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Abstract 30 

Precision agriculture (PA) is becoming an essential practice for the implementation of sustainable agriculture that 31 

encompasses the efficient use of resources and a systematic crops monitoring. The increasing temporal and spatial 32 

resolution of satellite imagery, coupled with their availability and decreasing costs, create new possibilities for 33 

generating accurate datasets on different crops variables, more frequently available as ready-to-use data. The 34 

availability of very high-resolution (VHR) satellite imagery, such as the WorldView-3 (WV-3), leads to the 35 

advanced potential of satellite Remote Sensing (RS), becoming in the last decade one of the main data source in 36 

precision agriculture (PA). In the broad overview of these procedures, geographic object-based image 37 

classification (GEOBIA) techniques, gained broad interest as methods to produce geographic information in GIS-38 

ready format. In this paper, methodologies for a semiautomatic process workflow is presented, providing olive 39 

tree crown detection in two different olive orchards in Calabria (Italy), collected by means of GEOBIA procedures, 40 

in order to investigate olive tree spectral behavior and the reliability of WW-3 derived vegetation indices (VIs). 41 

The semi-automated classification method, accomplished by imagery pre-processing steps, may constitute an 42 

operational processing chain for mapping and monitoring olive orchards at tree scale detail. Five VIs were 43 

investigated: Normalized Difference Vegetation Index (NDVI), Modified Soil Adjusted Vegetation Index 2 44 

(MSAVI 2), Normalized Difference Red Edge Vegetation Index (NDRE), Modified Chlorophyll Absorption Ratio 45 

Index Improved (MCARI2), and NDVI2. The obtained results were statistically tested and their accuracy assessed. 46 

Thematic accuracy ranges from 95.33% to 96% in both study areas with an overall tree detection rate of 96.8%. 47 

Statistical analysis showed that the major differences in spectral behavior, over different plots of the investigated 48 

olive orchards, are mainly due to the component of the red-infrared regions of the electromagnetic spectrum (EM), 49 

where the red-edge becomes important in assessing the state of general vigor. Moreover, the proposed 50 

methodology increases the possibility of detecting tree stress at earlier stages and the benefits of using satellite-51 

based approaches in terms of: larger area coverage, less processing and operator interaction coupled with more 52 

spectral information, thus reducing the need to collect costly reference data sampling. 53 

 54 

Keywords: Olive trees’ crown extraction, Vegetation Indices (VIs); Worldview-3 (WV-3); 55 

geographic object-based image classification (GEOBIA); spectral behavior; Precision Agriculture 56 

(PA), Olive orchards; Satellite Remote Sensing  57 
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1.    Introduction  58 

Olive (Olea europaea L.) is one of most ancient plants cultivated by human communities. Its 59 

domestication dates back prior 6000 BC (in the areas of present Syria and Turkey) while the earliest 60 

archaeological testimonies related to olive-oil production (presses and mortars found in Israel) date to 61 

around 4500 BC. In the Mediterranean area, the cultivation of olive acquired great importance when it 62 

reached the mainland and the islands of Greece, particularly Crete. Here, it soon became an important 63 

driver of development for the Minoan civilization that dominated the Mediterranean basin from 64 

around 2700 to 1500 BC. When the Greek civilization expanded throughout the Mediterranean basin, 65 

the cultivation of olive and the production of olive oil became an important economic activity also in 66 

the new colonies of Magna Graecia, established in southern Italy from the VIII century BC, and in the 67 

following Roman civilization. Olive oil, extracted in an ever more efficient way thanks to innovation 68 

in dedicated technology, had many and varied uses: culinary, as fuel for lamps, for lubrication, food 69 

preservation, cosmetics, ritual anointing. Olive-oil this way became, and still is, a recurring element in 70 

all the cultural expressions of the Mediterranean peoples (Foxhall, 2007; Tardi, 2014), as well as one 71 

of the main sources of income and employment (de Graaff and Eppink, 1999). Currently, olive groves 72 

are widespread in the Mediterranean Basin (Loumou and Giourga, 2003) and represent a recognized 73 

sign of several Mediterranean historical rural landscapes, also marking significantly their character (Di 74 

Fazio and Modica, 2018). Moreover, in the Mediterranean basin, falls the great majority of 9.4 million 75 

ha of olive groves cultivated globally (Vossen, 2007).  76 

Presently, the Mediterranean area is the most important olive and olive oil world-producing region. 77 

With reference to average values of the last five years, world olive oil yearly production is about 3 78 

million tons, 93% of which comes from the Mediterranean area (International Olive Council, 2018). 79 

An important role is played by four European Mediterranean countries, Spain, Italy, Greece and 80 

Portugal. Spain progressively increased its production since the late 1980s (Buckland and Gonzales, 81 

2010), thanks to innovation, modernization and intensification of oliviculture, now being the world 82 

leader with 1.3 million tons olive oil produced, equal to 43% of world production, followed by Italy 83 
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(0.35 million tons, ⁓12% world production). Most of Italian production comes from Apulia and 84 

Calabria, 48% and 17% respectively (ISMEA, 2018).  85 

With reference to the period 2013-18, while the average yearly production of Spain largely exceeds 86 

the national consumption, the quantity of olive oil produced in Italy is about 60% the oil consumed, 87 

that is not enough to reach self-sufficiency. In Italy, therefore it is apparent the need to increase the 88 

national olive oil production as well as to improve its quality; this, to fully match internal consumer’s 89 

demand, and better compete with other Mediterranean countries in export towards countries such as 90 

USA and Japan where the Mediterranean diet and high quality extra-virgin olive oil are having a 91 

growing popularity. In the framework of a continuously evolving global market, olive and olive oil 92 

industries should introduce new and innovative technologies in order to enhance their productivity and 93 

improve their competitiveness (Benalia et al., 2017). Precision agriculture (PA) methodologies and 94 

technologies can be currently considered as the most reliable and cost effective approach for achieving 95 

both sustainable environmental management and efficient crop production, thus revealing themselves 96 

as an important tool to support decision-making and improve the competitiveness of agriculture. The 97 

recent and fast development in sensory technologies and the parallel progressive reduction of their 98 

costs, have allowed ever more users to benefit from applications of PA. Agriculture represents an 99 

important economic sector for the application of geographic information systems (GIS) and remote 100 

sensing (RS) data and methods. Providing spatial segmentation and within-field variability 101 

information, RS is one of the most powerful tool to monitor and manage field crops in the framework 102 

of PA techniques (Sepulcre-Cantò et al., 2005). PA also benefits from RS derived information on plant 103 

photosynthetic processes at various spatial and temporal scales (Kumar and Monteith, 1981; Prince, 104 

1990; Veroustraeate et al., 2002). Plants’ biophysical characteristics can be spectrally characterized by 105 

vegetation indices (VIs) which can be defined as radiometric measurements without unit. They are 106 

calculated as ratios or differences of two or more bands in the visible (VIS), near infra-red (NIR) and 107 

short wave IR (SWIR) portion of the EM spectrum remotely detected by satellite, aerial and terrestrial 108 

platforms. VIs are primarily intended for use in PA (Roberts et al., 2011) and most of them measure 109 

the reflectance of red, NIR and the red-edge (RE) portion of the EM spectrum in the reflectance curve 110 

that describes the transition from absorption by chlorophyll to dispersion. The use of NIR 111 
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measurements, characterized by a greater penetration through the canopy cover, allows for estimating 112 

the total amount of green material (Modica et al., 2019). Measurement in the RE region allow these 113 

indices to be more sensitive to minor changes in vegetation health, particularly in dense vegetation 114 

conditions (Pauly, 2014). 115 

The usefulness of a VI is determined by its high correlation with plants biophysical parameters and the 116 

low sensitivity to the factors that hinder the interpretation of RS data, such as soil background, terrain 117 

roughness, non-photosynthetic plant elements, atmosphere, viewing and illumination geometry 118 

(Wojtowicz et al., 2016). The increasing geometric and temporal resolution and the positional 119 

accuracy of satellite sensors in the last fifteen years, however, allow the assessment of problems such 120 

as vegetation health, drought stress, fruit yield assessment and flooding (Bausch and Khosla, 2010; 121 

Calderón et al., 2015, 2013; Calvão and Palmeirim, 2004; Hunt et al., 2013; Villalobos et al., 2006; 122 

Wallace et al., 2004). The primary platforms used to obtain RS imagery were satellites and piloted 123 

aircrafts, but they frequently did not deliver adequate spatial and temporal resolutions (Nebikera et al., 124 

2008). The advent of very high-resolution (VHR) imagery such as those provided by WorldView-3 125 

(WV-3) (DigitalGlobe Inc., www.digitalglobe.com), has led to the advanced potential of satellite RS, 126 

which in the near future will probably become the main methodology of data acquisition from 127 

agricultural field parcels. In addition to the development of vehicles and sensors for the acquisition of 128 

VHR imagery, even multispectral imaging technologies have been implemented to provide 129 

increasingly efficient and reliable information extraction methods. In the broad overview of these 130 

procedures, geographic object-based image classification (GEOBIA) techniques, gained broad interest 131 

as methods to produce geographic information in GIS-ready format (Blaschke et al., 2014). This 132 

approach considers not only the identification of the ground coverage at the pixel level, but also the 133 

organization of these pixels in groups (segments) that correspond to objects in the real world 134 

