
sensors

Communication

A Technique for Improving the Precision of the Direct
Measurement of Junction Temperature in Power
Light-Emitting Diodes

Demetrio Iero 1,2,* , Massimo Merenda 1,2 , Riccardo Carotenuto 1 , Giovanni Pangallo 1 , Sandro Rao 1 ,
Gheorghe Brezeanu 3 and Francesco G. Della Corte 2,4

����������
�������

Citation: Iero, D.; Merenda, M.;

Carotenuto, R.; Pangallo, G.; Rao, S.;

Brezeanu, G.; Corte, F.G.D. A

Technique for Improving the

Precision of the Direct Measurement

of Junction Temperature in Power

Light-Emitting Diodes. Sensors 2021,

21, 3113. https://doi.org/10.3390/

s21093113

Academic Editor:

Guillermo Villanueva

Received: 21 March 2021

Accepted: 28 April 2021

Published: 29 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information Engineering, Infrastructure and Sustainable Energy (DIIES),
Mediterranea University of Reggio Calabria, 89124 Reggio Calabria, Italy; massimo.merenda@unirc.it (M.M.);
r.carotenuto@unirc.it (R.C.); giovanni.pangallo@unirc.it (G.P.); sandro.rao@unirc.it (S.R.)

2 HWA srl-Spin Off dell’Università Mediterranea di Reggio Calabria, Via Reggio Campi II tr. 135,
89126 Reggio Calabria, Italy; fg.dellacorte@unina.it

3 Faculty of Electronics Telecommunications and Information Technology, University Politehnica Bucharest,
061071 Bucharest, Romania; gheorghe.brezeanu@dce.pub.ro

4 Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione (DIETI),
University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy

* Correspondence: demetrio.iero@unirc.it

Abstract: Extending the lifetime of power light-emitting diodes (LEDs) is achievable if proper control
methods are implemented to reduce the side effects of an excessive junction temperature, TJ. The
accuracy of state-of-the-art LED junction temperature monitoring techniques is negatively affected
by several factors, such as the use of external sensors, calibration procedures, devices aging, and
technological diversity among samples with the same part number. Here, a novel method is proposed,
indeed based on the well-known technique consisting in tracking the LED forward voltage drop
when a fixed forward current is imposed but exploiting the voltage variation with respect to room
temperature. This method, which limits the effects of sample heterogeneity, is applied to a set of ten
commercial devices. The method led to an effective reduction of the measurement error, which was
below 1 ◦C.

Keywords: junction temperature; light-emitting diode; temperature sensors

1. Introduction

Light-emitting diodes (LEDs) represent a highly efficient solid-state light source and in
the last years, their use has been widespread over many market sectors, such as automotive,
street lighting, architectural, and industrial, as well as commercial and residential lighting,
and biomedical devices [1–5].

Despite the efficiency and the long-term durability claimed by LED manufacturers,
high power LEDs still suffer from excessive heating, which affects their luminous flux
and operating lifetime [6–9]. Proper heat dissipation systems, whether active or passive,
can mitigate these side effects, but impose higher costs and more performing form factors
of the lamp housing [10,11]. In order to avoid unnecessary oversizing of dissipation
systems, and thus keeping costs low while preserving the lamps’ health over time, it is
essential to track the exact junction temperature (TJ) of LEDs. Effectively coping with this
problem, which is common to many high power density solid-state devices, would benefit
from the deployment of device-integrated sensors, resulting in improved robustness and
enriched functionality.

Technological solutions that exploit sensorless approaches are of great interest because
of the relaxation of the specifications regarding electronic design, lifetime duration, reliabil-
ity, and repeatability of the transducer itself. Furthermore, indirect measurement through
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a separate external sensor could lead to offsets, or substantial differences, in the tracked
temperature values.

Several approaches have been proposed for the indirect measurement of TJ, such as
those based on electroluminescence, light spectrum, Raman spectroscopy, or liquid crystal
thermography [12–15]. TJ can be also estimated starting from the thermally dissipated
power PD and the thermal resistance RTh of the device, being in fact TJ = PD · RTh + TA, with
TA being the environment temperature [16,17]. However, it is not easy to know PD and RTh,
because RTh changes over time and with temperature itself [17], and only a fraction of the
electric power of an LED is dissipated in the form of heat. Other sensorless ways of mea-
suring an LED TJ consist of using some temperature-dependent electrical parameters, such
as the reverse saturation current [18] or the forward junction voltage VJ under a constant
current [19–21]. Recently, a detailed study based on the measurement of VJ was presented
in [22]. There, a set of measurements was carried out to identify the most suitable bias (or
probe) current range where the LEDs can work as highly linear temperature sensors. The
tests were carried out on different devices at various temperatures in steps of 10 ◦C in a
thermostatic oven, acquiring the current-voltage (I-V) characteristics from 10 µA to 10 mA.
The current-voltage-temperature characteristics were subsequently elaborated, and the lin-
ear fitting of the V-T points was calculated at each probe current, allowing to subsequently
estimate the actual TJ by simply measuring the forward voltage drop. To demonstrate the
practical feasibility of the principle, a custom-designed, microcontroller-based circuit, fully
exploiting the above recalled technique, was presented and characterized in [23,24].

