the
inclusions. For example, which is the basic problem we deal
with in the following as a first demonstration of potentiali-
ties, one could use a few degrees of freedom regarding a
limited number of inclusions to improve the behaviour of an
EBG waveguide. In fact, by starting from a basic structure,
inverse design procedures are exploited to modify (part of)
the lattice for an improving of the VSWR (i.e., saying it in
other words, for avoiding waves coming back along the
defect). A similar problem has been dealt with in [13-17]. In
particular, we apply the I-SMM to improve guiding
performance of straight and bent EBG waveguides. Our
procedure resembles the one in [26], wherein the multiple
scattering theory (MST) is adopted. Both approaches are
based on a harmonic expansion for fields and their
formulation is general, so they can be formalized for different
kind of inclusions; the main difference is that, opposite to the
SMM, the MST exploits the T-matrix to link the scattered
field to the electromagnetic properties of the scatterer. As far
as the design procedure is concerned, an important difference
can be highlighted amongst our approach and the one based
on the MST. In fact, in [26] a global optimization is performed
for the solution of the inverse problem. As a consequence, to
limit the computational burden, several a-priori information
must be used. In particular, in [26] the authors not only set
arrangement and dimension of scatterers, but also their
electromagnetic parameters, the remaining degrees of
freedom being just the presence or not of the scatterers
themselves. In our approach instead the inverse problem is
solved through a conjugate gradient based algorithm that is
able to handle both geometric and electromagnetic features,
assumed that a favourable starting point can be provided for
the optimization step.

The remainder of the paper is structured as follows.
In Section 2 the SMM is briefly recalled while in Section 3
its inverse formulation is introduced. Section 4 is devoted
to present and assess the procedure for designing optimized
EBG waveguides. Conclusions follow.

For the sake of simplicity, 2-D scalar fields are considered
and the time harmonic factor ¢ is assumed and dropped.

2 Basics of the Scattering Matrix Method
(SMM)

Let consider the geometry depicted in Figure 1 wherein the
£-th cylinder with cross section Cy islocated at (7, 6,) with
respect to a global reference system Oxy. Let also E;,. be a
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Fig. 1. Geometry sketch for the problem at hand.

given incident field impinging on the set of scatterers. By
exploiting the cylindrical harmonics expansion of fields
[27], the field scattered by the set of inclusions in the regions
of space outside the single scatterers reads as:

N 4o

B (P) =32 3 beHi (e e

=1m=—c0

(1)

wherein N is the total number of scatterers, k; is the
wavenumber of the background medium and H®(-) is the
m-th order Hankel function of second kind. Notably,
representation (1) is expressed in the reference system of
the Z-th scatterer (see Fig. 1).

As soon as the observation point P is a little bit outside
an inclusion Cy, the corresponding internal summation can
be safely truncated’ to a finite number, say M, which also
depends on the single inclusion maximum dimensions
[28].

Accordingly, the total field can be represented as:

N
Eio (E) = Ejne (_P) + '_;fac (f})
My/2 o

+ Z bfm

m=—My/2

kaf)ejmef.

(2)

From equation (2) it is possible to note three
contributions: the first one is the primary incident field;
the second addendum is a summation of scattered fields
from all inclusions but the £-th one, that accordingly acts
as a secondary incident fields on it; finally, the last term
simply represents the field scattered by the £-th cylinder as
defined in equation (1).

In equation (2), the fields representations are still
expressed in the reference system linked to the pertaining
cylinder. In order to have a field representation in a unique
global reference system (e.g., the Z-th one), the Graf’s
formula [29] for the Hankel function can be used. We finally

L' A truncation rule can be derived by considering the singular
value decomposition of the radiation operator. For the present
case, My = 2kyp,+ 1, pr being the radius of the Z-th inclusion [28].
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obtain what follows (see [24] for more details):

My/2 P
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3)

ay ,, coefficients being the following compact expression:

N
Aym = Qf,m + E Tf,i,m,qbi,m
i—Lidts

(4)

wherein @)y, encodes terms arising from the harmonic
expansion of the primary source, while T, ,, , takes into
account mutual coupling effects amongst scatterers [24],
that is, it is related to the secondary incident field. For the
sake of completeness, analytic expressions of Ty, , and
Q¢.m taken from [24] are given in Appendix.

