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Abstract

dtrus greasy spot (CGS) is a disease of citrus with worldwide distribution and recent surveys have
revealed a high level of incidence and severity of symptoms of the disease in Sicily, southern Italy.
AlthoughMycosphaerella citri (anamorphZasmidium citri-griseum) and other related species are
generally considered as causal agents, the etiology of CGS is still unclear. Here, we report the use of
an amplicon metagenomic approach to investigate the fungal communities on citrus leaves
symptomatic or asymptomatic for CGS from an orchard in Sicily showing typical CGS symptoms. A
total of 35,537 higkguality chimeric free reads were obtained and assigned to 176 operational
taxonomic units (OTUSs), clustered at 99 % similarity threshold. Data revealed a togprasence

of the phylum Ascomycota (92.6 %) over other fungal phyla. No significant difference was observed
between symptomatic and asymptomatic leaves according to both alpha and beta diversity
analyses. The family Mycosphaerellaceae was the mostddninand was represented by the
generaRamularia, Mycosphaerella, and Septoria with 44.8, 2.4, and 1.7 % of the total detected
sequences, respectively. However, none of the species currently reported as causal agents of CGS
was detected in the present styd The most abundant sequence type (ST) was associated to
Ramularia brunnea, a species originally described to cause leaf spot in a perennial herbaceous plant

of the family Asteraceae. Results exclude that CGS symptoms observed in Sicily are canised by
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citri-griseum and, moreover, they indicate that a considerable part of the fungal diversity in citrus

leaves is still unknown.

Keywords Amplicon metagenomics, Zasmidium spp, Mycosphaerella spp, Metabarcoding, NGS

Introduction

Citrusgreasyspot (CGS)s a diseaseof citrus that affectsleaves and, less frequently, fruits
of several Rutaceae specieq.[Leaf symptomsappear as yellow, darkbrown, or black lesions
occurringfirst on the undersideof mature citrusleaves Asthe lesions develop on the umdside of
the leaves, they gradually become darker and a corresponding chlorotic spot appears on the upper
leaf surface. Lesions are more yellowish and diffuse on lef@idrus limon) and grapefruit Gitrus
paradisi) and more raised anddarker on tangerines (Citrustangerina). Affectedleavesfall
prematurely from the tree in fall and in winter resulting in reduced tree vigor and yield. On
grapefruit, small, black, necrotic spots are produced on the fruit surface with the surrounding area
retaining agreen color, causing a symptom referred to as greasy spot rind blotch. Rind blotch is a
significant problem on grapefruits produced for fresh markietq].

All Citrus species appear to be susceptible to CGS but the disease symptoms are more severe
in leman, grapefruit, andheir hybrids [, 6¢8]. Among sweet oranges, early ripening cultivars are
the most susceptible, whereas Valendike cultivars show less intense symptorfisd]. Whiteside
[4] also reported symptoms on other genera of the fanRiytaceae, including Poncirus, Fortunella,
Murraya, and Aeglopsis. The disease has been reported within-gtowgng areas in at least 14
countries on 6 continents including Italy.

Symptomsof CGSwere first reported on citrus inFlorida[9]. Thecauseof this diseasewas
unknownfor alongtime,andit was thought to be a consequence of nutritional problems or the rust
mite Phyllocoptruta oleivora [10]. The involvement of a Cercosporoid fungus was firstly
hypothesized in Japan where thengusMycosphaerella horii wasisolatedfrom symptomatic leaves
[11]. The fungusZasmidium citri-griseum (syn. Stenella citri-grisea, teleomorph Mycosphaerella
citri) wasfirst proposed ashe causakhgentof CGy Whiteside[5] andisnow generally recognized
asthe causakhgentof CG31]. Ascosporesf M. citri are produced in pseudothecia in decomposing

leaf litter on the ground4]. Whenthe pseudotheciamature, ascosporesre ejected following a
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wetting period and are dispersed by dif.[Since infection occuthrough stomata, only ascospores
deposited on the underside of the leaf germinate and penetrate into the mesoplftgt the
formation of an appressoriaColonizatiorof the leaf occursveryslowlyand symptomsappearonly
after 45to 60days, even omighlysusceptible species undeptimal conditions 1].