(Blaschke, 2010; Chepkochei, 2011). The analysis of scientific literature shows that several researches 135 

deal with the use of WV imagery coupled with GEOBIA techniques. Different research topics ranging 136 

from tree species classification to greenhouse detection were investigated (Aguilar et al., 2013; Alrassi 137 

et al., 2016; Chepkochei, 2011; Chuang and Shiu, 2016; Gaertner, 2017; Majid et al., 2016; Mutanga 138 

et al., 2015; Shahi et al., 2017; Shojanoori et al., 2016; Waser et al., 2014). On the other hand, 139 

http://www.digitalglobe.com/
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literature reports very few experiences dealing with the application of WV-3 in studying the 140 

physiological status of individual tree  (Anderson et al., 2018; Koenig and Gueguen, 2016; 141 

Palchowdhuri et al., 2018; Rahman et al., 2018; Robson et al., 2017). This is mainly due to the very 142 

recent availability of WV-3 imagery (August 2014) and to the high cost required to access these data 143 

(Zartaloudis et al., 2015).  144 

Taking into consideration the aforementioned research findings, the present paper has three main 145 

research goals: a) to provide a semiautomatic workflow aimed at the olive tree crown detection and 146 

extraction by means of GEOBIA techniques; b) to investigate the reliability of WW-3 derived VIs in 147 

analyzing olive trees’ vegetative vigor without ground radiometric measures; c) to provide a quick and 148 

cost saving procedure not needing expensive ground truths collection in the framework of PA 149 

techniques. 150 

The structure of the present paper is as follows. In section 2, the study areas are presented and 151 

described, while section 3 deals with materials and methods, providing details on data processing 152 

workflow, pre-processing steps (subsections 3.1-3.2), the analyzed VIs, and GEOBIA procedures 153 

aimed at the tree crown extraction (subsections 3.3.-3.6). Section 4 is devoted to show the obtained 154 

results, discussed in section 5 and, and finally, section 6, deals with conclusions and final remarks. 155 

 156 

2. Study areas 157 

The study was carried out in Calabria, a region characterized by high hydrogeological risk (Petrucci et 158 

al., 2009), and in which olive groves assume a significant role in reducing rainfall’s losses. These 159 

systems include agro-forestry stands, traditional groves and new intensive orchards, with a high yield 160 

variability due to the co-existence of extensive orchards with few trees per hectare and intensive ones 161 

having more than 600 trees ha-1 (Bernardi et al., 2016). In the region, which is located in the very 162 

South of the Italian peninsula, the province of Reggio Calabria is the most representative. There, two 163 

specialized olive orchards identified as A and B and managed according to organic farming methods 164 

were selected to develop and evaluate our proposed method (Fig. 1). Both study areas were chosen in 165 
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relation to their extension and cultivation characteristics, they do not differ in crop management 166 

system, while differ in tree shapes and dimensions, as well as according to the plantation age. 167 

 168 

 169 

Fig. 1. Study areas localization based on high spatial resolution WorldView-3 satellite images presented in true color band 170 
combination (RGB 5-3-2) (Acquisition date: A, 24 June 2016; B, 2 July 2016). 171 
 172 

The orchards chosen are characterized as follows. Olive orchard A is located in in the municipality of 173 

Gerace covering a surface of 21.42 ha. Cultivar is “Grossa di Gerace” and olive trees’ age is about 20 174 

years while a traditional single-tree 6m x 6m planting distance is adopted. Soil is mostly clay, 175 

naturally grassy and periodically mowed in spring season, while irrigation is not adopted neither in 176 

drought periods. The only treatments provided are based on copper during dormancy. 177 

Olive orchard B is located in the municipality of Delianuova (Fig. 1) covering a surface of 14.28 ha. 178 

Olive trees’ age is about 15 years and mixed cultivars “Ottobratica” (80%) and “Leccino” (20%) are 179 
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produced adopting a traditional single-tree 6m x 6m planting distance. Soil is mostly with medium 180 

texture, naturally grassy and periodically mowed in spring, summer and autumn seasons, while 181 

irrigation is not adopted even in drought periods. Also in this case, only copper treatments during 182 

dormancy are provided. 183 

Within each study area, 4 plots of 2150 m2 (8 in total), respectively labelled as A1, A2, A3, A4 and B1, 184 

B2, B3, B4, and with different potential productivity, were identified in order to deepen investigation 185 

and compare spectral behavior at tree crown detail. 186 

 187 

3. Material and Methods 188 

3.1 Data processing workflow 189 

Having preliminarily defined a specific workflow in the spatial modeler environment in Erdas 190 

Imagine® 2018 software (Fig. 2), we implemented a semi-automated geoprocessing operations based 191 

on customized RS imagery processing procedures. The full procedure can be singled out in three main 192 

phases: 1) WV-3 imagery acquisition and pre-processing analysis; 2) imagery processing trough 193 

GEOBIA followed by tree crown detection and extraction, and generation of VIs maps; 3) VIs 194 

extraction at tree crown detail and statistical analyses for the reliability assessment of the obtained 195 

results. 196 
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 197 

Fig. 2. A synthetic flow-chart showing the implemented semi-automated processing workflow to derive vegetation indices 198 
(VIs) at tree crown details from WordlView-3 (WW3) imagery. 199 
 200 
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3.2 Satellite Data Acquisition and pre-processing steps 201 

A pair of WV-3 satellite images were acquired on 24 June 2016 for study area A and on 2 July 2016 202 

for B and processed. WV-3 dataset consisted of eight multispectral bands and one panchromatic band 203 

images at 16 bit of radiometric resolution (Table 1). Both images were first georeferenced according to 204 

the coordinate reference system (CRS) WGS84-ETRF89 UTM 33 (EPSG code 25833) then 205 

orthorectified using the rational function model (RFM). The model was refined by integrating ground 206 

control points (GCPs) and consequent improvement of geometric accuracy for orthorectified data. 207 

To increase the original geometrical resolution of MS bands (1.24 m), the hyperspherical color space 208 

(HCS) resolution merge pan-sharpening algorithm (Padwick et al., 2010) was applied to merging them 209 

with the pan band (0.31 m). HCS was used taking into consideration its capability in preserving the 210 

original image spectral information (Dahiya et al., 2013; Padwick et al., 2010). Further, a 7×7 211 

smoothing filter was applied, followed by the output resampling by means of the nearest neighbor 212 

interpolation algorithm.  213 

 214 

Table 1 - WorldView-3 sensor wavelength bands [nm] and relative ground sample distance [GSD] details (centered 215 
wavelength in brackets). 216 
 217 

Band Wavelength [nm] 
Ground sample 

distance (GSD) [m] 

Panchromatic 450-800 0.31 

Coastal blue 400-450 (425) 

1.24 

Blue 450-510 (480) 

Green 510-580 (545) 

Yellow 585-625 (605) 

Red 630-690 (660) 

Red-edge 705-745 (725) 

NIR-1 770-895 (835) 

NIR-2 860-1040 (950) 

 218 

Classic corrections, i.e. topographic and atmospheric, were then performed using all WV-3 bands (1-219 

8), by means of the atmospheric correction module (ATCOR Workflow) of ERDAS Imagine® 2018. 220 

Therefore, the original digital numbers (DNs) were converted into spectral radiance at sensor’s 221 
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aperture (LA) for correcting to surface reflectance. To calibrate the images, gain and offset calibration 222 

values provided with imagery metadata were used (Balthazar et al., 2012; Vanonckelen et al., 2014). 223 

ATCOR3 algorithm is based on MODTRAN atmospheric radiative transfer code and allows to set 224 

different weather conditions, and solar zenith and azimuth angles. In our case, a rural aerosol model 225 

for spring and summer seasons with a visibility distance of 10 km was the applied to four terrain files 226 

(slope, aspect, sky view, and shadow cast) obtained from a digital elevation model (DEM) (Richter, 227 

1998, 1997) by a modified Minnaert topographic correction that use a set of empirical rules (Richter et 228 

al., 2009), considering rugged terrain effects in the correction process. As input, we used a 1 m × 1 m 229 

DEM derived from an aerial LiDAR dataset surveyed in 2011. Finally, an anomaly detection (AD) 230 

process was carried out to identify pixels that have a spectral signature markedly different from most 231 

other pixel spectra in the image by mean of the orthogonal subspace projection (OSP) as detection 232 

method. 233 

In order to support the subsequent classification phases adding texture detail to the pixel classifier, a 234 

principal component analysis (PCA) spectral transformation was then adopted. A PCA provides a 235 

reduction of correlation among bands’ reflectance values, by rotating the axes of the original feature 236 

space coordinate system to new orthogonal axes (called principal component, PC) maximizing the data 237 

variance, therefore making the data more interpretable (Jolliffe, 2002). In order to select the right 238 

number of components that account for a high proportion of the data variance, we calculated PCs for 239 

all eight WV-3 bands, also obtaining the covariance matrix and the eigenvalues for each of them. 240 

