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Abstract
As known, a 1D membrane MEMS semi-linear elliptic model with fringing field can be
written as

u′′ = −λ2(1 + δ|u′|2)
(1 − u)2

in Ω ⊂ R, u = 0 on ∂Ω,

where λ2 and δ are positive parameters and u is the deflection of the membrane. Since the
electric field E on the membrane is locally orthogonal to the straight tangent line to the
membrane, |E| can be considered locally proportional to the curvature K of the membrane,
so that a well-known model with fringing field in which |E|2 ∝ λ2/(1 − u)2 has been here
considered. In this paper, starting from this model, we present a new algebraic condition of
uniqueness for the solution of this model depending on the electromechanical properties of
the material constituting the membrane, which weighs more than the condition of existence
known in literature. Furthermore, shooting-Dekker–Brent, Keller-Box-scheme, and III/IV
Stage Lobatto IIIA formulas were exploited and their performances compared to recover u
under convergence conditions in the presence/absence of ghost solutions. Finally, a criterion
that is able to choose thematerial constituting themembrane starting from the applied electric
voltage V and vice versa, in conditions of convergence, and in the presence and absence of
ghost solutions, is presented.
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1 Introduction to the problem

Currently, industrial production addresses researchers and designers to develop low-cost
devices combining the physical nature of problems and low-level machine languages. In this
framework, both static and dynamic MEMS devices represent one of the most important
achievements of engineering such that miniaturized/integrated electromechanical systems
are required (Pelesko and Bernstein 2003; Ali 2012; Bechtold et al. 2013; Gad-el-Hak 2006;
de Oliveira Hansen et al. 2018; Mohammadi and Ali 2015). Since the first MEMS was pro-
duced (Nathanson et al. 1964), scientific research has been involved in the development of
models modeling the behavior of such devices under the most varied operating conditions.
However, although these models are sophisticated, they often do not provide the solution
explicitly, and thus, one has to be content with obtaining conditions ensuring existence and
uniqueness of the solutions and avoiding any ghost solutions if the problem is solved numer-
ically. In fact, numerical procedures could provide solutions which, if they do not respect
the condition/conditions of existence and uniqueness, become ghost solutions (Angiulli et al.
2018; Versaci et al. 2019, 2020a, b; Versaci and Morabito 2019; Javaheri et al. 2018; Fento
et al. 2018). MEMS can be employed from the design/construction of thermoelastic sys-
tems (Pelesko and Bernstein 2003; Howell and Luon 2004; Farokhi and Ghayesh 2017; Ren
2020) to biomedical applications (Pelesko and Bernstein 2003; Mistry and Mahapatra 2012;
Di Barba et al. 2018, 2020; Di Barba and Wiak 2020). Theoretically, researchers hardly
work in the manner testified by the conspicuous production of non-linear models obtaining
useful conditions of existence and uniqueness of the solution (Cassani and Tarsia 2016; Cas-
sani et al. 2009, 2013, 2014; Zozulya and Saez 2016; Cauchi 2018; Vinyas and Kattimani
2018). However, these sophisticated models provide conditions of existence and uniqueness
independent of the material properties of the device, thereby having little response from the
industry which requires simple models to implement. One of the most accredited models
was studied in Cassani et al. (2009) that considered a dimensionless device comprising two
parallel metal plates with a certain thickness. One was fixed and the other one deformable
but anchored to the edges in which u(x), x ∈ Ω with Ω = [−L, L] = [−0.5, 0.5] and
u(−L) = u(L) = 0 is the profile of the deformable plate and the applied electrical voltage,
V , pushes the deformable plate toward the fixed plate. However, since we need to consider
membrane MEMS devices, we neglect the thickness of the deformable plate and the inertial
effects. Therefore, in 1D dimensionless geometry, themodel in Cassani et al. (2009) becomes
the following:

{
u′′(x) = − λ2

(1−u(x))2
in Ω

u(−L) = u(L) = 0.
(1)

where λ2 is linked to V . In (1), the deformable plate is replaced by a membrane anchored
at the edges to a metal plate. Then, if V is applied, the membrane deforms toward the
upper plate, avoiding touching it (to avoid electrostatic discharges). Moreover, (1) concerns
a membrane device without fringing field phenomenon (Leus and Elata 2004; Weng and
Kong 1980; Chen et al. 2019; Gallalgher and Moussa 2014; Zhang 2018; Batra et al. 2006,
2007, 2006). However, if d �� L , the fringing field must be considered (Oukad 2014, 2018;
Mohammad and Oukad 2016). When only the outer solution for the electrostatic potential is
used, the resulting elastic problem is (1) (Pelesko and Driscoll 2005). If the uniformly valid
approximation for the electrostatic field E is used, the resulting elastic problem becomes
(Pelesko and Driscoll 2005):
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{
u′′(x) = − λ2

(1−u(x))2
+ λ2F(u(x), u′(x), δ, . . .) in Ω

u(−L) = u(L) = 0.
(2)

with F an appropriate function (see Pelesko and Driscoll 2005). Studying (1) means studying
(2) neglecting F(u(x), u′(x), δ, . . .) expecting that the effect of the neglected term is not
significant. Moreover, F(u(x), u′(x), δ, . . .) acts near the boundary, and most of the action
in the deflection takes place far from the boundary. But is true for E, while it is false for
the electrostatic force. A close examination of the electrostatic force highlights that there
are terms that arise when using the uniformly valid approximation to the E to evaluate the
electrostatic force that act everywhere, not just at the boundary. Following this idea, we
exploit the “corner-corrected theory” by Pelesko and Driscoll (2005) neglecting terms that
only act in the boundary layer, including terms acting throughout the domain, obtaining the
so-called corner-corrected model by examining each of the terms in (2) and ignoring those
that are exponentially small away from the boundary. Therefore, (1) becomes (Pelesko and
Driscoll 2005; Wei and Ye 2010){

−u′′(x) = λ2(1+δ|u′(x)|2)
(1−u(x))2

in Ω = [−L, L]
u(−L) = u(L) = 0.

(3)

which represent the corner corrected model where δ ≥ 0 and δ|u′(x)|2 concerns the fringing
field phenomenon: if δ = 0 (no fringing field), so that (3) becomes (1). Note that in (3) when
u′(x) becomes relevant the term δ|u′(x)|2 becomes significant. This occurs mostly at the
boundary of the device. Hence the “corner-corrected theory” nomenclature. Electrostatically,
the fringing field involves the bending of the electrostatic flow lines near the edge of the device
with fringes of force lines (edge effect). Furthermore, the flow lines inside the device, far from
the edges, are uniform and parallel. The same phenomenon can be observed in membrane
MEMS devices: if the membrane deforms, an evident variation in the capacitance of the
device is observed influenced by the variable distance between the membrane and the upper

plate and accentuated by the fringing field. In (3), λ2

(1−u(x))2
∝ |E|2. Thus:

u′′(x) = −θ |E|2, θ ∈ R
+. (4)

Moreover, as proved in Di Barba et al. (2017), E on the membrane is locally orthogonal to
the straight line tangent to the membrane. Thus, E ∝ K , with K curvature of the membrane.
As is known, K in 1D geometry is as follows:

K (x, u(x)) = |u′′(x)|((1 + (u′(x))2))−3/2. (5)