Several fungi can be isolated from GIB& lesions and evereproduce the same symptoms
[6, 11¢14]. Among others, th&ungiSeptoria citri and Colletotrichum gloeosporioides are frequently
isolatedfrom diseasedeaves buty 2 OK Q&  lweranotdaflylsaiistied [15]. More recently, four
Zasmidium speciesncluding Zasmidium indonesianum in Indonesia,Zasmidium fructicola, and
Zasmidium fructigenum in China, and. citrigriseum in many differentcountries, have been isolated
from symptomatic leaves of several citrus species [16]. In Italydibeasewas first reported in
Calabria (Southern Italy) more th80 years ago anchore recently an outbreak has been observed
in Sicily [17, 18]. AlthougMycosphaerella sp. andS. citri were reported to be associated with
symptoms of the disease [17, 19jo convincing evidence of the pathogenicity of these fungi has
been provided and no detailed analyses to determine the etioloighe disease have ever been
performed.

In recent years, nexgeneration sequencing (NGS), together with the emergence of
metagenomic approaches, has made it easier to comprehensively analyze microbial communities
on or in any type of matrix includindgmt tissues. These techniques have been also proved as a
powerful tool to determine the relationship of specific microorganisms to health and disease
conditions in a number of different environments including humétts 21].

The aim of the present studyas to use an amplicon metagenomic approach to characterize
fungal communities associated to leaves in citrus orchards located in Sicily showing G@@&al
symptomsin order to determineany correlationwith the presenceof Z.citri-griseum and/or other

Cercosporoidungi.

Materials and Methods
Sampling and DNA Extractions

Samples were collected in March 2015 from symptomatic and asymptomatic leaves of a mid
ripening sweet orangeC(trus x sinensis) cultivar {Tarocco Scifg and the tangelo hybridNowa"

(Citrus x tangelo) as well as from symptomatic leaves of a{apening sweet orange cultivatl{ane
Page 4 of 25



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Late'). Symptomatic leaves exhibited typical symptoms of CGS1{Fag described in literature
(Mondal and Timmerl])). Leaf samples were collect@u a citrus orchard of approximately 50 Ha,
located southwest of Catania (Mineo), Italy, GPS coordinates (3738.9" N 14° 4111.5" E). Three
sub-samples of both symptomatic and asymptomatic leave$Tarocco Sciféand"Novd' as well

as three subsapiles of symptomatic leaves ofLane Laté were individually collected. Only
symptomatic leaves oBLane Laté were collected due to difficulty in finding completely
asymptomatic leaves. Stgamples, each comprising 50 leaves collected from 10 trees angdali

a complete randomized block design, were kept in sterile plastic bags in a thermally insulated
container for approximately @& h until lyophilization (Labconco Corp., Kansas City, MO). Freeze
dried samples were stored 820 °C and homogenized byrgting under liquid nitrogen. Total DNA

was extracted from each subsample using 0.02 g of homogenized tissue and the DNeasy Plant Mini
kit according to the manufacturer (QIAGEN, Dusseldorf, Germany). The quantity and quality of
extracted DNA were determinedising a Nanodrop 2000 spectrophotometer (Nadrop
Technologies, Wilmington, DE).

Fungal DNA Amplification and Sequencing

DNA extracts from each stdample were amplified in triplicate using the universal fungal
primers ITS3TS4 targeting the ITS2 regiof ribosomal DNA2P]. Both primers were modified to
construct fusion primers appropriate for 454 sequencing with adapters sequences A and B, key
sequences, and multiplex identifiers (MID$§)t://www.454.com/). Five different MIDs were
utilized to label different samples (Tall®

PCR reactions were conducted in a total volume ofR2&ontaining 2.55 of 10x reaction
buffer, 0.25>| of each primer ITSB'S4 (10>M), 0.1>| of AccuPrime Tag DNA PolymerasghH
Fidelity (Invitrogen, CA, USA), andl bf DNA template (10 ngl). Reactions were incubated in an
Eppendorf Mastercycler gradient (Hamburg, Germany) for 1 min at 94 °C followed by 30 cycles of
30sat94 °C, 30 s at 55 °C, and 30 s at 68 °C. Albnsaended with a final extension of 1 min at
72 °C. For each sample, amplicons from the treesarples were pooled and purified using the
Agencourt AMPure XP system (Beckman Coulter, Inc.). The concentration and quality of the purified
amplicons were ealuated by agarose gel electrophoresis. Amplicons were sequenced by Macrogen

Inc. (Seoul, Korea) using the 454 GS FLX + System Raghestics Corporation).
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Data Analysis and Statistics

