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Abstract 

Precision agriculture (PA) is defined as “a management strategy that gathers, processes and 

analyzes temporal, spatial and individual data and combines it with other information to support 

management decisions according to estimated variability for improved resource use efficiency, 

productivity, quality, profitability and sustainability of agricultural production”. In order to 

achieve effective and sustainable environmental management of agricultural production, and an 

improvement in the competitiveness of the agricultural sector, PA methodologies and technologies 

are currently a reliable and cost-effective approach. PA represents also one of the most important 

applications of remote sensing (RS). While satellite observation has guided many information-

based advances in agricultural management and practice, critical technological developments and 

steep rise have affected unmanned aerial vehicles (UAVs) in the last decade, which represent a 

potential game-changer in PA applications. In comparison with other RS platforms, UAVs are 

generally more independent of climatic variables. Furthermore, being able to provide data with 

higher temporal and spatial resolution, the UAVs today represent a significant source of RS 

imagery in PA considering that the knowledge of the within-field spatial variation of edaphic 

factors and the state of crops constitute an essential prerequisite. 

Many multispectral (MS) UAV cameras permit to obtain spectral information in the Red, Red edge, 

and NIR wavebands for vegetation applications with a very high spatial resolution. Based on the 

combination of these three wavebands, many vegetation indices (VIs) were developed with the 

aim to monitor, analyze, and map temporal and spatial variations of vegetation in both herbaceous 

and tree crops. Furthermore the geographic object-based image analysis (GEOBIA) techniques 

have demonstrated higher effectiveness for extracting reliable and reusable information from the 

images in comparison to traditional pixel-based procedures.  

In the framework of this PhD thesis, crops of great interest in the Mediterranean agro-ecosystems 

and specifically, in Calabria region, were monitored by using a combination of innovative 

technologies, i.e, UAV and satellite images, vegetation indices, and GEOBIA procedures, with the 

primary aims of producing vigor maps and assessing the uses of these maps for PA applications. 

The studied crops were olive (Olea europaea L. subsp. sativa), bergamot (Citrus bergamia, Risso), 

clementine (Citrus clementina Hort. ex Tan.), and onions (Allium cepa, “Cipolla Rossa di Tropea”).  

The novelty of the proposed procedures relies on their replicability, reliability, and speed, which 

proved promising results in different datasets characterized by heterogeneous agricultural 
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contexts. The heterogeneity and spatial variability of the surveyed scenarios showed that the 

proposed approaches can be applied to a wide range of both herbaceous and tree vegetation types. 

Furthermore, the results obtained in the several case studies demonstrated the potential of the 

approaches adopted in providing useful information to manage farm operations and guide 

farmers’ decisions in PA, even in agricultural scenarios that are not necessarily characterized by 

crop parcels of very large dimensions. 

 

 

Keywords: precision agriculture (PA); unmanned aerial vehicles (UAVs); satellite multispectral 

imagery; multispectral and thermal UAV imagery; vegetation indices (VIs); geographical object-

based image classification (GEOBIA); vigor maps  
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RIASSUNTO 

L’agricoltura di precisione (PA) è definita "una strategia di gestione che raccoglie, elabora e 

analizza dati temporali, spaziali e individuali e li combina con altre informazioni per supportare le 

decisioni gestionali in base alla variabilità stimata per migliorare l'efficienza dell'uso delle risorse, 

la produttività, la qualità, la redditività e la sostenibilità della produzione agricola". Al fine di 

ottenere una gestione ambientale efficace e sostenibile della produzione agricola e un 

miglioramento della competitività del settore agricolo, le metodologie e le tecnologie della PA sono 

attualmente un approccio affidabile ed economico. La PA rappresenta anche uno dei più 

importanti campi di applicazione del telerilevamento (o Remote Sensing, RS). Mentre la raccolta 

di dati da satellite ha guidato molti progressi basati sull'informazione nella gestione e nella pratica 

agricola, nell'ultimo decennio diversi sviluppi tecnologici importanti hanno riguardato i veicoli 

aeromobili a pilotaggio remoto (droni, UAV), che oggi rappresentano un potenziale fattore di 

cambiamento nelle applicazioni della PA. Rispetto ad altre piattaforme di RS, gli UAV sono 

generalmente più indipendenti dalle variabili climatiche. Inoltre, essendo in grado di fornire dati 

con una maggiore risoluzione temporale e spaziale, rappresentano oggi una fonte significativa di 

immagini nella PA, considerando che la conoscenza della variabilità spaziale all'interno del campo 

dei fattori edafici e dello stato delle colture costituisce un prerequisito essenziale. Ad esempio, 

molte fotocamere multispettrali UAV permettono di ottenere informazioni spettrali nelle bande 

del rosso, Red edge e del vicino infrarosso con una risoluzione spaziale molto elevata. Sulla base 

della combinazione di queste tre bande, molti indici di vegetazione (VI) sono stati sviluppati con 

l'obiettivo di monitorare, analizzare e mappare le variazioni temporali e spaziali della vegetazione 

sia nei campi che nelle colture arboree. Nell'ambito delle applicazioni della PA, tra le tecniche in 

grado di estrarre informazioni affidabili e riutilizzabili, le tecniche di analisi delle immagini basate 

su oggetti geografici (GEOBIA) hanno dimostrato la loro efficacia.  

Nell’ambito della presente tesi di dottorato, attraverso l'utilizzo di immagini UAV e satellitari, 

utilizzando GEOBIA e indici di vegetazione per la produzione di mappe della vigoria, è stato 

effettuato un monitoraggio di colture che rivestono un grande interesse dal punto di vista socio-

economico nella regione Calabria: Olivo (Olea europaea L. subsp. sativa), Bergamotto (Citrus 

bergamia, Risso), Clementina (Citrus clementina Hort. ex Tan.), e Cipolla (Allium cepa L., "Cipolla 

Rossa di Tropea").  
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I risultati ottenuti nei diversi casi studio hanno dimostrato le potenzialità degli approcci adottati 

nel fornire informazioni utili a orientare la gestione e le decisioni degli agricoltori e delle aziende, 

anche in contesti agricoli non necessariamente caratterizzati da superfici coltivate molto estese. 
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1 General introduction and thesis organization 

Agriculture constitutes one of the most important fields for Remote Sensing (RS) applications, 

particularly, in the aspects related to precision agriculture (PA). PA is defined as “a management 

strategy that gathers, processes and analyzes temporal, spatial and individual data and combines 

it with other information to support management decisions according to estimated variability for 

improved resource use efficiency, productivity, quality, profitability and sustainability of 

agricultural production” (ISPAG, 2019). Increasing the sustainability of the Italian agricultural 

model through innovation is one of the most important challenges for agriculture in order to 

increase quality agricultural production while maintaining agrobiodiversity. From a European 

point of view, the future Common Agricultural Policy (CAP) should promote greater synergies 

with research and innovation policies to foster innovation. Technological development and 

digitization make possible major advances in efficiency, and can reduce the environmental/climatic 

impact of agriculture as well as reduce costs for farmers. The use of new technologies in agriculture 

remains inadequate and limited at EU level, with insufficient or too slow uptake of new knowledge 

and innovative solutions in agriculture by small and medium-sized farms. This hinders a gradual 

transition to a more sustainable agriculture and to farm sector competitiveness and sustainable 

development. These considerations give rise to a crucial objective of the new CAP for supporting 

knowledge, innovation and technology through Agricultural Knowledge and Innovation System 

(AKIS). AKIS is a set of organisations and/or persons, including the links and interactions between 

them, involved in the generation, transformation, transmission, storage, retrieval, integration, 

dissemination and use of knowledge and information, with the aim of working synergistically to 

support decision-making, problem-solving and innovation in agriculture (OCSE).  

In this context, PA plays a leading role in optimizing production efficiency and reducing 

environmental impact. The objectives of the PA include the increase of agricultural production 

efficiency, product quality and profitability, benefiting at the same time the climatic, 

environmental, economic sustainability of agricultural practices. In particular, these objectives can 

be achieved through: 

- Optimization of inputs used through a controlled distribution of fertilizers and 

pesticides according to the real needs of the crop and with a consequent reduction in the 

infiltration of chemical substances into the ground water; 

- Reduction of irrigation water volumes;  
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- Efficiency intended as reduction in cultivation operations per unit of time and area, 

and increase in units yields, thanks to improved logistics of pre- and post-harvest 

operations, and rationalization of data; 

- Use of sensors for real-time monitoring of crop health, control of the onset of 

phytopathogens or environmental conditions. 

In the framework of this PhD thesis, the present research aims at defining specific vegetation 

indices for the early estimation and monitoring of abnormalities of vegetative vigor provoked by 

biotic and abiotic factors. For this purpose, RS techniques will be implemented with the integration 

of satellite and UAV data. A particular emphasis will be placed on the management of 

multiplatform and multitemporal datasets for the obtaining of prescriptive maps. The objective is 

also to give an overview of RS–based approaches for mapping of agricultural systems, applicable 

even in a context of PA, and to illustrate these approaches through case studies focused on 

monitoring carried out on herbaceous and tree crops of great socio-economic interest in 

Mediterranean agroecosystems and specifically, in Calabria region. To do this, the introductory 

part in Chapters 1 and 2 includes a description of the crops that have been monitored and the basic 

notions about RS, and in particular its applications to vegetation characterization. The next 

chapters illustrate several case studies which have provided for the use of different RS platforms 

and sensors. The Chapter 3 was devoted to show a quick and reliable semi-automatic workflow, 

using GEOBIA, to process MS UAV imagery, and aiming at the detection and extraction of olive 

and citrus trees’ crowns in the framework of PA. Finally, the production of vigor maps show the 

vegetative state of the tree crowns. In the Chapter 4, the main objective was to compare the 

performances of different GEOBIA algorithms in terms of outputs quality and of processing 

resources, focusing to PA applicability. In particular, a complete supervised classification of UAV 

imagery, applied to a bergamot orchard and an onion field was done. The Chapter 5 was partly 

devoted to the description of the state of the art in PA applications. Finally, a case study was 

presented about the potentiality of coupling multispectral and thermal imagery acquired by UAVs 

in monitoring onion crops.  In the Chapter 6 a case study was aimed at comparing data acquired 

by fixed-wing UAV and the PlanetScope and Sentinel-2 satellites in onion crop monitoring. In 

particular, RS techniques applied to onion crops could help to monitor crop growth and to guide 

localized fertilization, phytosanitary treatments, and harvest, i.e., to generally support the 

implementation of PA strategies.  
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1.1 Crops surveyed 

The surveys of RS carried out in this thesis concern herbaceous and tree crops, among those of 

greatest importance in Calabria region, as they can provide products recognized for their quality 

outside regional and national borders: olive, clementine, bergamot and onion. 

Olive 

Olea europaea L. subsp. sativa is an evergreen tree species (Figure 1.1); the height of the olive tree 

can vary from 3 to 15 meters, depending on the cultivar, the pedoclimatic conditions and the 

environment. A peculiar characteristic of this plant is its ability to regenerate, in fact if the trunk is 

damaged, the base called stump (or pedal) is able to produce new shoots (Fiorino, 2018). The leaves 

are lance-shaped and leathery, the flowers are hermaphrodite and white, and the fruit is a drupe, 

oval and purple to green and is the only fruit from which an oil is extracted, being the other 

vegetable oils extracted from seeds.  

 

Figure 1.1 Olive orchard. 

The olive tree is one of the most important cultivated tree species in the Mediterranean basin. The 

diffusion of the two subspecies Olea europaea L. subsp. oleaster (oleaster) and Olea europaea L. subsp. 

sativa (cultivated olive tree) from the areas of origin (Asia Minor and Middle East) dates back to at 

least 5000 BC (Zohary et al., 2015). From the original area of the first crops, corresponding to the 

eastern Mediterranean, its use was spread to all the countries of the Mediterranean basin in parallel 
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with the progress of human movements and trade that have marked much of the history of these 

countries. From the primary areas, secondary areas of diversification (Aegean region) and tertiary 

areas (southern Italy, Tunisia) would have formed. Under the pressure of the Camito-Semitic 

populations first, and later by the Phoenicians, Greeks, Romans and lastly by the Arabs, the history 

of the olive tree is increasingly intertwined with that of the peoples who learn to use and appreciate 

it, first only as an industrial product for lighting and as an ointment, and later also as a food product 

(Fiorino, 2018). Today the world area invested in olive trees is about 12 million hectares, on which 

there are about one billion plants. With regard to the average production of olive oil, this amounts 

to over 2 million tons. The main producer countries in the European Community are Spain, Italy, 

Greece and Portugal followed by France, the Balkan countries, Algeria, Morocco, Tunisia etc. 

Among the emerging ones, Argentina, Chile and Australia are particularly noteworthy. In Italy, 

about 80% of olive production is widespread in the southern and island regions, with Puglia, 

Calabria and Sicily being the most productive regions. Calabria, with its 184 thousand hectares of 

olive groves (Table 1.1) (ISTAT, 2019), covers almost 14% of the entire Italian olive-growing area 

(Figure 1.2). The olive groves (about 76%) are located in hilly areas while 16% are in mountain 

areas; only 8% of these are located on the plain. The province of Cosenza has the largest area in 

production (53,678 ha), followed by Reggio Calabria (49,700 ha), Catanzaro (40,240 ha) Crotone 

(23,437 ha) and Vibo Valentia (17,509 ha) (Table 1.2) (ISTAT, 2019).  

Table 1.1 Total area cultivated and total production (quintals of olives) in Italy and Calabria. 

  Total area (ha) Total production (q) 

ITALY 1,180,912 28,979,352 

Calabria 184,564 7,224,071 

 

 

 

Figure 1.2 Total area and production in Italy and Calabria and related percentages. 
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Table 1.2 Total area cultivated and total production in Calabria’s provinces. 

Province Total area (ha) Total production (q) 

Cosenza 53,678 1,908,391 

Catanzaro 40,240 1,600,000 

Reggio Calabria 49,700 2,485,000 

Crotone 23,437 465,500 

Vibo Valentia 17,509 765,180 

 

As far as production is concerned, Reggio Calabria is the province with the highest production, 

2,485,000 quintals of olives, equal to 29% of regional production followed by the province of 

Cosenza (1,908,391 quintals), Catanzaro (1,600,000 quintals), Vibo Valentia and Crotone (Table 1.2) 

(Figure 1.3). 

 

Figure 1.3 Total area and production in Italy and Calabria’s provinces expressed in percentage.  

Bergamot 

Bergamot (Citrus bergamia, Risso) crops (Figure 1.4) are mainly located on the Ionian sea coast in 

the province of Reggio Calabria (South Italy), its place of election and perhaps even of origin, where 

this crop has been known since the 17th century. The introduction of this citrus fruit plant in Italy 

took place in that period first in the region of Tuscany, where the use of the plant was limited only 

to ornamental purposes, and then in the South, in the province of Reggio Calabria (Vacante and 

Calabrese, 2009). Here this plant spread mainly thanks to a favorable climate, in the Tyrrhenian 

coast between Reggio and Cannitello di Villa S. Giovanni and in the Ionian coast between Reggio 

and Palizzi. Subsequently its cultivation, both because of the competition with other citrus fruits 

grown and because of the low yield in essential oil, was located exclusively on the Ionian coast 

(Vacante and Calabrese, 2009). 
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Citrus bergamia is an evergreen tree, with a cylindrical stem and thin irregular branches (Rapisarda 

and Paula Germano, 2014). This plant can reach 12 m in height. Flowering takes place between 

April and May while the fruit ripens, depending on the cultivar, between November and March. 

There are three varieties, selected by the farmers, which have established themselves in the 

territory of Reggio Calabria: Femminello, Castagnaro and Fantastico. The fruit (Figure 1.4) is 

primarily cultivated for the extraction of essential oil from the peel to use it in the cosmetic, 

perfumery (Jin et al., 2016) and food industries (Pernice et al., 2009). Since 2001, these productions 

awarded the European protected designation of origin (PDO) label Bergamotto di Reggio Calabria 

– olio essenziale (“Bergamot of Reggio Calabria – essential oil”). In the food industry, an increasing 

interest has focused on the use of bergamot’s juice as a beverage and in a blend with other fruit 

juices (Giuffrè, 2019). This interest is related to the antioxidant properties of juice, beneficial for 

health (Da Pozzo et al., 2018). From the dried and processed waste is obtained the so-called 

pastazzo, which can be used as animal feed (Nesci and Sapone, 2014). Over 90% of the world’s 

bergamot production comes from Calabria while the remaining 10% from Africa (Côte d'Ivoire, 

Mali, Cameroon, Guinea) and South America (Argentina and Brazil) (Nesci and Sapone, 2014). This 

is because the climate, the soil characteristics, the cultivation techniques, the rootstock, the degree 

of ripeness and harvesting, and the extraction method influence the composition and quality of the 

essence (Vacante and Calabrese, 2009). The surface area cultivated with bergamot is 1500 ha with 

a production of 300,000 quintals (ISTAT, 2018). 

 

Figure 1.4 Bergamot orchard (top) and fruits at different degrees of ripeness (below). 

 



16 

 

Clementine 

Clementine (Citrus clementina Hort. ex Tan.) is one of the essential cultivated varieties of citrus 

mandarins in the Mediterranean Basin (Benabdelkamel et al., 2012) where it found great popularity 

thanks to the early ripening of the fruit. This citrus fruit (Figure 1.5), found at the beginning of the 

20th century in the garden of an orphanage in Algeria, comes from a natural (or man-made) cross 

between Citrus reticulata and Citrus sinensis (Vacante and Calabrese, 2009). From cultivar-

population with different clones, different cultivated varieties have been obtained, distinguished 

by name and for different ripening times, from the month of October to the beginning of February 

(Vacante and Calabrese, 2009). Italy is one of the largest producers in Europe, and its crops are 

located in the southern part of the country. Cultivated in Italy since the 1930s, they have found one 

of their ideal habitats in Calabria. Productions made in the Calabria region are labeled with the 

European protected geographical indication label “Clementine di Calabria” (Benabdelkamel et al., 

2012). This label was awarded because of clementine’s high organoleptic properties. As far as 

production is concerned, a large part is consumed as fresh fruit and used in the preparation of 

sorbets, juices, syrups and marmalades (Falcone et al., 2020).  

Calabria is the most important Italian region for the production of clementines since the more than 

16,000 hectares cultivated represent about 62% of the Italian surface dedicated to its cultivation and 

with more than 440,000 tons almost 60% of the national production (Table 1.3) (Figure 1.6). The 

areas of greatest production are concentrated in the plain areas existing in the region and are: Piana 

di Sibari and Corigliano in the Cosentino area, Piana di Lamezia in Catanzaro, Piana di Gioia 

Tauro-Rosarno and Locride in the province of Reggio Calabria. In only 58 municipalities in 

Calabria is concentrated almost half of the regional citrus fruit area, divided as follows (Figure 1.7): 

Province of Reggio Calabria 20 municipalities (Ardore, Benestare, Bianco, Bovalino, Brancaleone, 

Casignana, Caulonia, Ferruzzano, Locri, Marina di Gioiosa Jónica, Monasterace, Portigliola, 

Roccella Jónica, Sant'Ilario dello Jonio, Siderno, Rizziconi, Gioia Tauro, Palmi, Rosarno, 

S.Ferdinando); Province of Catanzaro 14 municipalities (Borgia, Botricello, Curinga, Lamezia 

Terme, Maida, Montauro, Montepaone, San Floro, San Pietro a Maida, Sant'Andrea Apostolo dello 

Jonio, Selliä Marina, Simeri Crichi, Soverato, Squillace, Catanzaro); Province of Cosenza 16 

municipalities (Cassano Jonio, Castrovillari, Corigliano Calabro, Crosia, Francavilla Marittima, San 

Lorenzo del Vallo, Spezzano Albanese, Terranova da Sibari, Trebisacce, Vaccarizzo Albanese, 

Rossano, Saracena, Cariati, Calopezzati, S. Demetrio C, S. Giorgio Α.); Province of Vibo 5 

municipalities (Briatico, Francavilla, Angitola, Limbadi, Nicotera, Pizzo); Province of Crotone 3 
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municipalities (Ciro Marina, Crucoli Torretta, Rocca di Neto) (www.igpclementinedicalabria.it). 

The clementines are harvested from October to early February, depending on the varieties 

(Spinoso, SRA 63, Comune, Hernandina, Fedele, Tardivo, Hernandina, Marisol and Nules). The 

Calabrian surface area cultivated with clementines is divided as follows (Table 1.4) (Figure 1.8): the 

province of Cosenza has the largest area in production, about 12,250 ha (76%), followed by Reggio 

Calabria with about 2,350 ha (14%), Catanzaro (752 ha), Vibo Valentia (635 ha) and Crotone (110 

ha) (ISTAT, 2019). The production data (Table 1.4) show, of course, Cosenza as the leading province 

in regional production, with 3,572,414 quintals of clementines produced in 2019, followed by the 

province of Reggio Calabria (540,500 q), Catanzaro (225,000 q), Vibo Valentia (90,803 q) and 

Crotone (13,750 q) (ISTAT, 2019).  

 

Figure 1.5 Trees and clementine fruits. 

Table 1.3 Total area cultivated and total production (quintals) in Italy and Calabria. 

 Total area (ha) Total production (q) 

ITALY 25,759 6,432,096 

Calabria 16,097 4,442,467 
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Figure 1.6 Total area and production in Italy and Calabria and related percentages. 

 

Table 1.4 Total area cultivated and total production (quintals) in Calabria’s provinces. 

Province Total area (ha) Total production (q) 

Cosenza 12,250 3,572,414 

Catanzaro 752 225,000 

Reggio Calabria 2,350 540,500 

Crotone 110 13,750 

Vibo Valentia 635 90,803 
 

 

Figure 1.7 Map of Calabria with the municipalities belonging to the production area of 

"Clementine di Calabria IGP" highlighted in yellow. 
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Figure 1.8 Total area and production in Italy and Calabria’s provinces expressed in 

percentage. 

Onion 

Onion (Allium cepa L.) is a vegetable bulb crop (Figure 1.9) widely cultivated and known to most 

cultures (Ballesteros et al., 2018; Córcoles et al., 2013). For economic importance among vegetables, 

the onion ranks second after the tomato (Aboukhadrah et al., 2017; Mallor et al., 2011). This plant 

belongs to the family of Amaryllidaceae and is biannual or perennial (depending on the cultivar). 

The plant has shallow adventitious fibrous roots (Ranjitkar, 2003), which grow, usually in the first 

20-25 cm of soil. The umbrella-shaped inflorescence develops from an apical ring meristem and is 

formed by the aggregation of small single flowers (from 200 to 600). As for the bulb, it has variable 

shapes (flat to globular to oblong) and colors (red, white, or yellow). The bulb, the edible part, 

comes from the enlargement of the basal part of the leaves that are inserted, superimposed on a 

central cauline axis. The thick outer leaves of the bulb lose moisture and become scaly until harvest, 

while the inner leaves thicken as the bulb develops (Pareek et al., 2017).  

The onions “Cipolla Rossa di Tropea" produced in Calabria are an essential crop that, as a typical 

product, plays a crucial role in the economic and rural development of the territory (Bernardi et 

al., 2013). This particular pink-red colored onion type, since 2008, is labeled with the European 

Protected Geographical Indication label “Cipolla Rossa di Tropea IGP”. It is well-known 

worldwide for its sweet flavor and for its high content of nutraceuticals that make it an upcoming 

“functional food” (Tiberini et al., 2019). The production area of “Cipolla Rossa di Tropea IGP” 

includes suitable land in the following municipalities in Calabria (Figure 1.10): Fiumefreddo, 

Longobardi, Serra d'Aiello, Belmonte, Amantea (Province of Cosenza), Nocera Terinese, Falerna, 

Gizzeria, Lamezia Terme, Curinga (Province of Catanzaro), Pizzo, Vibo Valentia, Briatico, 

Parghelia, Zambrone, Zaccanopoli, Zungri, Drapia, Tropea, Ricadi, Spilinga, Joppolo, Nicotera 

(Province of Vibo Valentia). 
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The Calabrian surface area cultivated with onions is divided as follows (Table 1.5) (Figure 1.11): in 

the provinces of Catanzaro and Vibo Valentia there are the largest production areas, 320 ha and 

400 ha respectively, with productions between about 160,000 and 180,000 quintals followed by 

from the other three provinces where areas cultivated with onions and production are lower. 

 

 

Figure 1.9 Onions on the field (left) and onions”Cipolla Rossa di Tropea”(right). 

 

 

Figure 1.10 Map of Calabria with the municipalities belonging to the production area of 

"Cipolla di Tropea IGP" highlighted in orange. 
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Table 1.5 Total area cultivated and total production (quintals) in Calabria’s provinces. 

Province Total area (ha) Total production (q) 

Cosenza 139 26,140 

Catanzaro 320 180,000 

Reggio Calabria 50 7,750 

Croton 40 8,800 

Vibo Valentia 400 164,400 
 

 

 

 

Figure 1.11 Total area and production in Italy and Calabria’s provinces expressed in 

percentage. 