Thus, considering both (4) and (5), (3) becomes{
u′′(x) = − 1

θλ2
(1+(u′(x))2)3
1+δ|u′(x)|2 (1 − u(x) − d∗)2

u(−L) = u(L) = 0, 0 < u(x) < 1 − d∗ in (−L, L)
(6)

which represents a 1D second-order semi-linear elliptic model in which d∗ (critical security
distance) ensures that the membrane does not touch the upper plate. We observe that (6)
does not yield explicit solutions so it is necessary to achieve conditions ensuring the exis-
tence/uniqueness of the solution. The work here presented is framed in a broader line of
research which focuses the attention on membrane MEMS devices starting from the study of
(1) where the singularity 1 − u(x) was present. The pioneering paper of this research is Di
Barba et al. (2017) in which an elliptic semilinear model in 1D geometry was obtained start-
ing from (1) where λ2/(1 − u(x))2 ∝ |E|2 ∝ K 2(x, u(x)) obtaining an elliptic semilinear
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differential model in which the singularity is not explicitly evident. Since this model does
not allow to obtain explicit solutions, the existence of the solution was studied by means
of Schauder–Tychonoff fixed point techniques, obtaining an algebraic condition which, if
satisfied, guaranteed the existence of the solution. Regarding uniqueness, in Di Barba et al.
(2017) whatever the material constituting the membrane of the device was always guaran-
teed. In Angiulli et al. (2018) and Versaci et al. (2019), the uniqueness of the solution for
model in Di Barba et al. (2017) was proved, however, finding an algebraic condition for the
uniqueness dependent on the electromechanical properties of the material constituting the
membrane which turned out to be stronger than the algebraic condition obtained in Di Barba
et al. (2017) which governed existence. Therefore, the use of shooting techniques allowed
to isolate any ghost solutions, also highlighting any fields of use of the device. Wondering
if the model obtained in 1D geometry admitted possibly stable equilibrium configurations
and if V must necessarily fall within a range of admissible values, in Di Barba et al. (2020)
it was highlighted that the only equilibrium position obtained is characterized by instability
and that the range of possible values for the external applicable voltage determines certain
fields of applicability of the device. Furthermore, some energetic considerations have served
as a prelude to the problem of optimal control. Subsequently, a lot of time was spent in
generalizing in 2D geometry of what was elaborated in 1D (Di Barba et al. 2019). All this,
both in 1D and 2D geometry, was processed without fringing field, so that the model was
rewritten as in (3) to take into account the effect due to the fringing field both in 1D geometry
(Di Barba et al. 2021) and in 2D geometry (paper in press) with attached study of the stability
of the equilibrium positions, analysis of the range of possible values for the external voltage
applied and study of the optimal control of the device.
The novelty of the present paper does not concern the suggestion of the model (6) but
essentially concerns the following four points.

– To provide a new proof of the uniqueness of the solution for (6) depending on the
electromechanical properties of the material constituting the membrane, highlighting
that the condition obtained also depends on δ and, for δ = 0, one obtains the same
condition ensuring the uniqueness of the problem obtained in Di Barba et al. (2017) and
Velosa-Moncada (2018).

– Toobtain a single algebraic condition that ensures both the existence and the uniqueness of
the solution dependingon the electromechanical properties of thematerial constituting the
membrane of the device, highlighting that, without fringing field, it can be superimposed
with the algebraic condition obtained in Versaci et al. (2019).

– Shooting-Dekker–Brent procedure, Keller-Box scheme, and III/IV Stage Lobatto IIIa
formulas, implemented in Matlab®R2017a running on an Intel Core 2 CPU at 1.45GHZ,
have been exploited and compared to recover the membrane profile for different values
of δ obtaining θλ2 ensuring the convergence of the procedures. These techniques, well
suited for non-linear BVPs, allow to detect the possible presence of the dreaded ghost
solutions as the intensity of the effect due to the fringing field varies. Then, as θλ2

changed under convergence conditions, the profiles of the membrane were reconstructed
as δ increased within the range of its possible values. The results obtained showed a good
symmetry of the recovered profiles even with intense fringing fields.

– Furthermore, ghost solutions were investigated obtaining inf{V } starting from which the
membrane moves toward the upper plate. And again, the convergence areas with and
without ghost solutions were obtained as the intensity of the fringing field varied. This
study showed a good performance of the numerical approaches highlighting the areas
of convergence in the presence of fairly contained ghost solutions. Finally, the ranges
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Fig. 1 Simplification of the device

of possible values of the electromechanical parameters of the material constituting the
membrane were obtained both in the conditions of non-convergence/convergence with
and without ghost solutions. This paper is organized as follows. A brief overview of the
1D electrostatic membrane MEMS device is presented in (Sect. 2), and the curvature-
dependent |E| formodeling themembraneMEMSdevicewith the fringingfield is detailed
in Sect. 3. Thereafter, Sect. 4 presents a well-known result of the existence of the solution
for the problem under study, and Sect. 5 details the exploited procedure to achieve a new
condition ensuring the uniqueness of the solution depending on the electromechanical
properties of the membrane material . Therefore, a condition ensuring both the existence
and uniqueness of the solution is achieved (see Sect. 6). Subsequently, Sect. 7 details the
exploited numerical approaches, and Sect. 8 offers an in-depth overview of the numerical
results obtained. Finally, some conclusions and future perspectives complete the work.

2 The 1D electrostatic membraneMEMS device

The device (Fig. 1) consists of two parallel metal plates placed at a distance d . We assume
that the lower plate is located on the abscissa axis of a system of Cartesian axes Oxy and
that when V = 0, the membrane remains in the resting position (i.e., the membrane rests on
the lower plate so that u(x) = 0 ∀x ∈ [−L, L]). If V > 0, the membrane deforms toward
the upper plate so that u(x) > 0, ∀x ∈ (−L, L), and u(x) = 0 if x = ±L .
The geometry 1D of the device is such that L �� d . Accordingly, the effect due to the
fringing field is not negligible. Thus, (3) models the behavior of the device in which Pelesko
and Bernstein (2003)

λ2 = ε0V 2(2L)2

2d3T
= ρV 2 (7)

and

ρ = ε0(2L)2

2d3T
(8)

where ε0 is the permittivity of the free space and T is the mechanical tension when the

membrane is at rest. Considering that λ2

(1−u(x))2
∝ |E|2, so that θ |E|2 = λ2

(1−u(x))2
, taking into

account (7), we can write the following:
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θ |E|2 = λ2

(1 − u(x))2
= ε0V 2(2L)2

2d3T (1 − u(x))2
. (9)

Remark 1 From (7), λ2 is directly proportional to V 2, so λ2 is bounded below by the fact
that a minimum value of V is required to overcome the mechanical inertia of the membrane.
On the other hand, V cannot increase indefinitely because its maximum value is fixed by the
intended use of the device. Consequently, the value of λ2 is also limited by the intended use
of the device.

3 Curvature-dependent |E| for modelingmembraneMEMS

As described above, E on the membrane is locally orthogonal to the straight line tangent to
the membrane at the point considered. Electrostatically, this condition is because the outer
membrane surface represents a physical interface between two media with different dielec-
tric permittivity (membrane material and free space). Furthermore, the membrane imposes
that E be orthogonal to the straight line tangent to the membrane at the point considered.
Furthermore, we observe that if E is increased at one point on the membrane, it bends more
at that point. Therefore, it is reasonable to express |E| depending on the curvature K (x, u(x))
of the membrane at the same point. So,

|E| = μ(x, u(x), λ)K (x, u(x)) (10)

and, sincewhen themembrane deforms it does not touch the upper plate (to avoid electrostatic
discharges), a possible formulation for μ(x, u(x), λ) can be μ(x, u(x), λ) = λ

1−u(x)−d∗ ,

whereμ(x, u(x), λ) ∈ C0([−L, L]×[0, 1)×[0, λmax ]. Therefore,model (3), taking account
both (4) and (10), becomes{

u′′(x) = − λ2(1+δ|u′(x)|2)
(1−u(x))2

= θ |E|2(1 + δ|u′(x)|2) = −θ
λ2(1+δ|u′(x)|2)
(1−u(x)−d∗)2 K 2(x, u(x))

u(−L) = u(L) = 0, 0 < u(x) < 1 − d∗ in (−L, L), θ ∈ R
+,

(11)

and considered that, in 1D geometry, K (x, u(x)) is expressible as (5), (3) becomes{
u′′(x) = −θ

λ2(1+δ|u′(x)|2)
(1−u(x)−d∗)2

|u′′(x)|2
(1+(u′(x))2)3

u(−L) = u(L) = 0, 0 < u(x) < 1 − d∗ in (−L, L), θ ∈ R
+ (12)

from which{
u′′(x) = − 1

θλ2
(1+(u′(x))2)3
(1+δ|u′(x)|2) (1 − u(x) − d∗)2

u(−L) = u(L) = 0, 0 < u(x) < 1 − d∗ in (−L, L), θ ∈ R
+.

