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Abstract A theory of the Erigen’s differential

nonlocal beams of (isotropic) elastic material is

prospected independent of the original integral for-

mulation. The beam problem is addressed within a

Cð0Þ�continuous displacement framework admitting

slope discontinuities of the deflected beam axis with

the formation of bending hinges at every cross section

where a transverse concentrated external force is

applied, either a load or a reaction. Concepts sparsely

known from the literature are in this paper used within

a more general context, in which the beam is

envisioned as a macro-beam whose microstructure is

able to take on a size dependent initial curvature

dictated by the loading and constraint conditions.

Indeed, initial curvature seems to be an effective

analytical tool to inject size effects into micro- and

nano-beams. The proposed theory is applied to a set of

benchmark beam problems showing that a softening

behaviour is always predicted without the appearance

of paradoxical situations. Comparisons with other

theories are also presented.

Keywords Nonlocal elasticity � Beam theory �
Euler–Bernoulli beam � Microstructure in beams �
Paradoxes in beams

1 Introduction

Eringen [1] proposed a method to solve integro-

differential elasticity problems by means of a differ-

ential equation whose Green function coincides with

the kernel of the integral equation. Eringen et al. [1–7]

mainly applied the proposed differential method to

problems with unbounded domains (as for instance

wave propagation, crack tip singularities, dislocation

analysis problems) whereby the asymptotic conditions

at infinity, featured by evanescent values of the

response functions, make the differential and the

integral methods lead to the same solution. In the case

of bounded domains, the differential method-based

solution may coincide with the integral method-based

one but only if the former solution satisfies—in

addition to the standard boundary conditions—some

extra nonlocality boundary conditions dictated by the

integral method-based solution. This latter assessment

is the result of recent research work within beam

mechanics [8, 9], though roots of it were already
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known within the mathematical world of integral

equation theories [10].

Always with reference to bounded domains, let us

recall that, on the one hand, the Eringen’s differential

method applied to a (fully) nonlocal Euler–Bernoulli

(EB) beam model leads to a fourth order governing

differential equation in the beam deflection w as [11]

w0000ðxÞ ¼ 1

D
pðxÞ � ‘2p00ðxÞ
� �

ð0\x\LÞ ð1Þ

here the primes denote derivatives with respect to the

abscissa x, whereas D ¼ EI ¼ bending stiffness,

pðxÞ ¼ distributed load, ‘ ¼ nonlocality parameter.

Equation (1), together with the inherent four standard

boundary conditions, leads to a unique solution of the

beam problem, but this solution is generally different

from the solution of the nonlocal integral problem due

to the impossibility to accommodate the mentioned

extra boundary conditions [8, 9] (a sixth order

differential equation would be needed to this purpose).

This means that the Eringen’s differential nonlocal

method, though different from the nonlocal integral

method, possesses a capacity of its own to predict size

effects. These effects, arising from the existence of a

length scale parameter ð‘Þ, make the response of the

nonlocal beam exhibit either an increased stiffness

feature (stiffness hardening, or simply stiffening), or

instead a decreased stiffness feature (stiffness soften-

ing, or simply softening), the more the larger is ‘.

Therefore the mentioned Eringen’s method constitutes

a method apart in which size effects are carried in by

the applied distributed load, but the properties of this

method are perhaps not well understood yet.

On the other hand, the mentioned nonlocality

boundary conditions read as [8]

Mð0Þ � ‘M0ð0Þ ¼ MðLÞ þ ‘M0ðLÞ ¼ 0 ð2Þ

These, being in evident contrast with the boundary

equilibrium conditions, cannot be satisfied and there-

fore the integral method likely does not admit a

solution; in other words, the governing integral

equation constitutes a Fredholm integral equation of

the first kind, known to lead to a ill-posed boundary-

value problem with a multiple solution, or no solution

at all [10].

Peddieson et al. [11] first used the Eringen’s

differential method to address nonlocal beams simu-

lating sensor and actuator devices within nanotech-

nologies, using for this purpose (1) in association with

the standard boundary conditions. It was found that

Eq. (1) leads to a (unique) solution which predicts size

effects of different types, either softening or stiffening,

with increasing ‘, apparently without a precise rule. It

was also found the existence of paradoxical beam

cases, like the cantilever beam under a tip concen-

trated load, in which the obtained solution coincides

with the classical solution, namely no size effects are

predicted by the obtained solution. Another paradox-

ical case is the cantilever beam under uniform load

which is usually referred to as a stiffening beam case,

but surprisingly no mention is given from the literature

about the beam’s tendency to deform raising up

against the applied load at higher values of the

nonlocality parameter. Several other paradoxical

beam cases were reported in the literature

[9, 17, 25, 39].

The work by Peddieson et al. [11] stimulated a large

amount of research which essentially developed along

two streams. A first stream includes a huge amount of

works in which the differential method is used to solve

bending, buckling and vibration problems for nonlocal

beams and plates, for which we make reference to the

review papers [12–14]. The other stream includes

works in which the inconsistencies of the nonlocal

integral and differential theories are in some way

overcome, often by modifying the constitutive model.