  



22 

 

2 Remote Sensing of Vegetation 

Remote sensing (RS) is the practice of obtaining information about an object, an area, or a 

phenomenon through the analysis of images acquired by a device, not in touch with them 

(Lillesand et al., 2015). RS investigations are mostly based on the analysis of a deterministic 

relationship between the amount of electromagnetic (EM) energy reflected, emitted or 

backscattered, in specific bands or frequencies and the chemical, biological, and physical 

characteristics of the studied phenomena. In RS, three ways are considered to sense information 

about an object: reflection, emission, and combination of emission and reflection (Chuvieco, 2016). 

The first exploits sunlight, which is the primary source of energy on Earth. In particular, sunlight 

illuminates the surface, which reflects some of this energy, causing it to turn back, based on the 

composition of the reflective surface cover (Campbell e Wynne, 2017). The second way is provided 

by reflected EM energy detected by a satellite sensor, which records and transmits the signal to a 

receiving station (Chuvieco, 2016). 

Furthermore, RS observations can be based on the emitted energy from the surface, as all objects 

with a temperature higher than absolute zero (0 K) emit energy (Kuenzer et al., 2013). Finally, active 

sensors, which have their energy source, can send pulses to the objects recording reflections to 

characterize objects themselves (Chuvieco, 2016). Historically, RS has been mainly based on the 

passive reflection of radiation in the visible and broader optical-reflective region. On the other 

hand, thermal RS and microwaves’ use is growing (Jones and Vaughan, 2010). The present thesis 

will deal with the first three ways to sense objects’ information dealing with issues that have 

involved the use of imagery derived by optical and thermal RS sensors. 

In RS, it is common to categorize EM waves by their wavelength location inside the EM spectrum 

(Figure 2.1). EM radiation consists of a series of wavelengths that form the EM spectrum and define 

specific regions called spectral bands. However, there is no clear dividing line between one 

nominal spectral region and the next. The portion of the EM spectrum visible to the human eye is 

called visible light or VIS region. The VIS region, which ranges from 0.4 to 0.7 µm, covers the 

spectral wavelengths that our eyes can sense. This region can be further divided into the three 

primary colors: blue (0.4–0.5 µm), green (0.5–0.6 µm), and red (0.6–0.7 µm); in this region, the 

change in reflectance behavior of an object results in its “color”. Before the blue band is located the 
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ultraviolet (UV) energy, while the infrared region lies beyond the red band, the spectrum’s 

microwave portion is beyond the infrared region (Lillesand et al., 2015). 

 

Figure 2.1 The electromagnetic spectrum. In evidence, the visible region, in which the three 

bands blue, green and red (0.4 – 0.7 µm)  are further detailed. 

Some physical laws, in particular, the laws of Planck, Wien and Stefan–Boltzmann make it possible 

to understand the behavior of EM radiation better. First of all, from basic physics, waves follow 

this general equation (2.1): 

𝑐 = λ ν     (2.1) 

where c represents the "speed of light", one of the forms with which EM energy propagates 

according to this theory. EM energy travels harmoniously and sinusoidally at the velocity of light. 

λ is the distance between two consecutive wave peaks while the frequency ν represents the number 

of wave peaks that pass from a point in a second (Figure 2.2). 

 

Figure 2.2 The electromagnetic radiation’s components according to the wave theory of 

light. 
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According to Planck’s theory, EM radiation is composed of discrete packets of energy called photons 

or quanta. The energy of a quantum (defined Q and expressed in Joule, J) is proportional to its 

frequency ν (expressed in Hertz, Hz), while the Planck’s constant h (6.626 x10-34 J sec) is used to 

adjust this relationship (Equation 2.2): 

𝑄 =  ℎ𝜈   (2.2) 

When considering that the frequency of the wave (ν) is directly proportional to the speed of light 

(c) and inversely proportional to its length (λ), equation 2.2 can be rewritten as follows (Equation 

2.3): 

𝑄 =
ℎ𝑐

λ
    (2.3) 

In other words, the energy of a quantum is inversely proportional to its wavelength. Thus, the 

longer the wave (larger wavelength), the lower its energy.  

Wien’s and Boltzmann’s laws describe the relationship of a black body’s radiations (i.e., an ideal 

object that absorbs and re-emits all of the incident energy) and the wavelength of the maximum 

emission with a black body’s temperature (Walker et al., 2015). Wien’s displacement law explains 

the relationship between a black body’s true temperature, being expressed in degrees Kelvin, and 

its peak spectral exitance or dominant wavelength. As the temperature increases, its maximum 

exitance shifts towards shorter wavelengths (Equation 2.4): 

λmax =
𝐴

T
   (2.4) 

Given that the Wien’s constant b is equal to 2898 µm K, this formula indicates the wavelength at 

which the maximum radiant spectral exitance can be obtained. It is possible to observe such effects 

in nature. For example, a body with a very high absolute temperature like the sun (about 6000 K) 

has a λmax and, thus, a peak of emission in the visible part of the spectrum (Kuenzer et al., 2013). 

The above formula results are useful to indicate the measurement range of the sensor used to 

measure the radiation emitted by a given body (Jensen, 2014). The Stefan–Boltzmann law states 

that the emittance of a black body is proportional to the fourth power of its absolute temperature 

(Equation 2.5):  

E =  σT4 (2.5) 

where E represents the spectral radiant exitance expressed in W·m−2, σ is the Stefan–Boltzmann 

constant, and T is the absolute temperature [K]. The formula clearly shows that the total EM 
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radiation that is emitted by a black body is a function of its absolute temperature. Therefore, the 

radiation emitted by a body increases as its temperature increases. 

2.1 Thermal Remote Sensing 

Thermal RS uses the information at the emitted radiation in the thermal infrared (TIR) range 

(Figure 2.3) of the EM spectrum (Prakash, 2000). This information is converted into temperature 

(Khanal et al., 2017). Two categories can be distinguished within the IR region (0.7–100 µm), 

namely, the reflected-IR (0.7–3.0 µm) and TIR (3.0–100 µm). Generally, all of the landscape 

elements, such as vegetation, soil, water, and people, emit TIR radiation in the 3.0–14 µm portion 

of the EM spectrum (Jensen, 2014). 

 

Figure 2.3 The electromagnetic spectrum. In evidence, the infrared region (IR), in which the 

reflected-IR (0.7–3.0 µm) and the emitted-IR (3.0–100 µm) are further detailed (source, Messina 

and Modica, 2020b). 

In this range of the EM spectrum, part of the IR energy is transmitted to the Earth’s surface through 

two so-called atmospheric windows, ranging from 3 to 5 µm and from 8 to 14 µm (Vinet and 

Zhedanov, 2010) (Figure 2.4). Atmospheric gases absorb almost all of the radiation between 5 and 

8 µm as water, carbon dioxide (CO2), and ozone (O3) molecules, as indicated in Figure 2.4 (Jensen, 

2014), which are the most efficient absorbers of solar radiation (Lillesand et al., 2015). These gases 

impede the transmission of EM radiation. EM spectrum’s regions where radiations’ transmission 
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is allowed are defined atmospheric windows. These are of fundamental importance in RS as they 

define the wavelengths used for image production (Campbell e Wynne, 2017). Obviously, the 

wavelengths that are not inside the windows are not usable.  

 

Figure 2.4 Atmospheric transmittance in the thermal region with typical absorption bands 

induced by gases and water (source, Messina and Modica, 2020b) modified from (Richter and 

Schlapfer, 2019)). 

Radiation can interact differently with matter depending on both the wavelength and the nature 

of the matter. For example, in the optical region, specific wavelengths can cause electronic 

transitions from one energy level to another, in atoms and molecules, when the energy of the 

quantum involved is equal to the energy difference between the two levels of electronic energy. 

The wavelengths are emitted if the atoms are excited or are absorbed because the same electronic 

transitions are involved. Therefore, spectral emissivity ε is equal to spectral absorptivity α 

(Equation 2.6). Equation 2.6 states that, at a given wavelength, the emittance of a body is equal to 

its absorption capacity, which is: 

ε = α    (2.6) 

This is frequently formulated as “good absorbers are good emitters and good reflectors are poor 

emitters” (Jensen, 2014).  

In the thermal region, the interaction of radiation with solid matter occurs mostly by means of 

molecular vibrations and rotations (Jones and Vaughan, 2010). Thermal radiation (and optical) 

interactions occur primarily through the electric field vector in the EM radiation, leading to 
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electronic and vibrational transitions in the material (Jones and Vaughan, 2010). The energy 

involved in the interaction between radiation and matter is stored so that the total amount of 

energy dissipated by reflection, transmission and absorption, corresponds precisely to the incident 

energy. The principle of energy conservation is defined by the following equation (Equation 2.7): 

ε + ρ + τ = 1   (2.7) 

where ρ is the reflection and τ is the transmission. When considering that most objects are opaque 

to thermal radiation, the above equation becomes (Equation 2.8): 

ε + ρ = 1    (2.8) 

Materials with a high ε absorb a large quantity of incident energy and radiate large quantities of 

energy, while materials with low ε absorb and radiate less energy (Kirchhoff, 1860) (Sabin, 1997). 

All bodies with a temperature above absolute zero are characterized by random movement—i.e., 

the kinetic heat, whose measure is the kinetic temperature Tkin (Jensen, 2014). Besides, an object 

emits energy as a function of temperature, and the emitted energy is used in order to determine its 

radiant temperature Trad (Vinet and Zhedanov, 2010). Although there is a strong positive linear 

correlation between Tkin and Trad, Trad is lower than Tkin due to emissivity (ε) (Schmugge et al., 2002). 

For this reason, the temperature that is measured by a sensor (Trad) will always be lower than the 

real temperature (Tkin) (Equation 2.9) (Kuenzer et al., 2013). It follows from this, as explained by 

Kirchhoff’s law (Equation 2.9), that: 

Trad =  ε
1

4 T𝑘𝑖𝑛    (2.9) 

The emissivity is the ratio between the radiation that is emitted by the surface and the radiation 

emitted by a black body at the same temperature (Jacob et al., 2004). Because the radiance of any 

real body, at the same temperature, is always lower than that of a black body (equal to 1), its 

emissivity has a value between 0 and 1 (Jensen, 2014). Planck’s law explains that any physical body 

absorbs and emits radiation less effectively at a given temperature than a black body. Practically, 

the sensed temperatures of materials with low emissivity appear to be much lower than those of 

nearby objects with the same temperatures, making the Tkin assessment less precise (Kuenzer et al., 

2013). Many factors influence emissivity: color, chemical composition, surface roughness, moisture 

content, field of view, viewing angle, spectral wavelength, etc. (Campbell e Wynne, 2017; Jacob et 

al., 2004; Jensen, 2014). The emissivity of materials is difficult to measure, although it is more or 

less constant in the region of the EM that ranges from 8 to 14 µm. The emissivity of vegetation 
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ranges from 0.96 to 0.99, while that of soil is around 0.89, and the emissivity of the water is 0.99 

(Table 2.1).  

Table 2.1 The emissivity of different surfaces over the range of 8–14 μm (Campbell e Wynne, 2017; 

Lillesand et al., 2015). 

Material Average emissivity (ε) 

Healthy vegetation 0.96–0.99 

Dry vegetation 0.88–0.94 

Wood 0.93–0.94 

Sand 0.90 

Dry soil 0.92 

Wet soil 0.95–0.98 

Water 0.98–0.99 

Snow 0.98–0.99 

 

Regarding the intrinsic characteristics of a body, which affect its emissivity, thermal capacity (or 

heat capacity, measured in J kg-1K-1) measures the quantity of heat energy necessary for a body to 

increase its temperature by one degree—the lower the heat capacity, the less energy required. 

Another important parameter is the thermal conductivity (measured in W m-1 K-1), which measures 

the rate at which heat passes through a material. This capacity is greater the higher the value of 

such a parameter in a material. These parameters can be integrated into the thermal inertia 

(expressed in J m-2 K-1 s-½), which measures a body's tendency to change in temperature or the rate 

of heat transfer between two substances put in contact. This concept is of great importance in the 

field of TIR because the capacity of a body to change its temperature quickly (if the thermal inertia 

is low) depends on this parameter.  

2.2 Remote Sensing of Vegetation and Soil 

A key element of the application of RS in agriculture is the knowledge of plant leaves and canopy’s 

spectral properties. For example, a leaf appears green because its reflectance at green wavelengths 

is higher than its reflectance in the other two portions of the VIS spectrum In particular, there is a 

region of less intensely absorbed radiation about 0.55 µm, between blue and red spectral regions, 

where there is green reflectance peak. This peak defines the green color of healthy leaves (Figure 

2.5) (Chuvieco, 2016). The characteristic reflectance behavior of an object over various wavelengths 

of the EM spectrum is called spectral reflectance signature or spectral signature (Campbell e 

Wynne, 2017). The spectral signatures of vegetation can be differentiated according to leaf type and 
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morphology, leaf physiology, chlorophyll content, plant stress, and senescence (Chuvieco, 2016). 

In particular, vegetation’s spectral signature is characterized by low reflectance in the VIS and high 

reflectance in the near-infrared (NIR) region. As for reflectance in the VIS, chlorophyll plays an 

essential role in controlling the leaf's spectral response, giving it a green color. 

Indeed, chlorophyll does not absorb all light in the same way but mainly blue and red light while 

reflects green light (Figure 2.5). Chlorophyll a, in particular, contained in chloroplasts, absorbs 

sunlight as a form of energy by creating carbohydrates from CO2 and water. The photosynthetic 

process of food-making determines how a leaf and a plant appear radiometrically on RS imagery 

(Jensen, 2014). In addition to chlorophyll, the action of other pigments, such as carotene and 

xanthophylls (which give orange and yellow colors) and anthocyanins (which give predominantly 

red colors), that absorb primarily in the blue and green, become more evident in autumn in the 

case of deciduous species. Therefore, the behavior of pigments is a powerful tool for species 

discrimination based on leaf color. Of course, the color of the leaves can be due to the action of 

biotic and abiotic stress factors in addition to senescence. In these cases, the red and green 

reflectance will be higher, making the leaves appear yellowish and chlorotic (Jensen, 2014). 

Senescent or stressed leaves are characterized by a reduced chlorophyll activity, absorbing less in 

the red and blue bands (carotenes remain in the leaf absorbing in the blue). This causes an 

increasing reflectance in red and blue bands and alters leaf’s color. This behavior explains why 

leaves show a yellowish color in senescence or stress conditions. Besides, stress may also reduce 

leaf reflectance in the NIR because of the deterioration of the leaf’s cellular structure (Chuvieco, 

2016).   

 

Figure 2.5 Typical spectral signatures of a healthy and stressed plant (source, 

www.micasense.com). 
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As far as the NIR region (0.7–1.2 µm), it is a portion of the EM which lies beyond the human eye’s 

perception capability and it is of particular interest because of its usefulness in the RS of vegetation 

being its sensitivity useful to determine plant health status (Chuvieco, 2016). A small part of NIR 

radiation is absorbed inside the leaf (5 – 10 percent) while the rest is reflected upwards or 

transmitted downwards (40 – 60 percent) (Jensen, 2014). It is not the pigments that regulate the 

reflection by the leaf but the mesophyll’s spongy tissue (Figure 2.6). That is because the cuticle and 

the epidermis are mostly completely traversed by NIR radiation. This condition occurs throughout 

the NIR range, where direct incident sunlight has most of its energy. If plants absorb all this energy 

as efficiently as possible in VIS, leaves could heat up and cause irreversible protein denaturation. 

For this reason, plants have adapted not to use this massive amount of energy in NIR but rather 

reflect it or transmit it to the leaves below or to the ground (Jensen, 2014). In a healthy leaf, the 

reflectance in NIR increases between 0.7 and 1.2 µm. This increase corresponds to a drastic 

lowering of absorption (“red shift”, Collins, 1978) in a portion of the EM spectrum called Red edge 

(Figure 2.6), between red and NIR. Red edge is precisely between 0.68 and 0.75 µm, with the exact 

position depending on the species and condition (Lillesand et al., 2015). The reflection by 

vegetation in the NIR is more significant than in the visible region. For this reason, the differences 

in the reflection of NIR by different plant species allow their discrimination from non-vegetation. 

Different structural characteristics of the leaves as well as different pigment compositions, 

determine their radiative properties in each species. These characteristics allow a distinction to be 

made on the basis of reflected radiation behavior. The same applies to those changes in physical 

and chemical structural characteristics caused by plant growth and development. In a tree’s 

canopy, in addition to the angle of incidence of radiation to the leaf, the foliage’s arrangement 

influences the way the canopy reflects the radiation. This results from both radiation dispersion 

and secondary and tertiary interactions between the leaves of the canopy and between the leaves 

and the soil below the tree (Jones and Vaughan, 2010). It must be considered that only part of the 

radiation is reflected from the leaf’s upper page while the pigments, including chlorophyll, absorb 

the rest, dispersed and transmitted. Therefore some of the possible trajectories of radiation 

penetration and scattering and inside the tree’s canopy may foresee the reflection of incident 

sunlight by the leaf towards the sky. At the same time, a small percentage is transmitted through 

the leaf and/or involved in secondary and tertiary reflections by the leaves below the first and then 

reflected towards the sky (Jones and Vaughan, 2010). Since energy is absorbed in each dispersion, 

the greater the number of interactions, the lower the intensity of radiation. The light that penetrates 
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inside foliage is subject to numerous interactions, greater in particularly dense foliage. From this, 

it is clear that dense foliage’s overall reflectance is much lower than that found on a single leaf 

(Jones and Vaughan, 2010). Besides, in trees, foliar vegetation's behavior due to the shadow 

conditions, generated by overlapping leaf layers, attenuates the spectral behavior typical of a single 

leaf by reducing the reflectance percentages in the various portions of the EM (Campbell e Wynne, 

2017). 

 

Figure 2.6 Interaction of electromagnetic energy in the different leaf layers (source NASA). 

In summary, the spectral signatures of vegetation can be differentiated according to leaf type and 

morphology, leaf physiology, chlorophyll content, leaf arrangement, plant stress, and senescence 

(Chuvieco, 2016).  In the same way, soils have spectral reflectance signatures (Figure 2.7), which 

increases with increasing wavelengths depending on its content in organic matter, water, minerals 

and salt (Chuvieco, 2016). In addition, the spectral signature of soil varies in consequence of its 

structural and morphologic properties (e.g., roughness). The high moisture content of the soil 

reduces reflectance, as well as the increase in organic matter and/or iron oxide content, making 

moist soils appear darker and, therefore, less reflective than dry soils. Coarse and sandy soils, being 

well-drained, have high reflectance (Lillesand et al., 2015). The same happens in soils with low 

surface roughness (Eshel et al., 2004). The increased iron oxide content in the soil results in a greater 

reflection in red and less reflection in green (Ben-Dor, 2002). Finally, because soils are nearly 

opaque to visible and infrared radiation, it should be noted that soil reflectance comes from the 

uppermost layer of the soil and may not indicate the properties of the bulk of the soil (Lillesand et 

al., 2015). 

Water on the other hand, unlike vegetation and soil, it is almost completely transparent at shorter 

wavelengths than visible radiation, while it has high absorption at wavelengths above 1.1 µm. 
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Another aspect to be taken into account during measurements is that the sensor's area is often a 

surface made up of different materials (e.g., a mixture of soil and vegetation) in varying 

proportions. In these cases, the sensor will detect mixed signals that are the result of multiple 

spectral signatures. The spectral signatures are useful for interpreting images and selecting the 

optimal combination of bands to better discriminate between different surfaces. 

 

Figure 2.7 Typical spectral signature of different types of soil (modified after Jones and 

Vaughan, 2010). 

Spectral signatures are not constant for each cover, being the radiance flux detected by RS 

dependent not only by the observed surface's intrinsic properties (Chuvieco, 2016). Indeed, it 

depends also on the external conditions of the measurement, the main ones being follows: 

-Atmospheric components; 

- Land cover changes that cause variations in physical or chemical composition, such as moisture 

or roughness. In agriculture, these changes can be determined by crop phenology or agricultural 

practices;  

- Soil and geologic substrate;  

- Solar illumination depending on the latitude, hour of the day, season; 

- Terrain slope; 

- Terrain aspect, affecting the illumination conditions of a surface.  
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Geometric conditions of the observation as incidence, viewing angles relative to the reflecting 

surface and their relationship with the surface properties determine how the incoming radiation is 

scattered (Chuvieco, 2016). In this regard,  three types of surface scattering can be distinguished. 

The first kind of scattering is the specular reflection (Figure 2.8): the sun's incident energy is 

reflected at the same angle as the incident solar angle, so no energy is dispersed in other directions. 

In the second kind of surface scattering, the incident energy is reflected and diffused equally in all 

directions. Finally, when a surface is perfectly diffuse and exhibits the same reflected radiance for 

any angle of reflection, that is, independent of viewing angle to the surface normal, it is known as 

a Lambertian surface (Figure 2.8). Most surfaces exhibit a third type of scattering behavior, known 

as anisotropic (non-Lambertian) reflectance, in which both diffuse and specular scattering 

dependent on the sun and view angle (Chuvieco, 2016). 

 

 

Figure 2.8 Types of surface reflection. 

Vegetation Indices  

As seen in the previous section, materials have characteristic spectra, with maximum or minimum 

absorption at precise wavelengths. Therefore, the vegetation indices (VIs) are essential in RS to 

determine vegetation's biophysical parameters (Jones and Vaughan, 2010). The vegetation indices 

are dimensional and radiometric combinations that measure the relative abundance and activity 

of vegetation, biomass, or vegetative vigor (Campbell e Wynne, 2017; Jensen, 2014). Indeed a VI is 

calculated using a formula containing several spectral values that are summed, multiplied, or 

divided to obtain a value that measures vegetative vigor within a pixel (Campbell e Wynne, 2017).  

The most common formula is the one that provides for a relationship between bands. The ratios 

can improve or reveal latent information if there is an inverse relationship between two spectral 
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responses to the same biophysical phenomenon (Campbell e Wynne, 2017). The ratio gives little 

information when two objects have the same spectral behavior. In contrast, the ratio gives a value 

representing the contrast between the bands' reflectances at the numerator and denominator if their 

spectral responses are different (Campbell e Wynne, 2017). The use of the ratio between bands can 

exploit, for example, an inverse relationship between the reflectance of the red band and the NIR 

in the vegetation, known in this particular case as Simple Ratio (SR) (Equation 2.10):  

𝑆𝑅 =
(𝜌𝑁𝐼𝑅)

(𝜌𝑅𝑒𝑑)
   (2.10) 

Where, ρNIR and ρRed represent the reflectances of a pixel in the NIR and Red bands.  

Generally a significant contrast between these two regions involves more vegetation's vigor 

(Chuvieco, 2016). The development of VIs is based on this theoretical spectral behavior of 

vegetation in the red and NIR. Many VIs are constructed by combining these bands. These indices 

were created to isolate and enhance the signal coming from the vegetation allowing easier 

discrimination and information extraction (Asrar et al., 1992; Huete et al., 1994, 1997). This is 

because there is a strong absorption in red and a high reflection in NIR in vegetation. Therefore the 

ratio between NIR and red in growing plants will be of high value. For the same reason, when the 

same ratio is applied to stressed or dead plants, unplanted surfaces, bare soil, surfaces of anthropic 

origin, and water, the value provided is low (Campbell e Wynne, 2017; Chuvieco, 2016).  Therefore, 

the SR allows one to separate healthy vegetation and other surfaces into an image (Chuvieco, 2016). 

Also, SR can indicate a lower amount of vegetation in the pixel or vegetation under stress or 

senescence if it assumes a low value. 

Ratios permit a reduction of several forms of multiplicative noise, which influence multiple bands 

similarly. These noise forms include illumination differences resulting from the angle of the Sun, 

atmospheric effects, shadows cast by clouds, and topographic variations due to differences in slope 

and aspect (Jensen, 2014). The most common and well-known index with these features is the 

Normalized Difference Vegetation Index (NDVI), which was developed by Rouse  (1974) and 

whose formula is as follows (Equations 2.11-2.12): 

𝑁𝐷𝑉𝐼 =
(𝜌𝑁𝐼𝑅− 𝜌𝑅𝑒𝑑)

(𝜌𝑁𝐼𝑅+𝜌𝑅𝑒𝑑)
    (2.11) 

or 

𝑁𝐷𝑉𝐼 =
𝑆𝑅− 1

𝑆𝑅+ 1
   (2.12) 
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NDVI is a functional variant of SR, which differs from SR in that the latter does not have an upper 

limit. NDVI has a range between -1 and 1. NDVI allows the monitoring of seasonal changes in 

vegetation growth. The advantage of NDVI over SR is that the former is very sensitive to low 

vegetation amounts and the presence of sparse vegetation (Chuvieco, 2016). In addition, this index 

is highly correlated with leaf area index (LAI). However, this relationship is not strong in relatively 

dense vegetation, i.e., when the LAI value is higher than 2, likely due to saturation problems (Wang 

et al., 2005). Other limitations regard the attenuation of atmospheric effects, sensitivity to soil 

background effects, and signal saturation problems from moderate to high-density vegetation 

(Huete et al., 2002). As regards the negative influence of the background soil on the index values, 

this happens both in dark soils, which amplify the vegetal component of the signal, and in lighter 

soils that tend to suppress it (Huete, 1988; Rondeaux et al., 1996). For this reason, an optimized VI 

was developed by Huete (1988). He conceived Soil-Adjusted Vegetation Index (SAVI) using the 

same NDVI’s formula but incorporating an L correction factor (Equation 2.13). In particular, this 

factor permits removing the influence of the backscattered soil signal. L = 0.5 is taken as a default 

value while L= 1 and L= 0 are used in case absence or very high vegetative cover. SAVI’ range is 

equal to NDVI (from -1 to 1), and when L is equal to 0, the SAVI is equal to NDVI (Xue and Su, 

2017).  