Generally, most of the variance is collected in the first three PCs (Richards and Jia, 2006). In our case, 241 

we selected the first two PCs considering that for both imagery their account for more than 97% of the 242 

data variance (Table 3). 243 

 244 

3.3 Geographic object-based image analysis (GEOBIA) and tree crown extraction 245 

The GEOBIA approach was implemented in Erdas Imagine® Objective as semi-automatic process 246 

with minimum user intervention, able to extract single olive tree crown and to eliminate the spectral 247 

disturbances of background, independently of the plantation pattern. The tree crown model detection 248 
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was defined with a pixel cue classifier based on multi Bayesian network so that the different output 249 

classes could directly interact with each other (Fig. 3). As input data, the atmospherically corrected 250 

WV-3 imagery, and the PC1 and PC2 layers were used for both A and B study areas. Preliminarily, for 251 

each study area, a set of 30 olive tree crowns representing our feature training reference samples, and a 252 

set of background samples, were manually digitized as vector polygons. PC1 and PC2 data layer were 253 

added as input to the Identity cue to use as a metric to the Pixel Classifier. Then, a single feature 254 

probability (SFP) method was applied to the WV-3 imagery to calculate probability metrics (ranging 255 

from 0 to 1) of the input multispectral image, comparing its pixel values with those of the digitized 256 

polygons. Higher and lower probability values were assigned to pixels whose values were similar or 257 

significantly different from the values of pixels in the non-background training samples, respectively. 258 

In the training phase, pixels identified with training polygons belonging to single olive trees were used 259 

to compute pixel cue metrics for training the pixel classifier for each study area. The selected pixel 260 

were compared, during this process node, to the training pixels obtaining a pixel probability layer (Fig. 261 

3) representing the probability in which each pixel’s value is an object of interest (i.e. an olive tree 262 

crown). Then, a threshold/clump function was applied on the pixel probability layer by keeping only 263 

those pixels presenting a percentage probability greater than or equal to the threshold value of 0.95, in 264 

our case. Each created raster object is a clump object (i.e., the belonging pixels share a common ID 265 

class in the attribute table). 266 

Based on a raster object pixel distribution, we set a 5 x 5 circular kernel size to expand the raster 267 

object distribution with a minimum object size of 40 pixels, and then specify a minimum clump size of 268 

40 pixels. Clumps smaller than the specified number were eliminated. Raster objects were 269 

automatically vectorized based on the associated probability metrics and smoothed in shape, applying 270 

a smoothing factor of 0.70 (Fig. 3). 271 

For each “tree object polygon”, size property and a measure of probability membership to the group of 272 

tree vector objects was performed by means of an object classifier using training sample distribution 273 

parameters such as mean, minimum, maximum and standard deviation values. The automated 274 

extraction phase was then performed to measure how closely the selected polygons match the training 275 
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objects. Objects processed passed through the object cue metrics calculation such as shape (circularity) 276 

and size (area) with a pixel probability weight set to 95%. 277 

 278 

 279 

Fig. 3. Geographic object-based image analysis (GEOBIA) sequenced feature model process nodes for the extraction of olive 280 
tree crowns. (I): a subset of the corrected WorldView-3 (WV-3) satellite imagery, presented in a false infrared color band 281 
combination (RGB 7-5-3); (II): raster pixel processor; (III): raster object creator; (IV-V): raster object operators; (VI): rater to 282 
vector conversion; (VII): vector object operator; (VIII): vector object processor; (IX): extracted olive tree crown boundaries 283 
[yellow line] overlapped on the input image. 284 
 285 

The process ended with a vector clean-up operation with a probability filter function that removed all 286 

vector objects whose zonal probability mean was less than the specified minimum probability by 287 

remodeling the existing vector objects (Fig. 3). This value was set to 95%. The resulting vector objects 288 

represent the extracted olive tree crowns (Fig. 3). 289 

 290 

3.4 GEOBIA and tree crown extraction accuracy 291 

To assess the tree crown extraction accuracy, all olive trees’ crowns falling in the 8 plots (A1- A4 and 292 

B1- B4) were digitized by on-screen photointerpretation and used as reference data (Erikson, 2004; 293 
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Larsen et al., 2011; Wang et al., 2004). To ensure the correct geolocalization of each tree falling in the 294 

eight plots, a set of ground control points (ground truths) was defined collecting the position of each of 295 

them by means of a differential GNSS (planimetric accuracy = ±0.05 m). These points were then used 296 

as reference data in the photointerpretation stages display their position on the pan-sharpened WV-3 297 

imagery (Koc-San et al., 2018; Rahman et al., 2018; Robson et al., 2017; Srestasathiern and Rakwatin, 298 

2014). The accuracy was assessed as object-based evaluation by comparing the total number of 299 

correctly detected trees with these reference data. Evaluation was performed by simply counting trees 300 

correctly detected or missing, basing on two independent samples: one for the recall (r) and another 301 

for the precision (p). Recall indicates the omission error while precision indicates the commission 302 

error (Li et al., 2012). The overall accuracy was obtained by the F-score (Eq. 1): 303 

𝐹­𝑠𝑐𝑜𝑟𝑒 = 2 ×
(𝑟×𝑝)

(𝑟+𝑝)
  (1) 304 

Where: 305 

𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 306 

𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 307 

F-score represents the harmonic mean of recall and precision and it’s a measure of the overall 308 

accuracy (Goutte and Gaussier, 2005; Lu et al., 2014; Sokolova et al., 2006). These performance 309 

indicators were evaluated considering: true positives (TP), i.e. correctly detected trees; false positives 310 

(FP), i.e. erroneously detected trees; and false negatives (FN), i.e. trees not detected.  311 

Following the work of Ok et al. (2013), an overlapping threshold of 60% was then defined to assess 312 

the obtained accuracies between the reference and the detected object. 313 

To determine the relationship between correctly detected trees and reference data, a regression 314 

analysis was implemented with R statistical software (R Core Team, 2017). The quality of fitted linear 315 

regression model was evaluated based on the coefficient of determination (R2) and the root mean 316 

square error (RMSE) according to equation 2: 317 

RMSE = √
1

n
∑ (xi − yi)

2n
i=1      (2) 318 
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where, xi represents reference tree data and yi the detected tree crown. The significance was also 319 

computed. 320 

Furthermore, a confusion matrix was used to evaluate the overall 8 plots classification accuracy 321 

(Congalton, 1991; Congalton and Green, 2008) obtaining an overall accuracy and the Kappa 322 

coefficient (K) as expression of the accuracy in terms of omission/commission errors. To that purpose, 323 

in each plot of the two study areas, a set of 10 randomly distributed sample points was defined. 324 

 325 

3.5 Investigated Vegetation Indices (VIs) 326 

In order to investigate the biophysical characteristics of olive trees, a set of five VIs was defined by 327 

selecting those ones (Table 2) based on reflectance bands sensitive to the combined effects of 328 

chlorophyll concentration, surface and vegetation canopy architecture. These VIs provide a reliable 329 

measure of the photosynthetic material, crucial in understanding the vegetation vigor (Vincini et al., 330 

2008). NDVI, with the normalized combination of its formulation is the most popular VI (Pettorelli, 331 

2013), capable to measure healthy vegetation using the highest chlorophyll absorption and reflectance 332 

regions and whose values range from -1 to 1. However, NDVI can saturate in multi-layered dense 333 

vegetation, when the leaf area index (LAI) reaches higher values (Haboudane et al., 2004; Maselli et 334 

al., 2012; Ortega-Farías et al., 2016; Rouse et al., 1974; Tucker, 1979; Zheng and Moskal, 2009). 335 

The modified soil adjusted vegetation index 2 (MSAVI2) is similar to the NDVI, but mitigate the soil 336 

background effects. In its first formulation, this was obtained by using an adjustment factor (L), which 337 

is a function of the vegetation density and often requires prior knowledge. In the second formulation 338 

of the index, instead, the L factor was replaced by a self-regulating factor (Qi et al., 1994). MSAVI2 339 

offers good performances with sparse vegetation, where the ground remains particularly visible 340 

through the foliage (Eitel et al., 2007; Haboudane et al., 2004; Hunt et al., 2012). 341 

NDRE index is a modification of NDVI and its applications include PA, forest monitoring, and 342 

identification of vegetation stress (Cammarano et al., 2014; Fitzgerald, 2010; Hunt et al., 2012; 343 

Siegmann et al., 2012). 344 
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NDRE has values ranging from -1 to 1 and differs from NDVI as it uses wavelengths along the Red-345 

Edge (RE) region. It exploits the vegetation sensitivity to RE to small variations in the canopy foliage 346 

content, the canopy cover degree and senescence. 347 

 348 

Table 2 - Formulation of the five vegetation indices (VIs) used in the present research. 349 

Index denomination Index formula* References 

Normalized Difference 

Vegetation Index 

(NDVI) 

(𝜌𝑁𝐼𝑅1 − 𝜌𝑅𝐸𝐷)

(𝜌𝑁𝐼𝑅1 + 𝜌𝑅𝐸𝐷)
 

(Rouse et al., 

1974) 

Modified Soil Adjusted 

Vegetation Index 2 

(MSAVI 2) 