(13)

Remark 2 To obtain (13) from (12), we assume u′′(x) �= 0. This is true because if u′′(x) = 0,
it would follow u′(x) = k (k arbitrary constant), and u(x) = kx + b (b arbitrary constant).
In other words, we would obtain a linear deflection when |E| = 0. This is an evidently
impossible condition. Thus, u′′(x) �= 0. Moreover, being δ ≥ 0 and |u′(x)| ≥ 0, it follows
that 1 + δ|u′(x)|2 �= 0 so that (13) makes sense. Finally, being θ ∈ R

+ and λ2 ≥ 0,
θλ2 > 0 and 1

θλ2
> 0 so that (13) makes sense. Particularly, θ ∈ R

+ ensures that the

membrane deforms toward the upper plate. This is because from −u′′(x) = θ |E|2 being
θ > 0, the membrane is concave and on applying an external V > 0 (i.e., by (7), λ2 > 0),
the membrane moves toward the upper plate instead of adhering to the lower plane.
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Remark 3 (13), apparently, does not present the singularity 1
(1−u(x))2

evident in (3). However,

if in (13) u(x) is equal to 1− d∗ (i.e., equal to the value generating singularity in (13)) u′′(x)
would be 0, and considering (4), it would follow that |E| = 0 producing, as observed in
Remark 2, a linear deflection of the membrane (unacceptable occurrence).

Remark 4 Analitically, θ has no limitations except that it must obviously both be non-zero.
However, we will see later that θλ2 will suffer specific limitations due to problems of con-
vergence of the numerical procedures in the presence/absence of ghost solutions.

Remark 5 Concerning μ(x, u(x), λ) proportionality function, there are no obvious limita-
tions to the values attribuable to it.

Remark 6 (13) is a particular case of the following general problem (Bayley et al. 1969; Di
Barba et al. 2019; Zega et al. 2018):{

u′′(x) = − f (x, u(x), u′(x))
u(−L) = u(L) = 0, 0 < u(x) < 1 − d∗ in (−L, L)

(14)

where f ∈ C0([−L, L] × R × R). Obviously, in our case, we have

f (x, u(x), u′(x)) = 1

θλ2

(1 + (u′(x))2)3

(1 + δ|u′(x)|2)) (1 − u(x) − d∗)2 (15)

and u(x) ∈ C2([−L, L]), ensuring that the membrane does not have tears, and moreover, its
slope varies continuously. The need to write the problem under study in general terms arises
from the fact that this generalization allows to use general results of existence and uniqueness
of the solution as consolidated in the literature, relating to the class of BVPs.

Remark 7 If the membrane is too thin, wrinkling is highly likely. However, to formulate
K (x, u(x)) it is necessary that u(x) ∈ C2([−L, L]) implying that abrupt local variations of
the membrane profile are not allowed.

Remark 8 (13) needs to be studied on dependence on the range of δ in which the device is
operated and the actual material’s dependence of electrical conductivity on, for example, the
temperature. This phenomenon help us to understand if the system changes behavior as δ

varied (bifurcation). However, in this paper, we will limit ourselves to obtaining a limitation
for δ due to a solution existence result for (13), postponing more solid results regarding the
bifurcation study to future work.

4 An interesting result of existence

In the following, we need to introduce a functional space.

Definition 1 Let us consider the functional space P defined as follows:

P = {C2
0 ([−L, L]) : 0 < u(x) < 1 − d∗, |u′(x)| < H}. (16)

The existence of the solution, and particularly the following proposition, has been proved in
Di Barba et al. (2021) exploiting the Schauder–Tychonoff fixed point theorem.
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Proposition 1 (13) admits at least one solution. Moreover, the following inequality holds:

H <
6

√
θλ2

2L2(2 − δ)α
, (17)

and it ensures the existence of at least one solution for (13). Moreover, numerically, the
following was achieved H = 146 (for some details, see below).

Remark 9 From (17) and without fringing field (i.e., δ = 0), one gets

H <
6

√
θλ2

2L2α
(18)

which makes sense because L2α > 0 and θλ2 > 0. Moreover, with the fringing field, it is

imperative that θλ2

2L2(2−δ)α
≥ 0. In other words, since θλ2 > 0, 2 − δ > 0, and finally δ < 2.

Therefore,

0 < δ < 2. (19)

Thus, for the device under study, δ cannot grow indefinitely (as mathematically hypothesized
in the literature) but is limited by (19).

5 A condition ensuring the uniqueness of the solution

As introduced in the previous section, we present here an algebraic condition ensuring the
uniqueness of the solution for (13) depending on the electromechanical properties of the
material constituting the membrane.

Proposition 2 The algebraic condition ensuring the uniqueness of the solution for (13) is as
follows:

1 + H6 <
θλ2

24L(L + 1)(1 − δH2)
. (20)

Proof We observe that (14), by a suitable Green’s function G(x, s), can be rewritten in its
equivalent integral formulation (Bayley et al. 1969)

u(x) =
∫ L

−L
G(x, s) f (x, u(x), u′(x))ds (21)

and considering (15), (21) becomes :

u(x) =
∫ L

−L
G(x, s)

1

θλ2

(1 + (u′
1(x))

2)3

(1 + δ|u′
1(x)|2))

(1 − u1(x) − d∗)2ds, (22)

where (Bayley et al. 1969)

G(x, s) = (s + L)(L − x)

2L
(23)

if −L ≤ s ≤ x and

G(x, s) = (L − s)(x + L)

2L
(24)
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when x ≤ s ≤ L . Moreover,

Gx (x, s) = − (s + L)

2L
(25)

if −L ≤ s < x and

Gx (x, s) = (L − s)

2L
(26)

when x < s ≤ L . Moreover, it is easy to prove that (Bayley et al. 1969)

0 ≤ G(x, s) ≤ L

2
∀x, s ∈ [−L, L], (27)∫ L

−L
G(x, s)ds = (L − x)(x + L)

2
≤ L2

2
(28)

and ∣∣∣ ∫ L

−L
Gx (x, s)ds

∣∣∣ ≤
∫ L

−L
|Gx (x, s)|ds < L, (29)

∀(x, s) ∈ ([−L, L] × [−L, L]), Gx (x, s) ≤ 1

2
. (30)

By contradiction, we assume that u1 and u2, both belonging to P , are two different solutions
for (13), so that u1 = T (u1) and u2 = T (u2). Therefore,

ui (x) = T (u1(x)) =
∫ L

−L
G(x, s)

1

θλ2

(1 + (u′
i (x))

2)3

(1 + δ|u′
i (x)|2))

(1 − ui (x) − d∗)2ds (31)

for i = 1, 2 from which

u′
i (x) = T ′(u1(x)) =

∫ L

−L
Gx (x, s)

1

θλ2

(1 + (u′
i (x))

2)3

(1 + δ|u′
i (x)|2))

(1 − ui (x) − d∗)2ds (32)

Therefore, we can write the following:

‖u1(x) − u2(x)‖C1([−L,L])
= sup

x∈[−L,L]
|u1(x) − u2(x)| + sup

x∈[−L,L]
|u′

1(x) − u′
2(x)|

= sup
x∈[−L,L]

∣∣∣∣
∫ L

−L

G(x, s)

θλ2

(1 + (u′
1(x))

2)3

(1 + δ|u′
1(x)|2))

(1 − u1(x) − d∗)2ds

−
∫ L

−L

G(x, s)

θλ2

(1 + (u′
2(x))

2)3

(1 + δ|u′
2(x)|2))

(1 − u2(x) − d∗)2ds
∣∣∣∣

+ sup
x∈[−L,L]

∣∣∣∣
∫ L

−L

Gx (x, s)

θλ2

(1 + (u′
1(x))

2)3

(1 + δ|u′
1(x)|2))

(1 − u1(x) − d∗)2ds

−
∫ L

−L

Gx (x, s)

θλ2

(1 + (u′
2(x))

2)3

(1 + δ|u′
2(x)|2))