The bioinformatics pipeline, QIIME v. 133], was used to processand analyze the obtained
sequence data. Preliminary processing of data includechdiiplexing and quality filtering with a
minimum quality score of 25, a minimum/maximum length of 150/1000, and a maximum number
of homopolymer bases of 6. Sequences waeaoised using the denoise wrapped] and the ITS2
region was extracted using ITSx applicatidf].[ Chimeric sequences were identified and filtered
using the USEARCH 6.1 softwa&@.[ Sequences were clustered at 99 % similarity threshold using
USEARCHI1 software, and the most abundant sequences in each operational taxonomic unit (OTU)
were selected as representative sequences. These sequences were then used for the taxonomy
assignment. OTUs were picked using the UNITE dynamic database releaseduary Bn
2015pttp://unite.ut.ee/) asa reference database. The same database was also used for taxonomy
assignments using the BLAST algoritBif) &t a similarity threshold of 0R

For downstream analysis, the OTU table was rarefied at an even depth to reduce biases in
sequencing depth. Alpha diversity was calculated using both Shannon and &tanates and
results were compared using a tvgample t test based on ngmarametric (Monte Carlo) methods
with 999 permutations.

The Bray Curtis metho@§] was utilized to evaluatediversity 9] and then visulaized in
(Unweighted Pair Group Methoditlr Arithmetic Mean) UPGMA plots. A distancebased redundancy
analysis (dBRDA) and Permanova as implemented in QIIME v. 1.8 was utilized to relate the fungal
community composition to sample types and to evaluate differences between symptomatic and
asymptonatic leaves and differences among varieties. Additionally, a Monte Carlo permutation test
was used to determine experimental variables significantly contributing to the observed variance in

fungal communities.

Identification of Fungal Taxa

In order to confirm the accuracy of QIIME taxonomic assignments, sequences associated with the
most abundant OTUs were extracted and introduced into ElimDupig&p:/(hcv.
lanl.gov/content/sequence/ELIMDUPES/elimdupes.htmd detect identical sequences and
determine their frequency within each OTU. Unique representative sequences, defined as sequence

types (STsBP¢33, 31], were analyzed along with genetically closely related reference sequences of
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the same taxa to determine their phylogenetic affiliation and enablkrtidentification with the

highest possible level of accuracy. To this aim, local databases of validated reference sequences
were created with priority given to sequences from specific recent taxonomic studies. For each
selected taxon, STs identified fhe present study and reference sequences were aligned using
MUSCLE and introduced into MEGAdhylogenetic analysis utilizing the Maximum Likelihood

method [34]. Analyses were performed with 500 bootstraplications.

Results
Fungal Diversity and Richness

A total of 35,537 reads were recovered after quality evaluations (length trimming, denoising,
ITS2 extraction, and chimeric sequence exclusion), and assigned to 176 OTUs clustered at a 99 %
similarity threshold. Considering an even depth of 388Quences per sample, the number of OTUs
ranged between 80.7 iBLane laté orange and 107.5 iBNova* tangelo (Tabl€).

The rarefaction analysis indicated that the sequencing depth had been saturated for all of
the analyzed samples and that the greatjordy of OTUs had been detected (Fij. According to
h-diversity, based on Shann@nDiversity Index and Chaol estimate, a similar level of fungal
diversity was present in symptomatic and asymptomatic leaves (P = 0.891).

Furthermore, | -diversity, calculated using distandeased redundancy analysis (B®DA) and
Permanova based on Bray Curtis dissimilarity, did not reveal any significant difference between
symptomatic and asymptomatic leaves (P = 0.8) @igconcerning the investigated citrus spss;

a higher number of OTUs was detected BXova* hybrid tangelo as compared to both orange
varieties BTarocco Scireand BLane Late) (Tablel). Furthermore, samples from the two orange
varieties and fromBNova* were clearly differentiated in the UPGM@#lot, regardless of being

symptomatic or not (Fig).