The two-phase local/nonlocal constitutive model pre-

viously prospected by Eringen [4] and subsequently

discussed by Polizzotto [15], was used either within

the integral formulation with which the governing

equation turns out to be a Fredholm integral equation

of the second kind [16–20], or within the differential

formulation with which the governing equation is a

sixth order differential equation and thus all the

boundary conditions (including the extra nonlocality

ones) were accomodated [21–24]. A hybrid constitu-

tive model in which the nonlocal integral model is

mixed with the strain gradient one—often also called

‘‘nonlocal strain gradient’’ model—was advanced by

[25], then developed by [26–30], whereby a constitu-

tive integral equation was used, having as driving

variables the strain and strain gradient. A third group

of works operates with the Eringen’s differential

constitutive model itself and reports solutions in which

the beam deflection has slope discontinuities at points

of application of concentrated loads with size effects

in all beam cases, including the so-called paradox

cases [31–33]. In addition, a bending hinge was
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introduced by [33] at every clamped end(s) of the

beam as well as within the beam axis, with which

bending hinge lattice based solutions were provided.

The last quoted papers [31–33] provide solutions of

the differential nonlocal beam problem out of the usual

continuity framework of elasticity theory, with the

incorporation of bending hinges; all this by remaining

within the original Eringen’s nonlocal differential

constitutive model. The obtained beam deflections

turn out to be size dependent in all cases, including the

paradoxical cases. Indeed, this result seems to be the

best one for its capacity to better understand the

Eringen’s differential nonlocal beam model and to

solve the paradox beam cases. However, a constitu-

tive-like relationship between the bending hinge

mechanism and the related concentrated load, valid

also for hinges located at the beam constrained end(s),

is still lacking, hence the paradoxical beam cases seem

to be not completely solved yet.

In the following, we intend to reconsider and

rediscuss the above issues of the literature, in the

purpose to build a coherent theory for nonlocal beams

governed by Eq. (1), but useful to predict size effects

without paradoxes, nor other drawbacks.

1.1 Objectives of the present work

In the present paper our concern will be the differential

Eq. (1) with the appropriate four standard boundary

conditions. The solution of Eq. (1) is the response of

the nonlocal beam to the load p augmented by an

additional fictitious size dependent load

pð0Þ ¼ �‘2p00ðxÞ. However, by the existence of para-

dox cases we know that the simulation of size effects

by the extra load pð0Þ is not always effective, at least

within the classical framework of continuous dis-

placement solutions. Since p‘2=D is dimensionally an

inverse length, we may interpret this latter term to be

proportional to a size dependent initial (inelastic)

curvature, say vð0Þ, so that (1) may be rewritten in the

form

w0000ðxÞ ¼ 1

D
pðxÞ � v00ð0ÞðxÞ ð0\x\LÞ ð3Þ

In this way the solution turns out to be the response of

the beam to the load p and to the initial curvature vð0Þ
carring in size effects. The passage from (1) to (3) is

more than a formal transformation, because the

constitutive-like relation between vð0Þ and p holds

true even if the load is a concentrated force P, no

matter if active or reactive, in which case vð0Þ
transforms into the relative rotatiom H of a bending

hinge, with a consequent wider class of state variables

to describe the beam strain/stress states. All this can be

reasonably cast within the mechanics framework of a

beam whose microstructure undergoes an initial

(inelastic) curvature vð0Þ leading to solution displace-

ments belonging to the class of C0�continuous

functions. Furthermore, the so obtained C0 solutions

always resort to a softening behavior of the beam

model, without paradoxes, nor other behavioral

shortcomings, which means that the Eringen’s differ-

ential nonlocal method correspondingly gains the

effectiveness of a consistent size effect analysis

method.

The theory proposed here above recalls an analogy

principle known from the literature [34]. According to

this principle, the response of a nonlocal EB beam

subjected to a distributed load p(x) computed through

the Eringen’s differential nonlocal method—that is,

solving (1)—coincides with the response of the same

beam considered of local type and subjected—in

addition to the load p(x)—to the inelastic curvature

vinðxÞ � vð0ÞðxÞ. The validity of this principle is here

confirmed and extended to a wider context whereby

concentrated forces, either active or reactive, are also

considered among the external actions, whereas

bending hinges are correspondingly considered as a

particular manifestation of the inelastic deformation of

the beam.

The outline of the subsequent developments within

this paper are as follows. In Sect. 2, the beam model

with microstructure is presented together with the

concept of initial (inelastic) curvature taken on by the

microstructure, along with the concept of bending

hinge forming up at any cross section where a

concentrated load is applied (but no discontinuity of

the deflection curve is generated by a concentrated

couple). In Sect. 3, the solution method is presented.

Section 4 is dedicated to the application of the

proposed theory, as well as to comments and compar-

isons. Conclusions are drawn in Sect. 5.

The notation will be defined in the text at the first

appearance of the related symbols.
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2 EB beam model with microstructure

As explained in the preceding section, the Eringen’s

differential nonlocal EB beam model is based on a

Helmholtz differential equation whose Green function

coincides with the kernel function of the related

integral constitutive equation. This basic Helmholtz

equation may be cast as

MðxÞ � k‘2M00ðxÞ ¼ DvðxÞ ð4Þ

where vðxÞ denotes the beam’s curvature and k is a

(dimensionless) constant (0\k\1). Accounting for

the equilibrium equation, M00ðxÞ þ pðxÞ ¼ 0, (4) loses

its differential character and takes on an algebraic

form as

MðxÞ þMð0ÞðxÞ ¼ DvðxÞ ð5Þ

where Mð0ÞðxÞ :¼ k‘2pðxÞ and thus the size depen-

dence of (4) is saved through the initial bending

moment Mð0Þ carrying in size effects.