(1 − u2(x) − d∗)2ds
∣∣∣∣

= 1

θλ2
sup

x∈[−L,L]

∣∣∣∣
∫ L

−L
G(x, s)

(1 + (u′
1(x))

2)3

(1 + δ|u′
1(x)|2))

(1 − u1(x) − d∗)2ds

−
∫ L

−L
G(x, s)

(1 + (u′
2(x))

2)3

(1 + δ|u′
2(x)|2))

(1 − u2(x) − d∗)2ds
∣∣∣∣
123
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+ 1

θλ2
sup

x∈[−L,L]

∣∣∣∣
∫ L

−L
Gx (x, s)

(1 + (u′
1(x))

2)3

(1 + δ|u′
1(x)|2))

(1 − u1(x) − d∗)2ds

−
∫ L

−L
Gx (x, s)

(1 + (u′
2(x))

2)3

(1 + δ|u′
2(x)|2))

(1 − u2(x) − d∗)2ds
∣∣∣∣

= 1

θλ2
sup

x∈[−L,L]

∣∣∣∣
∫ L

−L
G(x, s)

{
(1 + (u′

1(x))
2)3

(1 + δ|u′
1(x)|2))

(1 − u1(x) − d∗)2

− (1 + (u′
2(x))

2)3

(1 + δ|u′
2(x)|2))

(1 − u2(x) − d∗)2
}
ds

∣∣∣∣
+ 1

θλ2
sup

x∈[−L,L]

∣∣∣∣
∫ L

−L
Gx (x, s)

{
(1 + (u′

1(x))
2)3

(1 + δ|u′
1(x)|2))

(1 − u1(x) − d∗)2

− (1 + (u′
2(x))

2)3

(1 + δ|u′
2(x)|2))

(1 − u2(x) − d∗)2
}
ds

∣∣∣∣
≤ 1

θλ2
sup

x∈[−L,L]

∫ L

−L
|G(x, s)|

∣∣∣∣ (1 + (u′
1(x))

2)3

(1 + δ|u′
1(x)|2))

(1 − u1(x) − d∗)2

− (1 + (u′
2(x))

2)3

(1 + δ|u′
2(x)|2))

(1 − u2(x) − d∗)2
∣∣∣∣ds

+ 1

θλ2
sup

x∈[−L,L]

∫ L

−L
|Gx (x, s)|

∣∣∣∣ (1 + (u′
1(x))

2)3

(1 + δ|u′
1(x)|2))

(1 − u1(x) − d∗)2

− (1 + (u′
2(x))

2)3

(1 + δ|u′
2(x)|2))

(1 − u2(x) − d∗)2
∣∣∣∣ds. (33)

Considering both (27) and (29), (33) becomes the following:

‖u1(x) − u2(x)‖C1([−L,L])

≤ L

2θλ2
sup

x∈[−L,L]

∫ L

−L

∣∣∣∣ (1 + (u′
1(x))

2)3

(1 + δ|u′
1(x)|2))

(1 − u1(x) − d∗)2

− (1 + (u′
2(x))

2)3

(1 + δ|u′
2(x)|2))

(1 − u2(x) − d∗)2
∣∣∣∣ds

+ 1

2θλ2
sup

x∈[−L,L]

∫ L

−L

∣∣∣∣ (1 + (u′
1(x))

2)3

(1 + δ|u′
1(x)|2))

(1 − u1(x) − d∗)2

− (1 + (u′
2(x))

2)3

(1 + δ|u′
2(x)|2))

(1 − u2(x) − d∗)2
∣∣∣∣ds

=
( L

2θλ2
+ 1

2θλ2

)
sup

x∈[−L,L]

∫ L

−L

∣∣∣∣ (1 + (u′
1(x))

2)3

(1 + δ|u′
1(x)|2))

(1 − u1(x) − d∗)2

− (1 + (u′
2(x))

2)3

(1 + δ|u′
2(x)|2))

(1 − u2(x) − d∗)2
∣∣∣∣ds. (34)

To achieve (20), we need to exploit the following result (see (35)) proved in Versaci et al.
(2019). Particularly, considering that α = 1 − d∗ < 1 , ∀u1(x), u2(x) ∈ P , the following
inequality holds (Versaci et al. 2019):
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|(1 + (u′
2(x))

2)3(1 − u(x) − d∗)2 − (1 + (u′
1(x))

2)3(1 − u(x) − d∗)2|
≤ 216H5|u′

2(x) − u′
1(x)| + 24(1 + H6)|u2(x) − u1(x)|. (35)

However, considering

1

1 + δ(u′(x))2
= 1 + δ(u′(x))2 − δ(u′(x))2

1 + δ(u′(x))2

≤ 1 + δ(u′(x))2 − δ(u′(x))2 ≤ 1 + δH2 − δ(u′(x))2 ≤ 1 + δH2, (36)

we can write the following:∣∣∣∣ (1 + (u′
1(x))

2)3

(1 + δ|u′
1(x)|2))

(1 − u1(x) − d∗)2

− (1 + (u′
2(x))

2)3

(1 + δ|u′
2(x)|2))

(1 − u2(x) − d∗)2
∣∣∣∣

≤ (1 + (u′
1(x))

2)3

(1 + δ|u′
1(x)|2))

(1 − u1(x) − d∗)2

+ (1 + (u′
2(x))

2)3

(1 + δ|u′
2(x)|2))

(1 − u2(x) − d∗)2

≤
[
(1 + (u′

1(x))
2)3(1 − u1(x) − d∗)2

+ (1 + (u′
2(x))

2)3(1 − u2(x) − d∗)2
]
(1 + δH2). (37)

But

|(1 + (u′
2(x))

2)3(1 − u(x) − d∗)2 − (1 + (u′
1(x))

2)3(1 − u(x) − d∗)2|
≤ (1 + (u′

1(x))
2)3(1 − u1(x) − d∗)2 + (1 + (u′

2(x))
2)3(1 − u2(x) − d∗)2, (38)

which becomes

|(1 + (u′
2(x))

2)3(1 − u(x) − d∗)2

− (1 + (u′
1(x))

2)3(1 − u(x) − d∗)2|(1 + δH2)

≤
[
(1 + (u′

1(x))
2)3(1 − u1(x) − d∗)2

+ (1 + (u′
2(x))

2)3(1 − u2(x) − d∗)2
]
(1 + δH2). (39)

Therefore, taking into account (35), (37) becomes:∣∣∣∣ (1 + (u′
1(x))

2)3

(1 + δ|u′
1(x)|2))

(1 − u1(x) − d∗)2

− (1 + (u′
2(x))

2)3

(1 + δ|u′
2(x)|2))

(1 − u2(x) − d∗)2
∣∣∣∣

≤ {216H5|u′
2(x) − u′

1(x)|
+ 24(1 + H6)|u2(x) − u1(x)|}(1 − δH2). (40)
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Thus, ‖u2(x)− u1(x)‖C1([−L,L]), considering both (34) and (40) and exploiting the theorem
of the mean of integrals, the result is as follows:

‖u2(x) − u1(x)‖C1([−L,L])

≤
( L

2θλ2
+ 1

2θλ2

)
sup

x∈[−L,L]

∫ L

−L

∣∣∣∣ (1 + (u′
1(s))

2)3

(1 + δ|u′
1(s)|2))

(1 − u1(s) − d∗)2

− (1 + (u′
2(s))

2)3

(1 + δ|u′
2(s)|2))

(1 − u2(s) − d∗)2
∣∣∣∣ds

≤
( L

2θλ2
+ 1

2θλ2

)
sup

x∈[−L,L]

∫ L

−L
{216H5|u′

2(s) − u′
1(s)|

+ 24(1 + H6)|u2(s) − u1(s)|}(1 − δH2)ds

≤
( L

2θλ2
+ 1

2θλ2

)
sup

x∈[−L,L]

{∫ L

−L
216H5|u′

2(s) − u′
1(s)|(1 − δH2)ds

+
∫ L

−L
24(1 + H6)|u2(s) − u1(s)|}(1 − δH2)ds

}

=
( L

2θλ2
+ 1

2θλ2

)
sup

x∈[−L,L]