Fungal Community Structure

Regardless of the presence of symptoms and citrus species or variety, the phylum
Ascomycota dominated, representing 92.6 % of the total number of the detected sequences or
relative abundance (RA). This was followed by the phyBasidiomycota RA 4.3 %), and then

unidentified fungi (RA 1.2 %). Within the phylum Ascomycota, the class Dothideomycetes (RA 63 %)
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was the most abundant followed by Eurotiomycetes (RA 24.4 %Yérig-he high incidence of the
former class was primarily due to the abundance of dhder Capnodiales, and more precisely the
family Mycosphaerellaceae. Within the class Eurotiomycetes, only fungi associated to the family
Chaetothyriales were detectedrig.4a). Other nonidentified fungi were associated to the order
Capnodiales (RA 5 %), and Pleosporales (RA 1.2 %) or to the phylum Ascomycota (RA 1.8 %).

Sequences associated to the family Mycosphaerellaceae were the most abundant and were
representedby Ramularia spp.,Septoria spp., andMycosphaerella spp., with 44.8, 2.4, and 1.0 % of
the total detected sequences, respectively (Rig). Since the identification at the species level of
sequences clustering within this family was not possible witMBlanalyses, nine representative
STs were identified and phylogenetically analyzed along with validated reference ITS sequences of
the order Capnodiales, including Zismidium species that are currently reported as causal agents
of CGS 16, 35]. Accordng to this analysis, the most abundant ST, representing 92.9 % of the
sequences clustering in the family Mycosphaerellaceae, was associateaaaria brunnea.

Another ST was associated to reference isolatédyabsphaerella africana, Mycosphaerella
ellipsoidea, andMycosphaerella keniensis, three species characterized by identical ITS2 sequences.
Similarly, other STs were found to be relatecRtwumofaciens and Mycosphaerella graminicola or
were associated to three different species of Septoria §gmtoria senecionis, Septoria convolvuli,
andSeptoria apiicola) because of identical or very similar ITS sequencesjFithe least abundant
STwas identified aBissoconium commune (Fig.5) while the identification of other STs clustering
within the Mycosphaerellaceae family was not possible because of the absence of closely related
sequences in genetic databases. In particular, one ST that accounted for 4.2 % of the sequences was
found to be somehow related to the genePaeudocercospora and may repreent a new species
still unknown to the scientific community (F&).

The second most abundant group of sequences had a relative abundance (RA) of 14.3 % and
was represented by three STs related to the order Chaetothyriales 4BjigAccording to the
phylogenetic analysis with reference sequences of Chaetothyridsthese three STs clustered
together within the family Chaeothyriaceae but were phylogenetically distant from all currently
reported species in GenBank, being with Knufia the most closkeied genus (Figa).

Another group of sequences represented by a single SRAaof 5.4 % and was associated

with the genusCladophialophora (Figb). In particular, the phylogenetic analysis of this ST along
Page 8 of 25
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with validated reference sequence3/] enabled its identification as Cladophialophora protea (Fig.
6b).

The genu<ladosporium had a RA of 5.0 % and was represented by a single SHR{Fig.
According to the phylogenetic analysis, this ST clustered withirCld®msporium cladosporoides
compex (Fig60), but its identification at the species level was not possible due to the complexity
of the genus and the existence of many taxa with identical ITS2 sequ&gtes [

The other two STs, having a cumulative RA of 3.1 %, were associated terthe ¢
Cryptococcus (Figb). According tdLAST search, the most abundant ST had a 100 % similarity to
an uncultured fungus clone (EU486124) detected in the intestine of a dog with inflammatory bowel
disease and 99 % similarity with Cryptococcus carneq¢€r$19336) detected in seaweed in New
Zealand. Cryptococcus was mainly present in Lane Late (7.70 %) compared to Tangelo (1.00 %) and
Tarocco sciré (0.70 %).

The genustagonospora was represented by a single ST with an RA of 2.50 %id.he
identification of this genus must be considered with caution since according to BLAST analyses the
most closely related sequences of this genus had only 94 % of homology. On the other hand, a 97 %
ofhomology was determined in relationto anuncultured fungus fraactus B9]. Similarly,
sequences associated to the gerttieelitziana (RA 1.80 %) had the highest homology (94 %) with a
sequence oftrelitziana malaysiana.

The genu<olletotrichum had an RA of 1.4 % and was represented by three ST<(kig.
Accordirg to the phylogenetic analyses, the most abundant ST was identifiédgkseosporioides
sensu str. 40] (Fig.6d). The other two STs clustered within tBelletotrichum boninense species
complex f0, 41]. One of these STs was associated to Colletotrickarstii andColletotrichum
phyllanthi while the second one did not show high identity with any of the currently known species
within this species complex ()] (Fig.6e).

