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ABSTRACT Electromagnetic metamaterials (MMs) are composite structures that allow one to potentially
develop unique and innovative microwave, millimetre wave, and optical devices due to their unusual physical
properties. In this process, their electromagnetic characterization plays a fundamental role. Various proce-
dures have been proposed to accomplish this task, but the Nicolson-Ross-Weir (NRW)method still appears to
be the most commonly adopted one even though it is afflicted by the severe issue of branch ambiguity. In this
paper, we have demonstrated that rigorously, as the branch ambiguity can be entirely overcome through the
analytic continuation of a specific analytic logarithm element along the path determined in the complex
plane by the scattering parameters of an MM under analysis. Furthermore, the underlying relationship
between analytic continuation, phase unwrapping approach, implemented through a procedure devised by
Oppenheim and Schafer for the homomorphic treatment of signals (hereafter named PUNWOS), and the
Kronig-Kramers relation has been discussed and enlightened, demonstrating the full equivalence among the
methods. To clarify this aspect, a couple of numerical examples is presented. The results discussed in this
study open the possibility of employing the vast theoretical equipment developed in the phase unwrapping
field to achieve the retrieval of MMs’ effective parameters when the NRW method is applicable.

INDEX TERMS Electromagnetic metamaterial, Nicolson-Ross-Weir retrieval method, branch ambiguity
problem, phase unwrapping, analytic continuation, Kramers-Kronig relations.

I. LIST OF SYMBOLS
ω Angular frequency
εeff Effective dielectric permittivity
µeff Effective magnetic permeability
Neff Effective complex refraction index
zeff Effective intrinsic impedance
S11, S12 Metamaterial scattering parameters
R01 Reflection coefficient
κeff Effective extinction factor
neff Effective refractive index
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k0 Free space propagation constant
deff Effective thickness
LOG(·) Complex logarithm
log(·) Principal logarithm
Re[·] Real part operator
Im[·] Imaginary part operator
f (·) An analytic function
D f (·)’s domain
C Complex plane
Ċ Complex punctured plane
f (D) f (·)’s range
f −1(·) Inverse of f (·)
�̄ Sub-domain of f (D)
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h(·) Right-inverse of f (·)
γ (·) Path in Ċ
γ̄ (·) Path in C
� Sub-domain of Ċ
l(·) Analytic logarithm
�α Star-domain
logα(·) Analytic α-logarithm
ln(·) Natural logarithm
| · | Absolute value function
argα(·) α-argument function
z Complex number
Arg(z) Set of arguments of z
Z Set of the integer numbers
R,R′,Rk Sub-domains of C
∅ Empty set
@ Subordination operator
L(·) Unique analytic logarithm
, Is defined to be equal to – symbol
R+ Positive real axis
S Homomorphic system
φS (·) Input-output function
[�,⊕] Set of the generalized

input operations
[�,�] Set of the generalized

output operations
C Canonical homomorphic system
H′,L,H′′ Canonical homomorphic

sub-systems
φ′H(·), φL(·), φ′′H(·) Input-output functions
◦ Composition operator
P Cauchy principal value
εr Dielectric permittivity
µr Magnetic permeability
n Refractive index

II. INTRODUCTION
Electromagnetic metamaterials (MMs) are composites that
exhibit unusual physical characteristics when exposed to the
action of an external electromagnetic field [1], [2]. This can
potentially make the development of cutting-edge innovative
microwave, millimetre wave, and optical frequency devices a
real possibility, see for example [3]–[5] and references within
for a detailed overview of this argument. An MM is usually
created by arranging suitable identical scattering elements,
the meta-atoms, in an appropriate lattice configuration [1].
For analysis and design purposes, the external electromag-
netic behaviour of an MM is modeled by considering this
structure equivalent to a continuous medium, which is called
an effective medium (see Figure 1) and is usually character-
ized by an effective scalar electric permittivity εeff (ω) and
magnetic permeability µeff (ω) [1], [2] where ω is the angular
frequency (effective tensorial parameters are also possible,
but from a conceptual point of view, the rationale is the
same as the scalar case [6]). This perspective, technically
defined as homogenization procedure [1], [2], is commonly

FIGURE 1. An example of a metamaterial slab and its related effective
medium slab.

justified by considering that both the size of the meta-atoms
and their mutual distances are far smaller in comparison with
the wavelength of the external electromagnetic field [1]–[8].

The Nicolson-Ross-Weir (NRW) method [9] still appears
to be the approach most commonly adopted by researchers to
recover the effective constitutive parameters of these struc-
tures; see, for example, [10]–[15] and references within.
By using the NRW method, the effective medium param-
eters are promptly evaluated through the inversion of the
relation that links among them the effective complex refrac-
tion index Neff (ω) to the scattering parameters (measured
or simulated), thereby characterizing the MM sample under
study [1], [2], [8]. Despite its straightforwardness, several
limitations and inconsistencies plague this homogenization
procedure, and in references [16], [17], these problems have
been broadly discussed. Nevertheless, under the hypothesis
that the conditions for its applicability are fully fulfilled
[16], [17], the branch ambiguity problem remains the most
relevant and challenging issue among all [18]. It negatively
affects the unambiguous determination of the real part of
Neff (ω) and, as a consequence, the unambiguous determi-
nation of εeff (ω) and µeff (ω) [18], [19]. Although several
methods have been proposed to overcome this problem
[19]–[21], the approaches based both on the Kronig-Kramers
relations [22]–[26] and the phase unwrapping approach–the
latter being implemented through numerical procedures
essentially derived from the algorithm developed by Oppen-
heim and Schafer for homomorphic filtering (hereafter
named PUNWOS) [27]–are mostly employed to accomplish
this task [28]–[32]. Regarding the use of Kronig-Kramers
relations, it should be mentioned that these are well known,
grounded in causality with Neff (ω) having to be rigorously
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a causal physical quantity [33], [34]. In regard to the phase
unwrapping-based approach, to the best of the authors’
knowledge, it seems to lack a similar logical ground despite
the fact that a number of papers have exploited this method.
In fact, the only type of validation for this method has
been a comparison of its results with those provided by the
Kroenig-Kramers approach [32], and in any case, the relation-
ship between the two approaches does not seem to have been
clarified so far [35], [36]. Hence, based on these premises,
the purpose of our work was two-fold. First, we rigor-
ously demonstrated that the branch ambiguity problem affect-
ing the NRW method can be fully overcome and, accord-
ingly, the complex refraction index Neff (ω) can be uniquely
evaluated through the careful inversion of the exponential
relationship between Neff (ω) and the scattering parame-
ters of the MM at hand by the computation of a suitable
right-inverse obtained through the analytic continuation of
a specific analytic logarithm element along the path deter-
mined by the S-parameters in the complex plane. Second,
based on this result, the rationale linking analytic continua-
tion with the PUNWOS approach was discussed and enlight-
ened, thereby demonstrating the full equivalence between
the two approaches. Finally, this equivalence was exploited
to demonstrate the relationship with the Kronig-Kramers
approach. The paper is organized as follows: in section III we
introduce the theoretical foundations used in our study. Since
the arguments exploited for our discussion are quite scat-
tered in the specialized literature, all the theoretical concepts
needed for this aim are rigorously provided. At this purpose
we divided the section into three subsections: the first one
summarizes the effective constitutive parameters evaluation
process provided by the NRWmethod and the related branch
ambiguity issue. The second subsection elucidates the origin
of the branch ambiguity issue and the way to overcome
it. This subsection starts analyzing the mathematical rela-
tionship from which the MM’s complex refraction index is
obtained from an algebraic perspective. This analysis shows
as the branch ambiguity issue has its roots in the intrinsic lack
of "bijectivity" (under certain conditions) of the functional
relation for Neff (ω), and highlights as this problem can be
fully overcome through the concept of right-inverse function.
The third subsection shows as this right-inverse is obtained
by the analytic continuation, along the path determined by
the MM’s scattering parameters, i.e. the curve drawn on
C by the known term of the relationship mentioned above
as a function of the angular frequency, of a suitable ana-
lytic logarithm function. Due to the intrinsic lack of unique-
ness of the right-inverse, a suitable constraint condition is
required to achieve this prolongation, and this point is here
rigorously faced. In section IV, we discuss how the PUN-
WOS approach developed by Oppenheim and Schafer can be
understood in terms of analytic continuation, i.e. in term of
continuity of imaginary part of the prolonged analytic loga-
rithm, and provide clarification on the relationship existing
between the Kronig-Kramers relations and PUNWOS. To
enlighten the theoretical machinery presented in section III