In this work, that sensorless technique, based on the measurement of the junction
forward voltage, is further improved to reduce the estimation error of TJ, specifically when
this error is due to the dispersion of the I-V-T characteristics among various devices, which
might be large even for devices bearing the same part number. To address this issue, the
new methodology, that again relies on measuring the voltage drop at the LED terminals at
a fixed forward current, has been extended to include the subtraction of I-V-T offset curves
initially measured at room temperature. The result of the characterization procedure is a
linear ∆V-T fitting that provides current-dependent coefficients, which effectively reduces
the average error. This method has been characterized and the results are discussed in
comparison with the previous TJ measurement procedure [22,23].

The paper is organized as follows: Section 2 summarizes the theory behind the mea-
surement technique and outlines the novel technique; in Sections 3 and 4, the experimental
results obtained on commercial power LEDs and the relative discussion are presented,
respectively. Conclusions are drawn in Section 5.

2. Method

Studies have already demonstrated a strong linear relationship between the voltage
drop across a semiconductor junction and its temperature for several solid-state devices,
provided that a constant and proper forward current is set [25–30]. In particular, the
forward voltage of a P-N junction, biased at a constant current level where the diffusion
component is largely predominant, is given (neglecting the impact of the series resistance)
by [22,28]:

VJ
(
TJ
)
=

kTJ

q
ln

ID

BTb
J
+

EG
q

, (1)

where TJ is the junction temperature, ID is the device current, k and q are the Boltzman
constant and the elementary charge, respectively, and EG is the band gap energy of the
semiconductor at 0 K. B and b are two constants with temperature. Using, e.g., LEDs
as absolute temperature sensors over moderate domains, Equation (1) yields high sen-
sitivities (in excess of 1.5 mV/◦C, depending on the bias current levels) and reasonable
linearity [19–22,31,32], such that the above relation can be written as:

VJ = S·TJ + Q, (2)
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where S (V/◦C) and Q (V) are two coefficients that need to be found at each current,
respectively representing the slope (sensor sensitivity) and the intercept of the characteristic
in Equation (2). Once these two coefficients are known at a given probe current, the equation
makes it possible to determine the junction temperature by measuring the forward voltage
of the LED.

Equation (1) evinces two significant causes for linearity degradation and
sensitivity inconsistency:

• Non-linearity in the temperature-dependence logarithmic term, which becomes signif-
icant when extending the T domain; and

• Fluctuations in B and b parameters, primarily due to technological heterogeneity.

Moreover, LEDs might show slight differences among their I-V characteristics con-
nected with fabrication tolerances [33,34]. In view of the above, the calculated coefficients S
and Q may show large standard deviations, leading to large uncertainties in the estimated
TJ. As it will be shown hereafter, it is possible to manage this issue.

Effects of these sources of performance degradation can in fact be mitigated by using
methods based on differential forward voltage techniques [35], relying on the measurement
of ∆VJ = VJ − VJ0 with VJ0 being the voltage drop across the LED junction at a reference
junction temperature (TJ0). In this case, the junction temperature can then be estimated
from:

VJ
(
TJ
)
−VJ0

(
TJ0

)
= − 1

TJ0

(
EG
q
−VJ0

)
TJ +

(
EG
q
−VJ0

)
+ b

kT
q

ln
TJ

T0
∼= −

1
TJ0

(
EG
q
−VJ0

)
TJ +

(
EG
q
−VJ0

)
, (3)

which takes into account that ID(TJ) = ID(TJ0) = const. This relation can be rewritten in the
form of Equation (2):

∆VJ = S′ TJ + Q′. (4)

In practice, with reference to each LED of a given set, by subtracting its I-V charac-
teristic at room temperature (TJ0) from the I-V characteristic at the unknown temperature,
a substantial reduction of the variability connected to the technological heterogeneity is
observed, which allows for a more accurate determination of TJ even if the same values of
S′ and Q′ are used for all those LEDs. The adopted procedure is detailed in the following.