Lastly, four STs having an RA of 1.3 % were associated with theDgenasa. Phylogenetic
analysis along with reference sequencég][enable the identification of the most abundant STs
identified asDevriesia fraseriae and Devriesia hilliana, respectively (Figef). The other two STs
clearly clustered within the genus but were ndentified at the species level. Many other fungal
taxa were detected with an RA less than or equal to 1 % and cumulatively represented 9.40 % of all

detected sequences (Figb).
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Discussion

Results of the present study indicate that citrus leaves supphbigh level of fungal diversity,
many of which are facultative plant pathogens. In general, Mycosphaerellaceae species were more
abundant than any of the other identified tax&oteworthy, the family Mycosphaerellaceae
contains all fungal species so f&ssociated to CGS diseadeq, 8, 16, 43]. Unexpectedly, none of
the detected sequences clustered with reference species currently reported as possible causal
agents of CGS, includimdycosphaerella horii [11], Z. citri-griseum [1] and Z. indonesianum, Z.
fructicola, andZ. fructigenum [16].

The most abundant ST of the Mycosphaerellaceae family was associated to the species R.
brunnea. This species was originally described to cause leaf spussitago farfara, a perennial
herbaceous plant of the faily Asteraceae native to Europe and parts of western and central Asia
[44] (Fig.5). Information abouR. brunnea is very limited and its taxonomic association seems to be
still uncertain. That was in part due to existence of several synonyms that areiatesl with this
fungus. For instance, according to the NCBI Taxonomy
(http://www.ncbi.nim.nih.gov/Taxonomy/taxonomyhomehtml/), R. brunnea is a synonym of
Ramularia grevilleana (anamorph of Mycosphaerella fragariae) which is the causal agent of
Strawberry leaf spot45]. Other less bundant sequences of the Mycosphaerellaceae were
associated to different species of the gendvigcosphaerella, Septoria, andDissoconium or were
thought to represent new putative species related to the geRseidocercospora.

Nevertheless, the species identification designated in the current study must be viewed with
caution since it is only based on the phylogenetic analysis of the ITS2 sequence and because of the
complex taxonomy of Mycosphaerellace&|[ Yet, these resultslearly demonstrate that none of
the currently reported causal agents of CGS is involved in the disease in the investigated area in
Southern Italy. On the other hand, the abundant presence of sequences clustering with the family
Mycosphaerellaceae may sygst the involvement of other Cercosporoid fungi as the causal agent
of CGS disease.

Although our data did not show significant differences between symptomatic and
asymptomatic leaves, the putative pathogen responsible for CGS may be present in asyngptomat
leaves as quiescent or latent infections as it had been previously observed with olive anthracnose

[30]. This latter consideration is particularly relevant for Cercosporoid fungi considering their typical
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long incubation period]]]. Obviously, specifimvestigations to isolate and fulfill Ko@hpostulates

are needed to confirm the involvement of these fungi in CGS. However, the long incubation period
and difficulties in isolating these slowly growing fungi may greatly complicate such andlgkes [
Indeed, previous attempts to isolate fungal species from orange leaves collected in the same
geographic area and showing symptoms closely resembling those of greasy spot disease did not
enable the isolation of Mycosphaerella speci&g]|

Chaetothyriaceae, the secondnostabundantgroup offungi found in this study, are known
as epiphytes and can be saprophytic or biotrophic colonizers of leaves and bark. Even though the
detected sequences clustered together within this family, they were phylogenetidgatgnd from
all currently reported species.

Other nonidentified fungi detected with a lower frequency were associated to the phylum
Ascomycota or to the ordetapnodiales andPleosporales, but their accurate identification was not
possible due to the l&oof closely related sequences in GenBank databases. Similarly, some detected
sequences were associated to the gen€rgptococcus, Stagonospora, andStrelitziana; however,
their identification must be considered with caution since according to BLASTsesatlie most
closely related sequences had a very low level of homology. All these sequences and many others
detected with a low frequency are likely to represent still unknown species and indicate that a
considerable portion of the fungal diversity oftrasleaveshas yet to be characterized. Inthis
context,further investigations are worthwhile since currently available data do not enable
supported speculations on their role in the citrus phyllosphere.