2𝜌𝑁𝐼𝑅1 + 1 − √(2𝜌NIR1 + 1)2 − 8(𝜌𝑁𝐼𝑅1 − 𝜌𝑅𝐸𝐷)

2
 

(Broge and 

Leblanc, 2001; 

Qi et al., 1994) 

Normalized Difference 

Red Edge Vegetation 

Index (NDRE) 

(𝜌𝑁𝐼𝑅1 − 𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒)

(𝜌𝑁𝐼𝑅1 + 𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒)
 

(Barnes et al., 

2000) 

Modified Chlorophyll 

Absorption Ratio Index 

Improved (MCARI2) 

1.5[2.5(𝜌𝑁𝐼𝑅1 − 𝜌𝑅𝐸𝐷) − 1.3(𝜌𝑁𝐼𝑅1 − 𝜌𝐺𝑅𝐸𝐸𝑁)]

√(2 × 𝜌𝑁𝐼𝑅1 + 1)2 − (6 × 𝜌𝑁𝐼𝑅1 − 5 × √𝜌𝑅𝐸𝐷) − 0.5
 

(Haboudane et 

al., 2004) 

Normalized Difference 

Vegetation Index 2 

(NDVI2) 

(𝜌𝑁𝐼𝑅2 − 𝜌𝑅𝐸𝐷)

(𝜌𝑁𝐼𝑅2 + 𝜌𝑅𝐸𝐷)
 

(Eckert,2012; 

Pu et al., 2012; 

Wolf, 2012) 

*in all formulas, ρ is the reflectance at the given wavelength. 350 

 351 

The modified chlorophyll absorption ratio index improved (MCARI2) is one of several CARI indices 352 

identifying the relative abundance of chlorophyll; like MCARI (Daughtry, 2000), it is considered a 353 

good indicator of LAI. It incorporates an adjustment factor for the soil background, while preserving 354 

sensitivity to LAI and resistance to the influence of chlorophyll (Eitel et al., 2007; Haboudane et al., 355 

2004; Hunt et al., 2012; Main et al., 2011). Thanks to the availability of a NIR2 band, the NDVI2 356 

index (Eckert, 2012; Wolf, 2012) was used as a specific band ratio suitable for WV-3 imagery, which 357 

values range from -1 to 1. Given any other multispectral indices system, a red band and a NIR band 358 

shows the low and high level of vegetation reflectance values, respectively. In the NDVI2, band ratio 359 

between the red coupled with the NIR2 band, which has a higher value than traditional broad NIR 360 

bands, should produce higher NDVI values (Ng et al., 2017; Wolf, 2012).  361 
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As descripted, VIs maps for the two study-areas were obtained in the spatial modeler environment in 362 

Erdas Imagine® 2018 suite, applying the standard formulations (Table 2) and masking them to the 363 

geographical extent of each study area (Fig. 2). Final maps were built in QGIS 3.4 Madeira (Fig. 5-6). 364 

3.6 Statistical Analysis of olive tree spectral signature and derived VIs 365 

To corroborate research findings and further considerations, a statistical analysis was applied to all 366 

calculated VIs. To this end, analyses were performed on all extracted VIs within the defined 8 plots 367 

(A1- A4 and B1- B4) using the extracted  tree crown vector derived from GEOBIA, in order to separate 368 

the real cultivated areas from other parts (Fig. 3). For each plot, all trees falling inside were chosen as 369 

statistic samples and, for each crown, basic statistics of VIs values (i.e., mean and standard deviation) 370 

were calculated. The mean spectral signature of each plot was also computed and correlation among 371 

bands was estimated by a correlation matrix. Single band reflectance values were evaluated using box 372 

and whisker plots. Significance was computed using a two-tailed t test with n-2 degrees of freedom. 373 

Aiming to assess how suitable VIs are to describe crops condition, we were interested in identifying 374 

the regions of the EM spectrum in where olive trees most differ from each other, so that the index can 375 

be representative of a real growth condition. For this purpose, one-way analysis of variance (ANOVA) 376 

test was used to verify the statistical difference between trees in mean reflectance value in each 377 

waveband and in each plot. The ANOVA tested the following hypothesis: 378 

𝐻0 = 𝜌1 = 𝜌2 = ⋯ 𝜌𝑛 379 

𝐻1 = 𝑁𝑜𝑡 𝑎𝑙𝑙 𝜌𝑛(𝑖) 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 380 

where ρn represents the mean reflectance of the n-th tree (n = 1, 2, 3, …13) and i denotes the 381 

waveband. Rejection of the null hypothesis (H0) indicates the wavebands, at a 95% (p-value <0.05) 382 

confidence level, in which the spectral signature differs statistically. H0 rejection was followed by 383 

pairwise multiple comparisons with the post-hoc Tukey HSD test. By counting the number of pairs 384 

whose differences are statistically significant on each waveband, it is possible to identify the spectral 385 

regions where the olive trees most differ, evidencing the wavebands that may have high discriminative 386 

effects on VI’s value. First, normality and homoscedasticity (i.e., homogeneity of variances) of the 387 

reflectance values across each waveband were verified with Levene’s test and Shapiro-Wilk test. 388 



Page 18 of 45 

 

Where Levene’s test was significant (i.e., it showed unequal variances), then the unequal-variance 389 

(Welch F test) version of ANOVA (Moder, 2010) and the non-parametric Kruskal Wallis test for 390 

taking control of values with non-normal distribution, were used. In these last cases, a Mann-Whitney 391 

U test (Zar, 1996) was used as post-hoc pairwise comparison. Statistical analyses were performed with 392 

R statistical software (R Core Team, 2017). 393 

 394 

4. Results 395 

4.1 GEOBIA classification accuracy 396 

As described in paragraph 3.4, all olive trees’ crowns falling in the 8 plots (A1- A4 and B1- B4) were 397 

digitized by on-screen photointerpretation, thus representing our reference data, and compared to those 398 

extracted by means of GEOBIA classification. To digitize these reference data, the image band 399 

composition which proved to be as the most effective in revealing contrast and properties that were not 400 

visually evident from the other false colors image was the RGB 7-6-5 (NIR1, Re, R) (Fig. 4). 401 

The PCA analysis showed that the PCs axis derived from all for all the WV-3 bands, which explain 402 

>95% of the variance (cumulative proportion of all components) were represented by PC1 and PC2 for 403 

a total variance percentage of 97.4 in A and 98.5 in B (Table 3), such that only these two components 404 

were used in GEOBIA tree crown classification process.  405 

 406 

Table 3 - Results of principal component analysis (PCA) of WV-3 imagery of study areas A and B, showing the Eigenvalues 407 
obtained from the covariance matrix and the percentage variance contribution of each principal component (PC). 408 

PC 

A B 

Eigenvalue %Variance 
Cumulative 

Variance 
Eigenvalue %Variance 

Cumulative 

Variance 

1 25455.122 61.22 61.22 60209.084 80.56 80.56 

2 15025.964 36.14 97.36 13390.535 17.92 98.48 

3 469.852 1.13 98.49 541.596 0.72 99.20 

4 256.930 0.62 99.18 361.990 0.48 99.68 

5 200.421 0.48 99.66 151.383 0.20 99.88 

6 123.278 0.30 99.96 49.487 0.07 99.95 

7 41.494 0.03 99.99 29.601 0.04 99.99 

8 8.666 0.01 100 7.745 0.01 100 

 409 

 410 
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 411 

Fig. 4.  WV-3 scene subset of the two olive orchards (acquisition date: [A] 24 June 2016; [B] 2 July 2016) showed with 412 
vegetation enhancement color band combination (RGB 7-6-5). In each study area, in red, are highlighted the four plots 413 
defined for accuracy assessment of geographic object-based image classification (GEOBIA) and for statistical analyses of 414 
spectral behavior of olive trees [Top left, study area A. Top right, study area B. Down left and down right, image detail of 415 
plot A2 and B1, respectively, with superimposed (in yellow) the polygonal boundaries of tree crowns obtained through 416 
GEOBIA classification and extraction].  417 
 418 

Results showed that most of the trees were correctly classified and extracted in all plots of both study 419 

areas. The accuracy assessment showed an overall accuracy of 95% in study area A and 98% in study 420 

area B (Table 4). The final object probability layer, in which each pixel’s value represents the 421 

probability that it is the feature of interest, reached the probability value of 82% in study area A and 422 
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78% in study area B. Crown dimensional analysis confirmed a marked difference on tree structure  423 

between study areas, with a more vigorous structure in olive orchard B. 424 

 425 

Table 4 - Accuracy assessment of classified study area images derived from GEOBIA and olive sample trees cue metrics [(± 426 
n): ± st.dev]. 427 

Sample plot Pixel probability Area [m2] Circularity Probability 

A1 0.70 (±0.07) 2.50 (±1.27) 0.81 (±0.07) 0.76 (±0.11) 

A2 0.78 (±0.06) 6.51 (±1.58) 0.79 (±0.07) 0.82 (±0.11) 

A3 0.78 (±0.09) 4.54 (±2.40) 0.84 (±0.08) 0.89 (±0.12) 

A4 0.80 (±0.06) 5.27 (±1.37) 0.80 (±0.07) 0.83 (±0.11) 