𝑆𝐴𝑉𝐼 =
(𝜌𝑁𝐼𝑅− 𝜌𝑅𝑒𝑑)

(𝜌𝑁𝐼𝑅+𝜌𝑅𝑒𝑑+𝐿)
(1 + 𝐿)   (2.13) 

Two other indexes have a similar formula to NDVI. Normalized Difference Red edge Index  

(NDRE) has a range of values and formula similar to those of NDVI. However, it takes advantage 

of the vegetation's sensitivity to the Red edge wavelengths by replacing the Red band (Equation 

2.14). The Green Normalized Difference Vegetation Index (GNDVI) (Gitelson et al., 1996) was 

developed to estimate leaf chlorophyll concentration and uses a Green band rather than a Red band 

(Equation 2.15). The GNDVI is more sensitive to chlorophyll concentration than NDVI and its 

range is from 0 to 1 (Candiago et al., 2015).  

𝑁𝐷𝑅𝐸 =
(𝜌𝑁𝐼𝑅− 𝜌𝑅𝑒𝑑 𝐸𝑑𝑔𝑒)

(𝜌𝑁𝐼𝑅+𝜌𝑅𝑒𝑑 𝐸𝑑𝑔𝑒)
   (2.14) 

and  

𝐺𝑁𝐷𝑉𝐼 =
(𝜌𝑁𝐼𝑅− 𝜌𝐺𝑟𝑒𝑒𝑛)

(𝜌𝑁𝐼𝑅+𝜌𝐺𝑟𝑒𝑒𝑛)
   (2.15) 
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2.3 Remote Sensing Aerial Platforms: a brief introduction 

The traditional RS was based on the use of photographic instruments mounted on airplanes to 

capture Earth's characteristics (Thenkabail, 2015). Instead, the satellites have been used for RS 

imagery in agriculture since the early 1970s (Mulla, 2013), using sensors mounted on the satellite 

Landsat 1 launched in 1972. As regards the third type of platform, the unmanned aerial vehicle 

(UAV) (Figure 2.9), was invented for military applications and has become a common tool for use 

in geomatics for data acquisition in various research and operational fields: regional security, 

monitoring of structures and infrastructures, monitoring of archaeological sites, environmental 

monitoring, application in agriculture, etc. (Nex and Remondino, 2014; Pajares, 2015; Shakhatreh 

et al., 2018). Its spread in the agricultural sector has taken place over the last decade (Maes and 

Steppe, 2019).  

 

Figure 2.9 UAV quadcopter DJI Phantom 4 Pro. 

The RS platforms and their imaging systems are distinguished based on platform altitude, 

temporal and spatial resolution. Regarding the height of the surveys, the three platforms operate 

at different altitudes. UAV flies at heights of the order of tens of meters; aircraft flies at the height 

of between 300 and 3000 meters (Thenkabail, 2015) while satellites are in space at hundreds of 

kilometers of altitude. Just being in space, following precise orbits, affects the temporal resolution 

of satellites. The temporal resolution can be defined as the observation frequency or revisiting 

period of a sensor (Chuvieco, 2016). More specifically, in satellites, it represents the time it takes 

for them to complete their entire orbit around the earth by "revisiting" the same area. The revisiting 
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period of a satellite is influenced by speed, height, and declination. Its duration ranges from 15-30 

minutes of geostationary satellites to several hours of polar-orbiting satellites (as the European 

METOP) to over 20 days for the completion of the orbit of other satellites. This, of course, affects 

the periods of availability of images for a given area. Moreover, it must be considered that the 

actual temporal resolution of a satellite for the acquisition of useful images can be further extended 

depending on climatic conditions and image acquisition plans (Chuvieco, 2016). The first aspect 

mainly refers to atmospheric events that may hinder the acquisition of an image. Cloud coverage 

interposed between the sensor and the area of interest is a classic example. As for the image 

acquisition planes, not all satellites automatically store historical image series or images of specific 

areas. Therefore, individual images are only available upon request and not free of charge. In 

aircraft and UAVs, the operators choose the time resolution according to the need and type of 

survey. From this point of view, UAVs are advantaged, theoretically allowing the operator to 

survey the same area every day. 

Regarding the spatial resolution, it defines the smallest element detectable in an image by a sensor. 

The spatial resolution of the image depends mainly on the sensor aperture and the platform's 

altitude. Satellite sensors can cover a wide range of spatial resolutions, from the coarsest with pixels 

(minimum unit of a digital image) "containing" areas of 200-1000 m, to those less than or equal to 

10 m as in the images provided by the Sentinel-2 and PlanetScope satellites. Spatial resolution plays 

an important role because the image's level of detail depends on it, allowing those who interpret 

the image to recognize only those elements/objects whose size is greater than a single pixel. Until 

a few years ago, before the advent of nanosatellites, the highest resolution, sub-metric, could only 

be achieved using sensors mounted on UAVs. Currently, the UAV surveys, taking into account the 

flight altitude and the quality and characteristics of the mounted sensor, allow to obtain levels of 

detail equal and below 5 cm. 

Sensors measure radiations in different regions of the EM spectrum. The spectral resolution is the 

number of bands provided by the sensor and their spectral bandwidths. The discrimination 

capability increases as the number of used bands increases (Chuvieco, 2016). Among the optical 

sensors used in RS are those able to "see" in the visible spectrum (RGB sensors, from the initials of 

Red, Green and Blue), in NIR, or other EM spectrum regions with a longer wavelength. Therefore 

optical RS sensors can be classified into several types depending on the number of spectral bands 

used in the imaging process (Thenkabail, 2015): panchromatic sensors are single band (or single 

channel) detectors, multispectral (MS) RS sensors are multiband detectors with some spectral 
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bands including Blue, Green, Red, NIR (and also Red edge sometimes) while hyperspectral RS 

sensor records data in hundreds of bands etc. (Jensen, 2014). 

 

Figure 2.10 An example of a multispectral UAV camera, the Parrot Sequoia, capable of taking pictures 

in 4 different bands: Green, Red, Red edge and NIR. 

  



39 

 

3 Monitoring the vegetation vigor in heterogeneous citrus 

and olive orchards. Extraction of tree crowns from 

multispectral UAV images 

Adapted from 

Monitoring the vegetation vigor in heterogeneous citrus and olive orchards. A 

multiscale object-based approach to extract trees’ crowns from UAV multispectral 

imagery. Comput. Electron. Agric. 175, 105500. https://doi.org/10.1016/j.compag.2020.105500 
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To achieve effective and sustainable environmental management of agricultural production and 

an improvement in the competitiveness of the agricultural sector, precision agricolture (PA) 

methodologies and technologies are currently a reliable and cost-effective approach (Solano et al., 

2019). PA can be considered a management strategy aiming to implement agronomic applications 

according to crop needs and the soil's physical and biochemical characteristics and represent one 

of the most important sectors of remote sensing (RS) applications (De Montis et al., 2019). As 

reported by several scholars, PA permits to increase crop productivity and farm profitability by 

means of better management of farm inputs (Larson and Robert, 1991; Zhang et al., 2002) and 

exploiting intensive data and information collection. In PA, RS techniques permit obtaining spatial 

segmentation and within-field variability information from field crops (Sepulcre-Canto et al., 

2005). Generally, RS has been associated with satellite platforms or manned aircrafts equipped with 

several sensors (Pajares, 2015) while, since the last decade, the advent of unmanned aerial vehicles 

(UAVs) platforms constitutes one of the primary sources of RS imagery in PA. Moreover, 

continuous technological improvement regards UAV platforms and the type of sensors in terms of 

radiometric resolution, weight and optical characteristics (Romero-Trigueros et al., 2017). 

Compared to satellites, UAVs can provide images with very high spatial and temporal resolution. 

Moreover, these characteristics combined with an increasingly high radiometric resolution, which 

leads to cost efficiency. As reported by Benincasa et al. (2017), UAV surveys are better suited than 

satellite RS in cloudy conditions, in the monitoring of small surfaces, and in case of need of 

centimeter resolution. 

UAV applications in PA have mostly dealt with the following research topics: weed and disease 

detection (Abdulridha et al., 2019a; Albetis et al., 2018; De Castro et al., 2018, 2015; Maes and 

Steppe, 2019; Pérez-Ortiz et al., 2016; Torres-Sánchez et al., 2015), assessment of vegetation 

coverage (Ampatzidis and Partel, 2019; Candiago et al., 2015; Senthilnath et al., 2017), analysis, 

monitoring and assessment of biomass and vegetation vigor (Bendig, 2015; Díaz-Varela et al., 2015; 

W. Li et al., 2016; Malambo et al., 2018; Panagiotidis et al., 2017; Roth and Streit, 2018; Zarco-Tejada 

et al., 2014). Moreover, several scholars focused on the trees’ crown extraction from UAV imagery 

in the context of PA applications (Caruso et al., 2019; Díaz-Varela et al., 2015; Koc-San et al., 2018; 

Ok and Ozdarici-Ok, 2018; Solano et al., 2019). 

Currently, UAVs equipped with multispectral (MS) cameras are the most commonly exploited RS 

systems in agriculture (Khanal et al., 2017). These systems allow obtaining spectral information in 

the red and NIR regions of electromagnetic (EM) spectrum, which allows deriving vegetation 
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indices (VIs) useful for applications in PA (Yao and Qin, 2019), in order to map, monitor, and 

analyze, spatial and temporal variations of vegetation. Most of the VIs currently available for PA 

applications are obtained by combining information in the red and NIR regions of the EM 

spectrum. VIs have a high correlation with the biophysical parameters of the plants and a reduced 

sensitivity to all the factors that hinder the interpretation of RS data, such as atmosphere and soil 

bed (Wójtowicz et al., 2016). 

In the last two decades, RS technologies have been improved to use more effective techniques for 

the extraction of more reliable and reusable information in PA applications (Solano et al., 2019). 

Among these techniques, the geographic object-based image analysis (GEOBIA) permits detecting 

geographical entities through the definition and the analysis of object-images rather than single 

pixels  (Blaschke, 2010; Hay and Castilla, 2008). GEOBIA is becoming prevalent in UAV RS (W. Li 

et al., 2016). Furthermore, the GEOBIA approach permits to detect of the rapid change of 

geographic objects in VHR UAV imagery, including the shadow effect of trees, generally higher 

than in satellite or aerial imagery, caused by a larger parallax effect taking into account the lower 

distance between the surveyed objects and the sensor.  

Image objects are objects visually distinguished in the scene and consisting of groups (or clusters) 

of neighboring pixels which share a common context (or meaning), such as pixels joining together 

to form the canopy of a tree or crops in a field (Chen et al., 2018). GEOBIA proved its effectiveness 

in classifying weeds, herbaceous (De Castro et al., 2018, 2017, Peña et al., 2015, 2013, 2012, Pérez-

Ortiz et al., 2016, 2015), and tree species (Csillik et al., 2018; Díaz-Varela et al., 2015; Koc-San et al., 

2018; Ozdarici-Ok, 2015; Solano et al., 2019). 

Within the scientific and technological framework briefly outlined, the present chapter has a 

twofold research objective. The first one is devoted to showing a quick and reliable semi-automatic 

workflow implemented to process MS UAV imagery and aimed at the detection and extraction of 

olive and citrus trees’ crowns in PA's framework with the final production of vigor maps showing 

the vegetative state of the tree crowns. The second one focuses on the choice of GEOBIA data input 

and parameters reliable in heterogeneous tree orchards. The heterogeneity regards the different 

tree plantation distances, the different crop management among which irrigation, pruning, 

weeding, and the different crop composition, also taking into account the different tree age, height, 

and crown diameters. The proposed GEOBIA workflow was implemented in the software 

eCognition Developer 9.5 (Trimble Inc., 2019) using both MS and topographic information. The 
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workflow was tested on three different study sites in heterogeneous citrus (Bergamot and 

Clementine) and olive orchards, all located in the Calabria region (Italy).  
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3.1 Materials and Methods 

3.1.1 Study sites and workflow 

The three-study sites are located in the province of Reggio Calabria (Calabria, Italy) (Figure 3.1). 

 

Figure 3.1 Geographic location and photographic description of the study sites A1 

(Clementine), A2 (Olive), and B (Bergamot and olive) orchard (source, Modica et al., 2020). 
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Study sites A1 and A2 fall in the municipality of Antonimina (38°15’52’’ N, 16°11’12’’ E, 111 m a.s.l., 

and 38°16’’12’’ N, 16°11’ 04’’ E, 193 m a.s.l., respectively); study site B in the municipality of Palizzi 

(37° 55’ 06’’ N, 15° 58’ 54’’ E, 4 m a.s.l).  

In the study site A1, there is a 20-year even-aged citrus orchard (clementine, Citrus x clementina) 

with a 5 m x 5 m single-tree planting distance covering an area of 4.6 ha. In the study site A2, there 

is a 20-year even-aged specialized olive orchard with a 6 m x 6 m single-tree planting distance 

covering 7.12 ha.  

The orchards are managed according to organic farming methods. Study site B covers an area of 

5.13 ha. There is an uneven-aged citrus orchard (Bergamot, Citrus bergamia) characterized by long 

windbreak barriers made up of olive trees. The orchard is remarkably heterogeneous, composed 

of trees 5 years (1.5 m height) to 20 years old (4 m height). 

The workflow followed in this work can be synthesized according to these methodological steps: 

UAV data acquisition; pre-processing (photogrammetric reconstruction, orthorectification, and 

mosaicking, radiometric and statistical analysis of UAV imagery, derivation of topographic layers); 

processing (object-based image segmentation, derivation of VIs, image classification and tree 

crowns extraction, accuracy assessment) (Figure 3.2). 
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Figure 3.2 Workflow followed for the vegetation monitoring using UAV multispectral 

imagery in heterogeneous citrus and olive orchards (source, Modica et al., 2020). 

3.1.2 Surveys Equipment 

UAV surveys were carried out, as showed in Modica et al., (2020). In particular, aerial surveys were 

performed using a Multirotor G4 Surveying-Robot (Service Drone GmbH) equipped with six 

electric brushless motors, gimbal and flight control (Figure 3.3). This UAV was equipped with a 
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multispectral camera, µ-MCA06 snap, with a global shutter sensor produced by Tetracam Inc. 

(Chatsworth, USA). The camera consists of 6 individual 1.3 megapixel CMOS sensors (4:3 format, 

1280 x 1024 pixels) equipped with interchangeable bandpass filter housed in one unit, one called 

“master,” responsible for synchronizing the other called “slaves” (Table 3.1).  

Table 3.1. Tetracam µ-MCA06 snap (Global shutter) sensor characteristics bands specification 

(wavelength and bandwidth). 

Geometry of lens Sensors Bands 

Central band 

wavelength 

[nm] 

Bandwidth 

[nm] 

Focal Length (fixed lens) 9.6 mm 

Horizontal Angle of View 38.26° 

Vertical Angle of View 30.97° 

Ground sample distance (GSD) 40.0 

mm and  field of view (FOV) 51.5 m 

x 41.25 m at 80 m of flight height 

Master (0) Near-Infrared (NIR1) 800 10 

1 Blue  490 10 

2 Green 550 10 

3 Red 680 10 

4 Red edge 720 10 

5 Near-Infrared (NIR2) 900 20 

 

 

Figure 3.3 Top left (1), the UAV Multirotor G4 Surveying-Robot (Service Drone GmbH) 

equipped with Tetracam µ-MCA06 snap multispectral camera; top right (2), camera mounted 

on UAV gimbal and ready to capture images. Bottom left (3), a graphical scheme shows how 

the UAV takes into account the 3D morphology of the surveyed area, guaranteeing a constant 

height of flight and (4) a 3D view of a flight plan (source, Modica et al., 2020). 
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Every sensor has a size of 6.66 mm x 5.32 mm with a pixel of 4.8 microns and a focal length of 9.6 

mm (fixed lens). Images are stored as single shots of 1.3 megapixels per bands, exposing the entire 

image at the same instant in time, at 8 or 10 bit, giving a total of 7.8 megapixels across the six bands. 

Furthermore, the camera was equipped with its own global navigation satellite system (GNSS) (the 

FirePoint 100 GPS). 

3.1.3 Data acquisition and pre-processing 

Data acquisition and pre-processing were performed, as explained in Modica et al., (2020). In 

particular, flight missions were planned using the UAV Planner 3D (www.alto-drones.com), which 

is a commercial plugin available for version 2 of QGIS, and that allows to take into account the 3D 

morphology of the study site. The flights were carried out at 80 m of flight height, with a field of 

view (FoV) of 51.5 x 41.25 m, ground sample distance (GSD) of 4 cm, and with 2.5 m s-1 of cruise 

speed (Table 3.2). To obtain a high quality of the imagery, overlap and side lap were set at 80% and 

75%, respectively. All over the study sites, 50 cm x 50 cm white polypropylene panels were placed. 

Each ground control point (GCP) was made using two black cardboard quadrants in order to locate 

the point (Figure 3.4), georeferencing with the Leica GS12 RTK-GNSS in the coordinate system 

WGS84/ETRF1989 UTM33N (EPSG 32633) with a planimetric accuracy ±2.5 cm and altimetric 

accuracy ±5 cm.  

 

Figure 3.4 Ground control point (GCP) made by attaching two black cards to a 

polypropylene panel. 

http://www.alto-drones.com/
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Table 3.2 Flight and UAV dataset characteristics. 

ID Date 

Flight 

height 

[a.g.l.] 

Take-off 

time 

[UTC+1] 

Speed 

[m s-1] 

N° of 

flights 

Total 

duration 

[min] 

Surveyed 

area  

[ha] 

Photos 

[n°] 

Sidelap 

[%] 

Overlap 

[%] 

RMSE [m] 

X Y Z 

A1 2016/11/16 80 m 12:00 2.5 2 38 4.6 1026 80 75 0.05 0.05 0.08 

A2 2017/02/15 80 m 12:00 2.5 2 40 7.12 1878 80 75 0.07 0.07 0.1 

B 2018/09/17 80 m 11:00 2.5 2 49 7.9 2825 80 75 0.03 0.03 0.09 

 

To calibrate the conversion of the original digital numbers (DN) to band reflectance, three 

polypropylene calibration panels (in white, black, and grey) were placed on the field. During the 

flight, their reflectance was measured using the Apogee Ps-300 spectroradiometer. The reflectance 

of the grey panel in correspondence of each central band was extracted.  These values were used, 

taking into account the radiometric correction parameters written in the EXIF metadata of the 

images to compute each pixel's radiometric calibration, generating reflectance maps. UAV images 

were acquired in the *.RAW native format subsequently converted to 10-bit TIFF format through 

PixelWrench II (version 1.2.4, Tetracam, Inc., Chatsworth, USA). The data pre-processing step was 

implemented in Pix4Dmapper Pro 4.3 (Pix4D SA, Switzerland), which permits managing the 

alignment, stacking and performing radiometric calibration of the single-band images as camera 

rigs systems. The camera's internal orientation was executed based on the camera specification and 

the alignment parameters provided by Tetracam (i.e. X and Y translation, rotation, and scaling). 

External orientation was initially based on the GNSS geotags recorded for each shot and then 

improved by using the GCPs positions. After, classical digital photogrammetry processes based on 

structure from motion (SfM) and aerial triangulation were performed producing sparse and dense 

3D clouds, digital surface model (DSM), digital terrain model (DTM) and canopy height model 

(CHM). After the radiometric calibration, a reflectance orthomosaic for each of the six-layer bands 

(Blue, Green, Red, Red edge, NIR1, NIR2) was produced and finally stacked to obtain a single six-

band orthomosaic. 
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3.1.4 Radiometric analyses and statistics  

Before the image processing, the radiometric characterization of datasets and correlation analysis 

of bands were performed using pairwise scatter plots based on Pearson’s correlation coefficient (rij) 

according to Equation 3.1 and organized as scatter plots matrix.    

𝑟𝑖𝑗=
𝐶𝑜𝑣𝑖𝑗

𝜎𝑖𝜎𝑗
  (3.1) 

𝐶𝑜𝑣𝑖𝑗 =
∑ (𝐷𝑁𝑖𝑘− 𝐷𝑁̅̅̅̅̅𝑖)(𝐷𝑁𝑗𝑘−𝐷𝑁̅̅̅̅̅𝑗)𝑁

𝑘=1

𝑁−1
      (3.2) 

where  

Covij (Equation 3.2) represents the covariance of layer bands i and j, DNik the digital numbers (i.e., 

the cell value of each pixel) while 𝐷𝑁̅̅ ̅̅
𝑗 represents the mean of the DNs in the specific band (i and j). 

σi and σj represent bands’ standard deviations calculated in Equation 3.3. 

𝜎𝑖(𝑗) = √∑ (𝐷𝑁𝑖(𝑗)−𝐷𝑁̅̅̅̅̅𝑖(𝑗) )
2𝑁

𝑘=1

𝑁−1
             (3.3) 

The dataset was analyzed in Python using the pandas library and the rasterio toolbox to read and 

implement the data array of input data. As far as the input data is concerned (i.e., the layer bands), 

the six spectral bands Blue, Green, Red, Red edge, NIR1, NIR2 plus DSM, and CHM were used. 

This input data was concatenated in a unique data frame using NumPy library. Scipy and numpy 

libraries were used to perform correlation analysis. The implementation of the scatter plots and the 

final correlation matrix were based on the matplotlib and seaborn libraries. Kernel density 

estimation (KDE) with a Gaussian kernel was used to represent graphically scatter plots. 

3.1.5 Image segmentation 

The first step of a GEOBIA procedure foresaw the segmentation of the image into separate, non-

overlapping regions (Aguilar et al., 2016) and extracted as vectorial objects. Segmentation is a 

fundamental pre-requisite for classification/feature extraction (Drǎguţ et al., 2014). This process 

consists of the partitioning of objects into smaller entities creating new ones, and altering the 

existing ones' morphology following precise rules. Regarding the approaches adopted in 

performing the segmentation, two different strategies are possible: a top-down strategy that 

involves cutting large objects into small objects. The bottom-up strategy merges small objects to 

create larger ones. In this work, a bottom-up strategy, the multiresolution segmentation (MRS) 

(Baatz and Schäpe, 2000), implemented in eCognition Developer 9.5, was adopted. MRS is an 
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optimization process that minimizes the average heterogeneity for a certain number of image 

objects while maximizes their respective homogeneity (Trimble Inc., 2019). The algorithm initially 

identifies single objects of a pixel's size and subsequently merges them with other neighboring 

objects following a criterion of relative homogeneity. This criterion measures the level of 

homogeneity within each object. The process continues selecting another image object’s best 

neighbor and works until no further image object mergers can be created without infringing the 

maximum allowed homogeneity of an image object (Trimble Inc., 2019). The final result of a good 

image classification process is influenced mainly by the quality of segmentation, which in turn 

depends on the choice of segmentation parameter values (El-naggar, 2018). 

Several criteria should be accurately evaluated to produce good segmentation (El-naggar, 2018). 

The homogeneity criterion results from the combination of the spectral and shape properties of the 

initial object and of that generated by the merging process. Color homogeneity derived from 

standard deviation of spectral colors while the shape homogeneity results from the deviation of a 

compact (or smooth) shape. Homogeneity criteria is adjusted through two parameters: shape and 

compactness. Shape parameter influences the importance of the segmentation of the segmented 

objects' shape concerning the color and its value ranges from 0 to 0.9. Shape and color are two 

interrelated parameters. The user can choose their weight: the greater the first parameter's weight, 

the lower the weight of the second parameter in the segmentation, and vice versa  (Drǎguţ et al., 

2010). Compactness determines the influence of shape with respect to smoothness. Compactness 

can be defined by the product of width and length calculated on numbers of pixels (El-naggar, 

2018).  