and check the equivalence among methods, in section V, we
present some numerical experiments conducted on two neg-
ative refractive index (NRI) media characterized by the same
effective parameters but having different thickness. Finally,
in section VI, we draw our conclusions and sketch future
research directions.

III. THEORY
A. THE NICOLSON-ROSS-WEIR (NRW) METHOD
The NRW method is a classical technique that has been
employed for decades to recover the constitutive electro-
magnetic parameters of linear, isotropic, and homogeneous
media [9]. It was used for the first time by D. R. Smith
and co-authors in [7] to characterize an MM structure that
was created through a periodic arrangement of wires and
split ring resonators. According to this approach, the effective
electromagnetic constitutive parameters of an MM slab of
finite thickness can be recovered through the solution of the
following system of equations (the time-dependence e−iωt is
assumed) [8]:

S11(ω) =
R01(ω)(1− ei2Neff (ω)k0deff )

1− R201(ω)e
i2Neff (ω)k0deff

(1)

S21(ω) =
(1− R201(ω))e

i2Neff (ω)k0deff

1− R201(ω)e
i2Neff (ω)k0deff

(2)

that relates the constitutive parameters of the effective
medium slab that are equivalent to the MM slab at hand
with the MM scattering parameters (computed or measured).
In the aforementioned relations, the termsNeff (ω), deff , and k0
are the complex refraction index, the thickness of the effec-
tive medium [22], and the free-space propagation constant,
respectively, while the term R01(ω) where

R01(ω) =
zeff (ω)− 1
zeff (ω)+ 1

(3)

represents the reflection coefficient evaluated at the planar
interface between the free space and the effective medium.
From (1) and (2), we obtain the following:

zeff (ω) = ±

√
(1+ S11(ω))2 − S221
(1− S11(ω))2 − S221

(4)

eiNeff (ω)k0deff =
S21(ω)

1− S11(ω)R01(ω)
(5)

where zeff (ω) is the MM effective intrinsic impedance. The
proper sign in (4) was chosen by imposing that the amplitude
of the reflected field results in the lowering of the amplitude
of the incident field [7], [19]. The expression of Neff (ω) is
obtained from (5) the following:

Neff (ω) = neff (ω)+ iκeff (ω)

=
i

k0deff

[
LOG

(
S21(ω)

1− S11(ω)R01(ω)

)]
=

i
k0deff

[
log

(
S21(ω)

1− S11(ω)R01(ω)

)
+ 2pπ i

]
(6)
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where LOG(·) and log(·) denote the complex [37] and the
principal logarithm [37], respectively, andwhere the term p =
0,±1,±2,±3, . . . is the branch index [37]. The effective
extinction (or attenuation) factor κeff (ω) and the effective
refractive index neff (ω) are as follows:

αeff (ω) = −
1

k0deff
Re
[
log

(
S21(ω)

1− S11(ω)R01(ω)

)]
(7)

neff (ω) =
1

k0deff
Im
[
log

(
S21(ω)

1− S11(ω)R01(ω)

)]
+2pπ i (8)

where Re[·] and Im[·] are the real and the imaginary part
operators [37]. From the aforementioned relations, we under-
stand that the αeff (ω) results need to be uniquely determined
in contrast to the term neff (ω) whose ambiguity is due to
the presence of the branch index p in (8). This hinders the
unambiguous electromagnetic characterization of the MM
structure under analysis. Assuming for now that this issue
known in literature as the branch ambiguity problem [18],
[19] has been solved, we understand that the effective param-
eters can be uniquely computed as follows [22], [23]:

εeff (ω) =
Neff (ω)
zeff (ω)

(9)

µeff (ω) = Neff (ω)zeff (ω) (10)

B. INVERTING AN ABSTRACT EQUATION
To overcome the critical issue of the ambiguity plaguing the
real part of the complex refraction index Neff (ω) results, it is
essential, although tedious, to examine the rationale of its cal-
culation process in a comprehensive and detailed way. Hence,
first, we start to consider the following abstract equation:

f (w) = z (11)

where f (·) is an analytic function with domain D, lying in
the complex plane C, (w ∈ D ⊆ C), and range f (D) ⊆
C (z ∈ f (D)) [37], [38]. If the function f (·) in (11) is a
single-valued analytic function from D onto f (D), i.e., if f (·)
is univalent [37], we understand that the f (·) results will be
invertible and the relation (11) can be solved formally as
follow [38]:

w = f −1(z) (12)

where the function f −1(·), which is analytic and unique,
is called the inverse of f (·) [38], [39]. If the univalence is
not fulfilled, the inverse f −1(·) does not exist, and the (11)
cannot be solved using this concept [38], [39]. However f (·)
can always be right-inverted, i.e., there exists an univalent
analytic function h(·), named right-inverse, with domain �̄ ⊆
f (D) and range D such that:

f (h(z)) = z ∀z ∈ � (13)

with w = h(z) [38], [39]. Unlike the inverse function
f −1(·), the right-inverse function h(·) is not unique [38], [39].
Of course, if f (·) is invertible, it is also right-invertible and