A further transformation of (5) is obtained by

introducing the quantity

vð0ÞðxÞ :¼
Mð0ÞðxÞ

D
¼ k‘2

D
pðxÞ ð6Þ

which coincides with the initial (inelastic) curvature

mentioned before. Then, (5) can be rewritten in the

form

MðxÞ ¼ D½vðxÞ � vð0ÞðxÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
vðeÞ

� ¼ DvðeÞðxÞ ð7Þ

Since the magnitude of vð0Þ increases with k, this

constant characterizes the relative deformation of the

microstructure with respect to the continuum, thus k is

referred to as the compliance coefficient of the

microstructure. For k ! 0 it is vð0ÞðxÞ � 0, that is,

no relative deformation of the microstructure is

allowed to occur and Eq. (7) takes on the form of

classical elasticity correspondingly, i.e.

MðxÞ ¼ DvðxÞ.
Equation (7) is the constitutive equation of an EB

beam model with microstructure, whereby the bending

moment M is proportional to the net (elastic) curvature

vðeÞ :¼ v� vð0Þ, difference between the total (com-

patible) curvature v ¼ �w00 and the initial (inelastic)

curvature vð0Þ. Equation (7) recalls an analogous

relation given by [34] within an analogy principle,

but here (7) has a wider application domain involving

concepts as concentrated forces, either active or

reactive, and concomitant bending hinges with con-

sequent slope jumps in the deflection curve w(x).

Also, the bending hinge herein introduced appeals

to the plastic hinge of limit analysis of beam structures

in bending, but these two types of hinges are

cenceptually different from each other. In fact, a

plastic hinge obeys a threshold law and is irreversible,

whereas in contrast a bending hinge obeys a one-to-

one reversible load-curvature law (6) which is com-

parable to a thermal-like law, but not to a Hooke law

whereby deformation is related to internal forces, as in

(7).

As a rule, we shall operate taking k somewhere

within the interval (0, 1), but a precise criterion to

calibrate the value of k is lacking for the moment.

Heuristically, we may just conjecture that the

microstructure’s relative deformation with respect to

the macro-beam, and thus the k coefficient as well, be

the smaller the higher is the hyperstatic degree of the

beam, such that k may be fixed, for instance, as k ’
1=2 for a statically determinate beam, and k ’ 1=4 for

a fully clamped beam.

2.1 Microstructure

The beam’s microstructure is conceived as a contin-

uous set of micro-cell elements as in [35, 36]. Here the

cells are one-dimensional beam-like (local-type) ele-

ments of equal length, say 2d, every element being

capable to deform with respect to the beam matrix.

The generic element is appended to the beam matrix,

for instance having the centroid points of the end cross

sections simply supported upon the beam matrix

(segment a-b in Fig. 1). The term ‘‘macro-beam’’ is

used here with the same meaning as the term

‘‘continuum’’ within 3D, that is, to indicate the beam

together with the microstructure; whereas the term

‘‘beam matrix’’ indicates what remains of the macro-

beam after removing the microstructure.

The load p acts in a two-fold manner, namely: i)

Transmitted to the cell elements through the macro-

beam, p acts as a thermal-like load inducing an initial

(inelastic) curvature vð0Þ ¼ k‘2p=D of the cell ele-

ments in accord with (6); ii) The load p also induces—

through the bending moment M—a net (elastic)
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curvature vðeÞ of the macro-beam itself in accord with

(7).

Assuming pðxþ nÞ ’ pðxÞ within every cell, vð0Þ
can there be treated as constant hence the initial

deflection of the generic cell—written to within a rigid

translation—is given by

vðnÞ ¼ 1

2
k‘2pðd2 � n2Þ=D; ð�d� n� dÞ ð8Þ

which describes the parabola a-c-b of Fig. 1.

As vð0Þ ¼ 1
2
k‘2pd2=D, an upward translation of the

solid curve a-c-b opposite to v(0) leads to the dashed

curve a0-c0-b0 of equation

v0ðnÞ ¼ vðnÞ � vð0Þ ¼ � 1

2
k‘2pn2=D ð9Þ

This curve is the initial pre-strained configuration of

the cell which after application of the load p will

adhere to the axis of the beam matrix, so losing its

initial deformation.

The relative (anticlockwise) rotation of the end

cross sections of the beam-like cell in the initial

deformation state is given by

H ¼ �½v0ðnÞ�þd
�d ¼

k‘2

D
2dp ¼ UP ð10Þ

where P ¼ 2dp is the total (downward) load applied

upon the cell, whereas U ¼ k‘2=D is a constant

featuring the compliance of the hinge. On letting p

and d vary, but keeping P fixed, H remains constant

even for d ! 0 and p ! 1, it therefore holds good

also in the presence of a concentrated load of intensity

P. Notably, (10) applies to all the cell elements of the

beam, including those located at the beam ends where

there may exist a constraint giving rise to a reacting

(transverse) concentrated force.

It is worthwhile to observe that in virtue of (10),

which expresses H as the jump of the first derivative of

the (small) deflection v of the inherent beam-like cell,

the hinge relative rotation H must be of the same order

of magnitude as twice that of v0, OðjHjÞ � 2Oðjv0jÞ. In

other words, H must satisfy the inequality

jHj ¼ kjPj‘2

D
\\1 ð11Þ

We shall return to this point next (Sect. 4.5).