Some scholars proved the importance of the scale parameter in determining the final size and 

dimension of the resulting objects (Drǎguţ et al., 2014; Ma et al., 2017). Using higher values or 

smaller values of scale parameter, larger or smaller objects are produced, respectively. This 

parameter defines the maximum allowed heterogeneity with regard in the weighted image layers 

for the obtained image objects (Trimble Inc., 2019). Therefore, datasets containing images of 

homogeneous environments will lead to larger segments and vice versa (El-naggar, 2018). In 

implementing the segmentation algorithm, different weights can be assigned to each of the several 

input data (i.e., band layers). In the workflow, images were segmented adopting a MRS algorithm 

and using an equal weight for all band layers. Layers used were the spectral bands provided by 

the multispectral camera, Blue, Green, Red, Red edge, NIR1, NIR2, and the DSM generated during 

pre-processing in study site A1. Regarding the study sites A2 and B, the NIR2 band was instead 
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excluded, since it was highly correlated with the NIR1 band (0.99). The MRS parameters used in 

this work were chosen by applying a trial-and-error approach (Aguilar et al., 2016). Indeed, as 

reported both in Prošek et al. (2019) and Kaufman et al. (1994), the visual interpretation of 

segmentation can be considered an effective method to assess the results' quality. Specifically, in 

the study site A1 (Figure 3.5), segmentation settings were the following: weight 1 for all layers, 

scale parameter 60, shape 0.1, and compactness 0.5. In the study site A2 (Figure 3.6), displaying the 

image in the different band combinations and based on a better distinction from the scene of 

canopies and their shadows, a different weight was assigned to the different layers bands. In 

particular, higher (band weight = 2), for the layers NIR1, Red edge, DSM and DTM, lesser (band 

weight = 1) for Blue, Green and Red bands/layers. The scale parameter was set to 200 and the shape 

and compactness parameters were set to to 0.7. Instead, in the study site B (Figure 3.7), the 

segmentation settings were 1, 85, 0.5 and 0.1 for band weights, scale, shape and compactness, 

respectively. 

 

Figure 3.5 Segmentation in the study site A1. 

 

Figure 3.6 Segmentation in the study site A2. 
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Figure 3.7 Segmentation in the study site B. 

3.1.6 Vegetation indices and topographic elevation layers 

A reliable radiometric measurement of vegetation vigor can be obtained by combining the 

information provided by specific regions of the EM, such as those characterizing the curve between 

the maximum absorption of photosynthetic pigments (Jones and Vaughan, 2010).  

In this work, six VIs were derived (Table 3.3): Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Red edge Vegetation Index (NDRE), Soil-Adjusted Vegetation Index 

(SAVI), Green Normalized Difference Vegetation Index (GNDVI), Green and Red Normalized 

Difference Vegetation Index (GRNDVI), Chlorophyll Vegetation Index (CVI). Furthermore, two 

topographic elevation layers were generated, the DSM (Digital Surface Model) entered as input 

layer while the DTM (Digital Terrain Model) was used to calculate the CHM (Canopy Height 

Model) (Popescu, 2007).  

As regards VIs used (Table 3.3), NDVI is one of the most widely used indices derived from the 

multispectral information and is calculated by the normalized ratio between the Red and NIR 

bands (Rouse et al., 1974). This index, which can assume values ranging from -1 to 1, measures 

healthy vegetation exploiting the highest chlorophyll absorption and reflectance regions and it is 

useful to characterize canopy growth or vigor (Xue and Su, 2017). However, NDVI is very sensitive 

to background factors, such as the shade and the vegetation canopies and soil backgrounds' 

brightness. Therefore, Huete (1988) developed the SAVI index in order to minimize the effects of 

soil background on the vegetation signal by inserting a constant soil adjustment factor L in the 

original formula of NDVI (Taylor and Silleos, 2006). L, which is a function of vegetation density, 

can assume values between 0 and 1, depending on the vegetation amounts. L factor works as 

follows: in the presence of shallow vegetation, the value of L recommended is 1, while a value of 
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0.5 is suggested for intermediate levels of vegetation. Naturally, given the index formula, when the 

value of L is equal to 0, SAVI corresponds precisely to the NDVI. NDRE has a range of values from 

-1 to 1 and its formula is very similar to that of NDVI but the former exploits the sensitivity of the 

vegetation to the Red edge by replacing the Red. GNDVI (Gitelson et al., 1996) has a formula also 

very similar to that of NDVI but exploits the Green band rather than the Red band and has been 

developed to estimate the leaf chlorophyll concentration. CVI (Vincini et al., 2007) was initially 

proposed as a broad-band VI sensitive to leaf chlorophyll content and insensitive to LAI variation. 

Its formula was obtained from that of Green SR multiplying the Green/NIR ratio by Red/Green 

ratio. Red/Green ratio, developed by Gamon and Surfus (1999), has been exploited to estimate 

foliage development in canopies. GRNDVI was developed together with other indices in whose 

formulas the Red band of NDVI formula was substituted with several combinations of Blue, Green 

and Red bands to verify the response and capability to estimate LAI of these indices (Wang et al., 

2007).  

Table 3.3 Formulation of the six vegetation indices (VIs) used in the present work. 

Index denomination Index formula References 

Normalized Difference Vegetation 

Index (NDVI) 

(𝜌𝑁𝐼𝑅1 −  𝜌𝑅𝑒𝑑) 

(𝜌𝑁𝐼𝑅1 +  𝜌𝑅𝑒𝑑)
 (Rouse et al., 1974) 

Normalized Difference Red edge 

Vegetation Index (NDRE) 

(𝜌𝑁𝐼𝑅1 −  𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒) 

(𝜌𝑁𝐼𝑅1 +  𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒)
 (Barnes et al., 2000) 

Soil-Adjusted Vegetation Index 

(SAVI) 

(𝜌𝑁𝐼𝑅1 −  𝜌𝑅𝑒𝑑)

(𝜌𝑁𝐼𝑅1 + 𝜌𝑅𝑒𝑑 + 𝐿)
(1 + 𝐿) (Huete, 1988) 

Green Normalized Difference 

Vegetation Index (GNDVI) 

(𝜌𝑁𝐼𝑅1 −  𝜌𝐺𝑟𝑒𝑒𝑛) 

(𝜌𝑁𝐼𝑅1 +  𝜌𝐺𝑟𝑒𝑒𝑛)
 (Gitelson et al., 1996) 

Chlorophyll Vegetation Index (CVI) 𝜌𝑁𝐼𝑅1
𝜌𝑅𝑒𝑑

(𝜌𝐺𝑟𝑒𝑒𝑛 ∗ 𝜌𝐺𝑟𝑒𝑒𝑛)
 (Vincini et al., 2007) 

Green and Red Normalized 

Difference Vegetation Index 

(GRNDVI) 

𝜌𝑁𝐼𝑅1 − (𝜌𝑁𝐼𝑅1 + 𝜌𝑅𝑒𝑑) 

𝜌𝑁𝐼𝑅1 + (𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑅𝑒𝑑)
 (Wang et al., 2007) 

*ρ is the reflectance at the given wavelength. 

3.1.7 Image Classification and trees’ crowns extraction 

The classification was performed based on a rule set implemented in eCognition as an automated 

process-tree, so it is adaptable and replicable to other datasets. The classification was based on the 

algorithm Assign Class which permits assigning a class to an object which falls within one or more 
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selected conditions (or rules), based on values attributed to features (in this work, for example, 

threshold values VIs and topographic layers), operating as a masking-approach as reported both 

in De Castro et al. (2018) and in Peña-Barragán et al. (2012). In this work, the classification was 

implemented by assigning, to each target land-use class, different threshold values for each of the 

different input layers and VIs (Table 3.4). In case study A1, the classification was performed for 

four classes: “Citrus”, “Buildings and roads”, “Other vegetation”, and “Bare soil”. This dataset was 

derived from UAV flights performed at midday in November, so shadows were considered 

irrelevant. For this reason, it was decided not to create a dedicated class for shadows.  

The classification algorithm was set starting to classify “Buildings and roads” using SAVI values ≤ 

0.1. “Citrus” class was created using SAVI ≥ 0.7 and CHM ≥ 1.6, while “Other vegetation” was 

created using CHM values higher than 6. All unclassified objects were inserted in the class “Bare 

soil”. In the case study A2, five classes were implemented: “Olive”, “Shadows” (due to the different 

sun position with respect to the horizon line in the month of February), “Buildings and roads”, 

“Other vegetation” and “Bare soil”. “Olive trees” were detected using CVI values ≥1.5 and CHM ≥ 

1.5, while “Shadows” were classified exploiting the NIR1 band. The class “Building and roads” 

was created using SAVI values ≤ 0.1 and CHM ≥ 1.1. The class “Other vegetation” was created 

taking into consideration their larger canopy size (≥ 30 m2) than olive trees, therefore using a feature 

related to dimensions. All unclassified objects were inserted in the class “Bare soil”. 

In case study B, five classes were used: “Citrus”, “Olive”, “Shadows”, “Other vegetation” and 

“Bare soil”. Since the citrus orchard is uneven-aged, being significant differences in the size of the 

trees’ canopies, the image was subdivided into parcels (Figure 3.8). This choice can be further 

justified by the presence of many olive trees forming long windbreak barriers in the citrus orchard. 

According to the irrigation scheme, the orthomosaic was divided into ten parcels that roughly 

divided the orchard according to the different plantation age of bergamot trees. In detail, in sectors 

4-6 and 7, trees are 5 years old. This division was performed using the open-source software QGIS, 

creating a thematic layer then imported in eCognition. In this study site, using threshold values of 

SAVI between - 0.16 and 0.45, the vegetation, without distinguishing between the two species 

present (olive and bergamot), was classified as a temporary class called “Vegetation”. Then, olive 

trees in sectors 1 to 5 and 7 were classified using DSM and NDVI ≥ 0 and CVI ≥ 1.3, reclassifying 

the class “Vegetation”. Therefore, remaining objects belonging to the class “Vegetation” were 

reclassified as “Citrus”. All the objects not belonging to the class “Vegetation” were classified as 
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“Bare soil”. The objects attributable to the “Shadows” class were extrapolated from the classes 

“Citrus”, “Olive” and “Bare soil” using a threshold value in the band NIR1.  

 

Figure 3.8 Map showing the study site B with, highlighted in red, the ten parcels identified 

according to the irrigation scheme (source, Modica et al., 2020). 

3.1.8 Accuracy assessment 

The approach of accuracy assessment used in this study case was based on the comparison of the 

total number of correctly detected crown pixels by classification algorithm with a reference vector 

data. The reference segments for each image have been manually digitized based on a visual 

interpretation of UAV images. All the trees’ crowns following in the three analyzed study sites 

were digitized to obtain a comprehensive picture of the implemented approach. With the aim to 

cope with the heterogeneity of the tree crowns structure in some parts of the images, a pixel-based 

accuracy assessment was executed. Superimposing trees’ crowns with the reference vector data, 

each pixel was labeled as belonging to one of these accuracy categories (Goutte and Gaussier, 2005; 

Ok et al., 2013; Shufelt, 1999; Sokolova et al., 2006): True Positive (TP), False Negative (FN) and 

False Positive (FP). 

TP includes those pixels labeled as a tree by the classification algorithm, which corresponds to a 

tree in the reference vector data. In this case, TP includes the pixels are correctly classified. 

FN includes those pixels not labeled as a tree by the classification algorithm but labeled in the 

reference vector data as a tree. In this case, FN includes the pixels not detected. 
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FP includes those pixels labeled as a tree by the classification algorithm, which does not correspond 

to any of the pixels labeled by the reference vector data. In this case, FN includes the pixels 

erroneously detected. 

The number of TP, FP, and FN pixels was counted in every image to evaluate the accuracy. After 

this, Recall (r), Precision (p), F-score (F) and Branching Factor (BF) metrics were computed through 

the equations 3.4-3.7 (Goutte and Gaussier, 2005; Li et al., 2012; Ok et al., 2013; Shufelt, 1999; 

Sokolova et al., 2006): 

𝑟 =  
∥ 𝑇𝑃 ∥

∥ 𝑇𝑃 + 𝐹𝑁 ∥
       (3.4) 

𝑝 =  
∥ 𝑇𝑃 ∥

∥ 𝑇𝑃 + 𝐹𝑃 ∥
      (3.5) 

𝐹 = 2 ∙
𝑟∙𝑝

𝑟+𝑝
      (3.6) 

BF =  
∥ 𝐹𝑃 ∥

∥ 𝑇𝑃 ∥
     (3.7) 

The r parameter, measuring the fraction of pixels that were correctly denoted as object pixels by 

the algorithm, permits representing the omission error (derived from 1-r). The parameter p 

indicates the correctness of detected crowns, and in the same way, it is also representative of the 

commission error (1-p). F measures the overall accuracy through the harmonic mean of commission 

and omission errors. The values of r, p, and F range from 0 to 1. If r e a p corresponds to high values, 

the F value is also high.  For example, if all trees are correctly segmented, r e p values are equal to 

1 and F will be equal to 1 (Goutte and Gaussier, 2005; Li et al., 2012; Shufelt, 1999; Sokolova et al., 

2006). The BF measures the degree to which an algorithm over classifies background pixels with 

the target label (i.e., tree crown in this study case). If the classifier wrongly labels every pixel in the 

scene, the BF is equal to 1, while if the classifier never “over-delineates” the extent of any reference 

segment, BF's value is equal to 0 (Shufelt, 1999). All the above measures, taken together, allow the 

classification algorithm's performance to be evaluated (Shufelt, 1999). 
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3.2   Results and discussions 

3.2.1 Geometric and radiometric characteristics 

All three datasets' consecutive images were processed via aerial image triangulation with the geo-

tagged flight log and the GCPs’ coordinates using the software Pix4D Mapper. 3D densified point 

clouds, DSM, DTM, and for each spectral band, reflectance orthomosaics were generated. In DSM 

and orthomosaics, the GSD range between 4.1 and 4.3 cm pixel-1. Regarding the approach used in 

the three datasets, being the scenario different, before proceeding with the classification, for each 

study site, a correlation analysis between all input layers was performed through the Pearson’s 

correlation coefficient (rij) and implemented in a scatter plots matrix (Figures 3.10, 3.12 and 3.14). 

Besides, to have a comprehensive view of the spectral correlation between the six derived VIs, the 

latter were analyzed on the whole image of each dataset as a correlation matrix (Figure 3.9-3.11-

3.13). 

Study site 

A1 
NDVI NDRE SAVI GNDVI CVI GRNDVI 

NDVI 1.00 0.77 1.00 0.95 0.46 0.99 

NDRE 0.77 1.00 0.77 0.89 0.78 0.73 

SAVI 1.00 0.77 1.00 0.95 0.46 0.99 

GNDVI 0.95 0.89 0.95 1.00 0.69 0.92 

CVI 0.46 0.78 0.46 0.69 1.00 0.40 

GRNDVI 0.99 0.73 0.99 0.92 0.40 1.00 
 

Figure 3.9 Correlation matrix between the six selected vegetation indices (VIs) implemented 

on the whole image of the study site A1. 

Referring to the whole datasets, in the study site A1 (Figure 3.9), high correlations of SAVI with 

NDVI (1), GNDVI (0.95), and GRNDVI (0.99) were evident. SAVI was essential in defining the class 

“Buildings and roads” and then for the creation of the class “Citrus”, coupled with the CHM, and 

using a threshold value ≥ 0.7. NDRE showed to be highly correlated with GNDVI (0.89) and lowly 

correlated with NDVI (0.77), SAVI (0.77), and CVI (0.78).   
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Figure 3.10 Study site A1. Scatter plot matrix showing all bivariate relationships between the 

input layer bands. For each scatterplot, implemented using the 2D kernel density estimate 

(KDE) with a Gaussian function, the correlation line (in red), was provided. The main diagonal 

reports the histograms showing the frequency distribution of pixel values. Pearson’s 

correlation (R) coefficients for all pairwise combinations of variables are reported in the upper 

half-matrix (source, Modica et al., 2020). 

Observing Figure 3.12 showing correlation matrices on input data of the study site A2, there were 

evident high correlations between the NIR bands and the Red edge (0.88) and between the two 

NIR bands (0.99). Given this last significant correlation, it was decided to exclude the NIR2 band 

as an input layer from the segmentation phase onwards.  
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Study site 

A2 
NDVI NDRE SAVI GNDVI CVI GRNDVI 

NDVI 1.00 0.79 0.68 0.91 0.17 0.99 

NDRE 0.79 1.00 0.54 0.88 0.50 0.76 

SAVI 0.68 0.54 1.00 0.62 0.12 0.68 

GNDVI 0.91 0.88 0.62 1.00 0.54 0.85 

CVI 0.17 0.50 0.12 0.54 1.00 0.06 

GRNDVI 0.99 0.76 0.68 0.85 0.06 1.00 

Figure 3.11 Correlation matrix between the six selected vegetation indices (VIs) implemented 

on the whole image of the study site A2. 

 

Figure 3.12 Study site A2. Scatter plot matrix showing all bivariate relationships between the 

input layer bands. For each scatterplot implemented using the 2D kernel density estimate 

(KDE) with a Gaussian function, the correlation line (in red), was reported. The main diagonal 

reports the histograms showing the frequency distribution of pixel values. In the upper half-

matrix, Pearson’s correlation (R) coefficients for all pairwise combinations of variables are 

reported (source, Modica et al., 2020). 
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Regarding the study site B, observing Figure 3.14 showing the correlations of the input data, it is 

possible to observe a high correlation between NIR and Red edge bands (0.88) and between the 

two NIR bands (0.99). Also, in this case, the NIR 2 band was excluded as an input layer from the 

segmentation phase onwards. Regarding the VIs (Figure 3.13), the correlation of SAVI was very 

high with GRNDVI (0.99) and NDVI (1.00), while there was no significant correlation of CVI with 

no other index. CVI and SAVI were crucial for the correct classification of the olive and bergamot 

species. NDRE is highly correlated with GNDVI (0.93), NDVI (0.87), and SAVI (0.86). 

 

Study site 

B 
NDVI NDRE SAVI GNDVI CVI GRNDVI 

NDVI 1.00 0.87 1.00 0.96 0.11 1.00 

NDRE 0.87 1.00 0.86 0.93 0.43 0.85 

SAVI 1.00 0.86 1.00 0.96 0.10 0.99 

GNDVI 0.96 0.93 0.96 1.00 0.37 0.94 

CVI 0.11 0.43 0.10 0.37 1.00 0.05 

GRNDVI 1.00 0.85 0.99 0.94 0.05 1.00 

Figure 3.13 Correlation matrix between the six selected vegetation indices (VIs) implemented 

on the whole image of the study site B. 
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Figure 3.14 Study site B. Scatter plot matrix showing all bivariate relationships between the 

input layer bands. For each scatterplot implemented using the 2D kernel density estimate 

(KDE) with a Gaussian function, the correlation line (in red), was reported. The main diagonal 

reports the histograms showing the frequency distribution of pixel values. Pearson’s 

correlation (R) coefficients for all pairwise combinations of variables are reported in the upper 

half-matrix (source, Modica et al., 2020). 

3.2.2 Image classification, tree crown extraction and accuracy assessment 

The image classification was based on six land use classes, “Citrus”, “Olive”, “Buildings and 

roads”, “Other vegetation”, “Bare soil” and “Shadows” (Figure 3.15).  

In the study site A1, the detection of the class “Buildings and roads” permitted to isolate from the 

rest of the image objects of no interest using SAVI. Regarding trees’ classification, the objects' 

minimum height was detected through verification of CHM’s values. All trees were inserted in the 
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class “Citrus” by coupling the SAVI with CHM. The class “Other vegetation”, included different 

tree species, distinguishable from citrus trees, having larger canopies. Therefore, “Other 

vegetation” was identified using CHM values higher than those used for the class “Citrus trees”. 

The objects of the image excluded from the first three classes were assigned to the class “Bare soil”. 

 

Figure 3.15 Land use maps of the three study sites obtained applying the implemented image 

object classification workflow: A1(Clementine), A2 (Olive), and B (Bergamot and Olive) 

(source, Modica et al., 2020). 

For what concerns the study site A2, the classification of “Olive trees” was performed using CVI 

coupled with CHM in order to avoid the attribution of the class to specific regions of grass sensitive 

to the used VI. The class “Shadows” was generated using NIR1 band while the objects of the class 

“Building and roads” were isolated from the rest of the image by combining the SAVI with the 

CHM. In the case of “Other vegetation”, this class was identified based on a larger canopy size 

respect to the elements inserted in the class “Olive trees”. Unclassified objects were included in the 

class “Bare soil”. 

Dataset B was considered the most complex. It is the largest study site and is occupied by two 

species (bergamot and olive) that coexist in several orchard parts. As can be seen in Figure 3.15, 

olive trees can be found separately from the bergamot orchard at the right end of the image, while 

in other parts of the image, they act as a windbreak. The latter are not of the same age and so have 
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different heights and sizes of the canopies. The same trees were not properly pruned, and, 

consequently, most of the canopies of the larger trees touch each other on one or more sides. On 

the other hand, there are small trees (mainly in sectors 4-6 and 7) whose canopies allow discerning 

significant portions of bare soil from above. Given this heterogeneity characterizing the entire 

image in different aspects, it was chosen to subdivide it into 10 sectors by grouping the bergamot 

trees based on the irrigation sectors' layout scheme, roughly corresponding to the different 

plantation age. Similarly, given the differences in height between the trees within the individual 

sectors, it was chosen to classify only using VIs. Initially, the entire tree vegetation was classified 

without making distinctions between species, using a temporary class called “Vegetation class”, 

proceeding by sectors in which different SAVI threshold values were used. Given the presence of 

bare soil or grass, a value of 1 or 0, respectively, was used as factor L in SAVI’s formula. The 

isolation of the olive trees from the rest of the orchard was done using the SAVI in the sector (1) 

having olive trees a regular plantation scheme while the CVI was used to classify olive trees which 

had the function of windbreak barrier (2-5, and 7).  

The method tested on the three datasets was based mainly on the use of spectral response that 

permits enhancing the detection and classification of the objects of interest: citrus trees in dataset 

A1, olive trees in dataset A2, and both species in dataset B. Other measures could provide useful 

information on the classification phase but were not considered, as reported, for example, in 

Laliberte and Rango (2009), which is very time-consuming to compute several features during the 

object-based analysis. The proposed method proved to be effective in datasets of different 

complexity finding its strong point in the speed of execution and on its repeatability to other 

different crops with few adjustments. Regarding the processing speed and the time needed to 

obtain the orthomosaics, this was taken in total for the three datasets and was 4 hours. In particular, 

one hour was used for each of the first two datasets, A1 and A2, including visual analysis of images, 

segmentation and classification. The remaining time was necessary for dataset B. The time taken 

for the manual digitizing of the reference canopies (described below) and the verification of the 

results' accuracy was not added to the total computation time of the entire process performed. As 

far as the method's repeatability is used in other contexts, it is worthy of interest to take into account 

the obtained accuracy on the three datasets in the crown extraction phase. Indeed, results proved 

that most bergamot and olive trees were correctly classified and extracted in all the analyzed study 

sites. 
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About the accuracy, Figure 3.16 shows the extracted trees when they were overlaid on the reference 

data, and provided for each dataset. The green color (TP) defines the correctly detected trees’ 

crowns according to the manual digitization representing the reference data. The yellow color (FP) 

indicates crowns that were found by the algorithm, where there was no tree in the reference data. 

The red color (FN) indicates missing crowns, i.e., where the algorithm did not detect tree canopies 

or parts of trees and included in the reference data. As can be seen by analyzing the results showed 

in Table 3.4, in the study site A1, the value of r (omission error) is 0.80 and the p value (commission 

error) is 0.94. The F takes into account both r and p and is 0.86. In the study site A2, where the 

classification regarded only olive trees, r is 0.81, and p is 0.89, while the value of F is 0.85. In the 

study site B, the values of r, p, and F are 0.96, 0.84 and 0.90 (F-score of bergamot trees is 0.91 and 

that of olive trees 0.85), respectively.  

Analyzing the precision in identifying and extracting the trees’ canopies, the best results in terms 

of percentage of TP pixels and F, among all the three analyzed datasets, were obtained in the study 

site B (81.66% and 0.90, respectively). The percentage of FP was also the highest of the three datasets 

(15.22%) and is mostly found in zones where the canopies were closer to each other and there was, 

at the same time, a thick layer of grass. The percentage of FN was the lowest (3.12%) concerning 

the failure of the classifier in identifying parts of canopies and some trees on edge the image, in the 

top of the image, where there is, of course, a distorting effect, and some trees in sector 3, where 

some tiny trees can be found. 

FN pixels represent 18.5% and 16.65% in the study sites A1 and A2, respectively. These percentages 

were due both to the sporadic presence of foliage identified by the classifier and the error caused 

by the surrounding background grass that hinders the detection of the canopies along the edges. 

As reported in Koc-San (2018), classification, when the background's spectral values are similar to 

those of trees (e.g. grass), is difficult. In the study site A2, considering the parameters exploited for 

the classification (CHM > 1.5 and CVI > 1.5), tiny olive trees with a low vegetation vigor, were not 

correctly identified and classified.  

Considering the complexity and heterogeneity of the classified orchards and taking into account 

that a pixel-based accuracy assessment was adopted, the obtained results can certainly be 

considered very satisfactory.  
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Figure 3.16 Maps showing a visual picture of the obtained accuracy in the analyzed three 

study sites [A1 (Clementine), A2 (Olive) and B (Bergamot and Olive)], using the onscreen 

digitized canopy boundaries as reference data. Reference crowns (Rc) are in blue, true 

positives (TP) are in green, false negatives (FN) in red, and false positives (FP) in yellow 

(source, Modica et al., 2020). 
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Table 3.4 Results and accuracy indicators of the trees’ crowns extraction (TP, true positives; FP, false 

positives; FN, false negatives; r, recall; p, precision; branching factor, BF). 

