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Abstract: We consider the density field f (x) generated by a volume source µ(y) in D which is a domain
in R3. For two disjoint segments γ,Γ1 on a straight line in R3 \ D, we establish a conditional stability
estimate of Hölder type in determining f on Γ1 by data f on γ. This is a theoretical background for
real-use solutions for the determination of air dose rates of radioactive substance at the human height
level by high-altitude data. The proof of the stability estimate is based on the harmonic extension and
the stability for line unique continuation of a harmonic function.
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1. Motivation

The Fukushima Daiichi Nuclear Disaster in March 2011 has released radioactive substances such
as cesium-137 into environments. In particular, radioactive substances fall on the ground and some of
them diffuses in the soil. These radioactive substances are a source and generate the air dose rate of
radiation, which can be considerd as influences to inhabitants. Possible sources for such air dose rates
and possible sources are in the air and on the ground, in the underground. The sources in the air could
be created by floating radioactive substances, but we can assume that such sources in the air can be
neglected after 9 years passed after the disaster in 2011 and the susbstances have sufficiently diffused
in the air to a very low level. Thus we assume that the air dose rates can be generated by sources on the
ground and the underground. As for related works on the several kinds of sources, we refer to Malins
et al. [8] and Saito [9] for example.

Moreover these substances on and in the ground can move for example by refloating on dry days
and may run-off into rivers, so that the sources may not be stationary. However for a feasible model,
we can assume that we can neglect also the time change of sources. In some areas of Fukushima
prefecture, inhabitants have already returned to daily lives, and the estimation of the air dose rate of
radioactive substances in towns and villages is crucial for the sake of the health of them. The air dose
rate at the human height level (e.g., 1m) is considered as very influential factor to the health through
exposures by breathing the air. The observation of air dose rates can be done by drones containing
measurement equipments. However direct observations of air dose rates at the human height level is
not realistic because of many obstacles against the flights of drones such as houses and other many
artificial structures such as walls. Moreover we do not a priori know the source, that is, the density
disribution of radioactive substances on the ground and in the shallow underground. Thus, not knowing
sources themselves, we can observe only data at higher altitude (e.g., 30–50 m).

Therefore our task is an inverse problem where we are required to determine the dose rate at the
human height level by means of high-altitude data. This motivates our theoretical research for the
correponding inverse problem and our theoretical result shows not bad stability under adequate
conditions and suggests how to control flight orbits for a reasonable accuracy in solving an inverse
problem.

2. Mathematical model and the main result.

We describe a mathematical model, by which we can discuss our inverse problem from a general
point of view.

Let D ⊂ R3 be an open domain. Henceforth we set x = (x1, x2, x3), y = (y1, y2, y3) and

rxy = ((x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2)
1
2 .

We set
f (x) :=

∫
D

µ(y)
r2

xy
dy, x ∈ R3 \ D. (2.1)

Here 4πµ(y), y ∈ D describes the density of e.g., radioactive substances. We consider f (x) as the air
dose rate at x ∈ R3. For an arbirarily fixed constant M > 0, we set

M := {µ ∈ L∞(D); ‖µ‖L∞(D) ≤ M}.
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Let γ,Γ1 ⊂ R
3 be sets and γ ∩ Γ1 = ∅.

Our inverse problem is: determine f |Γ1 by f |γ.

Here we note that we assume µ ∈ M but we do not know µ.

Example: Taking into consideration the observation by drones, we choose curves Γ1, γ on the same
curve Γ which is an orbit of a drone. For example, we choose two segments γ and Γ1. Let x3 = 0 and
x3 > 0 correspond to the flat ground and the underground respectively. Let D̃ ⊂ R3 be an open domain
such that D̃ ∩ {x3 < 0} , ∅. Then we set D = D̃ ∩ {x3 < 0}. In particular, the case of D̃ ⊂ {0 < x3 < δ}

with small δ > 0 and µ , 0 in D, means that the substances concentrate on the ground and the shallow
underground. Let (a, b) ∈ R2 be a fixed planar location and δ < h1 < h2 < H1 < H2 and

γ = {(a, b, x3); H1 < x3 < H2}, Γ1 = {(a, b, x3); h1 < x3 < h2}. (2.2)

This setting describes that we are requested to determine the dose rate at the heights h1 ∼ h2 by
high-altitude data at H1 ∼ H2.

Let L be an infinite straight line and let Γ be a connected component of L ∩ E. For an arbitrarily
fixed δ > 0, we set

E = {x ∈ R3; dist (x,D) > δ}.

Theorem. Let γ,Γ1 ⊂ Γ be finite segments on Γ such that γ ∩ Γ1 = ∅. We assume that

µ ∈ M. (2.3)

Then there exist constants C > 0 and θ ∈ (0, 1) such that

‖ f ‖L∞(Γ1) ≤ C‖ f ‖θL∞(γ). (2.4)

Here C > 0 depends on M
δ2 , γ,Γ1, and θ depends only on γ,Γ1.