2.2 Micro-beam

For d ! 0, the continuous beam-like cell system can

be interpreted as a micro-beam possessing the same

properties of the cell system. Namely, it undergoes an

initial inelastic (thermal-like) curvature vð0ÞðxÞ ¼
k‘2pðxÞ=D at points x where a distributed load is

applied, but a relative rotation Hi ¼ k‘2Pi=D (bending

hinge) at points xi where a concentrated load Pi is

applied. As shown in next subsection, loading couples,

either distributed or concentrated, do not cause effects

upon the microstructure, their possible presence is thus

ignored for the moment.

The above is illustrated in Fig. 2, where the macro-

beam AB is subjected to concentrated loads P1 and P2

at points C1, C2, respectively, to a uniform loap p

distributed within C1 and C2, along with the concen-

trated (upward) reacting forces VA and VB at the ends

A, B, respectively. Whether the end cross sections are

clamped or simply supported is irrelevant for the

present reasoning. The initial deformation vð0Þ of the

micro-beam is—to within a rigid motion—uniquely

described by a (conventional) initial deflection of the

beam in the form of a polyline (with a parabolic side

under the uniformly distributed load) like the polyline

aA0C0
1c C0

2B0b of Fig. 2, showing as many hinges as

the number of concentrated forces. Note that this

polyline is the effect of the initial deformation upon

the beam rendered statically determinate. This implies

that in general no rigid motion can exist such as to

Fig. 1 Geometrical sketch illustrating a beam-like cell element

a-b, which is simply supported by the beam matrix. The load p
transmits itself through the macro-beam to the micro-structure

causing the beam element to undergo an initial pre-strained

curvature vð0Þ ¼ ðk‘2=DÞp, whereas the macro-beam deforms

according to the constitutive law M ¼ Dðv� vð0ÞÞ
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make the initial deflection line compatible with the

beam’s constraints at A and B, except that the beam is

statically determinate. Since by global equilibrium

VA þ VB � P1 � P2 � pL1 ¼ 0, it results that the rel-

ative rotation of the beam ends is zero, that is, the end

sides aA0 and B0b of the polyline must be parallel to

each other.

VA and VB must be evaluated through equilibrium

considerations, as better explained shortly in Sect. 4.

2.3 No displacement jump under a concentrated

couple

The features of the micro-beam illustrated above do

not consider the possible existence of concentrated

couples within the loading upon the beam. Here we

show that concentrated couples do not produce any

discontinuity of the micro-beam initial configuration.

For this purpose, let the macro-beam be subjected to

two concentrated loads, namely a downward load P at

x0 � e and an upward load P at x0 þ e, Fig. 3. The

initial configuration of the beam is the trilateral line

abcd with ab parallel to cd and the bending hinges at

the application points of the concentrated loads. On

letting e ! 0, P ! 1, but 2eP ¼ C ¼ constant, at the

limit the trilateral line abcd tends to the broken line

ab0c0d. The transverse segment b0c0 of length ‘2C=D

Fig. 2 Geometrical sketch showing a beam subjected to two

concentrated loads P1, P2 at points C1, C2, respectively, to a

uniform load p distributed within C1 and C2, along with the

concentrated reacting forces at the constrained ends A, B where

non-zero bending moments are allowed to occur. The initial pre-

strained deformation includes four bending hinges at points A,

C1, C2, B. Since VA þ VB � P1 � P2 � pL1 ¼ 0, then the

relative rotation of the end outer cross sections must be

vanishing, therefore the (conventional) initial configuration of

the beam is a polyline like aA0C0
1cC0

2B0b, with extreme sides aA0

and B0b parallel to each other and a parabolic side under the

uniformly distributed load p

Fig. 3 Geometrical sketch used to show that no discontinuity is

allowed to arise at a point where a concentrated couple is

applied, which is a direct consequence of the shear rigidity of the

EB beam model
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represents a displacement jump at x0 due to the

concentrated (anticlockwise) couple C applied at x0.

Since this latter deformation mechanism is of pure

shear nature, and since shear strain is forbidden within

the context of the present EB beam model, it follows

that the initial configuration of the micro-beam cannot

take on the broken form ab0c0d, but it instead will be

some continuous line (as e.g. the dotted line b1c1 of

Fig. 3). Therefore, concentrated couples are allowed

to play as external actions and thus to have an

influence on the beam’s response, but they do not

produce effects upon the microstructure.

3 The solution method

For a better understanding of the present method, it

may be useful to recall that the boundary ends of a

nonlocal beam must be thought of as two boundary

layers each of small length, say e, such that the

effective length of the macro-beam is Lþ 2e and the

beam ends are located at x ¼ �e and x ¼ Lþ e. Also,

differentiations must be intended in a distribution

sense.

For this purpose, the symbology exploited by

[33, 37] is adopted, in which a concentrated force P

applied at a point x0 is transformed into a distributed

load using a Dirac delta as Pdðx� x0Þ. Furthermore,

the symbol h�i is the Macaulay symbol, that is,

hui ¼ ðuþ jujÞ=2 ¼ uHðuÞ, whereasHð�Þ is the Heav-

iside symbol, namely HðxÞ ¼ 1 if x[ 0, HðxÞ ¼ 0

otherwise, such that dðxÞ ¼ H0ðxÞ, HðxÞ ¼ hxi0.
The beam model under consideration obeys the

constitutive Eq. (7) which, after a double differenti-

ation and recalling that v ¼ �w00, leads to the

displacement governing Eq. (3). As an illustrative

example we consider a simple beam of length L

subjected to a distributed load p(x), to concentrated

loads Pi ði ¼ 1; :::;mÞ applied at points xi and to a

concentrated couple C0 at x0, 0\x0\L. The beam has

some constraints at the ends giving rise to (upwards)