Study site *TP *FP *FN r p BF F-score 

A1 
5,600,825 

(76.75%) 

345,273 

(4.75%) 

1,350,538 

(18.5%) 
0.80 0.94 0.06 0.86 

A2 
2,093,729 

(74.25%) 

256,891 

(9.10%) 

470,206 

(16.65%) 
0.81 0.89 0.12 0.85 

B (Bergamot) 
10,018,331 

(83.3%) 

1,612,542 

(13.4%) 

397,518 

(3.3%) 
0.96 0.86 0.16 0.91 

B (olive) 
2,021,941 

(74.47%) 

631,225 

(23.25%) 

61,879 

(2.28%) 
0.97 0.76 0.31 0.85 

B (overall) 
12,040,272 

(81.66%) 

2,243,767 

(15.22%) 

459,397 

(3.12%) 
0.96 0.84 0.18 0.90 

        * TP, FP, and FN are expressed in numbers of pixels. 

Moreover, it is worth of interest to highlight that the TP category (crowns correctly detected and 

extracted), includes only pixels correctly classified, differently from an object-based accuracy 

assessment. If this last accuracy assessment had been chosen, all polygons, whose overlap area 

with the reference area is higher than a minimum threshold value (Ok and Ozdarici-Ok, 2018; 

Rutzinger et al., 2009), would have been classified as TP, therefore also containing incorrectly 

classified pixels. Moreover, also observing the F-score obtained in the study site A2 (0.85), and 

comparing these results with those reported in other works (Ok and Ozdarici-Ok, 2018; Ozdarici-

Ok, 2015), performed in more regular and well-managed orchards, the results of this case study 

can be considered very promising. The same consideration can be reached by comparing the results 

of this work with those obtained by using other methods among which convolutional neural 

networks, LiDAR’s data and other algorithms based on the use of DSMs (Csillik et al., 2018; Mohan 

et al., 2017; Ok and Ozdarici-Ok, 2018).  

Also, the results obtained in study site B (the more complex among the three analyzed), with an 

overall F-score of 0.90 and with an FN ranging between 2.28% and 3.3%, decisively corroborated 

the methodology here proposed. The results obtained suggest that the proposed workflow allows 

to classify and extract trees’ crowns more efficiently, faster, and more effectively in cases of well-

managed orchards.  
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3.2.3 Vegetation indices (VIs) and vigor maps 

Vigor maps were produced after a correlation analysis of the six VIs and only referring to olive and 

citrus trees shown in Figure 3.17.  

 

Figure 3.17 Correlation matrix between the six selected vegetation indices (VIs) implemented 

only using the class of trees (bergamot, clementine, and olive) as input data (source, Modica et 

al., 2020). 

For each study site, two vigor maps were produced (Figures 3.18 and 3.19). Analyzing correlation 

matrices on VIs applied on trees’ crowns in the study case A1, can be observed a high correlation 

between GNDVI and GRNDVI (0.97), GNDVI and NDRE (0.91) while there is not a very high 

correlation between GNDVI and NDVI (0.79). NDVI is equal to SAVI (1) and is low correlated with 

NDRE (0.59). For these reasons, NDRE and NDVI were used for the production of vigor maps of 

the orchards. 

In the study-site A1, the NDVI map, shown in Figure 3.18, highlights two different zones of the 

citrus orchard. In one, the clementine trees showed a reduced vegetative vigor, and index values 

range between 0.4 and 0.65, while in the other zone, NDVI values, comprised between 0.7 and 0.9, 
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showed a better trees’ condition. NDRE (Figure 3.19) has average vigor values comprised between 

0.2 and 0.3 in most parts of the citrus orchard. The lowest values, were found where, being the 

foliage less dense, the background soil is visible. 

The study site A2, observing correlation matrices on VIs applied on trees’ crowns (Figure 3.17), 

observed high correlations between the NDVI, GNDVI, and GRNDVI. SAVI and CVI had no 

significant correlations with the other VIs. The olive orchard was detected using the CVI combined 

with CHM, similar to what was done in the study site A1, while shadows and buildings were 

classified using the NIR band and the SAVI combined with the CHM. GNDVI has a good 

correlation with NDRE (0.89), NDVI (0.89), SAVI (0.89) and a very high correlation with GRNDVI 

(0.98). SAVI shows a high correlation with GNDVI (0.89) and GRNDVI (0.97) and NDVI (1). NDRE 

has a high correlation with GNDVI (0.89) and low correlations with NDVI (0.77), SAVI (0.77) and 

CVI (0.76). As in dataset A1, NDRE and NDVI were selected to map vigor. 

The NDVI vigor map (Figure 3.18) showed that the olive orchard's vegetative status is not good, 

ranging its values from 0.15 to 0.7, highlighting this orchard's vegetative stress planted in 

unsuitable land characterized by a very clayey and compact soil. The NDRE vigor map (Figure 

3.19), on the other hand, assumes low to medium values, ranging between 0.2 and 0.3, and confirms 

what has already been highlighted by the NDVI index.  

Looking at correlation matrices on VIs applied on trees’ crowns in the case study B (Figure 3.17), 

similar correlations to those regarding the indices applied on the entire scene were observed with 

regard to the NDVI while there is a low correlation between NDRE and NDVI (0.63). For this 

reason, these two indices were chosen to map vigor. The NDVI (Figure 3.18) still proves to be 

suitable for monitoring vegetation's health status. In detail, in the lower part of the image and on 

the right, where both bergamot and olive trees are closer to the sea, and where the vegetative vigor 

is lower, the index’ values range between 0.2 and 0.5. As can be easily observed on the map, the 

highest values are in sector 5, comprised between 0.8 and 1.  
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Figure 3.18 Vegetative vigor maps of the three analyzed study site [A1 (Clementine), A2 

(Olive) and B (Bergamot and Olive)] based on the Normalized Difference Vegetation Index 

(NDVI) values (source, Modica et al., 2020). 

Observing NDRE (Figure 3.19) map, the contrast between the vegetative vigor of bergamot trees 

and olives trees is evident. In particular, olive trees are characterized by NDRE values from 0.25 

and up, while the highest value (0.25) concerns bergamot trees and can be found only in sectors 5 

and 8. As also highlighted by the NDVI the lowest values of NDRE can be found in the lower part 

of sector 4 and in the middle between sectors 2 and 1, which are the areas closest to the sea. 

Furthermore, two aspects cannot be overlooked. The first regards the size of the analyzed study 

sites, comprised from 4.6 to 7.9 ha, whose surface is comparable to operational conditions and the 

second aspect also concerns an operational issue. The time needed for the complete 

implementation of the proposed workflow, from the on-field data collection to obtaining vigor 

maps, can be estimated in one working day of two good skilled operators in geomatics and 

computer image processing. All data processing was implemented using a workstation with these 

characteristics: OS MS Windows 10 Pro, CPU Intel Xeon E5-2687W v2, 64 GB RAM DDR3 1866 

MHz, GPU NVIDIA K5000. 
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Figure 3.19 Vegetative vigor maps of the three analyzed study site [A1 (Clementine), A2 

(Olive) and B (Bergamot and Olive)] based on the Normalized Difference Red edge Vegetation 

Index (NDRE) values (source, Modica et al., 2020). 

3.3 Conclusions 

In the present research work, a quick and reliable semi-automatic workflow implemented to 

process MS UAV imagery and aimed at detecting and extracting olive and citrus trees’ crowns in 

PA was proposed. As reported by Solano et al. (2019), in the GEOBIA approach, the extraction of 

the trees’ crowns benefits from orchards arranged according to regular planting patterns with 

minimal overlap between the canopies. In this work, it was demonstrated that the high spatial 

resolution of UAV permits overcoming these issues. Furthermore, the use of the UAV platform, 

mounting an MS camera such as Tetracam µ-MCA06 Snap, has demonstrated flexibility and 

reliability in photogrammetric reconstruction at the farming scale. Using UAV high-resolution 

images, more focused analyzes were carried out only on the cultivated areas, excluding shadows 

and ground, with the aim to obtain a reasonable reconstruction of the orchards and monitoring of 

the crop conditions. For obtaining good results, good quality UAV field surveys are needed. As 

stated in discussing the obtained accuracy, the correct UAV flight planning has a key-role in 

obtaining good results, and the same can be said about the measures taken in the field, such as the 
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laying of GCP. In this work, referring to study sites A2 and B, a wider buffer beyond the orchard 

boundary could have improved the accuracy in the extraction of trees’ crowns. This can be 

suggested by providing a buffer distance of at least 20 m outside the surveyed area. In the 

presented workflow, great attention was also paid to simplifying the classification step and the 

procedure's speed. Firstly, visual interpretation was applied to UAV imagery to acquire prior 

knowledge of the imagery (Ma et al., 2015). Concerning image segmentation, scale parameters were 

selected to generate segmented objects representing real objects (Blaschke, 2010), single canopies 

in this case. 

Regarding the classification, an unsupervised approach that has the advantage not to provide a 

training phase was proposed. Thus, there is not the need for the selection of training samples set 

for training the classifier (Ma et al., 2015). The novelty of the proposed procedure relies upon, thus, 

on its replicability, reliability and speed proved with promising results in three different datasets. 

It is important to consider that agricultural environments may be more uniform than natural ones 

(Csillik et al., 2018). The present work has, among other things, concerning the application of the 

proposed approach on a case (study site B) of heterogeneous tree orchards. The heterogeneity 

regards several tree plantation distances and composition, different crop management, and 

different tree age, height, and crown diameters, thus, resulting in the high spatial variability of the 

scene. 

Therefore, in implementing the proposed workflow, its operational application has been taken into 

account. It appears worth of interest to highlight that this workflow needs a working day of two 

good skilled operators in geomatics, starting from the on-field data collection to obtaining vigor 

maps. In this respect, for its application in different conditions of those analyzed in the present 

work, the time needed for its complete implementation can be estimated in one working day of 

two good skilled operators in geomatics and image processing. These characteristics are in line 

with the need of the PA to provide information, in a short time, useful to guide farmers' decisions. 
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4 Object-based classification using machine learning 

algorithms and UAVs multispectral imagery precision 

agriculture: case studies on bergamot and “Cipolla Rossa di 

Tropea” 
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Reggio Calabria, Italy 

 

Precision agriculture (PA) is defined as “a management strategy that gathers, processes and 

analyzes temporal, spatial and individual data and combines it with other information to support 

management decisions according to estimated variability for improved resource use efficiency, 

productivity, quality, profitability and sustainability of agricultural production 

(www.ispag.org/about/definition, last access 15 May 2020). Commonly PA’s implementation 

phases are data collection, field variability mapping, decision making, and management practice 

(Zhang and Kovacs, 2012).  Remote sensing (RS) intervenes in the first three phases (Lamb and 

Brown, 2001; Mulla, 2013; Seelan et al., 2003; Stafford, 2000), i.e., in collecting and analyzing 

information about crops and soil characteristics using sensors mounted on satellites and aircraft 

(Gago et al., 2015; Khanal et al., 2017; Senthilnath et al., 2017; Wójtowicz et al., 2016). Over the last 

decade, the increasing use of unmanned aerial vehicles (UAVs) platforms has offered a new 

solution for crop management and monitoring, as it enables very-high-resolution (VHR) images 

(Maes and Steppe, 2019; Pádua et al., 2017; Tsouros et al., 2019). UAV data has also been 

characterized to be obtained with high time-frequency, especially in monitoring small production 

areas (Primicerio et al., 2012; Zhang and Kovacs, 2012). Besides, UAVs have low maintenance costs 

(Shakhatreh et al., 2018) and are easy to manipulate (Sheng et al., 2010). Furthermore, UAVs have 

the unique ability to mount onboard and use several sensors simultaneously (Maes and Steppe, 
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2019). However, it is important to know how to apply effective and automatic image analysis 

methods with a large calculation capacity to obtain maps useful for crop monitoring (Brocks and 

Bareth, 2018; Jiménez-Brenes et al., 2017; Schirrmann et al., 2016). The availability of a large amount 

of VHR data created new possibilities for vegetation classification and monitoring with very high 

spatial detail levels (De Luca et al., 2019; Teodoro and Araujo, 2016). This also represents a 

challenge for RS, because of the greater intraclass spectral variability (Aplin, 2006; Torres-Sánchez 

et al., 2015). Geographic Object-Based Image Analysis (GEOBIA) (Blaschke, 2010; Blaschke et al., 

2014)  approach allows addressing these issues. GEOBIA is a classification method that divides RS 

images into significant image objects and evaluates their characteristics on a spatial, spectral, and 

temporal scale (Hay and Castilla, 2006; Solano et al., 2019). GEOBIA generates image objects using 

different segmentation methods rather than analyze and classify individual pixels (Hofmann et al., 

2011). In the last decade, machine learning (ML) algorithms have attracted a great deal of attention 

in RS (Crabbe et al., 2020; Liakos et al., 2018; Noi and Kappas, 2018), offering new opportunities for 

agricultural mapping (M. Li et al., 2016; Liakos et al., 2018; Ma et al., 2017; Perez-Ortiz et al., 2017; 

Rehman et al., 2019). ML algorithms demonstrated effectiveness in classifying weeds (De Castro et 

al., 2018; Pérez-Ortiz et al., 2016), disease detection (Abdulridha et al., 2019a, 2019b), and land cover 

mapping and assessment (De Luca et al., 2019; M. Li et al., 2016; Ma et al., 2017; Noi and Kappas, 

2018; Qian et al., 2015). Among the object-based classification algorithms, Random Forest (RF) and 

Support Vector Machine (SVM) were considered, as reported in Li et al. (2016) and Ma et al. (2017), 

the most suitable supervised classifiers for GEOBIA having been their classification performances 

very satisfying (Mountrakis et al., 2011). On the other hand, in recent years, the K-Nearest 

Neighbour (KNN) algorithm has been widely used for object-based land classification (Crabbe et 

al., 2020; Griffith and Hay, 2018; Huang et al., 2016; Maxwell et al., 2018; Noi and Kappas, 2018; 

Sun et al., 2018). Normal Bayes (NB) is another algorithm that differs from the three already 

mentioned because it does not need the setting of any parameter which, besides being time-

consuming, could be subjective (Qian et al., 2015). 

This study's main objective is to compare the performances of different GEOBIA algorithms (KNN, 

SVM, RF, and NB) in terms of quality of obtained results and requested processing time and to 

assess them in terms of their applicability in the framework of PA. A complete supervised 

classification of VHR UAV imagery was done, one for each of the above mentioned four algorithms 

implemented in eCognition software (Trimble Inc., 2019). This software allows an easy 

implementation of several different and numerous decision-making rules (made available by the 
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software or customizable and implementable by the user) based on distinctive features derived 

from objects (Drǎguţ et al., 2014). 

Study sites are two and are characterized by two different crops, both socioeconomically relevant 

for the investigated areas. Bergamot (Citrus bergamia, Risso), labeled with the protected designation 

of origin (PDO) label Bergamotto di Reggio Calabria – olio essenziale (“Bergamot of Reggio Calabria - 

essential oil”), and onion (Allium cepa L.), labeled with the protected geographical indication label 

“Cipolla Rossa di Tropea IGP” (“Tropea’s Red Onion PGI”). Therefore the comparison between 

different classification algorithms was provided in two different crops. The first one is a citrus 

orchard, and the second one is an onion crop.  

4.1 Materials and Methods 

4.1.1 Study site 

The study site 1 (Figure 4.1) is a citrus orchard (bergamot, Citrus bergamia) located in Palizzi 

(Province of Reggio Calabria, Calabria, Italy) (37◦55’06‖N, 15◦58’54‖E, 4 m a.s.l). Inside the 

orchard, there are long windbreak barriers made up of olive trees. The area where the orchard lies 

is 5.13 ha. The citrus orchard is uneven-aged, with trees aged from 5 to 25 years and which height 

is comprised between 1.5 to 4.0 m.   

The study site 2 is an onion crop located in Campora S. Giovanni, in the municipality of Amantea 

(Cosenza, Italy, 37°55'06'' N, 15°58' 54'' E, and 4 m a.s.l.). The farm is part of a consortium that 

includes other producers whose total cultivated area under onion crop is more than 500 ha. The 

onions produced are a relevant typical product for the economic and rural development of this 

area (Bernardi et al., 2013; Messina et al., 2019). The study area examined is a field of 1.00 ha. The 

field is crossed by 4 paths of 2.5 m each, used for the passage of agricultural vehicles. Inside the 

field, visible in the images used, it is evident the presence of weeds whose removal, manually, is 

carried out periodically. Typically, the onions transplant took place in early September while the 

harvest occurs from mid to the end of January. 
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Figure 4.1 Geographical location of the two study sites, 1 (citrus orchard) and 2 (onion crop). 

Below, we provided two representative photos of them. 

4.1.2 UAV surveys and data acquisition 

The imagery of the two study sites was acquired using the Tetracam µ-MCA06 snap (Tetracam Inc. 

– Chatsworth, USA) mounted on board of a multirotor UAV (Multirotor G4 Surveying Robot – 

Service Drone GmbH) in planned waypoints mission mode. Flight missions were planned with the 

QGIS plugin “UAV Planner 3D” (www.altodrones.com, last access 30 April 2020) that uses 

morphology information of the study area as input to correct the altitude above ground level of 

http://www.altodrones.com/
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the UAV during the mission, following the altitude field variability. The µ-MCA06 snap is a six 

sensors narrow-band multispectral camera equipped with its own global navigation satellite 

system (GNSS). Each sensor shoots simultaneously, and all images are then synchronized via the 

master channel (Table 4.1).  

Table 4.1 Tetracam µ-MCA06 snap (Global shutter) sensor characteristics bands specification 

(wavelength and bandwidth). 

Geometry of lens Sensors Bands 
Central band 

wavelength [nm] 
Bandwidth [nm] 

Focal Length (fixed lens) 9.6 

mm 

Dimension 6.66mm x 5.32mm 

1.3 Megapixel CMOS 

4:3 format 1280 x 1024 pixels 

Pixel size 4.8 microns 

Master (0) Near-Infrared 1 (NIR1) 800 10 

1 Blue 490 10 

2 Green 550 10 

3 Red 680 10 

4 Red edge 720 10 

5 Near-Infrared 2 (NIR2) 900 20 

Due to the different characteristics of the analyzed crops in the two study sites, we carried out 

surveys with different flight altitudes. Consequently, the GSD was 4.1 cm for study site 1 and 1.5 

cm for study site 2 (Table 4.2).  

In order to obtain a high quality geolocated output, the coordinate (WGS 84/ETRF 1989 UTM 33N) 

of a series of ground control points (GCPs - 50 cm x 50 cm black and white polypropylene panels) 

were acquired, before each flight mission, with Leica GS12 RTK GNSS (planimetric and altimetric 

accuracy of ± 2.5 cm and ± 5 cm, respectively). 

 

Table 4.2 Flight and UAV dataset characteristics. 

Study 

site 
Date 

Flight 

height 

[a.g.l.] 

Take-off 

time 

[UTC+1] 

Speed 

[m s-1] 

N° of 

flights 

Total 

duration 

[min] 

Surveyed 

area  

[ha] 

Photos 

[n°] 

Sidelap and 

Overlap [%] 

RMSE [m] 

X Y Z 

1 2018/09/17 80 m 11:00 am 2.5 2 49 7.9 2825 80 0.03 0.03 0.09 

2 2019/11/21 30 m 12:00 am 2.5 1 19 1.0 1800 80 0.02 0.02 0.05 

 

All the acquired images were first extracted from the camera and converted from the *.RAW format 

to 10-bit TIFF format using PixelWrench II (version 1.2.4, Tetracam Inc – Chatsworth, USA) and 

then aligned, stacked, and radiometrically corrected using Pix4Dmapper Pro (version 4.3 – Pix4D 
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SA, Switzerland). To enhance each band's radiometric calibration, the reflectance values of three 

calibration targets (50cm x 50 cm polypropylene panes in black, white, and gray respectively) were 

collected using the field spectroradiometer Apogee Ps-300. After this process, a reflectance 

orthomosaic was produced for each of the six bands of Tetracam µ-MCA06 snap and then stacked 

into a single multiband orthomosaic (Blue, Green, Red, Red edge, NIR1, and NIR2). Moreover, a 

Digital Surface Model (DSM) was created after a photogrammetric process. 

4.1.3 Pre-processing and datasets 

Before launching the GEOBIA workflow, GNDVI (Gitelson et al., 1996) was calculated for the two 

datasets to exploit it as an additional raster layer able to increase spectral information. Already 

several studies have shown that the vegetation indices enhanced spectral differences between 

vegetation/no-vegetation objects in UAV images (De Luca et al., 2019; Gašparović et al., 2020; 

López-Granados et al., 2016b; Solano et al., 2019; Torres-Sánchez et al., 2014; Villoslada et al., 2020). 

In this case GNDVI was used with the intention of exploiting its higher sensitivity to the 

chlorophyll concentration compared to NDVI (Candiago et al., 2015; Gitelson and Merzlyak, 1998). 

A linear band stretching (rescale) in a range of 8 bits [0, 255], was performed for all the six bands 

of the orthomosaic and for both GNDVI and DSM. The objective of the band stretching was to 

equalize the range of values of each input variable, minimizing the influence of differences in their 

magnitudes and the effect of potential outliers (Angelov and Gu, 2019; Immitzer et al., 2016). 

Subsequently, a layer stacking process was carried out by merging the six-bands with GNDVI and 

DSM. For each of the two datasets, eight layers were used: Blue, Green, Red, Red edge, Near-

infrared 1 (NIR1), Near-infrared 2 (NIR2), GNDVI and DSM. 

4.1.4 eCognition Multi-Resolution Segmentation (MRS) 

In GEOBIA, image segmentation is the first process that fragmented a digital image into a set of 

spatially adjacent segments composed of a group of pixels presenting homogeneous radiometric 

and semantic features. Each segment on the image should represent a real object on the earth's 

surface (Blaschke, 2010; Blaschke et al., 2014; Pal and Pal, 1993). 

The multiresolution (MRS) algorithm implemented in eCognition is a bottom-up region-merging 

strategy starting with one-pixel objects (Aguilar et al., 2016). MRS is a process of optimization 

which, starting from a given number of objects, minimizes their average heterogeneity and 

maximizes the homogeneity (Trimble Inc., 2019). As the first step, MRS identifies single objects of 

a pixel's size and then merges them with neighbor objects following a criterion of relative 
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homogeneity. This criterion allows analyzing the color and shape properties of the initial object 

and of that obtained by the merging process to measure the level of their homogeneity. Color 

homogeneity is assessed by the standard deviation of the spectral values, while the deviation from 

a compact (or smooth) shape allows measuring the shape homogeneity. The shape parameter deals 

with the influence of geometric form on the segmentation compared to the color, and its value 

ranges between 0 and 0.9. In contrast, the compactness parameter takes into account the combined 

influence of shape and smoothness. Concerning the scale parameter, several scholars showed its 

importance in determining the size and dimension of objects generated by the segmentation (Ma 

et al., 2017, 2015; Modica et al., 2020; Witharana and Civco, 2014; Yang et al., 2019). The higher the 

scale parameter values, the larger the obtained image objects, while, conversely, its low values 

resulting in smaller image objects. 

4.1.5 Image Classification  

For each of the two study sites, the following four classification algorithms were implemented: 

KNN, SVM, RF, and NB. The two study sites chosen, being different cultivations (i.e., an annual 

crop and a tree orchard), were considered suitable to compare four supervised classification 

algorithms' performance. The classification was implemented using five land cover (LC) classes for 

the study site 1 (i.e., “Bergamot”, “Olive”, “Grass”, “Bare Soil”, “Shadows”) and three LC classes 

for the study site 2 (i.e., “Onion”, “Weeds”, “Bare soil”). After the segmentation process there is 

the choice of trainers which is one of the most important and critical steps affecting the final quality 

of the classification results (Ma et al., 2015). With the aim to train each of the four supervised 

algorithms, two samples of 800 and 500 points for study sites 1 and 2, respectively (Table 4.5). These 

points were randomly sampled in the QGIS environment. These points were then superimposed 

on each of the two segmentation output files obtained to select and extract the polygons within 

which each point fell. Polygons selected were then labeled with the corresponding LC class by 

visual interpretation (Figure 4.2). For each trainer polygon, some features’ objects as mean and 

standard deviation were extracted. 
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Figure 4.2 Training polygons of dataset 1: in green those belonging to the "bergamot" class; 

in brown those belonging to the "bare soil" class. 

The KNN is a non-parametric classifier algorithm (Clarke et al., 1974) and is one of the more used 

classification methods in GEOBIA applications (Crabbe et al., 2020; Georganos et al., 2018; Griffith 

and Hay, 2018; Huang et al., 2016). It assigns an object to a given class based on the class to which 

the neighboring objects belong in an N-dimensional feature space. The KNN generally uses the 

Euclidean distance to select among the objects closest to each other (in terms of object features 

distance). The number of neighbors to be analyzed in the feature space is defined by parameter k’s 

value. K is the tuning parameter that determines the classifier’s performance and is generally a 

small positive integer number (M. Li et al., 2016; Qian et al., 2015). For example, if k = 2, the object 

will be assigned to the nearest neighbor's class. Higher values reduce the effect of noise in 

classification, but there is less distinction between the boundaries of the different classes (Maxwell 

et al., 2018; Trimble Inc., 2019). In this case, k was equal to 1. 