Overall plot accuracy (%) 95.33 

Overall plot K coefficient 0.9513 

B1 0.73 (±0.09) 31.10 (±19.08) 0.80 (±0.08) 0.83 (±0.15) 

B2 0.54 (±0.08) 11.20 (±6.16) 0.75 (±0.08) 0.73 (±0.12) 

B3 0.75 (±0.08) 16.48 (±7.05) 0.76 (±0.08) 0.78 (±0.12) 

B4 0.74 (±0.08) 14.55 (±7.35) 0.87 (±0.07) 0.79 (±0.13) 

Overall plot accuracy (%) 98.67 

Overall plot K coefficient 0.9724 

 428 

The total number of olive trees in the 8 plots were 359, 347 of which were correctly extracted, missing 429 

11 trees and falsely detecting 1 tree (Table 5). In study area A, characterized by smaller olive trees, 430 

values of r (omission error) varies from 0.91 to 0.98 (overall value 0.95) while p value (commission 431 

error) is 1. The F-score, which considers both r and p, varies from 0.95 to 0.99 (overall value of 0.97). 432 

Whereas in study area B, with larger olive trees, value of r ranges from 0.95 to 1 (overall value of 433 

0.97). The value of p is 1 in every plot except B2 (overall value of 0.97). The F-score ranges from 0.96 434 

to 1 (overall value of 0.98). According to the obtained results, in plots B3 and B4 the best detection 435 

rate at 100% was obtained, whilst plot A1 showed the worst detection rate (91.2%). 436 

Very small trees (i.e., crown diameter <2 m) often tend to show a higher number of FN pixels because 437 

part of their surrounding background is not included in the tree crown. This explains the decrease in 438 

the accuracy obtained in plot A1 (F-score = 0.95), despite the promising success level for r (≈0.9). As 439 

expected, large tree crowns tend to be more precisely detected. In some cases however, although very 440 

small trees with a tree crown area (TCA) of 0.096 m2 (9 pixels) were also correctly extracted, this 441 

procedure tends to loose portions of them or, depending on their shape, divides them into two or more 442 

objects (Fig. 3). The relationship between the number of reference trees and the number of extracted 443 
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trees for each plot are shown in Fig. 4. The relationship between the number of reference trees and the 444 

number of extracted trees for each plot are shown in Fig. 5. The correlation result is relatively strong 445 

with R2 = 0.986 and RMSE = 1.36, (p-value <0.001). 446 

 447 

Table 5 - Results and accuracy indicators of the olive tree crown extraction (TP, true positive; FP, false positive; FN, false 448 
negative; r, recall; p: precision). 449 

Plot ID 
Number 

of trees 

Number of 

detected trees 
TP FP FN r p F-score 

Rates  

(TP/n° trees) [%] 

A1 57 52 52 0 5 0.91 1.00 0.95 91.2 

A2 62 61 61 0 1 0.96 1.00 0.98 98.4 

A3 52 51 51 0 1 0.98 1.00 0.99 98.1 

A4 54 53 53 0 1 0.98 1.00 0.99 98.1 

Overall A 225 217 217 0 8 0.95 1.00 0.97 96.4 

B1 23 22 22 0 1 0.95 1.00 0.97 95.6 

B2 47 44 44 1 2 0.95 0.97 0.96 93.6 

B3 33 33 33 0 0 1.00 1.00 1.00 100 

B4 31 31 31 0 0 1.00 1.00 1.00 100 

Overall B 134 130 130 1 3 0.97 0.99 0.98 97.3 

Overall 359 347 347 1 11 0.96 0.99 0.97 96.8 

 450 

 451 

 452 

Fig. 5. Relationship between number of reference trees and number of correctly detected trees in the eight investigation plots.  453 
 454 
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4.2 Vegetation indices (VIs) maps 455 

For both study areas, the spatial distribution of NDVI, MSAVI2, NDRE, MCARI2, and NDVI2 456 

already showed significant pattern, i.e. zones with negative behavior are well recognizable (Figg. 6 457 

and 7). However, all VIs maps were clearly affected by crown shadows of olive trees, and even small 458 

changes in elevation of the terrain and herbaceous/shrub vegetation. At border zones of A olive 459 

orchard, some continuous green pixels often appear, representing positive values of the indices, due to 460 

the different oaks vegetation surrounding the olive orchard with continuous canopy cover. In B, some 461 

areas where vegetation shows good values for all VIs are also discriminable in the field. These 462 

features were well differentiated in the VIs color images.  463 

 464 

 465 

Fig. 6. Vegetation indices (VIs) maps of study area A 466 
 467 
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To confirm these qualitative considerations and to mitigate the effect of soil and herbaceous layer 468 

background, statistical analyses were performed in the eight plots at tree crown detail, using the 469 

derived GEOBIA tree crowns polygons as statistical unit (Table 5). For each plot, basic statistics of 470 

indices values showed a different behavior of vegetation. In particular, the mean index value reflects a 471 

mean productivity and biomass, whereas the standard deviation represents a measure of the spatial 472 

variability in productivity (Rouse et al., 1974). 473 

The mean value for all indices in study area A suggested that health condition of plot A2, A3 and A4 is 474 

better than A1, as well as in study area B health condition of plot B3, B4 and B2 is better than in plot B1, 475 

respectively. Concerning the NDVI, mean value ranges between 0.45 and 0.54 in A and between 0.62 476 

and 0.77 in B showing higher level of biomass in the latter case.  477 

 478 

 479 

Fig. 7. Vegetation indices (VIs) maps of study area B 480 
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The increase in the mean value of MSAVI2, able to suppress the effects of soil background, is 481 

approximately 25% in each plot, with the minimum increase of 19% in plot A2 and A4 and the 482 

maximum of 27% in plot A1.  483 

In B, the increase of MSAVI2 mean value is approximately of 17%, with the minimum increase of 484 

12% in plot B2 and the maximum of 19% in plots B1 and B4. Given that the reflectance in RE band is 485 

higher than in the red one, NDRE shows different value ranges compared to those of NDVI. The 486 

NDRE reaches the maximum value in plots A2 and B2, whereas the minimum in plots A1 and B1 487 

(Table 6), depending also on different foliage cellular structure.  488 

The same behavior was found finally for MCARI2 and NDVI2 that prove again a situation similar to 489 

the previous findings regarding the consistence of chlorophyll concentration. 490 

 491 

Table 6 - Univariate statistics of Vegetation indices (VIs) map values, for each plot, inside A and B study areas 492 

  NDVI MSAVI2 NDRE MCARI2 NDVI2 

Study 

area 
Plot Mean ± st.dev Mean ± st.dev Mean ± st.dev Mean ± st.dev Mean ± st.dev 

A 

A1 0.45 0.03 0.62 0.03 0.12 0.02 0.77 0.03 0.49 0.03 

A2 0.55 0.03 0.68 0.03 0.15 0.02 0.82 0.02 0.54 0.03 

A3 0.54 0.02 0.68 0.01 0.14 0.02 0.80 0.02 0.53 0.02 

A4 0.54 0.03 0.67 0.02 0.13 0.02 0.81 0.02 0.53 0.02 

B 

B1 0.62 0.02 0.77 0.01 0.38 0.02 0.93 0.02 0.48 0.02 

B2 0.77 0.02 0.88 0.02 0.43 0.02 0.97 0.01 0.68 0.03 

B3 0.63 0.02 0.77 0.01 0.39 0.02 0.92 0.01 0.49 0.03 

B4 0.63 0.02 0.78 0.01 0.39 0.02 0.92 0.01 0.49 0.03 

 493 

However, considering that previous statistic parameters are not able to fully describe data 494 

distributions, the relative frequency distribution of VIs values was calculated for each plot at tree 495 

crown detail (Figg. 8-9). To show an example of how structural vigor and chlorophyll concentration 496 

vary among different plots, we compared NDRE and MCARI2 values’ distribution of single tree 497 

crown of the two study areas. Single tree crown VI of the plots confirmed that the trees of study area 498 

A have a worse vegetative state than those in study area B. For all the VI maps, the graphics show that 499 

the pixels belonging to area A are distributed over VI values lower than in area B, confirming again 500 

the previous findings.  501 



Page 25 of 45 

 

 502 

Fig. 8.  Maps of Normalized Difference Red Edge (NDRE) and Modified Chlorophyll Absorption Ratio Index Improved 503 
(MCARI2) Vegetation indices (VIs) at tree crown detail of study area A. 504 
 505 

Considering only NDRE, all the plots in the study area B reach the highest values, denoting a major 506 

structural vigor than those in study area A, trees differing mostly in crown dimension between the two 507 

study areas. Likewise, in B the MCARI2 values appear as higher than in A. The decrease of the values 508 

of MCARI2 in A may not be directly related to the state of health only but to the whole trees structures 509 

in the relative plots. This consideration is supported by the assessment made in the previous analysis, 510 

referring it to the only NDRE pixels value. 511 
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 512 

Fig. 9. Maps of Normalized Difference Red Edge (NDRE) and Modified Chlorophyll Absorption Ratio Index Improved 513 
(MCARI2) Vegetation indices (VIs) at tree crown detail of study area B 514 
 515 