concentrated reaction forces VA, VB. The solution of

the beam problem for assigned static loads is derived

through Eq. (3) here reported again in the following

shape, where the presence of concentrated forces and

couples is explicitly indicated through the Dirac delta

distribution d, namely,

w0000ðxÞ¼ 1

D
pðxÞþ 1

D

�Xm

i¼1

Pidðx�xiÞþC0d
0ðx�x0Þ

�
�v00ð0ÞðxÞ

ð12Þ

By (7), the bending moment M(x) associated to (12) is

MðxÞ ¼ �Dw00ðxÞ � Dvð0ÞðxÞ ð13Þ

Moreover, as stated before, the initial curvature vð0Þ is

uniquely determined from the external applied forces,

either active or reactive. Therefore, we can write

vð0ÞðxÞ as

vð0ÞðxÞ¼
k‘2

D
pðxÞ

|fflfflfflffl{zfflfflfflffl}
distributed

initial

curvature

þ k‘2

D

�Xm

i¼1

Pidðx� xiÞ�VAdðxÞ�VBdðx�LÞ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðmþ2Þbendinghinges

ð14Þ

Equation (14) predicts a bending hinge at every point

where a concentrated force, either active or reactive, is

applied, therefore the couple C0 is not there involved.

The reactive forces VA and VB are given by

VA ¼ M0ð0þÞ; VB ¼ �M0ðL�Þ ð15Þ

and satisfy the global equilibrium equation

VA þ VB ¼
Xm

i¼1

Pi þ
Z L

0

pðxÞdx ð16Þ

Next, through the relation vð0ÞðxÞ ¼ �w00
ð0ÞðxÞ, Eq. (14)

can be integrated to get what can be called conven-

tional initial deflection of the beam, namely,

wð0ÞðxÞ ¼
k‘2

D

�
VAhxi þ VBhx� Li � f 00ðxÞ

�
Xm

i¼1

Pihx� xii
� ð17Þ

where f(x) is a particular function satisfying the

equation f 0000ðxÞ ¼ pðxÞ 8x 2 ð0; LÞ. Equation (17)

gives—to within a rigid motion—the displacement

effects produced by the application of the initial

curvature upon the beam rendered statically

determinate.
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Next, substituting (14) into (12) and by integration

of (12) we can write:

wðxÞ ¼ 1

6
C1x

3 þ 1

2
C2x

2 þ C3xþ C4

þ 1

D

�
f ðxÞ þ 1

6

Xm

i¼1

Pihx� xii3

�

þ C0

2D
hx� x0i2 þ wð0ÞðxÞ

¼ 1

6
C1x

3 þ 1

2
C2x

2 þ C3xþ C4

þ 1

D

�
f ðxÞ � k‘2f 00ðxÞ

�
þ C0

2D
hx� x0i2

þ 1

6D

Xm

i¼1

Pihx� xii3

þ k‘2

D

�
VAhxi þ VBhx� Li �

Xm

i¼1

Pihx� xii
�

ð18Þ

where C1;C2;C3;C4 are some constants. Substituting

(18) into (13) gives

MðxÞ ¼ � DðC1xþ C2Þ � f 00ðxÞ

�
Xm

i¼1

Pihx� xii � C0Hðx� x0Þ
ð19Þ

and thus, by (15), we have

VA ¼ �DC1 � f 000ð0Þ; VB ¼ DC1 þ f 000ðLÞ þ
Xm

i¼1

Pi

ð20Þ

whereby the global equilibrium of the beam is

satisfied, namely,

VA þ VB ¼ �f 000ð0Þ þ f 000ðLÞ þ
Xm

i¼1

Pi

¼
Z L

0

pðxÞ dxþ
Xm

i¼1

Pi

ð21Þ

At this point it remains to evaluate the four constants

C1;C2;C3;C4 for which the boundary conditions must

be used. The resulting procedure will be illustrated in

next section dedicated to applications. What has to be

pointed out here is that the applied couple C0 has an

influence on the deflection w(x) and the bending

moment M(x) of the beam, but not upon the

microstructure’s deformation (both vð0Þ and wð0Þ do

not depend on C0).

In concluding the present section, we observe that

the proposed method can be extended to beams in

vibration and buckling, but this extension is left open

for the moment. For easy reference, the beam model

governed by the above relations will be called shortly

as ‘‘C0-beam model’’.

4 Applications to benchmark beam cases

A few benchmark beam cases are addressed as

illustrative examples. The procedure presented in

Sect. 3 is followed hereafter.

4.1 Cantilever beam under point load

A cantilever beam is here considered, which is

subjected to a concentrated load P at some interme-

diate point C as sketched in Fig. 4a. There are two

concentrated forces, namely, a downward force P

applied at point C of abscissa �x\L, and an upward

reacting force, say VA, at the left end A. Therefore,

there arise two bending hinges at points A and C,

respectively, such that the related initial inelastic

curvature vð0Þ reads

vð0ÞðxÞ ¼
k‘2

D

�
� VAdðxÞ þ Pdðx� �xÞ

�
ð22Þ

By global equilibrium we have VA ¼ P. Equation (22)

can be integrated to obtain a conventional initial

deflection of the beam wð0ÞðxÞ counterpart of (17), that

is,

wð0ÞðxÞ ¼
k‘2P

D

�
hxi � hx� �xi

�
ð23Þ

which is sketched in Fig. 4b (solid line). As the beam

is statically determinate, the initial deflection wð0ÞðxÞ
is compatible.