SVM is a supervised non-parametric classifier algorithm, which is based on the Statistical Learning 

Theory (Cortes and Vapnik, 1995; Vapnik, 1998) and on the kernel method, which has been 

introduced in the last years for the application of the image classification (Mountrakis et al., 2011). 

Originally, the SVM was introduced for linear binary classifications. However, it allows 

performing a multiclass classification. In a set of training examples belonging to each one to two 

classes, an SVM training algorithm creates a model that assigns new examples into one class or the 
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other (Trimble Inc., 2019). In particular, this algorithm learns the boundary between training 

samples belonging to different classes and so train the algorithm, projecting them into a 

multidimensional space and finding a hyperplane, or a set of hyperplanes that maximize the 

separation of the training dataset between the predefined number of classes (Huang et al., 2002; 

Mountrakis et al., 2011). SVM uses different kernels: linear, polynomial, sigmoid and radial basis 

function (RBF). In this study case, a linear kernel-type function with a C model-type was 

implemented. There is only one tuning parameter to set: the parameters of cost (C). The C 

parameter deals with the size of misclassification allowed for non-separable training data and 

regulates the training data's rigidity (Cortes and Vapnik, 1995; Vapnik, 1998). C value equal to 1 

was used. 

RF is an automatic learning algorithm proposed by Leo Breiman (2001) and improved by Cutler et 

al. (2007). The RF is a decisional tree’s method that randomly creates a forest comprising many 

decision trees, every independent from each other (Li et al., 2016). Using an input feature vector, 

the algorithm classifies it accordingly with each tree in the forest and then outputs the class label 

that received the majority of “votes”. All the trees are trained with the same features but on 

different training sets derived from the original training set. This happens utilizing bootstrap 

aggregation, namely, bagging, which permits the selection, for each training set, of the same 

number of vectors in order to create different formation subsets for producing a variety of trees, 

any one of which provides a classification result as in the original set (=N). The algorithm generates 

an internal and impartial estimation of the generalization error using “out-of-bag” (OOB) samples, 

which include observations that are in the original data and that not recur in the bootstrap sample 

(Cutler et al., 2007). The RF parameters were set as follows: the maximum depth of the tree was set 

on 10, the minimum number of samples per node was set on 10, and to the cluster possible values 

of a categorical variable into K <= cat clusters to find a suboptimal split was assigned a value of 16. 

The parameter which deals with the number of features in each split (or the number of features to 

build a random subset at each node) was set on the default value (0). About this parameter, many 

studies used the default value (Duro et al., 2012). Finally, the maximum number of trees was set 

on 300, while the OOB error was set on 0.01.  

NB is a probabilistic classifier based on Bayes’ theorem (from Bayesian statistics) (Qian et al., 2015). 

This algorithm is s based on the concept that the presence (or absence) of a particular feature of a 

class is not correlated to the presence (or absence) of any other feature (Trimble Inc., 2019). It uses 

a training set to calculate the probability that an object belongs to a given class or not. NB first 
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estimates the mean vectors and covariance matrices of the training samples’ selected features for 

each class, and through them, provides for a classification (Qian et al., 2015). This classifier does 

not need tuning parameters. 

To have an objective comparison of the performance of the classification algorithms, their chosen 

parameters are the same in both study sites. 

As far as the RF and SVM parameters, several parameters values were tested based on those 

recommended in De Luca et al. (2019). Furthermore, in selecting the values considered more 

effective of the algorithms' parameters, several research studies that dealt with this issue were 

taken into account (Li et al., 2016; Noi and Kappas, 2018; Qian et al., 2015; Rodriguez-Galiano et 

al., 2012; Sun et al., 2018). In Table 4.3, the values of the parameters set for each of the three 

classification algorithms were showed. 

Table 4.3 Main parameters set for each of the implemented classification algorithms, K-Nearest 

Neighbour (KNN), Support Vector Machine (SVM) and Random Forest (RF). 

Algorithm Parameter Values 

KNN k 5 

SVM C 1 

RF 

Number of trees 300 

Maximum tree depth 10 

Min. number of samples per node 1 

                                    *NB does not need tuning parameters 

4.2 Accuracy Assessment 

For the evaluation of the classification accuracy of the algorithms used, a sample of 500 random 

points was used for each of the two dataset scenes. Each point was labeled according to the LC 

classes defined by visual interpretation (ground truth). Then, for each of the four classifiers, all the 

polygons containing the sampling points were selected. The ground truths were compared with 

the classified LC class. The producer’s accuracy, which represents the ratio between the correctly 

classified objects in a given class and the number of validation objects for that class, the user’s 

accuracy which is the ratio between the correctly classified objects in a given class and all the 

classified objects in that class, and the overall accuracy (i.e., the total percentage of correct 

classification) were calculated (Congalton and Green, 2019; Lillesand et al., 2015). Subsequently, 
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from these measures, the F-score (Goutte and Gaussier, 2005; Ok et al., 2013; Shufelt, 1999; Sokolova 

et al., 2006) for every single class (F-scorei) (Equation 4.1) and the multi-class F-score (F-scoreM) 

(Equation 4.2) (Sokolova and Lapalme, 2009) which represents the mean of all LC classes were 

calculated. The F-score is the harmonic mean of its components, recall (r), and precision (p). Having 

r and p the same meaning of producer’s and user’s accuracy, respectively, they were replaced in 

equations 4.3 and 4.4. The F-scorei and the F-scoreM share the same formula (Equations 4.1 and 4.2). 

𝐹𝑠𝑐𝑜𝑟𝑒 𝑖 = 2 ∙
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠𝑖 ∙ 𝑢𝑠𝑒𝑟′𝑠𝑖

𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠𝑖+𝑢𝑠𝑒𝑟′𝑠𝑖
   (4.1) 

𝐹𝑠𝑐𝑜𝑟𝑒 𝑀 = 2 ∙
𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠𝑀 ∙ 𝑢𝑠𝑒𝑟′𝑠𝑀

𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠𝑀+𝑢𝑠𝑒𝑟′𝑠𝑀
   (4.2) 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠𝑀 =
∑ 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠𝑖

𝑛
𝑖=1

𝑛
   (4.3) 

𝑈𝑠𝑒𝑟′𝑠𝑀 =
∑ 𝑢𝑠𝑒𝑟′𝑠𝑖

𝑛
𝑖=1

𝑛
   (4.4) 

where i represents a single LC class and n is the total number of LC classes. 

4.3 Results 

4.3.1 Image Segmentation 

To evaluate each dataset's segmentation performance, the two processes were timed, and the 

obtained segmentations were compared. Table 4.4 reports for the two study sites (1 and 2), the 

processing time, the number of obtained segments, and the following main characteristics: area 

and perimeter. For each of them, the mean and the standard deviation (StD) were reported. The 

processing time was calculated, not taking into account the time necessary for project preparation 

and setting up the parameters.  

Table 4.4 The table shows the most important metrics of the obtained segmentations and the requested 

processing time in the study sites 1 and 2. 

Study site 
Processing 

time [min.] 

n° of 

segments 

Area [m2] Perimeter [m] 

mean ± SE StD mean ± SE StD 

1 2 35,342 1.447 ± 0.005 0.972 10.843 ± 0.026 4.830 

2 4 1,725,819 0.005 ± 0.00001 0.0035 0.450 ± 0.0001 0.181 

                   *SE (standard error), StD (standard deviation). 
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Referring to both study sites, the processing time lasted, respectively, 2 and 4 minutes.  The MRS 

algorithm produced 35,342 segments in the study site 1and 1,725,819 in study site 2. This difference 

in the number of segments between the two study sites is clearly visible in Figures 4.3 and 4.4. The 

total number of segments and the mean area (in m2) with standard deviation provides a useful 

general measure of the relationship between size and number of image objects, which has a direct 

impact on the next classification steps (Ma et al., 2015; Torres-Sánchez et al., 2015). The mean 

segment size varies between 1.447 ± 0.005 (StD=0.972) m2 and 0.005 ± 0.00001 (StD =0.0035) m2 for 

study sites 1 and 2, respectively.  

The mean perimeter length follows the trend of the mean segment size, varying from 10.843 ± 0.026 

(StD =4.830) m and 0.450 ± 0.0001 (StD =0.181) m for study site 1 and 2, respectively. 

 

Figure 4.3 Segmentation in study site 1. 

 

Figure 4.4 Segmentation in study site 2. 
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4.3.2 Image Classification 

In Table 4.5, the distribution of trainer points in all the defined land cover (LC) classes for the two 

study sites 1 and 2 was reported. 

Table 4.5 Distribution of trainer points in land cover (LC) classes in the study sites sites. 

Study site 1 Study site 2 

Number of trainers = 800 Number of trainers = 500 

Class % Class % 

Class 1 - Bergamot 28.21 Class 1 - Onion 57.00 

Class 2 - Olive 17.53 Class 2 - Weeds 7.20 

Class 3 - Grass 8.76 Class 3 – Bare soil 35.80 

Class 4 – Bare soil 19.69   

Class 5 - Shadow 25.81   

 

In Figure 4.5, the histograms show the distribution of the number of classified segments (expressed 

as % of the total), according to the defined LC classes and to each classification algorithm, for study 

site 1.  Figure 4.6 shows the same for study site 2. The graphs are compared with those that illustrate 

the area's distribution (in %) between each LC class and algorithm. 

According to the study site 1, the classification results obtained from each of the implemented 

classification algorithms, the “Bergamot class” occupies the most extensive area with about 40%. 

The “Bare Soil” class follows, with a mean surface area of 25%, while the “Olive” class covers a 

surface ranging between 8% (NB) to 16% (KNN). The “Grass” class occupies the minor extension, 

ranging between 8% (KNN) to 18% (NB), while the surface occupied by the Shadow class occupies 

about 15%.  

In study site 2, using SVM, RF and KNN, the distribution of area between LC classes was the most 

stable, resulting in a mean of 56%, 1.6%, and 42% for “Onion”, “Weeds” and “Bare Soil” classes 

respectively (on one hectare of a surface). In NB, the area occupied by onion is about 50%, while 

the area occupied by weeds and bare soil is 3% and 46%, respectively. 
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Figure 4.5 The main characteristics of the obtained classifications in the study site 1. On the 

left side (a), reported the distribution of the number of segments (in %) in each of the defined 

land use (LC) classes and according to each of the implemented classification algorithms were 

reported. On the right side (b), the distribution of the surface area of the obtained segments 

(in %) in each of the defined LC classes and according to each of the implemented classification 

algorithms were shown. 
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Figure 4.6 The figure shows the main characteristics of the obtained classifications of the study 

site 2. On the left side (a), the distribution of the number of segments (in %) in each of the 

defined land use (LC) classes and according to each of the implemented classification 

algorithms were reported. On the right side (b), we provided the distribution of the surface 

area of the obtained segments (in %) in each of the defined LC classes and, according to each 

of the implemented classification algorithms, were shown. 

1
.4

8

0

10

20

30

40

50

60

70

Onion Weeds Bare soil

N
u

m
b

er
 o

f 
se

gm
e

n
ts

 (
%

)

a - KNN

2
.2

9

0

10

20

30

40

50

60

70

Onion Weeds Bare soil

N
u

m
b

er
 o

f 
se

gm
e

n
ts

 (
%

)

a - SVM

2
.0

1

0

10

20

30

40

50

60

70

Onion Weeds Bare soil

N
u

m
b

er
 o

f 
se

gm
e

n
ts

 (
%

)

a - RF

5
.4

6

0

10

20

30

40

50

60

70

Onion Weeds Bare soil

N
u

m
b

er
 o

f 
se

gm
e

n
ts

 (
%

)

a - NB

0
.8

8

0

10

20

30

40

50

60

70

Onion Weeds Bare soil

A
re

a 
(%

)

b - KNN

1
.1

6

0

10

20

30

40

50

60

70

Onion Weeds Bare soil

Su
rf

ac
e 

ar
ea

 (
%

)

b - SVM

1
.1

9

0

10

20

30

40

50

60

70

Onion Weeds Bare soil

Su
rf

ac
e 

ar
ea

 (
%

)

b - RF

3
.2

0

0

10

20

30

40

50

60

70

Onion Weeds Bare soil

Su
rf

ac
e

 a
re

a 
(%

)

b - NB

Distribution of number of segments between classes Distribution of area between classes

a b



87 

 

In Figures 4.7 and 4.8, a synoptic accuracy overview of the obtained results for all the four 

implemented classifiers was reported as overall, producer’s and user’s accuracy values, and F-scorei 

(single-class) and F-scoreM (multi-class) values. 

 

Figure 4.7 Study site 1. User's, Producer's and Overall accuracies, and F-scorei (single-class) 

and F-scoreM (multi-class) values obtained for each algorithm. 
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Figure 4.8 Study site 2. User's, Producer's and Overall accuracies, and F-scorei (single-class) 

and F-scoreM (multi-class) values obtained for each algorithm. 
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In study site 1, the highest value of overall accuracy and F-scoreM were obtained using the NB 

algorithm, with 89.7 % and 88.1% (F-scoreM). The RF and SVM algorithms follow at performance 

level with slightly lower overall accuracy values, 88.9% and 86.5%, respectively, while the lowest 

values were performed by KNN on with 78.9% and 76.5%, for overall and F-scoreM, respectively.  

In study site 2, the SVM had 91.8% of overall accuracy, followed by RF with 91.6% and KNN with 

90.8%. On the other hand, the lowest performance was that of NB with 88.8% and 85.4% for overall 

accuracy and F-scoreM, respectively. 

Observing per-class accuracies (producer’s, user’s, and single-class F-scorei), in the Bergamot class, 

the highest F-scorei value was found RF and NB algorithm with values higher than 92%, user’s 

accuracy percentage was higher than 96% and the producer’s accuracy corresponded to 88%. As 

for the Olive class, the highest values of accuracies were reached by SVM (97.7%, 95.6%, and 96.7% 

for user’s, producer’s and F-scorei accuracies, respectively). In the Grass class, we found the lowest 

user's accuracy values, ranging from 43.54% (KNN) up to a maximum value reached by the NB 

classifier (69.3%). The F-scorei follows the trend with the lowest value equal to 47.36% (KNN). As 

far as producer's accuracy percentage is concerned, the higher values were obtained with the NB 

classifier, 82.6%. The Bare Soil class maintains an accuracy value never lower than 90% (user’s) and 

higher than 92% (producer’s). Focusing on the “Shadows” class, the producer’s accuracy never 

falling below 93.8% (KNN) reaching 97.9% using the NB algorithm. The users' accuracy has lower 

values but showed the same trend, as well as F-scorei, whose highest value is 85.7% (NB). 

In the study site 2, as for the “Onion” class user’s accuracy values, there are not many differences 

in the implemented algorithms' obtained results in the different software environments, 

maintaining averaged values around 94%. Only with the NB algorithm, the slightly lower value 

was obtained 89.2%. All the algorithms performed values of the producer’s accuracy higher than 

90%. The F-scorei has values not lower than 91% (NB). As far as the “Weeds” class is concerned, the 

highest values of the user’s accuracy were obtained using NB (86.6%) and SVM (84.44%). The 

lowest value was obtained by implementing KNN, which provided a value of 66.66%. Looking at 

the producer's accuracy values, the lowest performance was obtained with NB (67.2%), and the 

highest was 88.2% (KNN). Finally, considering “Bare Soil” class, the user’s accuracy levels 

remained between 84.1% (SVM) and about 88% (KNN, RF and NB). The producer’ accuracy 

reached 96.6% using SVM, while the lowest value is 88.4% with NB. Moreover, the F-scorei values 

range between 88 and 91% using all the algorithms for this class.   
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For completeness, in Tables from 4.6 to 4.13, the confusion matrices obtained for each classifier 

in each study site were reported. In Figures 4.9 and 4.10, the classification resulting from the 

implementation of the four algorithms was showed. 

Table 4.6 Confusion matrix obtained for the classifier K-Nearest Neighbour (KNN) in the study site 1.  

eCognition - KNN Ground Truth 

  Classes 1 2 3 4 5 Total 

Classified 

1 221 5 15 0 0 260 

2 29 36 8 0 2 45 

3 15 4 27 3 0 62 

4 3 0 2 63 1 70 

5 15 1 0 2 46 63 

  Total 283 46 52 68 49 500 

Table 4.7 Confusion matrix obtained for the classifier Random Forest (RF) in the study site 1.  

 eCognition - RF Ground Truth 

 Classes 1 2 3 4 5 Total 

Classified 

1 251 0 4 0 0 260 

2 4 43 7 0 1 45 

3 14 1 39 3 0 62 

4 0 0 2 63 1 70 

5 14 2 0 2 47 63 
 Total 283 46 52 68 49 500 

Table 4.8 Confusion matrix obtained for the classifier  Support Vector Machine (SVM) in the study site 

1.  

eCognition - SVM Ground Truth 
 Classes 1 2 3 4 5 Total 

Classified 

1 240 0 4 0 1 260 

2 5 44 8 1 0 45 

3 20 1 38 2 0 62 

4 1 0 2 63 2 70 

5 17 1 0 2 47 63 
 Total 283 46 52 68 49 500 

Table 4.9 Confusion matrix obtained for the classifier Normal Bayes (NB) in the study site 1.  

eCognition - NB Ground Truth 
 Classes 1 2 3 4 5 Total 

Classified 

1 250 0 2 0 0 260 

2 1 43 5 0 0 45 

3 21 2 43 3 0 62 

4 0 0 2 63 1 70 

5 11 1 0 2 48 63 
 Total 283 46 52 68 49 500 
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Table 4.10 Confusion matrix obtained for the classifier K-Nearest Neighbour (KNN) in the study site 

2.  

eCognition - KNN Ground Truth 
 Classes 1 2 3 Total 

Classified 

1 298 4 14 316 

2 14 30 1 45 

3 16 0 123 139 
 Total 328 34 138 500 

Table 4.11 Confusion matrix obtained for the classifier Random Forest (RF) in the study site 2.  

eCognition - RF Ground Truth 

 Classes 1 2 3 Total 

Classified 

1 303 5 8 316 

2 12 32 1 45 

3 16 0 123 139 
 Total 331 37 132 500 

Table 4.12 Confusion matrix obtained for the classifier  Support Vector Machine (SVM) in the study 

site 2.  

eCognition - SVM Ground Truth 

 Classes 1 2 3 Total 

Classified 

1 304 9 3 316 

2 6 38 1 45 

3 22 0 117 139 
 Total 332 47 121 500 

Table 4.13 Confusion matrix obtained for the classifier Normal Bayes (NB) in the study site 2. 

eCognition - NB Ground Truth 

 Classes 1 2 3 Total 

Classified 

1 282 19 15 316 

2 5 39 1 45 

3 16 0 123 139 
 Total 303 58 139 500 
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Figure 4.9 The classification of the study site 1 organized according to the four classification 

algorithms in order from top to bottom: K-Nearest Neighbour (KNN), Random Forest (RF), 

Support Vector Machine (SVM), and Normal Bayes (NB). 
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Figure 4.10 The classification of the study site 2 organized according to the four classification 

algorithms in order from top to bottom: K-Nearest Neighbour (KNN), Random Forest (RF), 

Support Vector Machine (SVM), and Normal Bayes (NB). 

4.4 Discussion 

4.4.1 Image Segmentation 

In line with the results of Clewley et al. (2014), the MRS algorithm was very fast for both study 

sites, with a processing time ranging from 2 minutes (study site 1) to 4 minutes (study site 2).  

In study site 1, the segmentation provided the highest number of segments, about fifty times the 

number of those on study site 2. Therefore, the differences in segment size between the study sites 

were particularly evident. As shown in Figure 4.3, segmentation provided in the study site 1 

resulted in many segments whose vegetation LC classes represent the major part. However, at the 

same time, where the soil surface was continuous, larger segments were generated, and the same 

is true for the shadows. 

This can be explained by the different behavior of the scene’s features, as also shown in De Castro 

et al. (2018). The soil and shadows, having more similar spectral and geometrical characteristics 

than the vegetation (spectrally and structurally heterogeneous) were segmented differently from 

the latter. Indeed, this aspect is accentuated in VHR resolution images like those used, where it is 

expected that many segments are composed of heterogeneous regions (Hossain and Chen, 2019; 
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Torres-Sánchez et al., 2015). On the contrary, in the case of the bare soil, its homogeneous 

reflectance behavior of the bare soil could due to its smoothed surface (low roughness). By 

considering the number and size of the segments of the different classes in the study site 1, the 

MRS algorithm produced many segments with similar size, which caused a light over-

segmentation on the “Bare Soil” and “Shadow” classes and a light under-segmentation on the 

vegetation classes. This evidence is also confirmed by the final number, the mean size of segments, 

and a standard deviation of the mean area with similar values around 1.  

In study site 2 the variation in segment size was not particularly evident, confirmed by the lower 

standard deviation. This was due to the homogeneous vegetation’s size and structure of the crop 

surveyed if compared to the study site 1 (prevalence of tree species). Furthermore, it must be 

considered that the different age of the bergamot trees at the study site 1 leads to a greater 

diversification of the canopy size. As for the average object, size can be considered as a 

representation of the general segmentation scale (Torres-Sánchez et al., 2015).  

Regarding study site 2, MRS algorithms show a minor scale with the mean area of segments 0.005 

m2 (±0.00001). Generally, a smaller segmentation scale (producing smaller segments) is preferable 

for PA purposes, as far as vegetation monitoring is concerned, for early detection of a possible 

stress state of the plant (Meena, 2019). In particular, a smaller segmentation scale allows 

distinguishing plants, portions of the canopy of single trees, or weeds paced in inter and intra rows. 

Typically, an inversely proportional correlation exists between the segmentation scale and the 

image resolution. Indeed the higher are the spatial resolution, the smaller the segmentation scales 

and vice-versa (M. Li et al., 2016; Ma et al., 2015). Besides, the scene's intrinsic characteristics and 

the objectives of the study must be taken into account and influenced the variability of the 

segmentation scale (M. Li et al., 2016; Ma et al., 2015). Therefore, an over-segmentation is preferred 

to an under-segmentation to prevent the correct discrimination of small vegetative characteristics.  

4.4.2 Image Classification and Accuracy Assessment 

The classification results were compared in terms of overall, user’s and producer’s accuracy and 

by single - and multi-class F-score. As shown by several scholars (M. Li et al., 2016; Ma et al., 2015; 

Mountrakis et al., 2011; Noi and Kappas, 2018; Yang et al., 2019), algorithms SVM, RF, and KNN 

are among the most used supervised classifiers in the literature, giving generally good results of 

accuracy on agriculture and land cover classification applications. These three ML algorithms 
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showed a similar classification performance in study site 1 (Figure 4.9). Instead, observing Figure 

4.10 relating to the study site 2, it seems that the KNN underestimated weeds. 

 Looking at the overall accuracy, SVM and RF are the most stable classifiers, as in study site 2. It is 

confirmed by the overall accuracy values of 91.8% and 91.6%, respectively. For example, in the case 

of SVM Noi and Kappas (2018) and Qian et al. (2015) concord that it can be considered an algorithm 

with constant and high accuracy. 

In study site 1, the NB algorithm provided the classification result with the highest overall accuracy 

(89.6%). This result does not differ much from the result given by SVM (86.5). This is in line with 

what was highlighted in Qian et al. (2015), where the accuracy of NB was similar to SVM accuracy 

and significantly high for more than 100 training samples for each class. In this case, the training 

samples were more than 100 for all LC classes except for “Grass” and “Weeds” (see Figure 4.10). 

The NB classifier is generally one of the most sensitive to sample size as, being a parametric 

algorithm, it uses training samples to estimate parameter values for the data distribution (Qian et 

al., 2015; Rehman et al., 2019) so, a greater number of samples can lead to an improvement in the 

estimated parameters (Qian et al., 2015). 

On the contrary, SVM results to be least sensitive to the number of samples, and its classification 

accuracy is not influenced by an increase of this number because, rather than all the training 

samples, it uses the support vectors to define the separation hyperplane (Huang et al., 2002; 

Mountrakis et al., 2011; Qian et al., 2015).  It is important to underline how the NB algorithm, not 

needing the setting of any parameter, proves to be the fastest way to classify, offering, among other 

things, good results.  The other algorithms can instead be influenced by parameters set.  

Overall accuracy provides total accuracy of the scene, while producer’s and user’s accuracies 

determine individual class accuracies. Observing in Figures 4.7 and 4.8 the results regarding crop 

species of each study site (bergamot and olive for study site 1 and onion for study site 2), it can be 

noted that the four classification algorithms provided high values of producer's and user's accuracy 

and F-scorei. The “Bergamot”, “Olive”, and “Onion” classes, seem to be better detected with values 

no lower than 85% in most cases. Regarding the “Bare soil” class, all the algorithms showed equally 

satisfactory for both user's and producer's accuracy. As already written, these results may be due 

to the spectral homogeneity of the bare soil surface.  