FIGURE 2. Example of a non-univalent function f (·) (continuous light
blue line). It can be noticed that its two right-inverses h(·) (dotted purple
line) and h′(·) (dotted green line) select different pre-images in the f (·)’s
domain.

h(·) = f −1(·) [38], [39]. Accordingly, if f (·) is non-univalent,
it is impossible to obtain a unique solution from inverting (11)
without using a suitable constraint condition suggested by
the problem under consideration [39]. In fact, after fixing
an image point z ∈ �̄, a particular right-inverse h(·) can
select only one among the pre-image points w encompassed
in the domain of f (·) [39]. This particular pre-image point
w′ depends exactly on which right inverse h(·), among all the
right-inverses for f (·), is used to solve (11) (see Figure 2) [39],
and it is the constraint condition that allows the selection of
this particular right-inverse function h(·) from the set of all the
right-inverses admissible for f (·) [38], [39]. In the light of the
theoretical concepts discussed above, we re-examine the rela-
tion (5) more carefully. We point out that (5) can be rewritten
as (11) with a simple change of variable w = i2Neff (ω)k0deff
and z = S21(ω)

1−S11(ω)R01(ω)
, both terms being complex-valued

functions of the variableω and setting f (·) = e(·). The domain
D and the range f (D) for the complex exponential function e(·)

are the images of i2Neff (ω)k0deff , and
S21(ω)

1−S11(ω)R01(ω)
, respec-

tively. It can be noticed that these domains are paths. These
paths that we denoted as γ̄ (·) and γ (·) lie in the complex plane
C and the complex punctured plane Ċ = C−{0}, respectively.
From the theory of the analytic functions, we know that e(·) is
univalent only and exclusively on half-open rectilinear strips
of width 2π parallel to the real axes of the complex plane C
(see figure 3) [37]. However, as the number of strips on which
γ̄ (·) lies is unknown (although this piece of information is
closely related to the extension of the path γ (·) in Ċ), we are
obliged to address e(·) as a non-univalent function and to
solve (5) accordingly, as discussed in the following section.

C. COMPUTING THE PROPER RIGHT-INVERSE
In light of the theoretical concepts stated earlier, it becomes
apparent that the critical point for overcoming the branch
ambiguity problem and, thereby, unambiguously solving (5)
lies in the computation of the proper right-inverse h(·)
for this relation, which is indicated using the symbol L(·).
As demonstrated in the following part of this subsection,
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FIGURE 3. Domains of univalence for the complex exponential function
e(·) and their mapping onto the complex punctured plane Ċ.

L(·) can be built through the analytic continuation of a pre-
cisely defined analytic logarithm lying on a circular domain
centered on the starting point of the path traced in Ċ by
the term S21(ω)

1−S11(ω)R01(ω)
, with the constraint Im(L(γ (0))) =

0 (we return to this point and discuss it more rigorously
in subsection III-C3). Because the demonstration of this
way of proceeding to evaluate L(·) is founded on spe-
cific concepts of the analytic function theory and taking
into account that the main theoretical results needed for
this aim are scattered in the specialized mathematical lit-
erature on complex analysis, we collect and discuss these
arguments with some degree of detail. More precisely,
we start providing the concept of analytic α-logarithm (sub-
subsection III-C1), followed by some basics on analytic con-
tinuation (sub-subsection III-C2). Next, the path covering
lemma is introduced (sub-subsection III-C2). On this result
is grounded the fundamental Theorem 1 from which an algo-
rithm for computing L(·) is derived (sub-subsection III-C3).

1) ANALYTIC α-LOGARITHMS
We start considering an analytic function h(·) with domain
� ⊂ Ċ and range C such that

eh(z) = z ∀z ∈ �. (14)

The right-inverse function h(·) indicated in the following
as l(·) is called an analytic logarithm on � [38], [40]. As a
consequence of the periodicity of the complex exponential
function [37], any function of the form l ′(·) = l(·)+2pπ iwith
p ∈ Z is also an analytic logarithm on � [38], [40], i.e., on
�, there exist infinite right inverses for (14). Henceforth,
we consider for our purposes the domains� of the type�α =
C−Rα , named star-domains, whereRα = {ρeiα ∈ C, ρ ≥ 0}
is a ray starting from the origin of C and forming an angle
α ≥ 0 with its positive real semi-axis (see figure 4) [40].

FIGURE 4. A typical Star-Domain �α .

An analytic logarithm l(·) of the following form:

logα(·) = ln(| · |)+ i[argα(·)] (15)

where ln(·) is the natural logarithm [37], | · | is the absolute
value function [37], and argα(·) is the α-argument function
defined as follows [40]:

argα(·) = {∀z ∈ �α, argα(z) = Arg(z) ∩ (α − 2π, α]} (16)

where Arg(z) is a set of the following arguments:

Arg(z) =
{
θ ∈ R : z = |z|eiθ , z ∈ C

}
(17)

is called analytic α-logarithm on �α [40]. Accordingly,
because every analytic logarithm l ′(·) defined on �α can be
written as follows [40]:

l ′(·) = logα(·)+ i[argα(·)+ 2pπ], p ∈ Z. (18)

we can state that logα(·) is the principal logarithm on �α ,
i.e., the root from which all the others logarithms on this
domain are derived [40].

2) ANALYTIC CONTINUATION
The expansion of the original domain of the definitionD ⊂ C
of an univalent function f (·) onto a larger domain of the
complex plane is called analytic continuation (of f (·)) [37],
[38]. To explain how this process can be carried out, we need
to provide a few preliminary definitions. An analytic function
element is a couple (f (·),R) where f (·) is the analytic function
and R is a domain in C [37], [38]. If the domain R is an open
diskD, the couple (f (·),D) is called circular analytic function
element [37]. Two analytic function elements (f (·),R) and
(f ′(·),R′) are considered identical if and only if we have
f (·) = f ′(·) and R = R′. Now, an analytic function element
(f (·),R) is the direct analytic continuation of another analytic
function element (f ′(·),R′) in case of the following [37]:

R ∩ R′ 6= ∅ (19)

∃9 ⊂ R ∩ R′ : f (z) = f ′(z) ∀z ∈ 9 (20)
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From the definition provided above, it follows that f (·) and
f ′(·) can be regarded as the particular representation of an
analytic function F(·) defined as follows [37], [38]:

F(z) =

{
f (z) ∀z ∈ R
f ′(z) ∀z ∈ R′

(21)

with domain D = R∪R′. An analytic function element (f ,R)
is called subordinate to another analytic function element
(f ′,R′), i.e., (f ,R) @ (f ′,R′), in case of the following [37]:

R ⊂ R′ (22)

f (z) = f ′(z) ∀z ∈ R. (23)

It is easy to note that if (f ,R)@(f ′,R′), the first analytic ele-
ment is a direct analytic continuation of the second one [37].
A set of the following elements:

{(f0(·),R0), (f1(·),R1), . . . , (fn(·),Rn)} (24)

where the analytic element (fk (·),Rk ) is a direct analytic
continuation of the analytic element (fk−1(·),Rk−1) for k =
1, 2, . . . , n is called chain of analytic function elements [37].
The first and last elements of this chain, (f0(·),R0) and
(fn(·),Rn), respectively, are the indirect analytic continuation
or, more simply, the analytic continuation of each other. As an
analogy for direct analytic continuation between a couple of
elements, the chain of analytic function elements can also
be regarded as the representation of an analytic function
F(·) [37]:

F(·) =


f0(z) ∀z ∈ R0
...

fn(z) ∀z ∈ Rn

(25)

defined on the domain D = R0 ∪ · · · ∪ Rn. The analytic
continuation of an analytic function element (f (·),R) is also
possible along a continuous path γ (·) of the complex planeC.
The following theorem is of paramount importance for estab-
lishing this result [41]:
Path Covering Lemma:Let γ : [a, b]→ C be a continuous

path. We know that
• The domain of γ (·) can always be subdivided as t0 <
t1, . . . , < tn with t0 = a and tn = b so that every γ (tk ),
k = 0, . . . , n is at the center of the open disk Dk ;

• Each sub-path of γ (·) lying between the center γ (tk−1)
and γ (tk+1) is contained in the open disksDk as follows:

γ (t) ⊂ D0, t ∈ [t0, t1];

γ (t) ⊂ Dk , t ∈ [tk−1, tk+1], k = 1, . . . , n− 1;

γ (t) ⊂ Dn, t ∈ [tn−1, tn];

• The radii of the disks Dk can be chosen to be i) of the
same size (if necessary) and ii) arbitrarily small.

In sum, the Path Covering Lemma states that an arbitrary
γ (·) lying inC can always be covered by a finite set of n over-
lapping open disks, thereby realizing a chain of domains inC
embedding this path (see figure 5). In this way, the analytic

FIGURE 5. Example of paving for a path γ (·) in C.

continuation of an analytic function element (f ,D) along γ (·)
can be accomplished following the same principles used to
prolong an arbitrary analytic function element along C [37].

3) THE UNIQUE ANALYTIC LOGARITHM ON A PATH γ (·)
Now, we are in condition to provide the central result on
which is based our approach for overcoming the branch ambi-
guity in the NRW method:
Theorem 1:Let γ : [a, b]→ Ċ be a continuous path. There

exists a unique analytic logarithm L(·) such that

eL(z)
= z ∀z ∈ γ (t) t ∈ [a, b] (26)

fulfilling the constraint condition Im(L(γ (a))) = θ0 with
θ0 ∈ R and eiθ0 = γ (a)

|γ (a)| .
Existence - Because of the path covering lemma, we know

that γ (·) can be paved by a finite set of n overlapped open
disks D0, . . . ,Dn. Each disk Dk , k = 0, . . . , n is a subset of
a specific domain1 �αk ⊂ Ċ. On each Dk , a circular analytic
function element of the form (logαk ,Dk ) @ (logαk , �αk ) can
be defined so that the path γ (·) results are embedded in the
cluster of circular analytic logarithm elements (logαk ,Dk ),
k = 0, . . . , n. In correspondence of centre γ (a) of the open
disk D0, we enforce:

e(logα0 (γ (a))) = γ (a) = |γ (a)|eiθ0 (27)

where Im(logα0 (γ (a))) = argα0 (γ (a)) can coincide with the
phase of γ (a), θ0 or differ by a multiple of 2π . In this last
case, by adding to logα0 (γ (a)) the term 2p0π i with p0 an
appropriate integer, we can obtain the phase-matching we
want to enforce. Accordingly, we now have the following
equation:

log′α0 (·) = logα0 (·)+ 2p0π i (28)

on D0. Considering the open disks D0 and D1, we know that

e(log
′
α0
(z))
= z ∀z ∈ γ (t) γ (t) ⊂ D0

t ∈ [t0, t1] (29)

1This can be demonstrated in the following way: let Rα for a suitable
choice of α and the ray orthogonal to the line segment [0, γ (tk )]. Accord-
ingly, the open disk Dk has to belong to one of the two open half planes
of �α .
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e(logα1 (z)) = z ∀z ∈ γ (t) γ (t) ⊂ D1

t ∈ [t1, t2] (30)

At z1 = γ (t1) ∈ D0 ∩ D1, we must have the following:

elog
′
α0
(z1)
= elogα1 (z1) (31)

from which results the following:

log′α0 (zk ) = logα1 (z1)+ 2p1π i (32)

for an appropriate integer p1. Placing log′α1 (·) = logα1 (·) +
2p1π i onD1 and noting that γ (tj) ∈ Dj∩Dj+1 j ∈ 1, . . . , n−
1, we can proceed between the disks D1 and D2 in the same
waywe have proceeded between the disksD0 andD1, thereby
obtaining the following at z2 = γ (t2):

log′α1 (z2) = logα2 (z2)+ 2p2π i (33)

for an appropriate integer p2. Continuing inductively on the
remaining couples of disks and selecting all pk as done pre-
viously, we obtain the following chain of circular analytic
elements:{
(logα0 (·)+ 2p0π i,D0), (logα1 (·)+ 2p1π i,D1), . . . ,

, . . . , (logαn (·)+ 2pnπ i,Dn)
}

(34)

which defines the analytic logarithm L(·):

L(·) =


logα0 (·)+ 2p0π i ∀z ∈ D0

logα1 (·)+ 2p1π i ∀z ∈ D1
...

logαn (·)+ 2pnπ i ∀z ∈ Dn

(35)

on the domain �̇ = D0 ∪ D1 ∪ . . .Dn−1 ∪ Dn ⊂ Ċ, i.e., i)
solution of (26) and ii) has the property that Im(L(γ (a))) =
θ0.
Uniqueness - Let us assume that another analytic logarithm

L′(·) on �̇, which is solution of (26), exists. Accordingly,
we must know that L(·) and L′(·) can differ only by an integer
multiple q ∈ Z of 2π i at every point of z ∈ �̇. In particular,
in correspondence of the point z0 = γ (a), we must get the
following:

Im(L(z0)) = Im(L′(z0)) (36)

which implies q = 0. Accordingly, we must have L′(·) = L(·)
on �̇ �.
Now, we return to (5). To obtain the unique meaningful

solution of this relation, the constraint Im(L(γ (a))) = θ0 must
specialize as follows:

Im[L(γ (0)] = 0 (a = ω0 = 0) (37)

This choice is derived from the fact that having to be the
termNeff (ω) the Fourier transforms of a time domain physical
quantity [34], the terms

γ (t) ,
S21(ω)

1− S11(ω)R01(ω)
(38)

and

L (γ (t)) = L
(

S21(ω)
1− S11(ω)R01(ω)