If b, is the vector encoding the field representation
coefficients while a, is the vector encoding the source
representation coefficients, and according to the fact that a
finite number of parameters can be used to represent both
fields and sources [28], for any fixed scatterer one can
conveniently design a finite dimensional (M, x M)
scattering matrix S, encoding all relevant information of
the scatterer, such that:

b, = Sa,. (5)

Hence, after multiplying equation (4) by the scattering
matrix, we finally achieve the linear system in the unknown
bf:

N
> 8T ;b =8,Q,

i=li#t

(6)

that formally describe the scattering model at hand.

Once equation (6) is solved, the scattered field in the
region of space outside scatterers can be finally evaluated
through equation (1) [24].

3 The Inverse-SMM (I-SMM)

The aim of an inverse design problem is to infer optimal
properties on certain parameters, within a set of con-
straints, to accomplish assigned specifications at best.
In the present case, the parameters to be optimized are the
geometric and electromagnetic features of inclusions in
such a way the scattering from the optimized set is able to
satisfy some given specification on the scattered or total
field.

If a nominal assigned field to be pursued is given, in
system (6) both the scattering matrices S, and the
coefficients b, are unknowns, and these latter must be
determined such to fit the given assigned field as well, that
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Fig. 2. Electromagnetic field propagation mechanism for EBG devices. (a) Band-map in logarithmic scale. Amplitude of electric field
with A =1.04 pum for (b) non-defective and (c) defective EBG structure.

is, such that:

N Mg)2 2

bem HE (ki o) em0¢ — sl (5, 6,

min m scat

bf,m

2
(7)

Accordingly, in the I-SMM design problem, S, and b,
must be optimally retrieved to contemporarily satisfy the
model (6) and the data constraints (7). Notably, such an
inverse problem is not trivial to solve because of its non-
linearity that could cause the optimization problem (based
on a gradient scheme) to be trapped into local minima.
However, as long as a good matching is gathered with both
the model and the data, sub-optimum solutions can be
accepted.

A further issue to be taken into account concerns the
existence of a solution for the problem, especially in terms
of a final actual device. More in detail, even if scattering
matrices S, can be found as solution of the inverse design
problem, the existence of corresponding physical reliable
scatterers is not ensured. For this reason, a-priori
information on the scatterers are required to gather a
feasible solution of the problem. This allow, for instance, to
look for diagonal matrices if cylindrical scatterers with
circular symmetric cross-section are dealt with. Also, one
can look for a single S matrix if the scatterers are identical.
Moreover, we can directly search for the parameters
actually determining the entries of the matrices if the
electromagnetic features of the inclusions are supposed to
be of a given kind, namely if we are dealing, for instance,
with homogeneous dielectric or metallic inclusions, single
layer or stratified inclusions, and so on. In this case, in fact,
analytic expressions for the scattering coefficients are
available [25].

At the end of the day, thanks to the fact one is reducing
as much as possible the number of unknowns of the
problem and by taking advantage from convenient starting
points derived from a general physical understanding or
homogenization based suggestions, the minimization
procedure will ensure actual solutions of the design
problem, without resorting to global optimization

=1m=—M/2

algorithms, with the inherent advantages in terms of
computational burden.

4 An ‘ad hoc’ procedure for optimal EBG
waveguides design

The SMM and I-SMM presented above are general
formulation for the scattering model dealt with, namely
they still apply whatever the arrangement of the scatterers,
their electromagnetic (e.g., dielectric, metallic, stratified)
and geometric (cylinders with circular or elliptic cross-
section) features, whatever the background medium and
the primary source’. Thereinafter, in order to deal with
EBG devices, we consider circular lossless dielectric
scatterers with radius p, and constant relative permittivity
&z, embedded in air and arranged in a periodic (triangular
or square) lattice with spacing d.

On the basis of py, ¢,,d values and lattice type, the EBG
structure presents a gap within a definite frequency band,
that represents a forbidden region for fields to propagate.
When a line of inclusions is removed from the periodical
lattice, a new guiding effect can be obtained. As a matter of
fact, the line defect turns into a waveguide for an
electromagnetic wave with a frequency within the band
gap of the (non-defective) structure. An example of this
mechanism is shown in Figure 2, from which it is possible to
see that an impinging field at f=288.46 THz cannot
propagate within the full structure because it belongs to the
band-gap frequencies, while it propagates when the line
defect is realized.

However, the defective EBG structure is able to confine
and somehow guide the field, but an unsatisfactory VSWR
is obtained. In fact, wave reflections due to the discontinu-
ity in the space produce oscillations of the field inside the
guiding region. Notably, this behaviour occurs whatever
the kind of waveguide (straight, bent).