Obviously, the total accuracy value mainly depends on the herbaceous vegetation classes. In study 

site 1, there was an overestimation of the grass present between trees in the bergamot orchard. On 
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the contrary, in study site 2, there was an underestimation of weeds, caused by a low distinction 

between weeds and onion crops. In study site 1, however, the algorithms classified with difficulty 

the class “Grass” due to the misidentification of grass with bergamot or olive and vice versa. This 

was probably due to the spectral similarity between grass/weeds and crops, which, as shown in 

Peña et al. (2013), often occurs in the early stage of vegetative growth. Many plant species that 

adapted to the thermo-pluviometric regimes typical of the Mediterranean environment 

(characterized by hot and dry summers), including the olive tree, adopted a typical phenological 

cycle in which, in addition to the main vernal budding phase, there is a second vegetative restart 

following a summer stasis which permits plants to limit evapotranspiration (Connor and Fereres, 

2010; Fiorino, 2018; Iniesta et al., 2009; Palese et al., 2010).  

Citrus trees also have more than one phase of vegetative growth in the Mediterranean 

environment, including the summer and autumn seasons (Primo-Millo and Agusti, 2020). As 

Pande-Chhetri et al. (2017) explained, the spectral features used during the training phase might 

not be enough to discriminate between different classes of vegetation. However, as highlighted in 

several studies (Gašparović et al., 2020; Solano et al., 2019; Villoslada et al., 2020), the use of VI, as 

in the case of GNDVI used in this work, can improve the spectral differences between vegetation 

and non-vegetation classes in VHR images. This resulted in good results in terms of accuracy, 

despite the similar spectral responses of vegetation coverings. Therefore DSM, as will be clarified 

subsequently, had a key role in this case. 

Generally, the detection of herbaceous vegetation and weeds within crop represents still a common 

challenge in the framework of vegetation mapping (Gašparović et al., 2020; López-Granados et al., 

2016b; Peña et al., 2015, 2013; Perez-Ortiz et al., 2017; Torres-Sánchez et al., 2015, 2013; Zisi et al., 

2018). In other words, for example, to cope with this problem, combined ML approaches with 

different advanced semiautomatic techniques in which the characteristics relate to the position and 

structure of the weeds in-field were performed (De Castro et al., 2018; Gao et al., 2018; Peña et al., 

2013; Perez-Ortiz et al., 2017; Pérez-Ortiz et al., 2016, 2015); in other cases more advanced deep 

learning techniques (Csillik et al., 2018; Huang et al., 2020).  

The accuracy values obtained from this work do not differ much from those mentioned. Most of 

these mentioned works concern the monitoring of vegetation. However, this work was performed 

on two study sites characterized by different and more complicated conditions in agronomic and 

structural terms. 
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Being the DSM, resulting from the photogrammetric process,  efficient for plant height detection 

(De Castro et al., 2018; Zisi et al., 2018), its use as an additional input layer increased the accuracy 

in the study site 1, which is characterized by greater variability in the height of the vegetation (trees 

and herbaceous). This was already proved in other works as in other works as (De Luca et al., 2019; 

Zisi et al., 2018). This aspect was necessary since the three vegetation classes' spectral signature 

was the same in study site 1. Instead, in study site 2, the DSM probably did not influence much the 

discrimination of onions from weeds since their height was very similar. 

Besides the classification algorithm's choice, other parameters influenced the accuracy: as 

segmentation scale, characteristics of the trainers, sample scheme, object-features used, etc. (M. Li 

et al., 2016; Ma et al., 2017). The number of training also influenced the results. Indeed, a positive 

correlation there is between the number of the training sample and the classification accuracy and 

(M. Li et al., 2016; Ma et al., 2017, 2015; Noi and Kappas, 2018). This is also dependent by the method 

used for the choice of the training samples, which could significantly influence the final accuracy 

(Ma et al., 2015).  

The results obtained do not define an algorithm better than all the others, although the NB in study 

site 1 and SVM in study 2 showed the higher classification efficiency. However, all the algorithms 

proved to be more suitable for crop recognition using GEOBIA and VHR UAV images. The 

observation of the user and producer accuracies showed how difficult it was to detect invasive 

species in the heterogeneous sites surveyed. This happened because of their position alongside 

crops and their very similar shape, size and spectral response. Furthermore, the images were taken 

in different seasons. This brings out the repeatability of the method and its capacity to manage the 

uncertainties caused by the heterogeneity present in the study sites surveyed. 

4.5 Conclusions 

This work's objective was to compare the applicability of four ML algorithms for classifying two 

different agricultural scenarios using UAV multispectral VHR imagery. The choice of using 

different combinations of classification algorithms allowed to evaluate what factors could have a 

significant impact on the mapping accuracy.  

As regards segmentation, it is advisable to set the parameters with the aim obtain a lower scale, so 

having products more suitable for PA purposes, especially in the case in which herbaceous 

vegetation is present. 



99 

 

Regarding the classification algorithms used in this study, all the classifiers (KNN, SVM, RF, and 

NB) showed excellent performance. However, SVM resulted as the most stable classifier in terms 

of accuracy in study site 2, followed by NB in study site 1. The KNN gave the worst results in more 

cases. In fact, as also suggested by other studies (Ma et al., 2017), the use of KNN in GEOBIA 

applications should be reduced. The NB seems to be a good compromise for an easy and fast 

application of GEOBIA since it does not require the setting of parameters. Nevertheless, it produces 

satisfactory results. 

Considering the importance of PA for practical business uses, this work arises from the need to 

evaluate a quick, solid, and repeatable approach for agricultural mapping in very heterogeneous 

agricultural contexts. The presented workflow can be applied to a wide range of vegetation types 

by also impractical or newbies operators. A future objective can be to increase the precision of the 

method by implementing and optimizing more advanced techniques to improve the classification 

accuracy of weeds. 

 

 

 

 

 

 

 

 

 

 

  



100 

 

5 Thermal UAV Remote Sensing in precision agriculture  

Adapted from  

Applications of UAV thermal imagery in precision agriculture: State of the art and 

future research outlook. Remote Sens. 2020, 12, doi:10.3390/RS12091491. 
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In PA the thermal RS proved to be a very promising tool (Khanal et al., 2017). In recent years, taking 

into account improvements in sensor technology and cost reductions, thermal sensors have become 

more popular. Specifically, thermal sensors' measurement of surface temperature has proved to be 

a rapid response variable useful in monitoring plant growth and stress (Anderson et al., 2013; 

Khanal et al., 2017). Indeed, the temperature is a fundamental environmental variable that plays 

an essential role in plant physiological processes, such as transpiration, leaf water potential, and 

photosynthesis (Vasit Sagan et al., 2019). 

The potentialities of the application of thermal UAV RS relate to mapping and monitoring issues 

such as yield estimation, plant phenotyping (Costa et al., 2013; Ludovisi et al., 2017) but also and 

above all to plant water stress detection (Gago et al., 2015; Radoglou-Grammatikis et al., 2020) and 

plant disease detection (Calderón et al., 2013). Focusing on the latter two applications by 

monitoring, using sensors mounted on UAVs, the state of health of the plants, identifying, if 

present, stress on the crops before they are irreparably damaged, could be a crucial goal. 

In water stress monitoring, thermal images show a correlation between minor variations in water 

stress that cannot be detected, for example, by the NDVI (Baluja et al., 2012). In this respect, 

temperature-based indices represent a quick and practical way to evaluate and estimate crop water 

status, indicating plants’ water content (Pádua et al., 2019). The crop water stress index (CWSI) 

(Idso et al., 1981) is the most widely used among the temperature-based indexes. CWSI has often 

been used to monitor the water status of plants and, consequently, for irrigation management 

(Alderfasi and Nielsen, 2001). The water stress indices have been applied to different tree and 

herbaceous species, including olives (Berni et al., 2009a), grapevines (Bellvert et al., 2014), sugar-

beet (Quebrajo et al., 2018), maize (Romano et al., 2011), rice (Liu et al., 2018), and wheat and cotton 

(Sullivan et al., 2007). 

The correct interpretation and use of a thermal image cannot be separated from a knowledge of the 

basic principles of thermal radiation's nature (Lillesand et al., 2015). Thermal images' quality can 

be influenced by several factors, such as the characteristics of the thermal camera, meteorological 

conditions, and several sources of emitted and reflected thermal radiation (Khanal et al., 2017). 

Therefore, the aspects related to calibration, ground data collection, the step in which the use of 

reference panels and the measurement of their temperature are recommended (Gómez-Candón et 

al., 2016), and data processing must be carried out carefully in order to obtain correct temperature 

data.  
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This chapter is partly devoted to the description of state of the art in PA applications. Particular 

attention has been devoted to various topics, based above all on the experience in the field and in 

the laboratory gained by the candidate during the Ph.D. course: description of the characteristics 

and functioning of thermal cameras; calibration; data collection and data processing. Finally, a case 

study was presented about the potentiality of coupling multispectral and thermal imagery 

acquired by UAVs in monitoring onion crops. 

5.1 Thermal cameras types, structure and Unmanned Aerial Vehicles  

Thermal cameras are equipped with a sensor that detects the infrared radiation emitted by a body, 

displaying its temperature in a digital radiometric image. Two types of thermal cameras are 

available: scanning devices that allow capturing a point or a line and those with a two-dimensional 

infrared focal plane array. The second type allows capturing all the elements of an image at once 

and is faster if combined with a better image resolution (Kaplan, 2009). It is the most commonly 

used (Gade and Moeslund, 2014). A further distinction concerns thermal and photon (or quantum) 

detectors. The latter works by converting directly absorbed EM into a variation in the distribution 

of electric energy in a semiconductor by changing the concentration of free charge carriers (Gade 

and Moeslund, 2014) and needs a cooling system. This is generally made using helium or liquid 

nitrogen at a temperature of –196 °C (Jensen, 2014). The cryocooler is used to lower the sensor's 

temperature, thus reducing the thermally induced noise to a lower level than the signal deriving 

from the image (FLIR, 2011). The higher the cooling system's efficiency, the more accurate the 

instrument's measurements, which makes the cooled thermal cameras more precise (Mesas-

Carrascosa et al., 2018). The highest precision and accuracy allow detecting the slightest 

temperature differences in the image. The cooled thermal cameras usually work in the mid-

wavelength infrared (MWIR) region (3–8 μm) in which the thermal contrast is high (Gade and 

Moeslund, 2014). An object/target's thermal radiation is easily detectable once it has been 

distinguished (upper or lower) from the background (FLIR, 2011). Unfortunately, the cooled 

sensors are large, expensive, higher energy consumption, and their higher weight is not suitable 

for UAVs (Jensen et al., 2014). Thermal detectors are less sensitive (±0.1 °C) and are slower than 

quantum detectors but have the advantage of not requiring cooling systems (Luhmann et al., 2013). 

Several types of uncooled detectors are currently available, and all of them are made of different 

and unconventional materials: the three most common types are composed of vanadium oxide 

(VOx), amorphous silicon (α-Si) microbolometers, and ferroelectrics (Sizov, 2015). The operating 
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principle of thermal detectors is the conversion of absorbed EM radiation into thermal energy 

(Hyseni et al., 2010). Ferroelectric detectors work based on the ferroelectric phase transition, which 

can be detected in some dielectric materials. The microbolometer is a resistor organized in arrays—

called focal plane arrays, made up of VOx and α -Si—which is composed of a thermometer, 

integrated on a micro-bridge, and an adsorber. Temperature increases, caused by absorption of IR 

radiation, determine large fluctuations of its electrical resistance, which can be converted into 

electrical signals and processed to generate an image (Bhan et al., 2009; Bieszczad and Kastek, 2011; 

Fièque et al., 2007; FLIR, 2015; Gade and Moeslund, 2014), whose geometric resolution depends on 

the number of detectors. The low values of temperature differences equivalent to noise in uncooled 

thermal sensors, which reach 20 m°C, allows them to be used in applications where previously 

only cooled thermal sensors could be used (Mesas-Carrascosa et al., 2018). As a result of micro and 

nanotechnology's rapid development, microbolometers have become cheaper and more efficient 

(Budzier and Gerlach, 2015). The lenses reflect visible radiation and are made of germanium - a 

shiny semi-metal chosen for its transparency (Gade and Moeslund, 2014). Several parameters 

characterize a thermal camera. Among these, there is the temperature range measured, generally 

between –20 and +120 °C, and the thermal sensitivity, which determines the minimum value of 

temperature difference (ΔT) detectable in an image and usually ranges from 40 to 20 m°C for 

uncooled and cooled devices, respectively (Gade and Moeslund, 2014). Concerning the geometric 

resolution, currently, it is still very low compared to RGB cameras (to date, higher image 

resolutions range from 320 × 240 to 640 × 512 pixels). The spectral resolution generally ranges from 

7 to 14 μm (Gago et al., 2015).  

Regarding the price of thermal cameras, their cost can vary from € 1,000 to more than € 10,000, 

depending on both the sensor resolution and radiometric calibration accuracy (Kelly et al., 2019; 

Manfreda et al., 2018). 

Cooled thermal infrared cameras are widely used in satellite and aerial RS, due to their thermal 

sensitivity and accuracy (Sheng et al., 2010); moreover, these sensors are larger and more 

expensive, even in energy consumption, than uncooled ones (Ribeiro-Gomes et al., 2017). Instead, 

uncooled thermal cameras can generally be mounted on UAVs (Figure 5.1a,b,c) because they are 

smaller, lighter, and lower consuming (Gallo et al., 1993). 
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Figure 5.1 DJI Phantom 4 Pro (a), (b) DJI Inspire 1, both equipped with a FLIR Vue Pro R 640  

uncooled thermal camera (c) (sources (Messina and Modica, 2020b) and flir.it). 

The limited payload and the limited battery life, which influence the duration of the flight, are 

maybe the main limits of UAVs, For example, in cases where large areas need to be covered  several 

flights are required, and is not at all improbable that 45 minutes or more elapse between the first 

and the final image of the dataset (Maes et al., 2017).  

Payload integration considerably changes between cooled and uncooled thermal cameras, where 

different ventilation modes are a key factor in image quality; thus, generally, an uncooled 

microbolometer is preferred for its weight benefits (Stark et al., 2014). 

5.2 Camera calibration and data collection  

Low-cost thermal cameras generally are not radiometrically calibrated and can only provide 

information about relative temperature differences (Kelly et al., 2019). The data provided by these 

instruments are represented in the form of raw digital numbers (DNs) expressing radiance. Using 

radiometrically calibrated UAV cameras, it is not easy to derive accurate and precise surface 

temperature measurements, due to their low accuracy affected by the presence of uncooled 
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microbolometers (Kelly et al., 2019). The sensitivity, and therefore the accuracy of a 

microbolometer, is influenced both by the temperature of the focal plane array (Olbrycht et al., 

2012) and by the temperature of the other components of the thermal camera, among which the 

body and lenses, and is higher in the presence of a weak signal-to-noise ratio. (Budzier and Gerlach, 

2015).  

In addition to this, several other causes make it necessary to calibrate a thermal camera, as shown 

in Budzier and Gerlach (2015) and Ribeiro-Gomes et al. (2017). The atmosphere affects the quality 

of the thermal image as it absorbs and emits IR. In the case of UAVs, piloted at low altitudes, 

atmospheric effects can be considered negligible compared to aerial or satellite measurements 

(Kuenzer et al., 2013).  

The effects of relative humidity, air density, and altitude can be avoided only by taking 

measurements within about 10 m or less of the object/target’s surface (FLIR, 2012); obviously, 

under different conditions, these effects must be taken into account. Since meteorological 

conditions can have an indirect effect on the temperature measurements of uncooled thermal 

cameras (Maes et al., 2017), in order to reduce these effects, it is advisable to follow some 

recommendations during field surveys; the critical factors for data acquisition are the time of day, 

weather and the knowledge of the surrounding environment (Stark et al., 2014). Considering the 

applications in PA, midday has been generally identified as the best time for flying in terms of 

thermal accuracy (Alchanatis et al., 2010) and reduction of background effects (Sepulcre-Cantó et 

al., 2006).  

Regarding the weather, UAV thermal surveys should always be done in the absence of clouds, 

dust, smoke, rain, snow, or any other darkening agents because all of these reduce atmospheric 

transition and also change the temperature of the background (FLIR, 2012). It would be useful if 

before the flight, after switching on, the camera sensor's temperature-stabilized for a time ranging 

from 20 minutes (Gómez-Candón et al., 2016) up to 1 hour (Berni et al., 2009b). Besides, it would 

also be advisable to perform a test flight to allow the thermal camera to acclimatize to local weather 

conditions, as well as to wrap the thermal camera in a casing (to reduce the effects of air 

temperature on the sensor) when mounted on a quadcopter UAV (Kelly et al., 2018).  

Field temperature calibration is also a key aspect. The presumed coldest and hottest temperature 

and objects within the area of image acquisition should be measured for ground truth calibration 

(Kuenzer et al., 2013). Field calibration should be performed using the temperature measurements 

of target surfaces taken during the flight (Bellvert et al., 2014; Dupin et al., 2011). The temperature 
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of the targets placed in the study area could be measured using thermocouples (Maes et al., 2017) 

or infrared thermo-radiometers (Gómez-Candón et al., 2016), perhaps combined with data-loggers 

capable of recording the temperature throughout the flight. The temperature reference targets can 

be made using black and white polypropylene panels, representing the thermal extremes of the 

study site, and whose size is such as representing homogeneous pixels in the thermal image 

(Gómez-Candón et al., 2016).  

In this experience, as is the case in Messina et al.’s (2019) work, dry and wet reference surfaces were 

used during the thermal UAV survey by taking images of them before and after every flight, as 

indicated by Maes (2017). Reference surfaces were placed close to UAV take-off and landing points, 

and their temperature was measured through a handheld infrared thermometer (FLIR E6) (Figure 

5.4b).  

In particular, the temperature was measured at three moments of the flight: at take-off, during, and 

end of each flight. Four reference surfaces were used: three dry panels (each entirely colored in 

black, grey, and white) and one made delimiting a square piece of the ground using circular targets 

covered with aluminum (Figure 5.2). 

Portions of dry and wet soil can also represent suitable targets, as described in the next paragraph. 

In addition to these, as in the case of multispectral surveys, there are ground control points 

(GCP)s— i.e., points marked on the ground which have a known geographical position. The use of 

GCPs is important as it improves the positioning and accuracy of the mapping outputs.  

To render GCPs more visible in thermal images, they should have a low emissivity compared to 

the nearby vegetation and other objects (Boesch, 2017).  
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Figure 5.2 The temperature reference targets used during thermal unmanned aerial vehicle 

(UAV) surveys carried out in an onion crop field in Calabria (Italy) (source, Messina and 

Modica, 2020b). 

In the case of thermal surveys, GCPs are made of aluminum, exploiting the low emissivity, which 

makes it appear as a cold object in the thermal images (Park et al., 2017) (Figure 5.3b). Our proposed 

GCPs were made using 50 cm × 50 cm white polypropylene panels and covering two quadrants 

using aluminum sheets, as shown in Figure 5.3a. Black cardboard was used to partially cover the 

two quadrants to locate the point and make the GCP clearly visible and usable in multispectral 

surveys (Figure 5.3c). Figure 5.3 shows the detectability of the proposed target in thermal and 

multispectral images. 
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Figure 5.3 Photo of the homemade target for ground control points (GCPs) designed to be 

easily detected in both thermal and multispectral UAV surveys. (a). The GCP target (white 

dashed circle) as it appears in thermal (b) and in near-infrared (NIR) multispectral images (c) 

(source, Messina and Modica, 2020b). 

A further effect of the weather conditions to be considered is that of attenuating the thermal 

radiance by the atmosphere (Maes et al., 2017). The sensor registers, for every pixel, an at-sensor 

radiance (Lat-sensor), expressed in Wm−2, and determined by the following formula (Equation 5.1) (W. 

H. Maes et al., 2011): 

Lat-sensor = τ Lsurf + Latm (5.1) 

In Equation (5,1), τ is the atmospheric transmittance, while Latm, measured in Wm−2, represents the 

upwelling thermal radiation, created as a result of particles in the atmosphere, both depending on 
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the distance of the sensor from the object and the water content in the atmosphere (Maes et al., 

2017). Parameters τ and Latm can be derived by exploiting one of the theoretical atmospheric 

models, such as MODTRAN (Berk et al., 1999), which are generally and widely used for thermal 

data acquired from satellites (Khanal et al., 2017). MODTRAN allows the estimation of atmospheric 

emission, thermal scattering, and solar scattering by incorporating the effects of molecular 

absorbers and scatterers, aerosols and clouds, taking into account the wavelengths from the 

ultraviolet region to the far-infrared (Campbell e Wynne, 2017).  

An example of MODTRAN application in on UAV data is described by Berni et al., (2009b), which 

shows that it allows obtaining the surface temperature by applying atmospheric correction 

methods based on entering the model as input data, i.e., data related to local atmospheric 

conditions. In the application on UAV data using this model, it is important to use local 

measurements of temperature, relative humidity, and atmospheric pressure acquired from a 

nearby meteorological station (Fig. 5.4a) placed in the field (Chen, 2015; FLIR, 2011; Gade and 

Moeslund, 2014; Kaplan, 2009; López et al., 2012). 

 

Figure 5.4 (a) The weather station used during the thermal surveys carried on an onion field 

and (b) the handheld infrared thermometer (model FLIR E6) used to measure the temperature 

of reference surfaces (source, Messina and Modica, 2020b). 
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5.3 Data processing 

Several steps are required to acquire geo-referenced UAV images, starting with flight planning 

which generates a navigation file necessary to guide the UAV into automatic image capture with 

the required overlaps and geometric resolution. Thermal imagery can be processed with structure-

from-motion (SfM) algorithm, which, however, does not always work correctly (Maes et al., 2017), 

as reported in (Hoffmann et al., 2016; Pech et al., 2013). SfM can be unable to align properly thermal 

imagery, making it necessary to mosaic each separate image and geo-reference them manually 

using GCPs. These issues are due to the reduced information contained in the thermal image, 

which complicates the identification of the common features needed for bundle adjustment (Maes 

et al., 2017). Compared to other imagery types such as RGB, thermal imagery has lower geometric 

resolution and contrast and is characterized by a stronger optical distortion (Boesch, 2017). 

Increasing vertical and horizontal overlaps could help and the presence of an incorporated 

multispectral (or RGB) camera, characterized by a higher geometric resolution, which could also 

help the alignment of the images in the photogrammetric process. In Turner et al.’s  (2014) research, 

a framework to process thermal imagery is shown. In detail, firstly, image pre-processing provided 

the removal of blurry imagery and then the subsequent conversion of images to a 16-bit file format. 

So, all images have the same dynamic scale, and a specific temperature value corresponds to the 

same digital number (DN) in all images. Secondly, image alignment was executed using GPS log 

files and the imagery’s time stamps. As a final step, the spatial image was co-registered to RGB 

images. Several improvements of this framework were provided in Maes et al., (2017) to optimize 

the alignment and processing of thermal images by exploiting the increased information contained 

in the RGB data. Recent UAV models have been supplied with real-time kinematic global satellite 

navigation systems (RTK - GNSS) capable of achieving centimetric planimetric precision and high 

positioning accuracy. However, the placement of GCP within the surveyed site is generally 

expected and recommended. The images must be geometrically aligned (orthorectification), 

calibrated and corrected, considering the atmospheric effects before final orthomosaics are 

obtained (Khanal et al., 2017). 
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5.4 Thermal UAV imagery applications in precision agriculture  

5.4.1 Crop water stress monitoring 

Several detection systems have been developed for the production of special crops worldwide 

thanks to technological advances (Lee et al., 2010). The collection of accurate information 

concerning the spatial variability of fields is important in this context. Several factors affected the 

field's variability, including crop yield and water content, and sensors that can be used to detect 

these factors include thermal cameras. 

Plant water stress is one of the main critical factors of abiotic stress because it limits the growth of 

crops (Gautam and Pagay, 2020; Gerhards et al., 2016). Therefore, among the applications of 

thermal UAV RS in agriculture, the identification of water stress from plant temperature data is of 

great importance, with irrigation resource management being a key issue for PA. The use of UAVs 

in the detection of plant water status requires measurements of stem water potential (ψs) and 

stomatal conductance (gs). These water stress indicators are the most commonly used to determine 

crop water status (Ballester et al., 2017; Baluja et al., 2012; Turner et al., 2014; Zarco-Tejada et al., 

2013). ψs and gs can be measured in the field using a pressure chamber and porometers, 

respectively, although the interpolation of such local observations is not easy.  

The use of thermal images permits detecting a plant’s water stress conditions. At the foliar level, 

stomata closure reduces transpiration and evaporative cooling, which results in an increased 

temperature of the leaves (Gerhards et al., 2019; Hsiao, 1973). Thermal cameras can detect this 

increased temperature; so thermal images can provide spatially continuous information regarding 

the plants’ water status in a broader area than that obtained by local measurements (Jackson et al., 

1981; Lapidot et al., 2019). The temperature of the plant is regulated by the water supply and the 

micrometeorological conditions (Gerhards et al., 2018). In this regard, considering the climatic 

factors, atmospheric humidity plays a crucial role, and in environments with humid climates, 

cloudiness also becomes a critical factor (Jones, 2018). Several indices were developed in the past 

decades to compensate for the variation determined by these conditions (Gerhards et al., 2018). 