)
(39)

must be Fourier transforms quantities obeying at the same
rule [42]. Specifically, from (35)

Re[L(·)] = ln| · | ∀z ∈ �̇

Im[L(·)] = arg(·) =


argαπ (·)+ 2p0π i ∀z ∈ D0

argα1 (·)+ 2p1π i ∀z ∈ D1
...

argαn (·)+ 2pnπ i ∀z ∈ Dn

and γ (t) ∈ �̇ we know that

Re
[
L (γ (t))

]
= ln

∣∣∣∣ S21(ω)
1− S11(ω)R01(ω)

∣∣∣∣ (40)

is already an even function (f (ω) = f (−ω)), while only
imposing (37):

Im
[
L (γ (t))

]
= arg

(
S21(ω)

1− S11(ω)R01(ω)

)
(41)

will result in it being an odd function (f (ω) = −f (−ω)) as it
must be if we want to ensure the required property. From the
above considerations, we can say that the starting point of the
path γ (0) must lie on the real positive axis. In fact, from (5),
descends the following:

e(Re[L(γ (0)]+iIm[L(γ (0)]) = γ (0) (42)

but

Im[L(γ (0))] = 0 (43)

Accordingly, from (27) and taking into account that
Re[L(γ (t))] is an even (and continuous) function, we must
have that

eRe[L(γ (0)]
= |γ (0)| = γ (0) ∈ R+ (44)

This implies that as first element of the chain that realizes
the analytic continuation, we have to select the principal
logarithm log(·) = ln| · | + i[argπ (·)] being γ (0) ∈ �π =
C− Rπ .
From Theorem 1, it is possible to derive straight away

an algorithm for calculating the values of the function L(·)
on a set of samples {γ (tk )}nk=0 ∈ γ (t) that are the centers
of the disks D0, . . . ,Dn paving γ (t), forcing the condition
Im(L(0)) = 0. The algorithm is composed by following
the steps reported in Table (1). We point out that the ana-
lytic continuation described in Theorem 1 is executed by the
algorithm by forcing the continuity of the imaginary part of
L(·). To accomplish this task, the algorithm needs to evalu-
ate and match with each other as many argument functions
argαj (·), j = 0, . . . , n as the number of sample points the
procedure used for paving γ (t). Although this approach is
unhandy from a computational point of view, it allows the
enlightening of the formal identity existing between the ana-
lytic continuation of the circular analytic element (log(·),D0)
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Algorithm 1 Algorithm From Theorem 1
1: procedure Analytic Continuation
2: γ (t) , S21(ω)

1−S11(ω)R01(ω)
, t0 = 0;

3: Build on γ (t) an admissible paving D0, . . . ,Dn by
obtaining a set of samples {γ (tk )}nk=0 ∈ γ (t);

4: Build on each disk Dk , k = 0, . . . , n an admissible
argαk (·);

5: Compute the value of L(γ (a)) = ln|γ (a)| +
i[argπ (γ (a))]; p0 = 0;

6: For each k = 1, . . . , n, evaluate pk =

(arg′αk−1 (γ (tk )) − argαk (γ (tk )))/2π and compute
the value of L(γ (tk )) = ln|γ (tk )| + i[arg′αk (γ (tk ))] where
arg′αk (·) = argαk (·)+ 2πpk ;

7: end procedure

centered on γ (0) and the continuity of its argument function
argπ (·) overD0∪· · ·∪Dn for building the analytic logarithm
L(·). However, as we will demonstrate in the next section,
a better algorithmic approach to achieve the continuity of
Im[L(·)], which exploits one argument function, is provided
by the PUNWOS method [27].

IV. THE RELATIONSHIPS BETWEEN ANALYTIC
CONTINUATION, PUNWOS, AND THE
KRONIG-KRAMERS RELATIONS
In this subsection, we will demonstrate the full equiva-
lence between the analytic continuation described in Theo-
rem 1 and the PUNWOS approach. This will be accomplished
by showing that the problem of homomorphic filtering for
which PUNWOS has been introduced can be re-conducted
to relation (26) and that PUNWOS is nothing more than a
technique to force the continuity of Im[L((·)] by fulfilling
the constraint Im[L((0)] = 0. To face these issues, it will be
necessary to discuss them in a deep (and maybe tedious) way
to clarify our demonstrative reasoning’s underlying rationale.

A. RELATIONSHIP BETWEEN PUNWOS AND ANALYTIC
CONTINUATION: HOMOMORPHIC SYSTEMS AND THE
PRINCIPLE OF GENERALIZED LINEAR SUPERPOSITION
Oppenheim and Schafer introduced PUNWOS in the homo-
morphic signal processing context, i.e., as a nonlinear tech-
nique for handling multiplied and convolved signals [43].
For our purposes, it is necessary to recall the concepts of
homomorphic system and generalized linear superposition
and relate them to the mathematical model (26). We start con-
sidering a black-box system S characterized by i), an input-
output relationship described by a suitable function φS (·) and
ii) two sets of binary operations. The first one, [�,⊕], called
input operations set, encompasses, respectively, a binary
operation of input generalized sum ⊕ between a pair of
arbitrary admissible input elements ξi(τ ), ξj(τ ), and a binary
operation of input generalized multiplication � between an
arbitrary scalar c (real or complex) and an arbitrary admis-
sible input element ξi(τ ). The second one, [�,�], called

output operations set, encompasses the binary operations of
output generalized sum� and output generalized multiplica-
tion �, respectively, which operate on arbitrary scalars c and
output function elements φS (ξi(τ )), φS (ξj(τ )). By using the
aforementioned definitions, the principle of general linear
superposition for S reads as follows [43]:

φS
(
c� ξi(τ )⊕ ξj(τ )

)
= c� φS (ξi(τ ))� φS (ξj(τ )) (45)

A system that obeys (45) is called a homomorphic system.
A homomorphic class is specifically assigned a couple of
input-output operation sets {[⊕,�], [�,�]} [43]. A system
falling in a given class can always be represented in a special
form called canonical, C, consisting of the cascade of three
homomorphic systems in order from input to output: H′, L,
and H′′. For the input system H′, the (45) specializes as
follows:

φH′
(
c� ξi(τ )⊕ ξj(τ )

)
= c · φH′ (ξi(τ ))+ φH′ (ξj(τ )) (46)

where · and + denote the classical binary operations of sum
between functions and multiplication between a function and
a scalar, and φH′ (·) is the H′’s input-output relationship. For
the middle system, L, which is a linear system described by
the function φL(·), the (45) reads as follows:

φL
(
c · ζi(τ )+ ζj(τ )

)
= c · φL(ζi(τ ))+ φL(ζj(τ )) (47)

where ζi(τ ) = φH′ (ξi(τ )) and ζj(τ ) = φH′ (ξj(τ )). Finally, for
the output systemH′′, the (45) results are as follows:

φH′′
(
c · κi(τ )+ κj(τ )