4.3 Tree crown extraction and spectral behavior 516 

A comparative analysis of the spectral properties revealed that most of the olive trees had similar 517 

spectral intra-plot patterns. Most of the spectral variability is visible from the RE to NIR2 band while 518 

the peak of reflectance was reached at RE band (Fig. 10). On the other hand, NIR values showed a 519 

different range of reflectance spectra. The maximum reflectance was obtained in the NIR1 and NIR2 520 

bands in B (Fig. 10). Analyzing these differences, and representing them according to the mean single 521 
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band reflectance values using box and whisker plots (Fig. 10), it was possible to better understand how 522 

spectral signature changes between the eight plots.  523 

 524 

Fig. 10. Box-and-whisker plots of single WV-3 bands reflectance values variability in each study area plot (A1-A4 and B1-525 
B4). 526 

 527 
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About coastal and blue band in A, an overall low variability was found whilst highest values in the 528 

green band confirmed major reflection in this region of the EM spectrum. In the Yellow band, the 529 

highest pixel value was reached in plot A3 that had the highest value in the RE, NIR1 and NIR2 band 530 

too. RE, NIR1 and NIR2 reflectance peaks were reached in plot A3 and A2, confirming the best 531 

vegetative state of olive trees that fall in to these plots, with the lowest reflectance in A1 and A4 in each 532 

of these bands. 533 

In general, the shape and distribution toward the spectral value is flat for all plots, with a minimal 534 

green and yellow peak and different distribution patterns across 705-1040 nm wavelength. Differently, 535 

in B coastal and yellow bands showed lower pixel value in these EM regions compared to A plots, 536 

with highest values in the green and blue band. A similar distribution pattern is visible in the red band 537 

with the lowest peak in plot B2. The RE, NIR1 and NIR2 peak reflectance was reached in plot B2 538 

almost confirming a marked best vegetative state of the olive trees, with the lowest reflectance in B1  539 

in each of these bands. In principle, each B plot seems to display leaves with high photosynthetic 540 

capacity to maximize direct beam radiation, resulting in higher NIR values. 541 

Based on the correlation matrix, computed from the reference sample trees (Tables 7 and 8), it is 542 

possible to identify some correlations between bands. For both study areas, the correlation among RE, 543 

NIR1 and NIR2 bands was highly significant. In B it was found significant correlations also between 544 

Yellow, Blue, Red and Coastal blue band. Within each group, correlations among bands are quite high 545 

with an overall low p-value. Thus, these bands could provide redundant information. 546 

 547 

Table 7 - Pairwise correlations among the eight bands of WorldView-3 (WV-3) imagery, computed from the reference 548 
sample trees of study area A. Correlation values are given in the lower triangle of the matrix, and the two-tailed probabilities 549 
are given in the upper (Correlations >0.75 in bold letters, ns: no significance; *p<0.01, **p<0.05). 550 

A / 

Band 
Coastal blue Blue Green Yellow Red Red-edge NIR-1 NIR-2 

Coastal blue  - ns ns ** ns ns ns ns 

Blue 0.93 - ns ns ns ns ns ns 

Green 0.20 -0.10 - ns ns ns ** ns 

Yellow -0.94 -0.90 -0.06 - ns ns ns ns 

Red -0.84 -0.64 -0.52 0.69 - ns ns ns 

Red-edge -0.39 -0.65 0.81 0.40 -0.15 - ns ** 

NIR-1 -0.02 -0.33 0.97 0.18 -0.41 0.94 - * 

NIR-2 -0.10 -0.44 0.94 0.22 -0.31 0.97 0.99 - 

 551 
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Table 8 - Pairwise correlations among the eight bands of WorldView-3 (WV-3) imagery, computed from the reference 552 
sample trees of study area B. Correlation values are given in the lower triangle of the matrix, and the two-tailed probabilities 553 
are given in the upper (Correlations >0.75 in bold letters, ns: no significance; *p<0.01, **p<0.05). 554 

B  

Band 
Coastal blue Blue Green Yellow Red Red-edge NIR-1 NIR-2 

Coastal blue  - ns ns ns ** ns ns ns 

Blue 0.96 - ns ** * ns ns ** 

Green -0.09 0.02 - ns ns ns ns ns 

Yellow 0.89 0.98 0.15 - * ns ns ns 

Red 0.92 0.97 0.12 0.98 - ns ns ns 

Red-edge -0.91 -0.85 0.25 -0.80 -0.85 - * * 

NIR-1 -0.91 -0.92 0.20 -0.83 -0.87 0.98 - * 

NIR-2 -0.91 -0.90 0.32 -0.84 -0.91 0.98 0.99 - 

 555 

4.4 Spectral ANOVA test 556 

In each plot, differences in spectral values between every single wavelength of sample trees were 557 

tested with one-way ANOVA. Results show significant differences among Yellow, Red, RE, NIR1 558 

and NIR2 band in each plot study area A (Table 8). In B, results show significant differences in 559 

reflectance values between all bands in almost all plots, with the maximum of differences in RE, NIR1 560 

and NIR2 bands (Table 10).  561 

Referring to study area A, post-hoc tests (Tukey HSD, Mann-Whitney) emphasized that red spectral 562 

region was significantly different in the following plots comparison: A1/A2, A1/A4, A3/A4 (Table 9). 563 

The obtained spectral behavior of NIR1 and NIR2 revealed that such differences were statistically 564 

significant for a higher number of plots (Table 9). 565 

Table 9 - Summary of normality, homoscedasticity tests and ANOVA statistics result of all grouped band reflectance value, 566 
among all A plots. Summary of post-hoc test for significant band comparison [ns: no significance; different letters indicate 567 
the different plots where single band reflectance values significantly differ (p < 0.05)]. 568 

Band 
Wavelength 

[nm] 

Levene’s 

test 

(p-value) 

Shapiro-

Wilk 

(W) 

F 

Welch 

test 

(F) 

Kruskal 

Wallis 

(H) 

Tukey 

HSD test 

(Q) 

Mann-

Whitney 

(U) 

C. blue 400-450 0.003 0.974*  1.57 7.80 ns  

Blue 450-510 0.335 0.971 1.00   ns  

Green 510-580 0.355 0.985 1.34   ns  

Yellow 585-625 0.713 0.981 4.82*   A3/A4  

Red 630-690 0.188 0.991 3.59*   
A1/A2, 

A1/A4, A3/A4 
 

Red-

edge 
705-745 0.032 0.973*  45.2* 89.50*  

A1/A2, A1/A4, 

A2/A3, A3/A4 

NIR1 770-895 0.865 0.993 71.6*   

A1/A2, 

A1/A3, 

A1/A4, 

A2/A3, A3/A4 
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NIR2 860-1040 0.753 0.994 56.4*   

A1/A2, 

A1/A3, 

A1/A4, 

A2/A3, A3/A4 

 

*marked value are where spectral signatures differ statistically for p-value <0.05 569 

 570 
Table 10. Summary of normality, homoscedasticity tests and ANOVA statistics result of all grouped band reflectance value, 571 
among all B plots. Summary of post-hoc test for significant band comparison [ns: no significance; different letters indicate 572 
the different plots where single band reflectance values significantly differ (p < 0.05)]. 573 

Band 
Wavelength 

(nm) 

Levene’s 

test 

(p-value) 

Shapiro-

Wilk 

(W) 

F 

Welch 

test 

(F) 

Kruskal 

Wallis 

(H) 

Tukey 

HSD test 

(Q) 

Mann-

Whitney 

(U) 

C. blue 400-450 0.053 0.972 3.14*   B2/B3  

Blue 450-510 0.173 0.963 32.0*   

B1/B2, 

B2/B3, 

B2/B4 

 

Green 510-580 0.015 0.975*  7.12* 15.18*  B1/B4, B3/B4 

Yellow 585-625 0.174 0.942 49.8*   

B1/B2, 

B2/B3, 

B1/B4, 

B1/B3 

 

Red 630-690 0.532 0.923 155.2*   

B1/B2, 

B1/B3, 

B1/B4, 

B2/B3, 

B2/B4 

 

Red-

edge 
705-745 0.007 0.981*  168.0* 93.02* 

B1/B2, 

B1/B4, 

B2/B3, 

B2/B4, 

B3/B4 

 

NIR1 770-895 0.020 0.993*  267.4* 88.77*  
B1/B2, B1/B4, 

B2/B3, B3/B4,  

NIR2 860-1040 0.000 0.985*  218.3* 85.69*  

B1/B2, AC, 

B1/B4, B2/B3, 

B2/B4 

*marked value are where spectral signature differ statistically for p-value <0.05 574 

 575 

There was only one statistically significant differences between plots A3:A4 in the yellow wavelength 576 

value. In study area B, post-hoc tests showed a higher number of plot pairs that were statistically 577 

different in the whole spectrum region (Table 10), confirming the heterogeneous behavior of all olive 578 

trees between plots.  579 

 580 

5. Discussion 581 

The reliability of WV-3 data has been thoroughly tested and confirmed by the high overall accuracies 582 

of the obtained results, thanks to their high spectral, radiometric and spatial resolution. Due to the high 583 
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geometrical resolution of WV-3 imagery, it was possible to perform an overall accurate olive tree 584 

crown extraction and derive VIs maps that cancel or diminish the effect of soil brightness as in cases 585 

where vegetation is sparse and the pixels in the image are a combination of vegetation and soil 586 

information  (Huete, 1988). In our proposed methodology, olive tree canopy boundaries extracted via 587 