{
216H5(1 − δH2)

∫ L

−L
|u′

2(s) − u′
1(s)|ds

+ 24(1 + H6)(1 − δH2)

∫ L

−L
|u2(s) − u1(s)|}ds

}

=
( L

2θλ2
+ 1

2θλ2

){
216H5(1 − δH2) sup

x∈[−L,L]

∫ L

−L
|u′

2(s) − u′
1(s)|ds

+ 24(1 + H6)(1 − δH2) sup
x∈[−L,L]

∫ L

−L
|u2(s) − u1(s)|}ds

}

=
( L

2θλ2
+ 1

2θλ2

)
216H5(1 − δH2)2L sup

x∈[−L,L]
|u′

2(x) − u′
1(x)|

+
( L

2θλ2
+ 1

2θλ2

)
24(1 + H6)2L(1 − δH2) sup

x∈[−L,L]
|u2(x) − u1(x)|. (41)

From (41), to obtain a contradiction, it is necessary that⎧⎨
⎩
2L

(
L

2θλ2
+ 1

2θλ2

)
216H5(1 − δH2) < 1

2L
(

L
2θλ2

+ 1
2θλ2

)
24(1 + H6)(1 − δH2) < 1

(42)

from which {
1 + H6 < 1 + Hθλ2

216L(L+1)(1−δH2)

1 + H6 < 1 + θλ2

24L(L+1)(1−δH2)
.

(43)

In (43), we note that

1 + θλ2

24L(L + 1)(1 − δH2)
< 1 + Hθλ2

216L(L + 1)(1 − δH2)
. (44)
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In fact, if absurdly

1 + θλ2

24L(L + 1)(1 − δH2)
> 1 + Hθλ2

216L(L + 1)(1 − δH2)
, (45)

we would obtain 1 > H
9 = 146

9 = 16.22 which is a condition that is clearly false. Therefore,
(20) holds.

6 A condition ensuring both existence and uniqueness

Proposition 3 The algebraic condition (20) ensures the existence and uniqueness of the
solution for problem (13).

Proof As both (17) and (20) are verified, we can write the following:{
H6 < θλ2

2L2(2−δ)α
(existence)

H6 < θλ2

24L(L+1)(1−δH2)
− 1 (uniqueness).

(46)

It is easy to prove that system (46) is equivalent to (20). In fact

θλ2

24L(L + 1)(1 − δH2)
− 1 <

θλ2

2L2(2 − δ)α
. (47)

This is since 2 − δ > 0, θλ2

2L2(2−δ)α
is always positive, while θλ2

24L(L+1)(1−δH2)
− 1, making

1− δH2 < 0 negative. Therefore, the condition ensuring both the existence and uniqueness
of the solution for (13) is (20). 
�
Remark 10 Unlike (Versaci et al. 2020b), the algebraic condition of existence and uniqueness
for the solution (see (20)) with fringing field does not depend on d∗ that can be chosen as
small as you like. This is important for the search for possible equilibrium positions of the
membrane profile and relative stability. Obviously, if δ = 0, we obtain the same condition
known in Di Barba et al. (2017) and Velosa-Moncada (2018) without fringing field. Finally,
(20), given the presence of θλ2, depends on the electromechanical properties of the material
constituting the membrane.

7 The exploited numerical approaches

7.1 Shooting and Dekker–Brent procedure

We transform (13) into an equivalent system of first order differential equations considering
(Quarteroni et al. 2007):

u1(x) = u(x), u2(x) = u′(x) (48)

so that from (13) we obtain the following:{
u′
1(x) = f (u1(x), u2(x)) = u2(x)

u′
2(x) = g(u1(x), u2(x)) = − 1

θλ2
(1+(u′

2(x))
2)3

1+δ(u2(x))2
(1 − u1(x) − d∗)2.

(49)
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(49) is transformed into an equivalent IVP by replacing the boundary condition of the solution
u1(L) at x = L with u2(−L) = η, η ∈ R

+ as an initial condition. Thus, the non-linear
equation F(η) = u1(L; η) = 0 is defined iteratively solvable to achieve η.

7.1.1 Zeros of F(�): the Dekker–Brent approach

To solve F(η) = 0, we exploit the Dekker–Brent approach. At each iteration, three points
are involved: bk which approximates the zero temporarily; ak , the “contra-point”, such that
F(ak) and F(bk) have opposite signs, and the interval [a0, b0] contains the solution; bk−1

which represents the value of b from the previous iteration. Thus, two temporary values are
computed: the first is obtained through a procedure based on the secant method; the second
is obtained through a bisection procedure. Particularly,{

s = bk − bk−bk−1
F(bk )−F(bk−1)

F(bk), if F(bk) �= F(bk−1),

s = m = ak+bk
2 , otherwise.

(50)

Since s is included between bk and m, s = bk+1, otherwise m = bk+1. Then, the new
contra-point will be selected so that F(ak+1) and F(bk+1) have different signs. In this case,
ak+1 = ak , otherwise ak+1 = bk . Finally, if |F(ak+1)| ≤ |F(bk+1)|, ak+1 is the best
approximation of the solution with respect to bk+1, and ak+1 and bk+1 are interchangeable.
However, if the procedure is based on the secant method, bk converges slowly. To avoid
this issue, Brent’s procedure considers a test to be satisfied before the result obtained can be
accepted at the next iteration. Considering δ1 as a tolerance, if in the previous step the secant
method was used,

|δ1| < |bk − bk−1| (51)

and

|δ1| < |s − bk | <
1

2
|bk − bk−1|, (52)

and this must be applied to decide whether to perform interpolation or bisection. The Brent
modification ensures that at the kth iteration, the bisection-based procedure is used at least
a number of times equal to 2 log2(|bk−1 − bk−2|/δ1). Furthermore, the Brent approach uses
a numerically more efficient inverse quadratic interpolations instead of linear interpolations.
If F(bk), F(ak) and F(bk−1) are different, the efficiency of the method increases slightly.
Therefore, the condition for accepting smust be changed: smust be contained in [ 3ak+bk

4 , bk].
To obtain the solution of F(η) = 0, we obtain a ηk related to the IVP. Then, a stop text is used
to verify that ηk → η as k → +∞. In this work, two MatLab® routines ode23 and ode45
were used to integrate the IVPs, using the accuracy defined by default. Finally, instability
phenomena could take place to yield the solution of the IVPs. This affects the solutions
of the respective BVPs which could be insensitive to the variations of the boundary values.
Shooting techniques have also been used successfully in the recent past from other Authors in
theMEMSdomain as evidenced, for example, in Zhao (2004) andYu (2012).We note that the
MEMS membrane device here studied is not in the regime of large displacement. In fact, as
revealed by numerical simulations here performed (see figures below), the recovering of the
membrane profiles highlighted small displacements putting in evidence that the device can
be appropriate, for example, in biomedical application as intravenous drug diffuse system,
where small movements of the membrane are required.

123



MEMS with fringing field: curvature-dependent… Page 15 of 28   128 

7.2 Relaxation and Keller Box scheme

It is necessary to make a mesh of points, x0 = −L1, x j = x0 + jΔx , for j = 1, 2, . . . , J ,
spaced with xJ = L1. By u j , j = 0, 1, . . . , J , we denote the numerical approximation to the
solution u(x j ) of (49). Thus, the Keller-Box scheme is writable as (Quarteroni et al. 2007){

u j − u j−1 − ΔF
(
x j−1/2

u j+u j−1
2

)
= 0, j = 1, · · · , J

G(u0,uJ ) = 0, x j−1/2 = (x j + x j−1)/2
(53)

which represents a system of non-linear equations with 2(J + 1) unknowns. Furthermore, a
termination criterion, such as

1

2(J + 1)

2∑
�=1

J∑
j=0

|Δu j�| ≤ TOL (54)

must be applied in which Δu j�, j = 0, 1, . . . , J and � = 1, 2 is the difference between two
successive iterate components and TOL is a fixed tolerance. The simulations produced with
this numerical procedure also showed recovering of the membrane profile in conditions of
small displacements, highlighting fields of applicability in the biomedical field of the device.
Unlike the shooting method, Keller-Box scheme inMEMS is scarcely used for the resolution
of BVPs because it requires higher computational efforts requiring more complex hardware
for any industrial applications. However, in this paper, we considered it appropriate to use this
methodology as well to make a more effective comparison between numerical procedures.