)
= c� φH′′ (κi(τ ))� φH′′ (κj(τ ))

(48)

where κi(τ ) = φL(ζi(τ )), κj(τ ) = φL(ζj(τ )), and φH′′ is the
H′′’s input-output function. The overall input-output function
for C, φC(·), will be given by the composition ◦ of φH′′ , φL,
and φH′ :

φC(·) = (φH′′ ◦ φL ◦ φH′ )(·) (49)

In the context of homomorphic signal processing, the class
of the multiplicative homomorphic systems is of paramount
importance [43]. This class is described by the property that
[⊕,�] = [�,�] = [·, (·)c] where the first operation, ·, is the
standard multiplication between functions, while the second
one, (·)c, is the standard operation of raising to the power c.
In this case, we know that (45) specializes forH′ as follows:

φH′
(
(ξi(τ ))c · ξj(τ )

)
= c · φH′ (ξi(τ ))+ φH′ (ξj(τ )) (50)

while forH′′, we know that

φH′′
(
c · κi(τ )+ κj(τ )

)
= (φH′′ (κi(τ )))

c
· φH′′ (κj(τ )) (51)

To understand the relationship that must exist between
φH′ (·) and φH′′ (·), for simplicity of reasoning, we put φL(·) =
id(·) where id(·) is the identity function (κi(τ ) = id(ζi(τ )) =
ζi(τ ) and κj(τ ) = id(ζj(τ )) = ζj(τ )). Accordingly, (49)
becomes the following:

φC(·) = (φH′′ ◦ φH′ )(·) (52)
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If we consider as admissible the input functions ξi(τ ), ξj(τ )
for the set of the real-valued functions C of the real variable t
and only real numbers as admissible for scalars c, we can
use as φH′ (·) and φH′′ (·) the real logarithmic ln(·) and the
exponential e(·) functions [43]. Accordingly, the relation (45)
becomes as follows:

e(ln((ξi(τ ))
c
·ln(ξj(τ )))) = (ξi(τ ))c · (ξj(τ )) (53)

i.e., [⊕,�] = [�,�] = [·, (·)c] as expected for a multi-
plicative system. Following [43], we point out that in this
particular case, the inverse of φ′′H(·) being φH′ (·), it guaran-
tees both the identity of the input-output operations sets and
the uniqueness of the results provided by the binary oper-
ations, thereby ensuring the correctness of the input-output
processing. If we broaden the collection of the admissible
inputs for C by assuming that the functions ξi(τ ), ξj(τ ) can
be complex-valued real functions of the variable t and that
the scalars c can be complex numbers, the situation is a bit
quite different because in this case, ln(·) and e(·) must be
replaced by the complex counterparts [43]. In their seminal
paper on homomorphic filtering [43], Oppenheim, Schafer,
and Stockham argued for this latter case: ‘‘If we attempt to
employ the complex logarithm function as the characteristic
system’’ (i.e., as φH′ (·)) ‘‘in this situation, we encounter the
immediate dilemma that the output s(τ ) of that system is
not unique.’’(i.e., the output of C) ‘‘The standard artifice
of invoking the principal value of the complex logarithm
cannot be used in this case because the principal value of the
logarithm of a product of complex signals is not always the
sum of the principal values corresponding to the individual
complex signals, violating (8)’’ (i.e., (53)). To overcome this
problem, Oppenheim and Schafer developed the PUNWOS
approach [27]. PUNWOS ensures the uniqueness of the out-
put operations by imposing the continuity of the argument
of the principal logarithm log(·) = ln| · | + i[argπ (·)] they
chose as the complex counterpart of ln(·), thereby fulfilling
the constraint Im(log(0)) = 0 [44] in a way that log(·) can
work as the inverse of the complex exponential function e(·).
More specifically, in regard to the continuity of the com-
plex logarithm’s argument Im(log(·)) = argπ (·), PUNWOS
works by avoiding its jumps and computing the value of the
integer parameter p, which is needed to compensate the 2π
discontinuity caused by crosses with the log(·) branch-cut
(i.e., the crosses with the ray Rπ ) when required [27], [44].
At this point, we are able to fully enlighten the relationship
between the analytic continuation method and the PUNWOS
approach, recasting the latter in the language employed in the
subsections III-C1, III-C2, III-C3 to guarantee the uniqueness
of the output operations of a multiplicative homomorphic
system. First, it becomes necessary that the function φH′ (·)
turns out to be an admissible right-inverse function l(·) for
the complex exponential function e(·), i.e., φH′ (·) must be an
admissible solution of (14), as it is the complex logarithm
LOG(·) a multi-valued function and, accordingly, unsuitable
for this task. But this condition alone is not sufficient to sat-
isfy the uniqueness of the results of the binary operations; it is

necessary to rely on a suitable constraint forφH′ (·), and in this
case, arg(φH′′ (0)) = 0. Accordingly, φH′ (·) must be the solu-
tion of the relation (26) under the constraint Im

(
L(0)

)
= 0.

This is computed using the PUNWOS approach in the process
discussed above.

B. RELATIONSHIP BETWEEN PUNWOS AND
KRONIG-KRAMERS RELATIONS: AN APPLICATION
OF THEOREM 1
As mentioned in section (II), the PUNWOS method and
the algorithmic versions based on it have been employed in
several works [28]–[30], [32]. However, without a rigorous
demonstration of its validity and applicability but by sim-
ply (sometimes) comparing the provided numerical results
with those given by the Kronig-Kramers relations [32], that is
the gold standard concerning the issue of the NRW’s branch
ambiguity [26], [34], [36]. This section clarifies the relation-
ship between these approaches through the theoretical results
demonstrated in subsection III-C3. We start by pointing out
that the terms forming the right side of the equation (5),
i.e., γ (t), are the Fourier transform of real and causal coun-
terparts in the time domain (as they must be) [34], [45]. From
Theorem 1, we know that L(γ (t)) is the unique solution of (5)
under the constraint (28), which is also the Fourier transform
of a time-domain physical quantity (which must be causal in
this case). Concerning the Kronig-Kramers relations, let us
consider the following:

L′(γ (t)) = Re[L′(γ (t))]+ iIm[L′(γ (t))]

as the solution of (5) computed by using this approach. It can
be evaluated as follows: from (5) and (38), we know that

Re[L′(γ (t))] = ln

∣∣∣∣ S21(ω)
1− S11(ω)R01(ω)

∣∣∣∣ (54)

The effective extinction factor κeff (ω) results:

κeff (ω) = −
1

k0deff
ln

∣∣∣∣ S21(ω)
1− S11(ω)R01(ω)

∣∣∣∣ (55)

By using the Kramers-Kronig relations, the effective
refractive index neff (ω) is given by [22], [34]:

neff (ω) = 1+
2
π
P
∫
+∞

0

ω′κ(ω′)
ω′2 − ω2 dω

′ (56)

Finally, for the imaginary part of L(γ (t)), we obtain

Im[L′(γ (t)] = k0deff neff (ω) (57)

From (40) and (54), we have:

Re[L′(γ (t))] = Re[L(γ (t))] (58)

and taking into account that the integral (56) provides a
unique solution for Im[L′(γ (t))] [42], we can say that the
two solutions of (5), L(γ (t)) and L′(γ (t)), respectively, must
coincide [37]). Accordingly, the Kronig-Kramers relation and
the PUNWOS approach provide, from a theoretical point of
view, the same solution for neff (ω).
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TABLE 1. Values of the parameters for the Lorentzian models (59),(60).