The I-V characteristics of ten LEDs with the same part number were measured at
various temperatures in the range of interest, in steps of 10 ◦C. The tests consisted in slow
cycles of temperature ramp-up and ramp-down in a thermostatic oven with a regulation
precision of ±0.3 ◦C and temperature uniformity of ±1 ◦C. After setting the oven temper-
ature, the I-V characteristics were acquired once the temperature fully stabilized inside
the oven chamber. The devices were constantly kept off in the meantime. Once thermal
equilibrium was reached, the devices, the board they are soldered on, and the oven, were
at the same temperature. At this stage, the current-voltage characteristic of each LED was
measured by means of an Agilent 4155C semiconductor parameter analyzer by gradually
raising the forward current pulses from 10 µA to 10 mA, in steps of 10 µA. The actual
temperature was measured by means of a PT100, with an accuracy of ±0.15 ◦C, firmly
attached to the LEDs baseplate, and read with an HP 34401A digital multimeter, with a
declared accuracy of ±(0.01% of reading +0.01 Ω). The same procedure was then repeated
at all temperatures.

The room temperature characteristic of each LED was assumed as an offset, from
which the new I-∆V(I)-T characteristics were calculated, where ∆V(I) = V(I) − VJ0(I) at each
current and temperature, and VJ0 is the forward voltage at room temperature and chosen
probe current I. The new I-∆V-T characteristics were subsequently elaborated and the linear
fitting was calculated in order to assess the degree of linearity of the ∆V-T responses, and
to extract their best linear fit, from which the new sensitivity S′ and intercept Q′, together
with their standard deviations could be calculated and assumed valid for all of the devices
in the set. The junction temperature of each device can then be estimated by measuring its
forward voltage drop and applying Equation (4).
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3. Results

Tests were conducted to provide evidence of the improved measurement precision
over a wide span of temperature and forward current. In this study, a commercial white-
light power LED (Cree XQAAWT-02-0000-00000B4E3 [36]) was considered. According to
its datasheet, the maximum forward current is 300 mA, with a maximum allowed TJ of
150 ◦C.

The tests were carried out in the temperature range from 35 ◦C to 145 ◦C. The I-V
characteristics of the ten samples are reported in Figure 1 at the lowest and highest temper-
atures, clearly showing the existence of a dispersion among them. By firstly using the same
technique described in [22], the values of S and Q, averaged over the ten samples, were
calculated at each current together with their standard deviations. TJ extraction tests were
then run to assess and compare the quality of the two extraction techniques.

Sensors 2021, 21, 3113 4 of 9 
 

 

3. Results 
Tests were conducted to provide evidence of the improved measurement precision 

over a wide span of temperature and forward current. In this study, a commercial white-
light power LED (Cree XQAAWT-02-0000-00000B4E3 [36]) was considered. According to its 
datasheet, the maximum forward current is 300 mA, with a maximum allowed TJ of 150 °C. 

The tests were carried out in the temperature range from 35 °C to 145 °C. The I-V 
characteristics of the ten samples are reported in Figure 1 at the lowest and highest tem-
peratures, clearly showing the existence of a dispersion among them. By firstly using the 
same technique described in [22], the values of S and Q, averaged over the ten samples, 
were calculated at each current together with their standard deviations. TJ extraction tests 
were then run to assess and compare the quality of the two extraction techniques. 

 
Figure 1. Current-voltage characteristics of ten LED samples [36] at 35 °C and 145 °C. 

As already reported in [22], and confirmed hereafter in Section 4, the average error 
changes with the probe current, because different probe currents correspond to different 
V-T characteristics for each LED. This is clearly shown in Figure 2, which reports an ex-
ample of V-T-I dependence for one of the LEDs used in our experiments. 

 

10-5

10-4

10-3

10-2

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

Cu
rr

en
t (

A)

Voltage (V)
LED1 LED2 LED3 LED4 LED5
LED6 LED7 LED8 LED9 LED10

145 °C

35 °C

145 °C

35 °C

2.35

2.40

2.45

2.50

2.55

2.60

2.65

2.70

30 50 70 90 110 130 150

Vo
lta

ge
 (V

)

Temperature (°C)

0.5 mA

4 mA

Figure 1. Current-voltage characteristics of ten LED samples [36] at 35 ◦C and 145 ◦C.

As already reported in [22], and confirmed hereafter in Section 4, the average error
changes with the probe current, because different probe currents correspond to different
V-T characteristics for each LED. This is clearly shown in Figure 2, which reports an
example of V-T-I dependence for one of the LEDs used in our experiments.
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Figure 2. Measured (dots) forward voltage versus temperature at four increasing probe currents for
one of the LEDs used in our experiments; data are fitted with their linear interpolation (lines).
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The process of selection of the optimal current takes into account the V-T curve
linearity in the temperature range of interest and the associated average error. In our case,
the lowest average error, across all LEDs, was registered at the reference current of 1.88 mA,
for which the sensitivity S was −1.35 mV/◦C and the intercept of V-T characteristic was
Q = 2.65 V, with standard deviations respectively of 2.1 × 10−5 V/◦C and 3.8 × 10−3 V. The
intercept value was close to EG/q amount.