Hence, we can exploit the I-SMM framework to
optimize (some of) the inclusions in order to improve
VSWR and get a better design. In particular, we fix the
arrangement of the scatterers and their dimension, which is

2 In this case, Q. entries will change, see Appendix.
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Fig. 3. Optimization of a straight waveguide. (a) Permittivity map of the defective EBG device where the DR is superimposed with
light grey rectangle and (b) the corresponding electric field amplitude distribution. (¢) and (d) the same as (a) and (b) but for the
optimized EBG device through the I-SMM [e,,—8.4,10.8,13.2,12.4,10.1,11.4,13.4,10.7,10.2,13.7,12.7,9.6,12.3,16.4,10.9,9.4,16,

16.7,9.3,11.5,18.1].

supposed to be identical; then, we look for the optimal
permittivity value of inclusions belonging to the so-called
‘design region’ (DR) allowing a minimum ripple for the
field amplitude within the waveguide and, in particular, in
the so-called ‘shaping region’ (Ag,aping)-

Hence, differently from [25], the inverse design problem
can be finally formulated as follows:

g;;le‘pple{\Em (Ashaping) |} (7.1)
Subject to:
Model (6) (7.2)
épm = &pm (7.3)
wherein:

|Etot (Ashaping) ‘max - |Et0t (Ashaping) ‘min
2

Ripple = (8)
constraint (7.2) allows to fit the scattering model, while
constraint (7.3) enforces a symmetry in the permittivity of
the structure.

In the following subparagraphs an assessment of the
inverse design procedure is performed for straight and bent
waveguides. The considered primary source is a plane wave

from the left side of the structure. As we are interested in
perspective to reconfigurable devices, the permittivity of
the inclusions are the unknowns of our (fixed dimensions)
elementary bricks. Of course, a completely similar
approach is possible by looking for dimensions (with a
fixed permittivity) or both.

As far as the starting point of the optimization problem
is concerned, in the specific problem dealt with herein
(which can be seen as the problem of optimizing the field
which is already propagating within waveguides), the
standard defective structure is an obvious (and effective)
choice. Also note that constraints on the admissible range
values can be considered in the optimization problem to
take into account actual feasibility issues.

4.1 Straight waveguide

As a first example, let us consider the geometry shown in
Figure 3a. The full EBG structure is composed of N=168
rods with radius p =0.075 pm and permittivity ¢ =12.25
arranged on a triangular lattice with spacing d=0.45 pm.
The central row composed of 21 rods is removed to realize a
straight waveguide. The amplitude of the total electric field
on domain for the defective structure is shown in Figure 3b.
As previously outlined, the field amplitude achieved within
the channel is oscillating, corresponding to a Ripple value
equal to 0.3821. To improve such a parameter, the design
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Fig. 4. Optimization of a double 60° bend waveguide. (a) Permittivity map of the defective EBG device where the DR is superimposed
with light grey rectangle and (c) the corresponding electric field amplitude distribution. (b) and (d) the same as (a) and (c) but for the
optimized EBG device through the I-SMM [e,,,=83,77.7,79.2,78.3,79,79.5,82.4,79.9,80,79.7,79.5,82.7,80.1,79.7,78.8,79.3,79,87.1].

Table 1. Quantitative comparison of Ripple for the double 60° bend waveguide example.

Defective device

Optimized defective device

Ripple

Horizontal input channel 0.4455
Diagonal channel 0.4459
Horizontal output channel 0.4380

0.1646
0.1408
0.1579

problem (7) is solved by considering rods on the edge of the
channel as DR, see Figure 3a. The optimized structure and
the corresponding amplitude field are shown in Figures 3c
and 3d, respectively. As it can be seen, a proper adjustment
of some inclusions’ permittivity allows to reduce the Ripple
t00.0173 (with a comparable value of the average field) and
hence to improve the guiding effect.

4.2 60° bend waveguide

The second example concerns the optimization of a double
60° bend waveguide. In this case, the total number of
scatterers is N = 315, while the structure’s geometry as well
as the cylinders’ characteristics are unchanged.
By removing 17 rods as in Figure 4a the amplitude field
distribution of Figure 4c is achieved, for which the
corresponding Ripple, evaluated for horizontal and
diagonal channels separately, is summarized in Table 1.
By optimizing the device by using the DR highlighted in
Figure 4a, we obtain the device in Figure 4b and a reduced
Ripple within the channel, see Figure 4d and Table 1.