7.3 Collocation procedure and III/IV stage Lobatto IIIa formulas

7.3.1 Collocation approach

(49) can be written as follows Quarteroni et al. (2007):

du(r)

dr
= F(r ,u(r)) (55)

with suitable boundary conditions. Thus, from (55),

u(x) = u(xn) +
∫ x

xn
F(r ,u(r))dr , (56)

and, replacing u(xn) by un (approximated value), we have the following:

u(x) ≈ un +
∫ x

xn
p(r)dr , (57)

where p(r) is an interpolation polynomial whose degree is lower than s, interpoling
[xn,i ,F(xn,i ),u(xn,i )], i = 1, 2, . . . , s, and xn,i = xn + τi h, i = 1, . . . , s, 0 ≤
τ1 < · · · < τs ≤ 1.. Moreover, exploiting the Lagrange fundamental polynomials L j (r),
p(r) = ∑s

j=1 F(xn, j ,u(xn, j ))L j (r), so that

u(x) ≈ un +
s∑

j=1

F(xn, j ,u(xn, j ))

∫ x

xn
L j (r)dr . (58)
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Therefore, (58) is forced ∀xn, j , so that un, j at collocation node points are carried out, for
i = 1, . . . , s, by:

un, j = un +
s∑

j=1

F(xxn,i ,unn, j )

∫ xn,i

xn
L j (r)dr . (59)

Remark 11 (59) can be implemented by several programming languages, so that it can be
exploited for several membrane MEMS device applications in which the production of the
microchips is low cost.

7.3.2 The implicit Runge–Kutta methods (RK)

F(x,u(x)) must be evaluated several times in each [xn, xn+1]. Moreover, un+1 = un +
h

∑s
i=1 bi ki where ki = F

(
xn + ci h, un + h

∑s
j=1 ai j k j

)
, i = 1, 2, . . . , s, with s is the

number of stage (Quarteroni et al. 2007). Usually, to make an implicit RK procedure, it is
necessary to consider the following three conditions:

B(p) :
s∑

i=1

bi c
k−1
i = k−1, k = 1, 2, . . . , p, (60)

C(q) :
s∑

i=1

ai j c
k−1
i = k−1cki , k = 1, 2, . . . , p, i = 1, 2, . . . , s (61)

and D(r) : ∑s
i=1 bi c

k−1
i ai j = k−1b j (1 − ckj ), k = 1, 2, . . . , r , j = 1, 2, . . . , s. (60)

allows to write
∫ x+h
x F(s)ds ≈ h

∑s
i=1 biF(x + ci h) which is exact for all polynomials with

a degree lower than p. Moreover, if (60) is satisfied, the RK procedure has quadrature of
order q .

Remark 12 If on the one hand the implicit RK methods require a greater implementation
effort than the usual explicit procedures, on the other hand, they are well suited to be applied
to non-linear differential problems such as the one under study (Quarteroni et al. 2007).

7.3.3 The three-stage Lobatto IIIa formula

Here, ci must be chosen as roots of P∗
s − P∗

s−2 = ds−2

dxs−2 (x
s−1(x − 1)s−1), where s is the

number of the stage, achieving c1 = 0 and cs = 1, ∀s (Quarteroni et al. 2007). Let us
introduce the two following definition useful for our purposes.

Definition 2 Let us consider the following mesh-grid

0 = a = r0 < r1 < · · · < rn = b = R (62)

such that, on it, we define the step-size hm = rm+1 − rm .

Definition 3 Considering each range (rm, rm−1), we denote their midpoints by rm+1/2 and,
by um+1/2, the approximation of u(r) at rm+1/2.

Remark 13 p(r) (cubic polynomial) satisfy the boundary conditions as shown in (55) and
moreover, ∀(rm, rm+1), (62) is considered. p(r) is located at the edges of each sub-interval
and midpoint as well where p(r) is continuous.
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This procedure is a collocation one and it is equivalent to the three-stage Lobatto IIIa implicit
RK procedure (Quarteroni et al. 2007). Finally, it is derivable from (56) using the Simpson
quadrature to approximate the integral between xn and x .

Remark 14 p(r), with their derivatives, satisfy ∀r ∈ (a, b), p(l)(r) = u(l)(r) + O(h4−l),
l = 0, 1, 2, 3. Moreover, p(r) satisfies (55) at each intermediate point and at the midpoint
of each interval. Furthermore, p(r) is selected by MatLab® determining some unknown
parameters. Finally, it makes sense to write the following:

p′(rm) = F[rm,p(rm)]; p′(rm+1/2) (63)

= F[rm+1/2,p(rm+1/2)], p′(rm+1) = F[rm+1,p(rm+1)] (64)

which represents the non-linear equations solvable, for example, by a MatLab® solver. Fur-
thermore, MatLab®, ∀r ∈ (a, b), computes the cubic polynomial exploiting an its special
routine (bvpval).

Remark 15 A BVP could have more than one solution. Therefore, it is imperative to have a
guess for both the initial mesh and if possible, the solution. Thus, the MatLab® solver adapts
the mesh achieving a solution by a selected number of mesh point.

Usually, giving a good initial hypothesis can be complicated. MatLab® solver checks a
residue res(r) = p′(r) − F[r ,p(r)], while the boundary conditions becomes g[p(a),p(b)].
Obviously, if res(r) is small, p(r) can be a good solution and if the problem is well-
conditioned,p(r) is next tou(r). This is important because it helps us to recover themembrane
profile with sufficient approximation. In this work, we have exploited MatLab® R2017a
bvp4c solver because it implements the collocation procedure through a piece-wise cubic
p(r) where its coefficients are determined in an order such that p(r) is continuous on (a, b).
This continuity ensures that the membrane during deformation does not undergo tears or in
any case abrupt local variations of its profile. Furthermore, the computation of both mesh and
estimation error whose management is exploited to manage inadequate guesses for the mesh
and the solution as well are based on the residual of p(r). Finally, this ToolBox performs a
very reduced computational burden to obtain the Jacobian.

7.3.4 Four-stage Lobatto IIIa formula

This formula can be easily derived as an implicit RK method (Quarteroni et al. 2007). As
the previous three-stage formula, this procedure can be considered a polynomial collocation
whose solutions belong toC1([a, b]) 1, showing a fifth-order accuracy. In this case,MatLab®
solves this formula by finite different method, exploiting its bvp5c routine and solving the
algebraic equation directly.

8 Some numerical tests

8.1 Some results of convergence

As shown in Versaci et al. (2020b), θλ2 ensuring the convergence of all exploited pro-
cedure, indicated by min (θλ2)conv was obtained in the absence of a fringing field: if

1 Again, this continuity protects us from dangerous tears in the membrane profile.
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Table 1 Ranges of θλ2 ensuring convergence (shooting and Keller-Box procedures)

δ Shooting (ode 23) Shooting (ode 45) Keller-Box

0 (θλ2)conv ∈ [0.630 + ∞) (θλ2)conv ∈ [0.609 + ∞) (θλ2)conv ∈ [0.619 + ∞)

0.25 (θλ2)conv ∈ [0.542 + ∞) (θλ2)conv ∈ [0.540 + ∞) (θλ2)conv ∈ [0.541 + ∞)

0.5 (θλ2)conv ∈ [0.483 + ∞) (θλ2)conv ∈ [0.481 + ∞) (θλ2)conv ∈ [0.582 + ∞)

0.75 (θλ2)conv ∈ [0.437 + ∞) (θλ2)conv ∈ [0.434 + ∞) (θλ2)conv ∈ [0.436 + ∞)

1 (θλ2)conv ∈ [0.398 + ∞) (θλ2)conv ∈ [0.393 + ∞) (θλ2)conv ∈ [0.395 + ∞)