A widely detected group of sequences was identifis@.grotea. This species was originally
isolatedfrom the woody shrub Protea cynaroides, on which it was assumed to be pathogenic,
although no inoculation tests have ever been conducted to confirm this hypoth&sistT]. C.
protea also occurs on dead FE#ssues of the cycad Encephalartos altenste#iii f18]. Regardless,
there are no records of this species on citrus plants.

The detection of sequences clustering within tBe cladosporoides complex was not
surprising since the genuSladosporium represents one of the most common fungi of the
dematiaceoushyphomyceteq38]. It compriseshumanand plant pathogensaswell asbeneficial
fungi[49]. Recentlyjt wasabundantlydetectedin the olive phyllosphereand it washypothesized

to be involved in thesooty mold symptoms30]. Indeed, it is widelyeported that thesefungican
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grow on the surfaceof leaves andther plant organscoveredwith insector physiologicahoney
dew in different plant species including citri=].

The genu<golletotrichum was represented by a low percentage of sequences associated to
C. gloeosporioides sensu str. and to two different species of thé. boninense species complexC(
karstii and C. phyllanthi). Colletotrichum species are commonly known to be associated tou€itr
plants as saprobes, important plearvest and posharvest pathogens, and endophytesl]. In
particular,C. gloeosporioides is a cosmopolitan and the most frequently isolated species from citrus;
it has been associated to common diseases of fruit, dsavand twigs collectively named
anthracnose $2¢57]. However, on citrus, this fungus behaves prevalently as an opportunistic
pathogen and colonizes tissues killed or weakened by either more aggressive fungal pathogens such
as Plenodomus tracheiphilus, the causal agent of mal secco disease of citfufs $9], or abiotic
agents such as hail or frost. Althoughkarstii andC. phyllanthi cannot be differentiated using the
ITS2 region as barcode gene, detected sequences are likely to bel6nkgatstii sine it has been
found on citrus in Italy since 199%(). Like C. gloeosporioides, it has a wide geographical
distribution and is a weak opportunistic pathogen of citrG4][ The same Colletotrichum species
were found in the phyllosphere of olive and otheuits, using both a traditional isolation method
and metagenomiapproacheg30,32,60, 61].

Other detected sequences were associated to the gdbmigiesia and in particular toD.
fraseriae andD. hilliana. The first fungus, which represented 1.3 % of citrus leaves, was originally
isolated in 2010 in Australia, and it was recently found as the most abundant fungi on olive leaves
[30]. It was also detected in the olive fruit fBactrocera oleae [62, 63], but it has never been
reported on citrus. Although little is known abobt hilliana, it was originally isolated from leaves
of Macrozamia communis in New Zeal and little is known about its biological and ecological role
[35].

In conclusion, citrus leaveppeared to have more fungal diversity than ever expected.
Although Mycosphaerellaceae were the most abundant fungi, a large portion of the detected
sequences were not associated with any of the currently known fungal species, indicating that a
considerableportion of the detected fungal diversity has yet to be characterized. Even though the
present investigation did not provide definitive results about the etiology of CGS in the investigated

area, it clearly showed thatcitri-griseum and other fungalspedesreportedto be causalagentof
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CGSare not presentin the investigatedarea in Sicily, southern Italy. On the other hand, the

abundant detection oR. brunnea and other Cercosporoid fungi may suggest their involvement in

CGS. Although a more extended survey of citrus orchards in Sicily, including also-fleseagrus

growing areasgouldbe usefulto confirmthis hypothesispur studydemonstrates the potetial use

of metagenomic approaches to study the etiology of complex plant diseases.
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Table 1 Summary of analysesnd results of metabarcodirgurveys conducted with citrus

Leaves
Leaf samples MID¢ |OTUs (totalOTUs (3000|Shannoichao]
Nova hybrid tangelo (SYMID7 (113 107.5 4.53 135.8
Novahybrid tangelo (AsiMID1(124 101.0 4.03 128.2
Lane late orange (Sy) (MID16108 80.7 2.80 122.3
Tarocco Sciré orange (MID19133 92.2 2.81 120.2
Tarocco Sciré orange ({MID28112 86.4 2.81 119.7

8 eaf samples comprised leaves with (Sy)witdout (As) typical greasy spot symptoms.