GEOBIA procedure, provided good results with an overall tree detection rate greater than 95% (R2 = 588 

0.98). Although several studies have reported the identification and extraction of TCA for other fruit 589 

crop type with WV imagery (Anderson et al., 2018; Rahman et al., 2018; Robson et al., 2017), our 590 

proposed semiautomatic procedure of detection and extraction of olive TCA provided a close to real 591 

canopy shape boundary, if compared to the abovementioned works. Our findings showed that our 592 

methodology allowed to correctly detect and extract very small olive trees with a TCA of 0.096 m2 593 

(corresponding to nine pixels).   594 

Olive orchard mapping reaches a high overall accuracy with high kappa coefficient values in both 595 

study areas (Table 5) especially when compared with other studies that used the same sensor, both in 596 

the general classification of a scene as well as on the identification of individual objects (Han et al., 597 

2017; Johnson et al., 2017; Koenig and Gueguen, 2016; Majid et al., 2016; Srestasathiern and 598 

Rakwatin, 2014; Ye et al., 2017). Nevertheless, as can be observed in the subplot details (figg. 8 and 599 

9), our implemented procedure tends to loose portions of them or, depending on their shape, divides 600 

them into two or more objects. 601 

On the other hand, our results are in line with those reported in researches based on other types of 602 

VHR images (Aguilar et al., 2013, 2016; Alrassi et al., 2016; Gaertner, 2017; Immitzer et al., 2012; 603 

Kaszta et al., 2016; Kux and Souza, 2012; Shahi et al., 2017). The comparison of our findings with 604 

those coming similar studies carried out in crops (Díaz-Varela et al., 2015; Karydas et al., 2017), but 605 

with images acquired by unmanned aerial vehicles (UAVs) and therefore with a higher geometric 606 

resolution, gives the idea of the very satisfying results we achieved and the promising potential in 607 

reaching the obtained high accuracy applying our methodology to other crops. By the way, according 608 

to Wolf (né Straub) and Heipke, 2007, the results on individual tree crown delineation are difficult to 609 

standardize and to compare among different researches. This, because of significant differences in 610 

study sites, scene characteristics, data sets (spatial and spectral resolutions) and tree types. The shadow 611 
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effect may probably explain the worst detection rate reported for study area A, coupled with smaller 612 

size of olive tree.  613 

The effect of shadow has been found to be dependent on the sun azimuth angle in relation to the 614 

satellite position at the time of imaging (Leckie et al., 2005) and when this occur vegetation 615 

reflectance results disturbed, although satellite over- pass times are programmed to minimize on 616 

shadow effect (Chemura et al., 2015). The effect of manual on-screen digitizing of reference data 617 

should also be considered when performing the accuracy assessment, and expert knowledge must be 618 

provided.  619 

The comparison of the spectral reflectance data with the results offered by the pan-sharpened WV-3 620 

eight bands orthoimage showed a relatively good agreement between VIs and spectral responses of 621 

vegetation and soil targets. Previous studies have already discussed the use of four newly available 622 

WV family spectral bands (coastal, green, yellow, red edge) for the classification of the tree species 623 

(Immitzer et al., 2012; Pu and Landry, 2012). In our research, it was found that the major differences 624 

in spectral behavior, among different plots of the same olive orchard, are mainly due to the component 625 

of the red-infrared regions of the EM spectrum, where the RE becomes important in assessing the state 626 

of general vigor. It should be pointed out that as we used Digital Numbers (DN) rather than calibrated 627 

reflectance values, our results are more qualitative than quantitative, affecting the raw indices results 628 

by some modifications in the traditional scale ranges, however ensuring a good description of the 629 

vegetation status. As suggested by Candiago et al (2015) VIs were based on DNs due to the absence of 630 

ground measurements needed for ground reflectance calibration.  631 

VIs results faithfully reflects the different olive orchard vigor conditions among the two-study areas 632 

and the different plots. In fact, as confirmed by owners of study area A, over the years, olive orchard 633 

have suffered various diseases (olive peacock spot, olive knot disease, olive thrips) that have not 634 

allowed an optimal development. Moreover, the soil, mainly clayey and compact, is difficult to work 635 

especially in spring and summer seasons, with consequences on plants stress condition. Indeed, a state 636 

of better vigor was found in all plots of study area B so that VIs were able to capture the spatial 637 

variability of olive tree, deriving from different management practices, such as fertilization or pruning, 638 

and the optimal soil condition. Increases in VIs’ values in red and NIR bands lead to an increase of 639 
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canopy cover and LAI, a typical characteristic of green vegetation related to the chlorophyll content 640 

and the leaf parenchyma (Horler et al., 1983a; Horler et al., 1983b). VIs based on VIS and NIR 641 

reflectance values have been developed taking advantage of the contrast in reflectance behavior 642 

between the red and NIR portions of the EM spectrum (Sripada et al., 2008).  643 

In this paper, we reported that using reflectance data from WV-3 imagery, could reliably deliver VIs 644 

able to detect healthy or unhealthy portions of a cultivated olive orchard. The use of olive tree canopy 645 

spectra for vigor assessment mostly depends on the close relationship between nitrogen (N) and 646 

chlorophylls in the cell metabolism (Shiratsuchi et al., 2011). The Red band-based VIs like NDVI and 647 

NDRE are the most common indices in N status estimation. However, the red band can be easily 648 

influenced by soil background reflectance at early growth stages when vegetation coverage is small, as 649 

it is in study area A. In our research, the NDRE index significantly improved the estimation results 650 

compared to NDVI (Table 6). This is because the RE reflectance is highly correlated with chlorophyll 651 

content (Cho and Skidmore, 2006; Clevers et al., 2002), and is responsive to variation in LAI or 652 

biomass (Gnyp et al., 2014; Haboudane et al., 2008). 653 

In addition, NDRE is insensitive to background effects (Zarco-Tejada et al., 2004). Our results also 654 

confirmed the findings of a research on summer maize by Li et al. (2014), who found that the NDRE 655 

improved the plant N concentration estimations. The main function of VIs, other than NDVI, also 656 

relies on the possibility to compensate for the effects of disturbing factors such as crop type, LAI, or 657 

canopy biomass (Bouman, 1995). MCARI2 also succeeded in minimize soil background and LAI 658 

variation in olive trees, as found also by (Zarco-Tejada et al., 2004) in providing predictive 659 

relationships for chlorophyll concentration estimation with narrow-band imagery in open tree canopy 660 

orchards. More in-depth, statistical analysis has shown that the first five bands do not provide 661 

additional information under these conditions, reporting no significant difference in all plots and that 662 

VIs are mainly influenced by RE, NIR1, and NIR2 values.  663 

RE and the two NIR bands explained the most variability, therefore are the main responsible of 664 

significant differences in VIs values in the statistical analysis and on which, therefore, depends most 665 

of the variability of the vegetative state of the olive trees. This was also observed in wheat LAI 666 

estimation by Herrmann et al. (2011). WV-3 band properties, along with indices that are based on 667 
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reflectance in the RE spectrum region, provided  to be very sensitive to olive canopy chlorophyll and 668 

N status due to the rapid change in leaf reflectance caused by the strong absorption by pigments in the 669 

red spectrum and leaf scattering in the NIR spectrum (Hatfield et al., 2008; Hatfield and Prueger, 670 

2010; Nguy-Robertson et al., 2012). This analysis shows the importance of incorporating the RE 671 

channel, and two NIR bands particularly in terms of capturing the differences between the decrease 672 

and increase in the LAI in an open canopy tree cover. Results show that WV-3 data could improve 673 

classification and vegetation health monitoring, coupled with VIs computation, over WV-2 and other 674 

satellite sensor as Landsat 8, QuickBird, Pleiades and SPOT (Han et al., 2017; Immitzer et al., 2012; 675 

Majid et al., 2016). The additional VNIR bands (including the RE and yellow bands) at fine pixel scale 676 

provide a significant improvement over the other satellite platform sensed image. Furthermore, with 677 

the additional shortwave infra-red (SWIR) information included in the VW -3 image, the data set 678 

could performs as well as a full hyperspectral sensor (Han et al., 2017).  679 

This study demonstrated that high spatial resolution satellite data makes olive orchard precision 680 

monitoring possible, and in further studies, radiometric ground truth data can be used to calibrate and 681 

map the time series of olive growth condition, filling the limits of this method, applied to relatively 682 

large, homogeneous, single-layer agricultural or forest ecosystems (Maselli et al. 2014). To address 683 