1.25 (θλ2)conv ∈ [0.366 + ∞) (θλ2)conv ∈ [0.361 + ∞) (θλ2)conv ∈ [0.364 + ∞)

1.5 (θλ2)conv ∈ [0.338 + ∞) (θλ2)conv ∈ [0.331 + ∞) (θλ2)conv ∈ [0.332 + ∞)

1.75 (θλ2)conv ∈ [0.315 + ∞) (θλ2)conv ∈ [0.307 + ∞) (θλ2)conv ∈ [0.309 + ∞)

1.99 (θλ2)conv ∈ [0.294 + ∞) (θλ2)conv ∈ [0.285 + ∞) (θλ2)conv ∈ [0.287 + ∞)

θλ2 < min (θλ2)conv there was no convergence of all the numerical procedures; when
θλ2 >∈ (θλ2)conv, all numerical procedures converged (in some cases, ghost solutions
occurred). In this work, starting from (6), we obtained (θλ2)conv exploiting shooting by
ode23 and ode 45, Keller-Box scheme, III/IV Stage Lobatto IIIa formulas when δ ∈ [0, 2)
increased, according to (19), to simulate the presence of the fringing field. Tables 1 and
2 shows that as δ increases and regardless of the numerical procedure used, the minimum
value of θλ2 that ensures convergence becomes smaller and smaller. This peculiarity is more
evident in Fig. 2. In fact, as δ increases, a significant decrease in the minimum value of
θλ2 is observed. Furthermore, for values of δ close to 2, the convergence of the numerical
procedures is ensured with values of θλ2 that begin to diverge from each other (albeit in
an extremely limited manner). Additionally, as δ increased, the profiles of the membrane
were recovered using the above numerical procedures. As is evident from Fig. 3 and 4, as
δ increases, the convergence of the numerical procedures is ensured by decreasing θλ2. We
also observe from Figs. 3 and 4 that although δ increases (in (6) δ appears in the denom-
inator) and θλ2 decreases (in (6) θλ2 appears at denominator), the effect due to δ prevails
over the effect due to θλ2. This is because the profiles of the membrane flatten more and
more as the intensity of the fringing field increases as with the intensification of the fringing
field phenomenon (i.e., with the increase of δ), the direction lines of E deform significantly,
hindering the deformation of the membrane toward the upper plate.

Remark 16 From Figs. 3 and 4, the membrane MEMS device studied in this work is not in
the regime of large displacements because θλ2 allow to obtain values of u′′(x) (see (3)) such
as to have reduced concavity of the membrane profiles, making this device appropriate for
biomedical applications such as intravenous drug delivery where small membrane shifts are
required.

Remark 17 The membrane profiles numerically recovered are symmetric with respect to the
vertical axis x = 0, highlighting that max{|u′(x)|} corresponds to x = ±L (Figs. 3, 4).
Furthermore, max{|u′(x)|} < sup{|u′(x)|} = H = 146 Di Barba et al. (2021). Then, on
x = ±L , there is no risk of dangerous adhesion between the membrane and the vertical walls
of the device which could generate unwanted electrostatic effects (phenomenon that occur if
|u′(±L)| → +∞).
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Table 2 Ranges of θλ2 ensuring
convergence (Three/Four Stage
Lobatto IIIa)

δ Three-Stage Lobatto IIIa Four-Stage Lobatto IIIa
(bpv4c) (bpv5c)

0 (θλ2)conv ∈ [0.614 + ∞) (θλ2)conv ∈ [0.613 + ∞)

0.25 (θλ2)conv ∈ [0.542 + ∞) (θλ2)conv ∈ [0.542 + ∞)

0.50 (θλ2)conv ∈ [0.486 + ∞) (θλ2)conv ∈ [0.483 + ∞)

0.75 (θλ2)conv ∈ [0.438 + ∞) (θλ2)conv ∈ [0.437 + ∞)

1 (θλ2)conv ∈ [0.398 + ∞) (θλ2)conv ∈ [0.399 + ∞)

1.25 (θλ2)conv ∈ [0.367 + ∞) (θλ2)conv ∈ [0.366 + ∞)

1.50 (θλ2)conv ∈ [0.339 + ∞) (θλ2)conv ∈ [0.338 + ∞)

1.75 (θλ2)conv ∈ [0.315 + ∞) (θλ2)conv ∈ [0.315 + ∞)

1.99 (θλ2)conv ∈ [0.295 + ∞) (θλ2)conv ∈ [0.294 + ∞)

Fig. 2 Trend of θλ2 as δ increases: the more intense the effect of the fringing field, the less θλ2

8.2 Evaluation of eventuality of possible ghost solutions

As known, each numerical solution that does not satisfy the condition (20) represents a ghost
solution. Therefore, from (20), we can write the following:

1 + H6 <
θλ2

24L(L + 1)(1 − δH2)
= θλ2

18

1 − δH2 + δH2

(1 − δH2)

= θλ2

18

(
1 + δH2

(1 − δH2)

)
≤ θλ2

18
(1 + δH2). (65)

Then, considering (7), (65) becomes

1 + H6 <
θ

36

(1 + δH2)ε0V 2

d3T
, (66)
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Fig. 3 u(x)when shooting procedure and ode23/ode45,Keller-Box scheme, II/IVStageLobatto IIIa formulas
have been applied: a θλ2 = 0.630 with δ = 0 and b)θλ2 = 0.582 with δ = 0.5

fromwhich, being ε0 = 8.85 ·10−12, θ ≈ 1014, d = 10−9, T = 10−4 (Pelesko and Bernstein
2003) and H = 146, we obtain the following:

V >

√
36(1 + H6)d3T

θε0(1 + δH2)︸ ︷︷ ︸
inf{V }

= 0.3905√
1 + 21316δ

. (67)

Thus, analyzing the (67), without fringing field, to move the membrane V > 0.3905 Volts.
The stronger the fringing effect, the lower the V needed to move the membrane. This is due
to the fact that the lines of force of E near the edges of the device are curved towards the
outside of the device itself, facilitating the deformation of the membrane; therefore, to move
the membrane itself a smaller external V is required. Then, the greater the initial deformation
of the lines of force of E (i.e., the greater the effect due to the fringing field) the lower the
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Fig. 4 u(x)when shooting procedure and ode23/ode45,Keller-Box scheme, II/IVStageLobatto IIIa formulas
have been applied: (a) θλ2 = 0.399 with δ = 1 and (b) θλ2 = 0.339 with δ = 1.5

tension V to move the membrane. This eventuality is of fundamental importance especially
in cases where the membrane MEMS device is inserted in an electrical equipment for indus-
trial or biomedical applications subjected to low electrical operating voltage (for example,
micropumps for drug delivery systems). In these cases, the fringing field phenomenon helps
to move the membrane easily, overcoming its mechanical inertia.

Remark 18 Under convergence conditions, ∀δ ∈ [0, 2), each numerical procedure produces
a corresponding membrane profile. Let uδ

j (x) be the membrane profile obtained by applying
the j-th numerical procedure with a specific value of δ. Since H = sup |u′(x)|, it follows
that H δ

j = sup |uδ
j (x)|. Since H δ

j < H , it is appropriate to write 1 + (H δ
j )

6 < 1 + H6, and

considering the condition (65), we can write 1 + (H δ
j ) j < θλ2

18 (1 + δH2), from which
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Fig. 5 Hj and Hnumerical depending on θλ2 when δ = 0 and δ = 0.5, respectively

(H δ
j ) <

6

√
θλ2

18
(1 + δH2) − 1. (68)

The performances of (68) are shown in Figs. 5 and 6. Particularly, as δ increases, the trends of
sup{H δ

j } and H (obtained numerically) are displayed, highlighting (using indicative arrows)
the convergence areas of the numerical procedures with ghost solutions. We, finally, observe
that (68), when δ = 0 is the same inequality for Hj achieved in Versaci et al. (2019).
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Fig. 6 Hj and Hnumerical depending on θλ2 when δ = 1 and δ = 1.5, respectively

8.3 Electromechanical properties of thematerial constituting themembrane and
operational parameters are not allowed in convergence areas