We can expect that θ is smaller when dist (γ,Γ1) is larger. The theorem implies the uniqueness, that
is, if f = 0 on γ, then f = 0 on Γ1.

As can be seen by the proof in Section 3, data f on γ cannot give any information of f outside of the
straight line L where γ and Γ1 are included. In other words, we can determine f only in the extended
direction of γ by data on γ, provided that the extended segment is in E. In particular, we assume that
0 < δ < h1 < h2 < H1 < H2 and recall (2.2). Then γ,Γ1 ⊂ Γ := (δ,∞). The theorem asserts a
stability estimate of Hölder type in determining f (x), x ∈ Γ1 by f (x), x ∈ γ, and the Hölder exponent θ
depends only on a geometric configuration of the two segments γ and Γ1. Our main theorem guarantees
a rather good rate of the stability when we use drone data at high-altitude for determining the dose rate
at lower-level.

Here we do not discuss the determination of the source µ(x) itself, and we do not know whether we
can extract some information of µ from f |γ. On the other hand, as data we choose f in a domain
D1 ⊂ R

3 such that D ∩ D1 = ∅, and Cheng et al. [2] proves some stability for an inverse problem of
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determining µ|D by f |D1 which are not data on a segment. The stability is conditional under
assumption that unknown µ satisfies (2.3) and is of logarithmic rate which is much weaker than (2.4).
We emphasize that data f on γ cannot determine the source µ but can determine f on Γ with Hölder
stability rate which is much better than the logarithmic rate.

3. Proof of Theorem

The proof is based on a harmonic extension of f and the line unique continuation for a harmonic
function.
First Step: harmonic extension of f .

We recall E = {x ∈ R3; dist (x,D) > δ} with arbitrarily fixed δ > 0. We set

G(x, ξ) =

∫
D

µ(y)
r2

xy + ξ2 dy, x ∈ E, ξ ∈ R. (3.1)

We can directly verify

∆G =

3∑
j=1

∂2G
∂x2

i

+
∂2G
∂ξ2 = 0 in E × R.

Clearly
G(x, 0) = f (x), x ∈ E, (3.2)

which means that G is a harmonic extension of f .
We note that the harmonic extension G defined by (3.1) is applied for the determination of µ (e.g.,

Cheng et al. [2], Cheng and Yamamoto [4]).
Second Step: line unique contination.

The following line unique continuation is a key, which is proved as Theorem 2.1 in Cheng et al. [1]:
Theorem 0. Let Ω ⊂ Rn, n ≥ 3 be a domain and a straight line L intersect ∂Ω at two points such that
Γ = L ∩ Ω is a segment. Moreover we assume that two segments γ,Γ1 satisfy γ ⊂ Γ1 ⊂ Γ1 ⊂ Γ and
Γ1 , Γ. Let u ∈ C2(Ω) satisfy ∆u = 0 in Ω. If ‖u‖C(Ω) ≤ M with some constant M > 0, then there exist
constants C > 0 and θ ∈ (0, 1) such that

‖u‖C(Γ1) ≤ C‖u‖θC(γ).

Here the constant C > 0 depends on M, γ,Γ1, while θ ∈ (0, 1) depends on γ and Γ1.

For the two dimensional case, see Cheng and Yamamoto [3].

We set
Γ̃ = {(x, 0); x ∈ Γ}, γ̃ = {(x, 0); x ∈ γ}, Γ̃1 = {(x, 0); x ∈ Γ1} ⊂ R

4.

Then Γ̃, γ̃, Γ̃1 ⊂ E × {0} are lines. Moreover for any µ ∈ M, we can estimate

|G(x, ξ)| ≤
∫

D

|µ(y)|
r2

xy
dy ≤

M
δ2 , (x, ξ) ∈ E × R. (3.3)
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In view of (3.3), we apply Theorem 0 where we replace Γ1, γ,Γ,M by Γ̃1, γ̃, Γ̃,
M
δ2 respectively, so that

we can choose constants C = C
(

M
δ2 , γ,Γ1

)
> 0 and θ = θ(γ,Γ1) ∈ (0, 1) such that

‖G‖L∞(Γ̃1) ≤ C‖G‖θL∞ (̃γ), (3.4)

that is,
‖ f ‖L∞(Γ1) ≤ C‖ f ‖θL∞(γ)

by (3.2). Thus the proof is complete.