PA applications to spatially fragmented and multi-layer agricultural ecosystems that are common in 684 

southern Mediterranean rural areas, there is the need to face with further challenges. One of the most 685 

important concerns the spatial distribution and size of most of the European agricultural olive groves 686 

systems, as well as vineyards an any tree plantations, which are generally far below the resolution of 687 

widely used remote sensed imagery (Landsat or MODIS). These ecosystems are found over irregular 688 

terrain and occupy small unit areas (around 0.1–0.5 ha) (Maselli et al., 2012) in many agricultural 689 

situations. Among the possible solutions implemented by research, one of the most common solutions 690 

that are being adopted could be the integration of high spatial resolution satellite data, such as WV-3 691 

data, with those acquired through UAVs with higher spatial resolution. This is confirmed by recent 692 

experimental studies carried out in several crop systems (Palchowdhuri et al., 2018), which indicate 693 

that such integration leads to a clear improvement in crop management. The VW series of satellites 694 

(2009) provided further enhancements to spectral monitoring with 8 multi-spectral bands at very high 695 
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spatial resolutions in addition to 8 SWIR bands. Despite sensor capabilities, the potential of WV-3 696 

imagery for PA purposes has yet to be fully realized due to prohibitively expensive image acquisition 697 

costs, even in the context of continuous monitoring. This highlights the gap currently existing between 698 

expensive commercial and free data systems in terms of their potential applications, particularly 699 

evident in the case of PA (Houborg et al., 2015). To this end the pair of new Sentinel-2 satellites (S-700 

2A, S-2B), will bridge this gap by delivering narrower band multispectral data (including 2 narrow 701 

bands in RE) at 10 m resolutions with a 5 days revisit frequency. Despite of a spatial resolution lower 702 

than WW-3, this will give the opportunity to significantly improve the ability to monitor the state and 703 

function of worldwide vegetation, through enhanced definition of the RE coupled with crop scouting. 704 

Therefore, agricultural systems could be monitored throughout the growing season and a reliable 705 

decision support system, based on RS information, could be achievable (Basso et al., 2004; Wojtowicz 706 

et al., 2016). 707 

 708 

6. Conclusions 709 

The present paper showed the main findings and the potentialities of a semiautomatic process 710 

workflow implemented on WV-3 imagery and aimed at obtaining VIs at tree detail in olive crops, 711 

without any ground radiometric measure. The results from this study confirm the potential of high 712 

resolution WV-3 imagery for accurately derive olive tree crown boundaries across two different olive 713 

orchards in Calabria region, southern Italy. Tree crown detection and extraction were optimized, thus 714 

achieving high geometric accuracy obtaining a close to real canopy shape boundary.  715 

VIs maps revealed more contrast and more properties than those resulting visually evident from true 716 

and false colors image analysis, while the spatial distribution of NDVI, MSAVI2, NDRE, MCARI2, 717 

NDVI2 already showed significant pattern, where the zones with negative behavior were well 718 

recognizable. Due to the heterogeneous extension and composition characterizing agricultural 719 

ecosystems in southern Mediterranean areas, visual interpretation and tree detection can be 720 

significantly improved by the data enrichment provided through the sharpening of WV-3 multispectral 721 

bands with the panchromatic one. 722 
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Statistical analyses showed that the major differences in spectral behavior, over different plots of the 723 

two investigated olive orchards, are mainly due to the component of the red-infrared regions of the 724 

EM spectrum, where the RE becomes important in assessing the state of vegetation vigor. 725 

The proposed classification method is very promising, since it provides an operational processing 726 

chain for mapping and monitoring olive orchards at tree detail, thus allowing to identify healthy or 727 

unhealthy portions of the analyzed crop. On the other hand, our study confirms that GEOBIA 728 

classification and single tree crown extraction benefit from suitable conditions of olive crops 729 

characterized by regular planting patterns with minimum overlap. Additional RS technologies, such as 730 

a low-altitude remote sensing based on UAVs, may be adopted to overcome these limitations. By the 731 

way, satellite imagery has proven to be cost-effective compared to UAV imagery in terms of area 732 

coverage, processing and pre-processing need for geometric and radiometric calibrations, spectral 733 

information, and less costs in collecting reference data sampling. 734 

This study provided a novel contribution in exploring the reliability of WV-3 multispectral imagery in 735 

PA applications. The proposed methodology, when applied to an operational field, has proven to be 736 

quick and cost-effective. Moreover, our research offers an original and innovative contribution 737 

increasing the knowledge in olive crop management and monitoring, at tree detail, from VHR satellite 738 

imagery.  739 

At the present stage of our research, our findings and conclusions could be extended to other cases 740 

only after comparison with the results of other studies concerning olive orchard conditions similar to 741 

those here investigated. Further studies may investigate how to take advantage from high spatial 742 

resolution satellite imagery, as that provided by WV-3 sensor, by linking it to an adequate ground truth 743 

data collection. 744 
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Figure captions 1060 

Fig. 11. Study areas localization based on high spatial resolution WorldView-3 satellite images presented in true 1061 
color band combination (RGB 5-3-2) (Acquisition date: A, 24 June 2016; B, 2 July 2016). 1062 

Fig. 12. A synthetic flow-chart showing the implemented semi-automated processing workflow to derive 1063 
vegetation indices (VIs) at tree crown details from WordlView-3 (WW3) imagery. 1064 

Fig. 13. Geographic object-based image analysis (GEOBIA) sequenced feature model process nodes for the 1065 
extraction of olive tree crowns. (I): a subset of the corrected WorldView-3 (WV-3) satellite imagery, presented 1066 
in a false infrared color band combination (RGB 7-5-3); (II): raster pixel processor; (III): raster object creator; 1067 
(IV-V): raster object operators; (VI): rater to vector conversion; (VII): vector object operator; (VIII): vector 1068 
object processor; (IX): extracted olive tree crown boundaries [yellow line] overlapped on the input image. 1069 

Fig. 14. WV-3 scene subset of the two olive orchards (acquisition date[A] 24 June 2016; [B] 2 July 2016)) showed 1070 
with vegetation enhancement color band combination (RGB 7-6-5). In each study area, in red, are highlighted 1071 
the four plots defined for accuracy assessment of geographic object-based image classification (GEOBIA) and 1072 
for statistical analyses of spectral behavior of olive trees [Top left, study area A. Top right, study area B. Down 1073 
left and down right, image detail of plot A2 and B1, respectively, with superimposed (in yellow) the polygonal 1074 
boundaries of tree crowns obtained through GEOBIA classification and extraction].  1075 

Fig. 15. Relationship between number of reference trees and number of correctly detected trees in the eight 1076 
investigation plots. 1077 

Fig. 16. Vegetation indices (VIs) maps of study area A 1078 

Fig. 17. Vegetation indices (VIs) maps of study area B 1079 

Fig. 18.  Maps of Normalized Difference Red Edge (NDRE) and Modified Chlorophyll Absorption Ratio Index 1080 
Improved (MCARI2) Vegetation indices (VIs) at tree crown detail of study area A. 1081 

Fig. 19. Maps of Normalized Difference Red Edge (NDRE) and Modified Chlorophyll Absorption Ratio Index 1082 
Improved (MCARI2) Vegetation indices (VIs) at tree crown detail of study area B 1083 

Fig. 20. Box-and-whisker plots of single WV-3 bands reflectance values variability in each study area plot (A1-1084 
A4 and B1-B4).  1085 
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Table captions 1086 

Table 11 - WorldView-3 sensor wavelength bands [nm] and relative ground sample distance [GSD] details 1087 
(centered wavelength in brackets). 1088 

Table 12 - Formulation of the five vegetation indices (VIs) used in the present research. 1089 

Table 13 - Accuracy assessment of classified study area images derived from GEOBIA and olive sample trees 1090 
cue metrics [(± n): ± st.dev]. 1091 

Table 14 - Results and accuracy indicators of the olive tree crown extraction (TP, true positive; FP, false 1092 
positive; FN, false negative; r, recall; p: precision). 1093 

Table 15 - Univariate statistics of Vegetation indices (VIs) map values, for each plot, inside A and B study areas 1094 

Table 16 - Pairwise correlations among the eight bands of WorldView-3 (WV-3) imagery, computed from the 1095 
reference sample trees of A study area. Correlation values are given in the lower triangle of the matrix, and the 1096 
two-tailed probabilities are given in the upper (Correlations >0.75 in bold letters, ns: no significance; *p<0.01, 1097 
**p<0.05). 1098 

Table 17 - Pairwise correlations among the eight bands of WorldView-3 (WV-3) imagery, computed from the 1099 
reference sample trees of B study area. Correlation values are given in the lower triangle of the matrix, and the 1100 
two-tailed probabilities are given in the upper (Correlations >0.75 in bold letters, ns: no significance; *p<0.01, 1101 
**p<0.05). 1102 

Table 18 - Summary of normality, homoscedasticity tests and ANOVA statistics result of all grouped band 1103 
reflectance value, among all A plots. Summary of post-hoc test for significant band comparison [ns: no 1104 
significance; different letters indicate the different plots where single band reflectance values significantly differ 1105 
(p < 0.05)]. 1106 

Table 19. Summary of normality, homoscedasticity tests and ANOVA statistics result of all grouped band 1107 
reflectance value, among all B plots. Summary of post-hoc test for significant band comparison [ns: no 1108 
significance; different letters indicate the different plots where single band reflectance values significantly differ 1109 
(p < 0.05)]. 1110 