4.3 90° bend waveguide

As last example we deal with a double 90° bent waveguide.
The rods of the EBG structure (N=225) have the same
parameters as before but for the lattice that has a square

arrangement in this case. By removing 20 inclusions as
shown in Figure 5a we realize a waveguide with sharp
bends, for which the field distribution of Figure 5b is
obtained. A similar device is considered in [16] but with
rods arranged in a triangular lattice, which is unusual for
this kind of sharp bends. Conversely, in [14] the same
authors investigate a single 90° bent waveguide but just the
corner area is optimized.

In the present case the DR still corresponds to the rods
on the channel’s edges. As can be apprised from Figure 5d,
that is the field pertaining to the optimized structure of
Figure 5c¢, the design through the I-SMM allows to reduce
the Ripple of the guided field. See Table 2 for a quantitative
comparison.

5 Conclusions

In this paper the inverse design of artificial-materials-based
devices has been addressed. In particular, electromagnetic
bandgap (EBG) devices have been considered. Differently
from approaches relying on full-wave methods or trial-and-
error procedures, inverse design based techniques represent
powerful tools to obtain optimal devices realizing desired
properties in a more effective fashion. In this contribution,
an inverse design tool for EBG devices based on the
scattering matrix method (I-SMM) has been proposed.
More in detail, the SMM has been adopted to model EBG
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Fig. 5. Optimization of a double 90° bend waveguide. (a) Permittivity map of the defective EBG device where the DR is superimposed
with light grey rectangle and (b) the corresponding electric field amplitude distribution. (c¢) and (d) the same as (a) and (b) but for the
optimized EBG device through the I-SMM [e,,,~12.2,14.3,12.2,12.5,11.9,12.5,17.7,11.3,12.4,7.4,8.3,13.7,14.4,14.2,12.9,13.2,12.8,12.9,

11.8,21.6].

Table 2. Quantitative comparison of Ripple for the double 90° bend waveguide example.

Defective device

Optimized defective device

Ripple

Horizontal input channel 0.8641
Vertical channel 0.4762
Horizontal output channel 0.3829

0.241
0.0567
0.2

devices (which are a set of scatterers actually) and hence to
develop an ad hoc procedure to determine optimal
parameters describing the inclusions composing the device
in order to accomplish desired specifications. The proposed
I-SMM represents a general framework and makes use of
simple geometry structures with multiple materials that
could be possibly tuned to accomplish with different
specification (i.e., with reconfigurable devices). The
proposed approach has been successfully assessed by

optimizing the guided electromagnetic field within straight
and bent waveguides. In particular, by optimizing the
permittivity value of inclusions located on the waveguide’s
edges, our tool is able to control oscillations of the field
while keeping an adequate transmitted power.

As we are interested in perspective to reconfigurable
devices, we have focused herein on fixed spacings and fixed
dimensions of the inclusions. Interestingly, the model we
have used can be both immediately used for the case of
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fixed permittivities-variable dimensions as well as extend-
ed to the case of variable spacings (by acting on the T
matrices rather than on the S matrices).

This work was supported in part by the Italian Ministry of
University and Research under the PRIN research project
“CYBER-PHYSICAL ELECTROMAGNETIC VISION: Context-
Aware Electromagnetic Sensing and Smart Reaction,” prot.
2017THZJXSZ.

Appendix

The present Appendix is devoted to report the analytic
expressions of entries of T and Q matrices involved in the
SMM model of equation (6).

Accordingly, in the chosen coordinates system, they
read:

Tyimg = SR () (A1)
wherein (r?,@?) represents the mutual position between
the chosen /-th coordinate system (O2”y’) and the
coordinate system of the generic ¢-th inclusion, while,
depending on the primary source, a different @), formula
must be derived.

In particular, if a plane

wave Fg.(r, y) =
e*jkh(fﬁ sin G~y cos Onc) mp( ’ )

is considered (0;,. being the angle
with respect to the y-axis) the pertaining expression for
Q¢.m1s the first one in (A2), while if a line current I; located
at (r, 6,) is supposed as primary source, that is,
Eipne(r) = —%ISHg)(ker —r |), the second relation in

(A2) holds, (r;, 9;}) being the mutual position between the
chosen #-th coordinate system and the source position.
Other kind of sources can be obviously accommodated as
well.

¢ ko sin(Bine=6") o—jmbipc (plane wave)

Qfm_

’ - % I,H? (kyrs) e /™% (line current). )
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