Multiplying both sides of (9) by λ2 and again considering (7), we obtain the following:

θ |E|2λ2 = 8ε0L4V 4

d6T 2(1 − u(x))2
. (69)

Moreover, being |E|2 < sup{|E|2}, it follows 1
|E|2 > 1

sup{|E|2} and, since 1 − u(x) < 1 , it

follows 1
1−u(x) > 1. Thus, from (69), we achieve the following:

θλ2 = 8ε0L4V 4

d6T 2(1 − u(x))2|E|2 >
8ε0L4V 4

d6T 2 sup{|E|2} . (70)
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Under non-convergence conditions of each numerical procedure used, it follows that

θλ2 < min
j,δ

{((θλ2)conv)
δ
j }, (71)

so that (70) becomes

min
j,δ

{((θλ2)conv)
δ
j } > θλ2 >

8ε0L4V 4

d6T 2 sup{|E|2} , (72)

from which

T >

√
8ε0L4V 4

d6 sup{|E|2}min j,δ{((θλ2)conv)
δ
j }

. (73)

Therefore, once the intended use of the device has been fixed (i.e. fixed V which satisfies
(67) and, consequently, also sup{|E|2} is fixed inside the device for a specific industrial or
biomedical application), in conditions of non-convergence, all materials whose T satisfies
(73) must be avoided. Conversely, if the membrane constituent material has been selected a
priori (i.e. a particular value of T has been selected), in conditions of non-convergence, the
intended uses of the device that satisfy

V 4

sup{|E|2} <
min j,δ{((θλ2)conv)

δ
j }d6T 2

8ε0L4 (74)

are not allowed. Finally, we observe that in (74) the presence of fringing field effects are
incorporated intomin j,δ{((θλ2)conv)

δ
j . In other words, the concavity of themembrane profile,

together with the geometric parameters of the device and the mechanical tension of the
membrane, contribute to determining the operating electrostatic parameters of use of the
device.

8.4 Electromechanical characteristics of themembranematerial and operational
parameters relating to any ghost solutions

In this case, if min j,δ{((θλ2)conv)
δ
j }limit represents the value of θλ2, in convergence condi-

tions, below which we have ghost solutions, (69), in presence of ghost solutions, it satisfies
the following condition:

min
j,δ

{((θλ2)conv)
δ
j } <

8ε0L4V 4

d6T 2 sup{|E|2} < min
j,δ

{((θλ2)conv)
δ
j }limit (75)

from which

d6T 2 min j,δ{((θλ2)conv)
δ
j }

8ε0L4 <
V 4

sup{|E|2} <
d6T 2 min j,δ{((θλ2)conv)

δ
j }limit

8ε0L4 . (76)

Then, having chosen the intended use of the device, i.e., having fixed V satisfactorily, the (67)
and therefore also sup{|E|2} (in other words, having fixed a particular industrial or biomedical
application), T of the material constituting the membrane must satisfy the (76). Conversely,
from (75), we can write the following:

d6 min j,δ{((θλ2)conv)
δ
j } sup{|E|2}

8ε0L4V 4 <
1

T 2 <
d6 min j,δ{((θλ2)conv)

δ
j }limit sup |E|2

8ε0L4V 4 . (77)
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Then, once the membrane material has been chosen (that is, once T , V has been selected,
in addition to satisfying the condition (67), together with sup{|E|2}, it must also satisfy the
condition (77).

Remark 19 It is noteworthy that the range of θλ2 characterized by the presence of ghost
solutions represents, electrostatically, a problem because the profiles achieved numerically,
in fact, do not satisfy the analytical model. Thus, this range is required to be as small as
possible. Therefore, from (76) we can easily write the following:

(min
j,δ

{((θλ2)conv)
δ
j } − min

j,δ
{((θλ2)conv)

δ
j }limit) <

V 4

sup{|E|2}
1

T 2

8ε0L4

d6
. (78)

Particularly, (78) shows promising potential. In fact, once the geometry of the device is fixed
(ie, fixed L and d), the higher the membrane voltage T , the lower the range of values of θλ2

at risk of having ghost solutions. Therefore, rigid membranes do not allow large margins for

the presence of ghost solutions. Moreover, the higher the V 4

sup{|E|2} ratio, the greater the area
dedicated to ghost solutions. In other words, once the geometry of the device is fixed, the
intended uses that require high values of V have higher risks of obtaining ghost solutions.
In these cases, the device can be used in all those applications where reduced voltage values
ââare required to avoid the presence of ghost solutions.

8.5 Electromechanical characteristics of themembranematerial and operating
parameters in conditions of convergence and in the absence of ghost solutions

Finally, if V (2), sup{|E|} and T satisfy

8ε0L4V 4

d6T 2 sup{|E|2} > min
j,δ

{((θλ2)conv)
δ
j }limit (79)

we are working in conditions of convergence without ghost solutions. So, given the values
of V and sup{|E|2} (once V satisfies (67)), T must satisfy the following condition:

1

T 2 >
d6 min j,δ{((θλ2)conv)

δ
j }limit sup{|E|2}

8ε0L4V 4 . (80)

Vice-versa, once T is fixed, V and sup{|E|2} must satisfy (80).

Remark 20 (79) is a limitation on the range of θλ2 intended for ghost solutions. Particularly,
once the geometry of the device is fixed (i.e., once L and d are fixed) membranes charac-
terized by high mechanical tensions T limit the presence of ghost solutions. On the other
hand, intended uses of the device that require high values of V increase the risks of ghost
solutions. Therefore, in these cases, MEMS devices with high stiffness membranes destined
for applications are to be preferred if the electrical operating voltages are reduced.

9 Conclusions and perspectives

In this paper, the profile of the membrane, u(x), in a membrane MEMS device in dimension-
less 1D geometry was recovered when an external electrical voltage V was applied. Inside

2 Obviously, V must also satisfy (67).
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the device, once V is applied, the membrane deforms toward the plate subjected to a higher
potential. Moreover, V , inside the device generates E locally orthogonal to the tangent line
to the membrane at the same point. Considering that the greater |E|, the more the membrane
bends, it was assumed that |E| is locally proportional to the curvature K (x, u(x)) of the
membrane. Furthermore, to consider the fringing field phenomenon, an addend was incor-
porated in the model, weighted by a parameter δ which was found to belong to the interval
[0, 2), depending on |u′(x)|2. This considers the deformation of the E lines of force near the
edges of the device. For the already known algebraic condition ensuring the existence of the
solution for the problem under study, in this paper, an algebraic conditionwas obtained from a
new algebraic condition ensuring the uniqueness of the solution depending on the electrome-
chanical properties of the membrane material which, after careful analysis, was stronger
than the condition of existence. The profile of the membrane was recovered using different
numerical procedures (shooting, Keller-Box, III/IV stage Lobatto IIIA formulas) whose per-
formances were compared with each other, also obtaining, the respective intervals of θλ2

(which manages the amplitude of the concavity of the deformed membrane) and ensuring
the convergence. Finally, the link between the electromechanical properties of the membrane
material and the operating parameters were obtained both in conditions of non-convergence
and convergence with and without ghost solutions. From the analysis of the results, it is evi-
dent that the performances of the numerical procedures used are equivalent. This is because
any δ and for each range of θλ2 ensuring convergence, the discrepancy in behavior is neg-
ligible. It is noteworthy that as the effect due to the fringing field increases (increase of δ),
the areas in the θλ2 − H plane characterized by the presence of ghost solutions becomes
more extensive but nevertheless limited. IT thus allows contained real displacements of the
membrane (low values of H ) that can still modify the electrostatic capacity of the device
with respect to the condition in which the membrane is at rest. This makes the device studied
attractive for many biomedical applications such as, for example, devices for the diffusion
of drugs via intravenous in which sudden deformations of the membrane of a small entity
are required. Finally, the link between the electromechanical properties of the membrane
material and the operating parameters does not depend on δ. In other words, this bond is
independent of the deformation of the E lines of force near the edges of the device. This
makes it possible to use this link as a valid tool which, starting from the type of device,
determines its intended use and vice versa.
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