4. Numerical examples

In the numerical computation, we here propose a method via the determination of µ(x). More
precisely, we choose {p1, p2, ..., pM} ⊂ γ ⊂ R

3 and {q1, q2, ..., qN} ⊂ D ⊂ R3 as collocation points, and
construct the matrix A = [Ai j] as Ai j = w j/r2

piq j
where w j are the volume integral coefficients, i.e.,

∫
D

µ(y)
|pi − y|2

dV(y) ∼
N∑

j=1

Ai jµ(q j), i = 1, ...,M.

Then find the least-norm solution µ̃ to the equation Aµ̃ = b, where b = ( f (p1), ..., f (pM)). Taking into
consideration observation data fmeas with errors, the Tikhonov regularization is adopted and µ̃ is then
the minimizer to the cost functional

J(µ) := ‖ f (µ) − fmeas‖
2
L2(γ) + α‖µ‖2L2(D).

Here α > 0 is a regularizing parameter which we should choose suitably according to the noise level.
A discretized form is

J(µ̃) =

M∑
i=1

 N∑
j=1

Ai jµ j − bi


2

li + α

N∑
j=1

µ2
jw j,

where li are the line integral coefficients. The regularization parameter α is chosen as α ∼ δ2, where δ is
the noise level of observation data measured by the L2(γ)-norm and we refer to Cheng and Yamamoto
[5] as for a choice strategy of α. The approximation solution can be constructed by µ̃ as

f̃ (x) =

N∑
j=1

µ̃ jw j

|x − q j|
2 .

In the following numerical examples, we assume that the source distribution has a compact support
in B := {x = (x1, x2, x3) ∈ R3; |x| < 1, x3 < 0}. The exact source distribution is given as µ(x) =

(1 + 0.5 sin(2π|x|)) exp(−|x|2)χB(x) where χB(x) is the characteristic function of B.
The present example is to reconstruct the dose rate along the line Γ = {0, 0, x3} with measurement

on γ = {0, 0, x3}, x3 ∈ [0.8, 1]. There are 20 uniformly distributed collocation points on the measured
segment and 40 × 40 × 20 integral points in [−1.0, 1.0] × [−1.0, 1.0] × [−1.0, 0]. Figure 1 shows the
comparison between the reconstructed solution and the exact solution along Γ1 = (0, 0, x3), x3 ∈ [0.1, 1]
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in the case of no observation noises. The exact solution are obtained by numerical integration and the
difference is less than 10−4‖ f ‖C(Γ) with finer grid resolution.

Figure 1. Reconstruction of f |Γ1 by f |γ on a line. Left: Sketch of the line and measurement
points; right: numerical result as a function of the height (x3).

In order to further illustrate the performance of the method, a random noise is added on the exact
observation. Figure 2 gives the results with observation error of level 1% and 3% respectively, which
coincide well with the exact solution with the relative error less than 5% at x3 = 0.1.

Figure 2. Reconstruction of f |Γ1 by f |γ on a line with 1% noise (left) and 3% noise (right) in
measurement.

5. Conclusion

In this paper, we dicuss the estimation of air dose rates of radioactive substances at the human height
level by high-altitude data by means by drone. We establish a Hölder stability estimate for this inverse
problem on the basis of a mathematical model. For determination of air dose rates in more directions,
the main theorem suggests that a drone orbit should include the corresponding many directions. More
precisely, let γ be a curve composed of N-segments γ1, ..., γN ⊂ E. Let `k, 1 ≤ k ≤ N be the extended
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straight lines of γk such that `k and γk are in the same connected component of E. The line `k may be
a finite segment, an infinite straight line or a half straight line. The theorem means that f |γ determines
f on ∪N

k=1`k uniquely. In other words, when a drone flies zigzag, drone data can determine f on all
the extended directions of the components of the zigzag. Moreover the stability is rather good in
determining the dose rate along the orbit direction.

The key of the proof is the harmonic extension and the line unique continuation, which asserts
stable continuation (3.4) of a harmonic function along the segment and is different from usual unique
continuation of solutions to elliptic equations (e.g., Isakov [6], Lavrent’ev et al. [7]). The uniqueness
corresponding to (3.4) can be easily proved. Indeed let x(τ) with τ ∈ J: some open interval, be
a parametrization of the straight line Γ. Since ∆G = 0 in some domain Ẽ ⊂ R4, the interior real
analyticity of a harmonic function yields that G is real analytic in (x, ξ) ∈ Ẽ. This analyticity can
be proved also by the representation (3.4) of G. Therefore G(τ) := G(x(τ), 0) is analytic in τ ∈ J.
Consequently with some non-empty open interval J0 ⊂ J, the unicity theorem of an analytic function
implies that if G(τ) = 0 for τ ∈ J0, then G(τ) = 0 for τ ∈ J. For more details on the line unique
continuation, we refer to [1] and [3].

We give numerical examples by a method by first determining a source. Our numerical results
indicated acceptably good accuracy also with noisy data. Our rather good stability can support our
numerical results.
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