The C0 solution of the beam problem is obtained by

integration of the governing differential equation

w0000ðxÞ ¼ 1

D
Pdðx� �xÞ � v00ð0ÞðxÞ ð24Þ

together with (13) and taking into account (22) along

with the boundary conditions
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wð0Þ ¼ w0ð0�Þ ¼ 0; Mð�xÞ ¼ 0; M0ð�x �Þ ¼ P

ð25Þ

Written for the interval (0, L), the C0 deflection proves

to be

wðxÞ¼

� P

6D
x3þ P�x

2D
x2

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
classicalsolutionwcðxÞ

þk‘2P

D
x

|fflffl{zfflffl}
wð0ÞðxÞ

ð0�x� �xÞ

� P

6D
�x3þ P

2D
�x2x

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
wcð�xÞþwc0ð�xÞðx� �xÞ

þk‘2P

D
�x

|fflffl{zfflffl}
wð0Þð�xÞ

ð�x�x�LÞ

8
>>>>>>>><

>>>>>>>>:

ð26Þ

whereas the bending moment is given by

MðxÞ ¼
�Pð�x� xÞ ð0� x� �xÞ

0 ð�x� x� LÞ

8
><

>:
ð27Þ

Since wð0ÞðxÞ is compatible, then we have

wðxÞ ¼ wcðxÞ þ wð0ÞðxÞ, whereas the bending moment

coincides with its classical form.

For �x ¼ L (26) and (27) become respectively:

wðxÞ ¼ P

D
� 1

6
x3 þ L

2
x2

� �
þ k‘2P

D
x ð0� x� LÞ

ð28Þ

MðxÞ ¼ � PðL� xÞ ð0� x� LÞ ð29Þ

In Fig. 4c the C0 solution w(x) of (28) is reported as a

function of x/L, normalized with respect to the

maximum deflection wcðLÞ ¼ PL3=3D and for differ-

ent values of k ¼ ‘=L (= 0., 0.25, 0.5, 0.75, 1.).

Analogously, in Fig. 4d the normalized maximum C0

deflection g :¼ wðLÞ=wcðLÞ is plotted as a function of

k. The value k ¼ 0:5 has been used for the plots of

Fig. 4c, d. We remark that the solution (26) differs

from the analogous solution by [33], where no bending

hinge is considered at point C where the load P is

applied. For �x ¼ L, the classical paradox beam case is

obtained, but without any paradox therein. A softening

behavior is exhibited by the beam (gðkÞ[ gð0Þ 8
k 6¼ 0).

4.2 Cantilever beam under uniform load

A cantilever beam under a uniformly distributed load p

is here considered (Fig. 5a), which is usually referred

to as the stiffening beam case. There is only one

C 0 solution

Classical and Peddieson et al. (2003) solutions

(a)

(b)

(c)

(d)

Fig. 4 Cantilever beam under point loadP at point C of abscissa

�x� L: a Geometric and loading scheme; b Conventional

(compatible) initial deflection wð0ÞðxÞ; c Normalized C0

deflection wðxÞ=wc
max plotted as a function of x/L for �x ¼ L

and different values of k ¼ ‘=L ¼ 0:; 0:25; 0:5; 0:75; 1:; d

Normalized maximum C0 deflection gðkÞ ¼ wðLÞ=wcðLÞ plot-

ted as a function of k. (The value k ¼ 0:5 has been used)
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(upward) concentrated force, VA ¼ pL at the clamped

end A, hence only one bending hinge at the same point.

The initial curvature is expressed as

vð0ÞðxÞ ¼
k‘2

D

�
� pLdðxÞ þ p

�
ð30Þ

This, by integration, gives the (compatible) conven-

tional initial deflection wð0ÞðxÞ, namely,

wð0ÞðxÞ ¼
k‘2

D
pLhxi � 1

2
px2

� �
ð31Þ

which is reported in Fig. 5b. Proceeding as in the

previous case and considering the boundary conditions

wð0Þ ¼ w0ð0�Þ ¼ 0; MðLÞ ¼ M0ðLÞ ¼ 0 ð32Þ

the C0 deflection, written for the interval (0, L), reads

as

wðxÞ ¼ p

D

1

24
x4 � L

6
x3 þ L2

4
x2

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
classical solutionwcðxÞ

þ k‘2p

2D
2L� xð Þx

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
wð0ÞðxÞ

ð33Þ

which asserts a softening behavior of the beam. Also it

is

MðxÞ ¼ � 1

2
p L� xð Þ2 ð34Þ

In Fig. 5c the normalized C0 deflection wðxÞ=wcðLÞ is

plotted as a function of x/L for different values of k ¼
‘=L (= 0., 0.25, 0.5, 0.75, 1.), whereas in Fig. 5d the

maximum C0 deflection is plotted as a function gðkÞ.
Again the value k ¼ 0:5 has been used. We observe

that the C0 solution (33) coincides with the analogous

one by [33], which was derived adding to the classical

solution the effects of relaxing the kinematics at the

clamped end. Again a softening behavior is exhibited

by the beam (gðkÞ[ gð0Þ 8 k 6¼ 0).