FIGURE 6. The magnitude of the scattering parameters for the NRI
homogeneous slab with deff = 2.5 mm. The inset shows its behaviour
magnified in the range [8.5,10] GHz.

V. NUMERICAL EXPERIMENTS
In this section we elucidate the theoretical machinery dis-
cussed so far considering the problem of recovering the
material parameters of two negative refractive index (NRI)
homogeneous media slabs described by the following single
resonance Lorentzian models [34], [46]:

εr (ω) = ε∞ +
(εs − ε∞)ω2

0e

ω2
0e − ω

2 + iγeω
(59)

and

µr (ω) = µ∞ +
(µs − µ∞)ω2

0m

ω2
0m − ω

2 + iγmω
(60)

The slabs are characterized by the same parameters, which
are reported in Table (1), but they have different thickness;
deff = 2.5 mm and deff = 7.5 mm, respectively. All the
simulations have been carried out by using the Matlab soft-
ware. The scattering parameters for these media have been
obtained numerically using relations (1) and (2). Figures (6)
and (7) show their magnitude and phase for the slab with
thickness deff = 2.5 mm in the frequency ranges [0, 20] and
[8.5, 10] GHz, respectively. This last one has been chosen to
magnify these quantities around the slab dielectric and mag-
netic angular resonance frequencies. The S-parameters were

FIGURE 7. The phase of the scattering parameters for the NRI
homogeneous slab with deff = 2.5 mm. The inset shows its behaviour
magnified in the range [8.5,10] GHz.

FIGURE 8. The path γ (t) , S21(ω)/(1− S11(ω)R01(ω)) for the slab with
deff = 2.5 mm. Green diamond marker: γ (a), a = 0 Hz. Red diamond
marker: γ (b), b = 20 GHz. The inset shows the behaviour of γ (t)
magnified around the origin of Ċ. Red continuous line: the ray Rπ .

sampled at 2048 points over the band [0, 20] GHz. Figure (8)
shows the shape of γ (t), given by (38), related to this case.
The green diamond and red diamondmarkers locate the initial
and final points of γ (t), γ (a), a = 0 Hz, and γ (b), b =
20 GHz, respectively, showing as γ (t) describes a counter-
clockwise curve on Ċ as the frequency increases. We can note
as γ (a) lies on R+, confirming the aforementioned remarks
on its location. In addition, we can observe as no intersection
exists between γ (t) and the ray Rπ , that is, the branch cut
of log(·). This implies that the pre-image of γ (t), γ̄ (t), must
entirely lie in the half-open strip (−π, π], that is the principal
domain of univalence of e(·).2 As a consequence, the mapping

2We recall that the images of rectilinear semi-open strips of width 2π
are overlapped on C by the mapping e(·) (see figure (3)). If we consider a
variable point w that describes a continuous counterclockwise (clockwise)
path in C, the corresponding image point z = ew traces a continuous
counterclockwise (clockwise) path in Ċ, which crosses the ray Rπ every
time the point w crosses the boundary between two adjacent strips [37].
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FIGURE 9. The argument function argπ (γ (t)), t , ω ∈ [0,20] GHz
(continuous purple line). The inset shows its behavior magnified in the
range [8.5,10] GHz.

FIGURE 10. The pre-image of γ (t), γ̄ (t) = L(γ (t)) in C. Green diamond
marker: L(γ (a)), a = 0 Hz. Red diamond marker: L(γ (b)), b = 20 GHz. Red
dotted lines: boundaries of the half-open rectilinear strip (−π, π].

realized by (5) is bijective, and hence the inverse f −1(·)
exists, that is, the unique analytic logarithm of the Theorem 1,
L(·), coincides with log(·), which must be chosen as the first
element of the chain (35) since it is the unique α-logarithm
able to fulfill the constraint (36). All this allows to conclude
that the slab sample with deff = 2.5 mm is electrically thin
compared with the wavelength inside the medium within the
[0, 20] GHz band, and no branch ambiguity occur in this
case. The imaginary part of log(γ (t)), the phase argument
argπ (γ (t)), depicted in Figure (9), is continuous over the
frequency range, as expected from the considerations men-
tioned above. Figure (10) shows γ̄ (t) = log(γ (t)). The green
diamond and red diamond markers indicate the initial and
final points log(γ (a)) and log(γ (b)), respectively. The red
dotted lines delimit the boundaries of the half-open rectilinear
strip (−π, π]. We can note as γ̄ (t) results entirely lying

FIGURE 11. The refractive index n(ω) (dotted purple line), and the
recovered effective refractive index neff (ω) (dashed blu line), for the NRI
slab with deff = 2.5 mm. The inset shows the behaviour of these
quantities magnified in the range [8.5,10] GHz.

FIGURE 12. The real and imaginary part of εr (ω) (red and blue dotted
lines), µr (ω) (green and black dotted lines), εeff (ω) (purple and light blue
dashed lines) and µeff (ω) (light and dark green dashed lines) for the NRI
slab with deff = 2.5 mm. The inset shows their behaviour magnified in
the range [8.5,10] GHz.

inside it, demonstrating the correctness of our theoretical
analysis. Figure (11) shows a comparison between the exact
refractive index n(ω) = Im[

√
εr (ω)µr (ω)] and the recovered

effective refractive index neff (ω) obtained solving (5) by
log(·). In contrast, in figure (12) a comparison between exact
(εr (ω), µr (ω)) and recovered (εeff (ω), µeff (ω)) constitutive
parameters is depicted. The precise agreement among them
is apparent. Figures (13) and (14) show the magnitude and
phase of S11 and S21 for the 7.5 mm thickness slab in the
range [0, 20] GHz. Also, in the same figures is shown their
behaviour magnified in the frequency band [8.5, 10] GHz.
For this case, the S-parameters were sampled at 16384 points
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FIGURE 13. The magnitude of the scattering parameters for the NRI
homogeneous slab with deff = 7.5 mm. The inset shows its behaviour
magnified in the range [8.5,10].