®MIDs: multiplex identifiers
‘Total number of detected OTUs

dNumber of OTUs detected with an even sequencing depth of 3000 sequences
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10

11

Fig. 1 Citrus leaves of Tarocco Scfléft), Lane Late (Middle), and Tangelo (right) showing greasy

spotlike symptoms, collected in Sicily, southern Italy
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Tangelo, Symptomatic
Tangelo, Asymptomatic
Tarocco Sciré, Symptomatic
Tarocco Sciré, Asymptomatic
Lane Late, Symptomatic

120+

100+

80
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Observed species

a0}

20

0 500 1000 1500 2000 2500 3000
1 Sequences per sample

w

Fig. 2 Species accumulation curves, rarefied at 3000 sequences, determined for citrus samples

4 investigated in the present studyhylogenetic analysis utilizing the Maximum Likelihood method

(6]

[34]. Analyses were performed with 500 bootstrap replications.
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Tangelo Nova
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Symptomatic

Lane Late
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—m L Asymptomatic

Tarocco Sciré

Fig. 3 UPGMA dendrogram constructed usingliversity results based on Bray Curtis dissimilarity

metrics of the studied aitis samples
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Fig. 4 Relative abundance of fungal classes (a) and genera (b) detected in leaves of sweet orange

(cv Tarocco Scirgnd Lane Late) and Tangelo Nova. In b, fungal genera representing less than 1 %

of the total relative abundance are reported ‘d@other taxd.
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90 , @ MID19 55(17299)
48 GU214691 Ramularia brunnea CPC4903
AF173312 Ramularia grevilleana CPC856
86 | EU019284.2 Ramularia pratensis var. pratensis CPC11294
AY490763 Ramularia endophylla CBS113265
GU214693 Ramularia sp. CPC11297
GU214689 Ramularia acroptili CBS120252
100, FJ839626 Zasmidium anthuriicola CBS118742
A\ KF901779 Zasmidium citri-griseum CPC13467
/A KF901739 Zasmidium indonesianum CPC15300
DQ303023 Zasmidium pseudoparkii CBS110999 Zasmidium
EU041798 Ramichloridium cerophilum CBS103.59
100 /A KP896043 Zasmidium fructicola ZJUM9
84 ' A\ KP896056 Zasmidium fructigenum ZJUM36
18 GU214695 Ramularia rufomaculans CPC10852
@ MID19 1767(189) Mycosphaerellaceae
86 L AF362068 Mycosphaerella graminicola CBS110744
— GU214670 Phloeospora maculans CBS115123
GU214668 Passalora sp. CPC12319
16] 48 AF222831 Mycowllosiella bellynckii CBS150.49
@ MID7 4593(252)
AF 173314 Mycosphaerella africana CBS116154
70| AF173300 Mycosphaerella keniensis CBS111001
AY 725545 Mycosphaerella ellipsoidea CBS110843
@ MID10 3230(352)
86 GU214703 Thedgonia-like genus CPC12304
AY489285 Septoria obesa CBS354.58
@ MID10 154(122)
54 || GU214697 Septoria conwolwli CBS102325
86 | AY489272 Septoria senecionis CBS102366
AY 152574 Septoria apiicola CBS400.54
DQ303085 Pseudocercospora sp. CPC11592
@ MID19 286(436)
AY725520 Dissoconium aciculare CBS204.89 }

18

20

AY725550 Dissoconium dekkeri CBS111169
% @ MID10 3538(16)
68 | AY 725535 Dissoconium commune CBS110747

Dissoconiaceae

Fig. 5 Phylogenetic trees built using unique representative of sequence types (STs) detected in the
present study and validated reference sequences of the family Mycosphaerellaceae [16, 35].
Representative STs and sequences of species reported as causal dgeints @reasy spot were
highlighted with black dots and empty triangles, respectively. Numbers in parentheses along with
STs (MIDs) indicate the number of sequences represoyeeach ST. Numbers on nodepresent

the posterior probabilities for thenaximum likelihood method
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Fig. 6 Phylogenetic trees built using unique representative of sequence types (STs) detected in the
present study and validated reference sequences of the or@kaetothyriales [36] (a),
Cladophialophora spp. B7] (b), Cladosporium spp. B8] (c), Devriesia spp. B2] (d), Colletotrichum
gloeosporioides sensu lato [40] (e), andColletotrichum boninense sensu lato [41] (f). Representative

STs and sequences of species reported as causal agents of citrus greasy spot wereeaighitight

black dots and empty triangles, respectively. Numbers in parentheses along with STs (MIDs) indicate
the number of sequences represented by each ST. Numbers on nodes represent the posterior

probabilities for the maximum likelihood method
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