4.3 Clamped-pinned beam under uniform load

Here, a clamped-pinned beam under uniformly dis-

tributed load p is considered (Fig. 6a). As there are

two concentrated forces, namely the reactions VA and

VB at the beam ends, there arise two bending hinges

correspondingly, hence the initial curvature reads

C 0 solution

Classical solution

Peddieson et al. (2003) solution

(a)

(b)

(c)

(d)

Fig. 5 Cantilever beam under distributed uniform load p: a
Geometric and loading scheme; b Conventional (compatible)

initial deflection wð0ÞðxÞ; c Normalized C0 deflection

wðxÞ=wcðLÞ plotted as a function of x/L for different values of

k ¼ ‘=L ¼ 0:; 0:25; 0:5; 0:75; 1:; d Normalized maximum C0

deflection gðkÞ ¼ wðLÞ=wcðLÞ plotted as a function of k. (The

value k ¼ 0:5 has been used)
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vð0ÞðxÞ ¼
k‘2

D

�
p� VAdðxÞ � VBdðx� LÞ

�
ð35Þ

The related conventional initial deflection proves to be

expressed as

wð0ÞðxÞ ¼
k‘2

D
VAhxi þ VBhx� Li � 1

2
px2

� �
ð36Þ

which is plotted in Fig. 6b (solid line). As the beam

under consideration is statically indeterminate, the

conventional initial deflection wð0ÞðxÞ of (36) is

incompatible, since in fact wð0ÞðLÞ 6¼ 0, though

w0
ð0Þð0�Þ ¼ 0. Next, considering the boundary

conditions

wð0Þ ¼ w0ð0�Þ ¼ 0; wðLÞ ¼ 0; MðLÞ ¼ 0

ð37Þ

by integration of the pertaining governing differential

equation we get the C0 deflection as

wðxÞ ¼ pL4

8D

1

1 þ 3kk2
� 1

6
5 þ 12kk2
	 
 x

L

� �3

þ 1

2

x

L

� �2

þ
�

þ 5 þ 12kk2
	 


kk2 x

L

� �i

þ pL4

24D

x

L

� �2

�12kk2

� �
x

L

� �2

ð38Þ

and the bending moment M(x) as

MðxÞ ¼ pL2

8

1

1 þ 3kk2
5 þ 12kk2
	 
 x

L

� �
� 1

h i

� pL2

2

x

L

� �2
ð39Þ

both of which hold within the interval (0, L). For

k ¼ 0, (38) and (39) provide the classical solution. The

hinge relative rotation at x ¼ 0 is found to be

expressed as

HA ¼ � pL3

D

5 þ 12kk2
	 


8 1 þ 3kk2
	 
 kk2 ð40Þ

In Fig. 6c the C0 deflection w(x) is plotted as a

function of x/L, normalized with respect to the

maximum classical deflection wc
max � wcðL=2Þ and

for different values of the scale parameter k ¼ ‘=L (=

0., 0.25, 0.5, 0.75, 1.). Analogously, in Fig. 6d, the

normalized maximum C0 deflection wmax=w
c
max is

C 0 solution

Classical solution

(b)

(a)

(d)

(c)

Fig. 6 Clamped-pinned beam under distributed uniform load p:

a Geometric and loading scheme; b Conventional (incompat-

ible) initial deflection wð0ÞðxÞ; c Normalized C0 deflection

wðxÞ=wc
max plotted as a function of x/L for different values of

k ¼ ‘=L ¼ 0:; 0:25; 0:5; 0:75; 1:; d Normalized maximum C0

deflection gðkÞ ¼ wmax=w
c
max plotted as a function of k. (The

value k ¼ 0:25 has been used)
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reported as a function gðkÞ. It is shown that the C0 plot

exhibits a softening behavior like that of Peddieson

et al. [11], but in a slightly more pronounced

proportion; for instance for k ¼ 0:5, g
C0
ð0:5Þ ¼ 2:74

while g
Pedd

ð0:5Þ ¼ 2:50. The value k ¼ 0:25 has been

used.

4.4 Clamped-pinned beam under a concentrated

load

Here a clamped-pinned beam subjected to a concen-

trated load P at �x ¼ L=2 is considered (Fig. 7a). This

time we deal with three concentrated forces, namely

the downward force P at midle point C, along with the

(upward) reacting forces VA and VB. Therefore there

arise three bending hinges at the same points and the

inherent initial curvature proves to be

vð0ÞðxÞ ¼
k‘2

D
�VAdðxÞ � VBdðx� LÞ þ Pdðx� L

2
Þ

� �

ð41Þ

to which we can associate the (incompatible) conven-

tional initial deflection as

wð0ÞðxÞ ¼
k‘2

D
VAhxi þ VBhx� Li � Phx� L

2
i

� �

ð42Þ

which is reported in Fig. 7b (solid line). Next,

considering the boundary conditions

wð0Þ ¼ w0ð0�Þ ¼ 0; wðLÞ ¼ MðLÞ ¼ 0 ð43Þ

and recalling (41), by integration of the governing

differential equation the C0 deflection function w(x)

proves to be

wðxÞ¼PL3

16D
� 11þ24kk2

6ð1þ3kk2Þ
x

L

� �3

þ 3

2ð1þ3kk2Þ
x

L

� �2
�

þð11þ24kk2Þkk2

1þ3kk2

x

L

�

þPL3

6D

0 ð0�x�L=2Þ
x

L
�1

2

� �3

�6kk2 x

L
�1

2

� �
ðL=2�x�LÞ

8
><

>:

ð44Þ

and the bending moment M(x) as

C 0 solution

Classical and Peddieson et al. (2003) solutions

(a)

(b)

(c)

(d)