The results are summarized in Figure 3a, showing that some devices provide errors
well above 4 ◦C. This is due to the observed dispersion among the I-V characteristics of
Figure 1. At this probe current, the average absolute error for all LEDs across the whole
temperature range was 2.23 ◦C with a standard deviation of 2.37 ◦C.
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Figure 3. Absolute errors of measured temperature for the ten considered LEDs obtained by using the extraction technique
presented in [22] (a), and the new calculations with offset (b). Measurements are run at 1.88 mA for (a) and 0.86 mA for (b),
which are the probe currents, respectively, providing the lowest errors for the two methods.

Afterward, the whole temperature extraction procedure was repeated, this time using
the I-∆V-T characteristics as introduced in Section 2. As will be shown in Section 4, in
this case, the lowest error was obtained at a probe current of 0.86 mA. The results for
all LEDs are summarized in Figure 3b. From Figure 1, it results that at this current, the
series resistance effect can be neglected. The values calculated for sensitivity and intercept
of ∆VJ − TJ line were S′ = −1.37 mV/◦C and Q′ = 47.62 mV respectively, with standard
deviations of 2.1 × 10−5 V/◦C and 6.4 × 10−4 V, respectively. Note that from Equation (3),
the following is obtained:

Q′
S′ =

(
EG
q −VJ0

)
(

EG
q −VJ0

)
TJ0

= TJ0. (5)

Using the above calculated Q′ and S′ values, Q′/S′ = 35 ◦C, an amount which coincides
fairly well with the reference temperature (Figure 1).

This time, the average absolute error across the whole temperature range was only
0.88 ◦C with a standard deviation of 0.77 ◦C, both considerably better than those obtained
with the previous methodology.

4. Discussion

Despite an error that increases for temperatures above 80 ◦C (Figure 3), the novel
method provides notably lower errors over the entire temperature range. The behavioral
characteristics, obtained by subtracting the I-V characteristics at room temperature from
those at the temperature of interest, are much less dependent on the device diversities
due to production process tolerances. Figure 4 represents the absolute average error
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obtained with the proposed method at different probe currents, for each LED used in our
experiments. The graph suggests that good currents are below 2 mA.
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Figure 4. Average error at different biasing currents for the ten different LEDs, obtained by applying
the offset technique described in the text.

Figure 5 shows the comparison of the average error across all LEDs at all currents for
the two methods. With the new method, the average error remained below 1.5 ◦C over a
wide current range. As anticipated in Section 3, the minimum error was 0.88 ◦C at a current
of 0.86 mA. It is worth noting that at this low current, the LEDs emit a very weak radiation
or they produce no emission at all.
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Figure 5. Comparison of average absolute error across all LEDs for the two methods at biasing
currents varying from 10 µA to 10 mA.

Table 1 shows a comparison of the performances of several TJ measurement techniques.
The table indicates the average error across the whole temperature range, except for [21],
in which the minimum peak-peak error at an ideal temperature is reported. Moreover,
in [21], the LEDs were individually calibrated; when using a batch calibration in which the
average coefficients for all samples are considered, errors increase significantly. It should
be considered, however, that the average error also depends on the number of LEDs used
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in the experiments and their I-V characteristics dispersion, which is bound in turn to the
specific LED type.

Table 1. Comparison among power LED TJ estimation techniques.

Work Number of
LEDs Used Probe Current (mA) Temperature

Range (◦C) Error (◦C)

[21] 12 2 50–130 0.99
[37] 1 10 24–40 1
[38] 1 10 to 25 33–52 0.58
[22] 5 0.6 25–135 1.41
[23] 3 8 25–135 0.91
[24] 5 (series) 2 to 10 25–135 1.7

this work 10 0.86 35–135 0.88

5. Conclusions

A method for improving the measurement accuracy of the junction temperature of
LEDs, based on the tracking of the voltage across LED terminals at a known current, was
proposed. Compared to previous techniques, the new procedure involves the off-setting
of the measured forward voltage drop at the unknown temperature by the voltage drop
at room temperature, provided the two values are measured at the same probe current.
The technique is able to counteract the dispersion of I-V characteristics of LEDs with the
same part number, making it possible to rely on just two values (S′, Q′, valid for all devices)
for the extraction of the TJ for each of them. For the same set of ten devices, a notable
reduction of the average measurement error was in fact obtained in comparison to the
standard method, which decreased from 2.23 ◦C to 0.88 ◦C.

The technique can be easily implemented with a microcontroller-based electronic
circuit that imposes a current to the LED and measures the forward voltage drop. Its imple-
mentation makes it possible to extend the lifetime of the power LEDs through suitable con-
trol methods reducing the side effects of the excessive increase of the junction temperature.
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