FIGURE 14. The phase of the scattering parameters for the NRI
homogeneous slab with deff = 7.5 mm. The inset shows its behaviour
magnified in the range [8.5,10] GHz.

in the range [0, 20] GHz. We can note as the phase of the
S-parameters results to be more rapidly changing than the
previous case, suggesting the presence of the branch ambi-
guity issue, as pointed out in [22]. Hence, the slab sample
with deff = 7.5 mm should be electrically thick compared
with the wavelength inside the medium within the selected
frequency band. This ansatz is confirmed by figure (15),
which depicts the shape of the path (38) in Ċ. In fact, unlike
the 2.5 mm slab, we can observe that the path γ (t) repeatedly
intersects the rayRπ . This clearly indicates that its pre-image,
γ̄ (t), does not lie exclusively inside the strip (−π, π]. Thus,
on the contrary of the previous case L(·) 6= log(·), and
the analytic continuation has to be employed to solve (5).
Since the point γ (a) (green diamond marker) lies on R+
(as it must), the principal logarithm log(·) can and must
be used as the first element of the chain (35). We repeat

FIGURE 15. The path γ (t) , S21(ω)/(1− S11(ω)R01(ω)) for the slab with
deff = 7.5 mm. Green diamond marker: γ (a), a = 0 Hz. Red diamond
marker: γ (b), b = 20 GHz. The inset shows its magnified around the origin
of Ċ. Red continuous line: the ray Rπ .

FIGURE 16. The argument function argπ (γ (t)), (blue dash-dotted line)
and the imaginary part of L(γ (t)), Im[L(γ (t))] (purple continuous line). The
inset shows their behaviour magnified in the range [8.5,10] GHz.

once again that this choice is the only one guaranteeing the
fulfilment of the constraint condition (36), essential to obtain
a causal solution for L(γ (t)), because argπ (γ (a)) = 0. At this
point, to realize the analytic continuation is suffice to eval-
uate Im[L(γ (t))] making argπ (γ (t)) continuous. Figure (16)
shows the graph of argπ (γ (t)) (dash-dotted blue line) over the
frequency range [0, 20] GHz. The inset shows its behaviour
magnified in the interval [8.5, 10] GHz. We can see as this
function results characterized by four discontinuity points,
that coincide with the number of intersection points between
γ (t) andRπ . The same figure shows the graph of Im(L(γ (t)))
(purple continuous line) obtained by making continuous, i.e.
unwrapping, argπ (γ (t)) by using PUNWOS. Figure (17)

77522 VOLUME 9, 2021



G. Angiulli, M. Versaci: Retrieving Effective Parameters of Electromagnetic Metamaterial Using NRW Method

FIGURE 17. The pre-image of γ (t), γ̄ (t) = L(γ (t)) in C. Green diamond
marker: L(γ (a)), a = 0 Hz. Red diamond marker: L(γ (b)), b = 20 GHz. Red
dotted lines: Boundaries of the half-open rectilinear strips
(−3π,−π ], (−π, π],and (π,3π ].

FIGURE 18. Refractive index n(ω) (dash-dotted green line), PUNWOS
effective refractive index neff (ω) (dotted blu line), and K-K computed
effective refractive index n′eff (ω) (dashed red line) for the NRI slab with
deff = 7.5 mm.

depicts γ̄ (t) = L(γ (t)) for the 7.5 mm thickness slab. Also
in this case, the green diamond and red diamond markers
indicate the initial and final points L(γ (a)) and L(γ (b)),
respectively. The red dotted lines represent the boundaries
of the half-open rectilinear strips (−3π,−π ], (−π, π], and
(π, 2π ] in C. On the contrary to 2.5 mm thick slab case,
we can observe as γ̄ (t) does not lie inside the (−π, π] strip,
as expected, demonstrating once again the correctness of our
theoretical analysis. Figure (18) shows a comparison among
the exact refractive index n(ω), the effective refractive index
neff (ω), recovered by using PUNWOS, and the effective
refractive index n′eff (ω), computed by using the numerical

FIGURE 19. The real and imaginary part of εr (ω) (red and blue dotted
lines), µr (ω) (green and black dotted lines), εeff (ω) (ligh and dark purple
dash-dotted lines), µeff (ω) (dark green and gray dash-dotted lines),
ε′eff (ω) (red and dark blue dashed lines), and µ′eff (ω) (black and green
dashed lines) for the NRI slab with deff = 7.5 mm. The insets shows their
behaviour magnified around the peaks.

implementation of the Kronig-Kramers approach described
in [23], in the frequency range [8.5, 10] GHz. The insets
report the behaviour of these quantities around their peaks.
Finally, the figure (17) shows the comparison among the
real and imaginary part of the couples (εeff (ω), µeff (ω)),
(ε′eff (ω), µ

′
eff (ω)), the first recovered by PUNWOS, while

the second computed by the Kronig-Kramers relations, and
the couple of exact parameters (εr (ω), µr (ω)), respectively,
in the same frequency range as for the refractive index. In con-
trast, the insets depict the behaviour of these quantities in
correspondence to their peaks. The results obtained show an
excellent agreement among PUNWOS and Kronig-Kramers
method, as theoretically expected.

VI. CONCLUSION
In this study, we rigorously demonstrated that the NWR
branch ambiguity issue can be avoided by computing the
proper right-inverse of the relationship (5) through the ana-
lytic continuation of a suitable analytic logarithm along the
path determined in the complex plane by the scattering
parameters of the MM under analysis. This prolongation
has to be realized according to the formulation provided
by Theorem 1, which states the conditions so that we can
determine a unique solution for this problem. Accordingly,
the choice of log(·) as the first element of the chain of
the analytic function elements constituting this right inverse.
i.e. the analytic logarithm L(·), has been demonstrated in
terms of the Fourier inverse transform property of the com-
plex refraction index Neff (ω). Furthermore, the equivalence
between analytic continuation and the PUNWOSmethod was
proved. To this end, considering that PUNWOS is a technique
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introduced for homomorphic signal processing, we showed
that the relationship between the sub-systems’ input-output
functions φH′ (·) and φH′′ (·) of the canonical homomorphic
system for multiplication, C, is analogous to that which links
L(·) and e(·) in the case of the NWR retrieval method and that
PUNWOS can evaluate L(·). Based on this result, the relation-
ship between PUNWOS and the Kronig-Kramers relations
was also demonstrated. To enlighten all the above mentioned
theoretical points, we have carried out some numerical exper-
iments related to recovering the effective parameters of a cou-
ple of NRI media. From a numerical point of view, the very
close agreement we have obtained between the PUNWOS
and the Kronig-Kramers computational results demonstrate
the effectiveness of the theoretical analysis conducted in this
study. Future work will be devoted to using the concepts of
global analytic functions and Riemann surfaces in the field
of the effective parameters recovering by NRW method [37].
We conclude by pointing out that our work opens the possi-
bility to employ the vast theoretical equipment developed in
the phase unwrapping field to achieve the retrieval of MMs’
effective parameters by following theNWRmethodwhen this
kind of characterization is permitted [16], [17].
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