Fig. 7 Clamped-pinned beam under point load P at L/2: a
Geometric and loading scheme; b Conventional (incompatible)

initial deflection wð0ÞðxÞ; c Normalized C0 deflection wðxÞ=wc
max

plotted as a function of x/L for different values of

k ¼ ‘=L ¼ 0:; 0:25; 0:5; 0:75; 1:; d Normalized maximum C0

deflection gðkÞ ¼ wmax=w
c
max plotted as a function of k. (The

value k ¼ 0:25 has been used)
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MðxÞ ¼PL

16

11 þ 24kk2

1 þ 3kk2

x

L
� 3

1 þ 3kk2

� �

�
0 ð0� x� L=2Þ

P x� L

2

� �
ðL=2� x� LÞ

8
<

:

ð45Þ

Both (44) and (45) hold for 0� x� L; they recover the

respective classic form for k ¼ 0. The hinge relative

rotation at A is given by

HA ¼ �PL2

D

11 þ 24kk2

16ð1 þ 3kk2Þ
kk2 ð46Þ

In Fig. 7c the C0 deflection w(x) is reported as a

function of x/L, normalized with respect to the

wcðL=2Þ, for different values of k ¼ ‘=L (= 0., 0.25,

0.5, 0.75, 1.). Also, in Fig. 7d the normalized maxi-

mum C0 deflection wðL=2Þ=wcðL=2Þ is plotted as a

function gðkÞ. Both plots of Fig. 7c, d show that the C0

model exhibits a softening behavior. Again k ¼ 0:25

has been assumed.

4.5 Remarks on the obtained results

The main result of the applications presented above is

that in all beam cases a softening behavior of nonlocal

gradient beam models is exhibited, without drawbacks

of any sort, and this for all loading and constraint

conditions. This result is in strong contrast with the

outcome from Peddieson et al. [11], where the

displacement solution of analogous beam problems

was searched for within the classical continuity

framework. The work by Peddieson et al. [11] showed

that the solution of differential nonlocal beam prob-

lems generally indicates a softening behavior of

micro- and nano-beams, but that the continuity

restriction therein maintained caused dramatic limita-

tions of the size dependent response in some beam

cases. For instance, either size effects are not predicted

at all whenever the beam is subjected to concentrated

loads (as for a cantilever beam under point load), or the

beam subjected to uniform load exhibits stiffening

effects increasing with the nonlocal scale parameter,

the more the larger is this parameter, which leads the

beam to deflect upwards against the (downward) load

(as in the case of a cantilever beam under uniform

load).

As stated before, the examples reported above

clearly indicate that the C0-continuous solutions of the

fourth order differential equation and boundary con-

ditions indicate a softening behavior for all beam cases

without paradoxes and no other shortcomings. Indeed,

no paradoxical situations are encountered if one

accepts the presence of bending hinges within the

context of elastic beams, along with the consequent

presence of slope discontinuities. However, as men-

tioned at the end of Sect. 2.1, the presence of bending

hinges carries in limitations as (11) to the amplitude of

the hinge relative rotations. The relative rotations HA

at the left clamped ends of the beam samples worked

out before are all of the form

HA ¼ �fðkÞkk2/; / :¼ PL2

D
¼ Pð

ffiffiffi
2

p
LÞ2

2D
ð47Þ

where P denotes the total load applied upon the beam,

whereas fðkÞ is a case dependent coefficient, that is

fðkÞ¼

1 Cantilever beam under point load P at free end

1 Cantilever beam under uniform load p¼P=L

5þ12kk2

8ð1þ3kk2Þ
Clamped-pinned beam under uniform load p¼P=L

11þ24kk2

16ð1þ3kk2Þ
Clamped-pinned beam under point load Patx¼L

2

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

This result indicates that 0\fðkÞ�1 8k (and likely for

almost all other beam cases). The factor / may be

interpreted as the rotation of the end cross section of a

cantilever beam of length
ffiffiffi
2

p
L and stiffness D¼EI,

subjected to concentrated load P at the free end.

Within the framework of classical linearized elasticity

featured by infinitesimal displacements (not too high

load P, nor too small stiffness D) we may assume that

/\\1. Therefore we may assert that

jHAj ¼ fðkÞkk2/\/\\1 8 k\1=
ffiffiffi
k

p
ð48Þ

which obviously can be extended to all bending hinges

of the beam. Indeed, the amplitude of the hinge

relative rotations is infinitesimal within the present

theory. On the other hand, a restriction on the

boundedness of k seems to be in good agreement with

an analogous restriction discending from the require-

ment that the nonlocal continuum model saves its own

effectiveness versus atomic lattice models, to which it

in fact tends to resort for k ¼ ‘=L values larger than

unit [1, 27, 38]. For the above reasons here we have

considered k values within the interval (0, 1).
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5 Concluding remarks

We have presented a method to solve EB beam models

within the framework of C0-continuous displacement

functions, in which the beam deflection function is

allowed to exhibit slope discontinuities at the appli-

cation points of concentrated forces, either loads, or

reacting forces. Concepts as bending hinge and

associated relative rotation, which were sparsely

advanced within the literature, are here rationally

collected within a consistent continuum mechanics

framework in which the beam is endowed with a

microstructure undergoing an initial (inelastic) curva-

ture carring in the inherent size dependent effects. The

resulting C0-beam model leads to a unique solution of

the beam problem, featured by a softening behavior

for all beam’s load and constraint cases, without

paradoxical situations or other shortcomings. In con-

trast with the original Eringen-Peddieson model, the

present one may widely be used for size effect analysis

of beams in bending, buckling and vibration in a

consistent manner.
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