The CWSI was developed for that purpose. Jackson and colleagues conceived the CWSI while 

using portable IR thermometers on herbaceous crops (Cohen et al., 2005; Jackson et al., 1981), 

formulating a normalized index to overcome environmental effects that may affect the relationship 

between plant temperature and water stress. CWSI can assume values ranging between 0 and 1 
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and results in being directly proportional to the water stress level of many species of interest. The 

CWSI is based on the normalization of the canopy–air temperature difference with evaporative 

demand through the vapor pressure deficit (VPD) of the air (Calderón et al., 2013). CWSI’s formula 

is as follows, according to the methodology proposed by Idso et al. (1981) (Equation 5.2): 

𝐶𝑊𝑆𝐼 =
(T𝐶 − T𝑎) − (T𝐶 − T𝑎)LL

(T𝐶 − T𝑎)UL − (T𝐶 − T𝑎)LL
 (5.2) 

where Tc – Ta represents the canopy–air temperature difference, while LL refers to the Tc – Ta values 

for the lower limit and UL for the upper limit. The normalization related to the VPD considers the 

Tc – Ta difference of a canopy under two boundary conditions: (a) a lower limit when it transpires 

at its potential rate (i.e., under well-watered conditions), and (b) an upper limit under no 

transpiration. The lower limit is described by linear regression between Tc – Ta and the VPD, which 

is known as the non-water-stressed baseline (NWSB). The NWSB is derived empirically by 

measuring the leaf–air temperature difference for a well-watered crop in the experimental 

environment and provides the lowest temperature difference likely in that environment. Once the 

NWSB, (Tc - Ta)LL can be calculated by solving the baseline equation for the current VPD. The 

upper limit (Tc - Ta)UL, which is a constant, is obtained by solving the same NWSB equation for a 

hypothetical slightly negative VPD. It represents the vapor pressure difference generated by the 

temperature differential (Tc - Ta) when VPD is 0 (Idso et al., 1981). The upper limit value is close 

to the NWSB interception a (depending on temperature) and corresponds to a only when a is equal 

to 0 (Testi et al., 2008). This proposed method is site-dependent. Another approach for obtaining 

the upper and lower limits of (Tc - Ta) is theoretical and foresees the combination of energy balance 

and diffusion equations. This second method requires knowledge of difficult to obtain variables 

such as net radiation and aerodynamic resistance (Berni et al., 2009a; Testi et al., 2008). A third 

approach, defined statistical, was used with good results (Alchanatis et al., 2010; Baluja et al., 2012; 

Gonzalez-Dugo et al., 2013; Rud et al., 2014). Briefly, it foresees the use of the average temperature 

of the coolest 5–10% of the canopy pixels as the wet reference to calculate the lower limit (Cohen 

et al., 2017). 

Another method proposed to obtain the two limits foresees the use of direct measurements over 

wet or dry reference surfaces, natural or artificial. The reference dry targets, as suggested by Jones 

(Jones, 1999; Maes and Steppe, 2012), can be achieved, impeding leaf transpiration, by covering the 

leaf surface (on one or both sides) with petroleum jelly. The upper limit reference temperature 

results from the measurement of the leaf temperature carried out about 30 minutes after the 
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application of the gelatin layer. The wet targets can be obtained by spraying a thin layer of water 

on one or both leaf sides before taking the thermal image. This is valid on a single plant scale (Maes 

and Steppe, 2012). The advantage of this method is that stress levels are normalized to the actual 

response of the plants, but the need to repeat the measurement for each test site after each flight of 

the UAV can be an obstacle to its applicability. Another problem concerns the difficulty of 

identifying the leaves covered by petroleum jelly (Jones et al., 2009; W.H. Maes et al., 2011). Maes 

(2016) proposed an example of a wet artificial target made using a cloth and a steel wireframe. The 

target thus made, with an appearance, shape and size similar to grapevines and kiwi leaves, was 

kept wet for days simply by keeping the lower part of the cloth immersed inside a bottle filled with 

water. Artificial targets were also used in Agam et al. (2013). This study provides an approach in 

which the reference temperature of the upper limit is set at 5 °C above the air temperature while 

that of the lower limit is derived from the artificial target's temperature. Berni et al. (2009a) 

proposed an approach to monitor relatively large areas using UAVs to detect water stress; in 

particular, the work focused on the control of water stress in an olive grove, is based on the use of 

physical models for the estimation of input variables of energy balance equations, without 

requiring use of reference surfaces.  

Two problems prevented the widespread use of the CWSI: the first regards its use under changing 

atmospheric conditions, while the second concerns the problem of “mixed-pixel value”. The latter 

occurs when using lower resolution data from satellites or aircrafts platforms (compared to UAVs). 

Part of the temperature of the pixel derives from the background soil and not from the temperature 

of the pure canopy (Jones and Sirault, 2014). These effects reduce the quality of the data.  

Regarding the first aspect, CWSI was found to work better in conditions of dry climate while it 

were demonstrated important limitations in wet climates and in environments characterized by a 

substantial climatic variability (Hipps et al., 1985). It is important to consider that the absolute in 

leaf-air temperature difference decreases as the atmospheric humidity deficit decreases and this 

also applies for sensitivity to any measurements made. Furthermore, while taking the latter aspect 

into account in calculating the CWSI, as the humidity (and temperature) deficit decreases, the 

signal-to-noise ratio is reduced (Jones and Vaughan, 2010). Furthermore, it must be considered that 

the canopy temperature depends in part on variations in the roughness of the canopy and also on 

wind speed and net radiation, which are subject to greater variability in humid climates (Jones, 

2018). 
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As far as the problem of “mixed-pixel value” is concerned, being the resolution of satellite images 

limited, the sensors mounted on UAVs, thanks to their sub-meter spatial resolution, allows to 

recover the pure canopy temperature minimizing the thermal effects of the background soil (Berni 

et al., 2009b; Herwitz et al., 2004; Sugiura et al., 2005). Various approaches can be adopted as shown 

in Jones and Sirault (2014). One possible approach to extracting the temperatures of canopies' sunlit 

leaves is to distinguish between canopy pixels and background pixels based on an analysis of the 

temperature distribution among the pixel population and then segment the image into two distinct 

classes. This approach represents a good solution in case there is a clear difference between the 

average temperature of the canopy and that of the soil/background. A valid approach also includes 

the use of additional information derived from RGB, multispectral and hyperspectral images 

(when several sensors are used simultaneously), in order to identify plant’s pixels (Jones and 

Sirault, 2014). In this case, the use of vegetation indices, such as NDVI, to separate plant pixels and 

soil pixels can be useful. 

In addition to CWSI other normalized thermal indices were developed between the 1970s and 

1980s.  For example, there are the conductance index (IG) and the stomatal conductance index (I3), 

whose formulas (Equations 5.3 and 5.4) are the following: 

𝐼𝐺 =
T𝑑𝑟𝑦 − T𝐶

T𝐶 − T𝑤𝑒𝑡
 (5.3) 

𝐼3 =
T𝐶 − T𝑤𝑒𝑡

T𝑑𝑟𝑦 − T𝐶
 (5.4) 

 

where Tc is the surface temperature of the canopy, while Tdry and Twet are entirely dry or wet 

reference surfaces to simulate leaf temperature under conditions of minimum and maximum 

transpiration.  

These two indices' main characteristics are that IG increases with stomatal conductance and I3 is 

positively correlated with stomatal resistance (Maes et al., 2011; Maes and Steppe, 2012). The 

indices CWSI, IG, and I3 need the knowledge of canopy temperature under both wet and dry 

conditions but, as the concept of the CWSI is best known, it remains the most widely used (Maes 

and Steppe, 2012).  

Research carried out thus far has concerned the monitoring of water stress in both herbaceous and 

tree crops. In Sullivan et al.’s (2007) and Bian et al.’s (2019) research, thermal UAVs were exploited, 

respectively, to monitor Gossypium hirsutum L. crop residue management and the response to 
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different irrigation treatments, calculating the CWSI. Martinez et al. (2017) studied the monitoring 

of sugar beet’s water stress by comparing thermal data, obtained using a conventional thermal 

camera, with data obtained using a low-cost infrared sensor.  

Zhang et al. (2019) monitored maize water stress at the farm scale using RGB and thermal UAV 

sensors. The work of Crusiol et al. (2020) concerns the evaluation of the water status of soybean 

plants under different water conditions. Other research (Raeva et al., 2019; Sagan et al., 2019) dealt 

with the monitoring of herbaceous crops using different sensors (RGB, multispectral, and thermal) 

with the objective to produce orthomosaics and vigor maps. 

The CWSI is widely used for perennial crops. Bellvert et al. (2016) calculated the CWSI in peach 

trees (Prunus Persica), mapping the orchard's internal spatial variability using thermal UAV and 

verifying the relationships between this index and the leaf water potential in different growing 

seasons. Gonzalez-Dugo et al. (2013) investigated the spatial variations in the water status of five 

different fruit tree species: almond (Prunus dulcis), apricot (Prunus armeniaca), peach (Prunus 

persica), lemon (Citrus x limon), and orange (Citrus sinensis). In this regard, it is important to 

remember that stomatal response to environmental conditions can differ between species (Ballester 

et al., 2013). For example, olive and citrus show relevant stomatal closure at midday (Gonzalez-

Dugo et al., 2013; Testi et al., 2008), while in other species, such as almond trees, the stomatal 

behavior varies between the different cultivars (Gonzalez-Dugo et al., 2012).  

Some studies concerned the application of thermal UAV RS on citrus orchards (orange, Citrus 

sinensis, and mandarin, Citrus reticulata) with the aim to extract the temperature of the crowns for 

water stress detection (Gonzalez-Dugo et al., 2014; Zarco-Tejada et al., 2012). Research was carried 

out on olive crops, a species of great importance socio-economic in the countries of the 

Mediterranean basin (Solano et al., 2019), to verify the plant's behavior in response to various 

irrigation treatments. Poblete-Echeverría et al. (2016) showed that the temperature difference 

between the canopy (Tc) and air (Ta) is correlated to the difference in water potential under different 

irrigation treatments when the plants are in water stress conditions. Berni et al. (2009a) used very 

high-resolution UAV thermal imagery to calculate and map the tree canopy conductance and the 

CWSI in a heterogeneous olive orchard. Egea et al. (2017) proved the usefulness of the CWSI for 

monitoring water stress in a dense olive orchard by verifying good relationships between the CWSI 

and water stress indicators: stomatal conductance, stem water potential, and leaf transpiration rate. 

Ortega-Farías et al. (2016), using thermal and multispectral cameras (mounted on UAV), estimated 
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the energy balance components on a drip irrigation in an olive orchard, using high-resolution 

images to evaluate intra-field spatial variability.  

Several works have exploited thermal UAVs to calculate the CWSI in vineyards, such as that of 

Zarco-Tejada et al. (2013). In Baluja et al.’s (2012) work concerns the determination of the 

relationships between the temperatures or indices derived from thermal and multispectral imagery 

and stomatal conductance and water potential. In this case, air and leaf temperatures were 

recorded with a handheld thermometer, stomatal conductance was measured with a leaf gas 

exchange system, and stem water potential was measured using a Scholander pressure bomb; in 

addition, CWSI, IG, and I3 were calculated. Likewise, the work by Bellvert et al. (2014) related the 

CWSI with leaf water potential while that by Santesteban et al. (2017) related the CWSI with stem 

water potential and seasonal leaf stomatal conductance to estimate the variability of plant water 

status in a vineyard. Matese et al. (2018) and Pàdua et al. (2020, 2019) used different sensors (RGB, 

multispectral, and thermal) for several applications in precision viticulture: production of vigor 

maps, multi-temporal analysis of vigor maps, and water stress detection. Gómez-Candón et al. 

(2016), proposed a methodology for obtaining thermal orthomosaics, tested in an apple orchard, 

including a method for radiometric correction of UAV thermal images. 

5.4.2 Plant disease detection, phenotyping, yield estimation, and vegetation status 

monitoring 

An important and interesting example of application in the context of plant pathology of thermal 

UAV RS is shown by Calderón et al. (2013). In this research, the authors aimed to evaluate the use 

of thermal imagery and physiological indices derived from other types of sensors to detect the 

presence of infection caused by the soil-borne fungus Verticillium dahliae. The role of thermal RS in 

the diagnosis of the pathology causing desiccation is due to the water stress of plants, caused by 

the fungus Verticillium, or by the stomatal closure, which causes the reduction of the transpiration 

rate. The reduction of evaporative cooling determines an increase in leaf temperature. Thanks to 

field measurements, it was proved that the crown’s temperature variations are higher and stomatal 

conductance lower as the severity level of the disease increased. Besides, crown temperature and 

the CWSI index were shown to be among the best indicators to detect Verticillium dahliae at the 

early stages of disease development. 

Regarding the issue of yield estimation and related aspects, thermal UAV RS was exploited in 

research concerning cotton, soybean, and rice crops (Feng et al., 2020; Liu et al., 2018; Maimaitijiang 
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et al., 2020). Feng et al. (2020), for example, exploits three types of sensors (RGB, multispectral, and 

thermal) to analyze several features in order to see which one had the best performance for the 

yield prediction and at which stages of the crop cycle: four vegetation indices, canopy cover, plant 

height, temperature, and a cotton fiber index. The research of Maimaitijiang et al.  (2017) concerned 

soybean and, in particular, testing the potentialities of using different sensors (including the 

thermal camera) in the context of multimodal data fusion and deep neural network. The objective 

was deriving useful information for a yield prediction model. Liu et al. (2018) investigated rice 

lodging using RGB and thermal sensor UAV images. The research aimed to measure the daily 

temperature differences between lodged and non-lodged rice crops and to detect the optimal time 

window. Regarding this last aspect, being differences in temperature between 10 a.m. and 4 p.m. 

were significant, the thermal camera allowed to identify lodged rice plants. 

Several works have focused on monitoring vineyards and related landscape elements such as 

agricultural terraces (Filippo et al., 2017; Parisi et al., 2019; Sangha et al., 2020; Tucci et al., 2019). 

For example, Tucci et al. (Parisi et al., 2019; Tucci et al., 2019) used RGB and thermal cameras to 

investigate the thermal dynamics of a vineyard grown on the dry-stone wall terraced land. The 

dry-stone terraces are part of the UNESCO’s Representative List of the Intangible Cultural Heritage 

of Humanity, and are typical and iconic characterizing features of the agricultural landscapes 

across Europe, including Italy (Modica et al., 2017). However, their importance for the landscape 

agricultural terraces are threatened by the risk of abandonment and degradation. This may result 

in the increase of hazards linked to geo-hydrological processes triggered by rainfall events. In this 

context, the use of thermal and RGB sensors mounted on UAVs represents an efficient and cost-

effective monitoring approach, also considering the high resolution of the images and the reduced 

time for their acquisition. Tucci et al. (2019) verified the effectiveness of the used sensors in 

monitoring the terraced crops. They investigated the influence that dry-stone walls can have on 

the vineyard's microclimate and, consequently, on the quality of the obtained grapes. The results 

of this study showed differences in temperature between the plants of the external rows (higher 

temperatures) and internal rows (lower temperatures). 

Phenotyping has a crucial role in crop science research. The acquisition of crop phenotypic 

information in different environments allows the association of genomic and phenotypic 

information crucial to increase yield (G. Yang et al., 2017). In this field of study, recently, the 

importance of the use of UAVs has increased as monitoring with this platform provides a rapid 

and non-destructive approach to phenotyping, allowing the use of high spatial resolution images 
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(Neely et al., 2016; G. Yang et al., 2017). The monitoring with UAVs has made it possible to 

overcome several limits linked to the use of traditional methods, such as the difficulty in carrying 

out simultaneous measurements on different plots (Sankaran et al., 2015). In this framework, some 

research was carried out involving thermal UAV RS, thus showing its effectiveness, as in Vasit 

Sagan et al. (2019). Natarajan et al. (2019) used different sensors (visible, multispectral, and 

thermal) for the phenotyping of indirect traits (including canopy temperature) for early-stage 

selection in sugarcane breeding. Gracia-Romero et al.‘s (2019) work focused on the comparison of 

the performance of RGB, multispectral, and thermal data, derived from UAV and ground-based, 

with the objective to assess genotypic differences in durum wheat’s yield under different growing 

conditions. The measurement of the canopies’ temperature was showed an alternative valid to that 

of leaf stomatal conductance. Perich et al. (2020) exploited thermal UAV RS to measure canopy 

temperature in wheat. In this crop, canopy temperature has a strong association with water status 

and stomatal conductance (Amani et al., 1996; Berliner et al., 1984; Blum et al., 1989); specifically, 

it was demonstrated that the low temperature of the cap could have been associated with a 30% 

increase in yield, as well as an increase in water absorption by the deeper roots when measured 

during the grain filling phase (Lopes and Reynolds, 2010). Maimaitijiang et al.‘s (2017) work, 

performed on soybean, proved that the fusion of thermal and multispectral data could provide the 

best estimate of crops' biochemical traits, as chlorophyll content and N concentration, and 

biophysics, as LAI, fresh and dry biomass. 

Another field of application in which thermal UAV RS has proven to be very promising, as the 

less-expensive way, is the mapping of drainage systems. Subsurface tile drainage is of great 

importance in the Midwest of the United States (Pavelis, 1987). Subsoil drainage permits 

groundwater level to be lowered by removing excess water and reducing soil erosion, increasing 

the aeration (Fausey, 2005; Lal and Taylor, 1970) and infiltration capacity of water derived from 

precipitation. Precise knowledge of the arrangement of drainage nets, as well as bringing benefits 

for their better functionality, is useful for soil and water conservation practices (Freeland et al., 

2019). Besides, other benefits include increases in soil productivity and the yield of the crops, the 

majority of which do not tolerate excess water (Cannell et al., 1979; Du et al., 2005; Freeland et al., 

2019). The usefulness of UAV mounted thermal sensors lies in this: being the soil directly above a 

drainage line, it results drier than the soil between the drainage lines (Allred et al., 2020) so 

differences in emissivity between dry and wet soil surfaces can be detected using a thermal camera 

(Mira et al., 2007). Indeed, as demonstrated in several studies, thermal cameras mounted on UAVs, 
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even in combination with visible and multispectral cameras, provided significant performance and 

potentialities for their use in mapping agricultural drainage pipe systems (Allred et al., 2020, 2018; 

Freeland et al., 2019; Williamson et al., 2019; Woo et al., 2019). 

5.5 Future Research Outlook  

The use of UAV thermal RS is not as widespread as that of optical and multispectral RS, and this 

is certainly due to the characteristics of thermal cameras and of data that are derived from them. 

With regard to the first aspect, an important limitation is the low geometric resolution of the 

thermal cameras when compared, for example, to RGB sensors. Another aspect concerns the data 

derived from the sensor, i.e., the temperature, which was shown to be fundamental in detecting 

water stress in plants, considering the natural mechanisms that regulate the temperature of plants. 

Excluding, maybe, this application, in which thermal sensors are protagonists and advantageous 

over other sensors, especially for the capacity to detect water stress connections in advance, other 

applications that have provided the exclusive use of thermal cameras are few, especially if we 

consider, above all, the field of plant pathology. The real potential of UAV applications can be 

exploited with the maximum profit in terms of utility, focusing on the feature that makes UAVs 

unique: that of being able to mount and use several sensors at the same time (Maes and Steppe, 

2019). In addition, the possibility of carrying out surveys with a submetric resolution of just a few 

centimeters using several sensors at the same time and with more affordable costs gives UAVs a 

further advantage over aerial platforms. For these reasons, thermal cameras used with RGB and 

multispectral sensors can increase UAVs' efficiency in PA and expand their possibilities in terms 

of use. For example, in plant pathology, in order to improve the ability to detect diseases or parasite 

attacks at an early stage, the use of different sensors, optical, multispectral and thermal, and the 

fusion/combination of their data should be considered (J. Zhang et al., 2019).  

New developments are expected in thermal RS. In particular, the current trend towards increased 

user-friendliness for all types of users is expected to continue in thermal sensors' technological 

development. It is also desirable to achieve a higher level of automation in aspects related to the 

field data acquisition phase (preparation of the optimal flight plan, configuration and calibration 

of the sensors before and during flight) and those related to the data processing phase (e.g. 

reduction of the time required for data processing). These steps forward are considered necessary 

to implement the use of thermal UAV RS in agriculture. Progress to be made in the data acquisition 
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phase on the ground also remains an essential step. Specifically for thermal RS, a simpler and more 

easy and immediate combination of the data that were collected by weather stations with data 

derived from UAVs would be useful, including a simpler and more immediate combination of data 

collected by meteorological stations with data derived from UAVs together with easier mitigation 

of atmospheric effects, complex interactions between soil and plants (Khanal et al., 2017). This is 

especially true in the case of thermal RS, whose raw data before the processing steps are far from 

offering true and accurate temperature measurements. In this regard, in order to obtain a final 

quality product, knowledge of thermography is essential (Maes and Steppe, 2019).  

Currently, the PA requires high-intensity procedures for the processing and use of the acquired 

images and therefore requires the presence of experienced and qualified personnel (Parisi et al., 

2019), which means higher costs for companies. In this way, the use of advanced technology, 

including the use of UAVs, has remained limited to farmers with large agricultural areas and 

greater economic resources (Tsouros et al., 2019). 

In the case of UAV thermal surveys whose operating costs per hectare are higher than those of 

multi-spectral surveys, this aspect is even more obvious (Borgogno Mondino and Gajetti, 2017). 
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5.6 A case study on monitoring onion crops using UAV multispectral 

and thermal imagery 

Adapted from 

Monitoring onion crops using UAV multispectral and thermal imagery 

Conf. AIIA Mid-Term 2019 Biosyst. Eng. Sustain. Agric. For. food Prod. Matera 2019. 
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5.6.1 Materials and methods 

The study was performed in an onion crop located in Campora S. Giovanni, in the municipality of 

Amantea (Cosenza, Italy). Since 2008, the onions here produced are labeled with the European 

Protected Geographical Indication label “Cipolla Rossa di Tropea IGP.” The producer farms are 

part of a consortium with a crop surface of 500 hectares. The study site has an area of 2 hectares 

(Figure 5.5). The UAV surveys were carried out three times, precisely two months after the 

transplant of onions (Figure 5.5, b and c), which took place in early September, carrying out the 

first flight on 23 November 2018 and the two other flights on 19 December 2018 and 18 January 

2019.  

 

 

Figure 5.5 (a) The localisation of the study site (Campora S. Giovanni, CS – Italy). (b-c) The 

onion field where the experiments were carried out (source, Messina et al., 2019). 

Multispectral (MS) surveys were performed at 50 m of flight height using the fixed-wing UAV 

Parrot Disco-Pro AG (Figure 5.6) equipped with a MS camera Sequoia Parrot (Figure 5.7a). The 
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Parrot Sequoia has four different channels, each with 1.2 Mpx of resolution: Green (530–570 nm), 

Red (640–680 nm), Red edge (730–740 nm) and Near-infrared (NIR) (770–810 nm). In addition, it is 

also equipped with an RGB composite sensor, and an external irradiance sensor with GPS and IMU 

placed on top of the UAV. The irradiance sensor captures sensor angle, sun angle, location, and 

irradiance for every image taken during the flight.  

Thermal surveys were performed by means of quadcopter DJI Phantom 4 (Shenzhen, China) 

(Figure 5.6), equipped with a thermal camera FLIR Vue Pro R 640 (Figure 5.7b) (FLIR Systems, Inc., 

Wilsonville, Oregon, USA). This thermal camera captures temperature with a spectral range of 7.5–

13.5 µm with a resolution of 640×512 pixels and a +/- 5◦C thermal accuracy. The model used in these 

experiments was equipped with a 9 mm focal lens, providing a field of view (FOV) of 69°(H) × 56° 

(V). The thermal camera was set using a FLIR Vue Pro APP (Figure 5.8), which is the primary 

control interface available. The JPEG format selected has both the compressed 8-bit processed JPG 

image and 14-bit raw sensor data, which provide data about Scene, Palette, and Telemetry. 

Concerning radiometry settings, the humidity was set on medium value (45%), air temperature at 

25°C and emissivity on 98%. The UAV equipped with a thermal camera was used two times during 

the day on 23 November between 12:28 and 12:50 (local time). The flight height was 40 m, and the 

interval timer shooting was 2 s. 

  

Figure 5.6  The quadcopter DJI Phantom 4 equipped with the thermal camera FLIR Vue Pro R 

640 (on the left) and the fixed-wing Parrot Disco-Pro AG equipped with the multispectral 

camera Parrot Sequoia (on the right) (source, Messina et al., 2019). 
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Figure 5.7 (a) Multispectral camera Parrot Sequoia and (b) thermal camera FLIR Vue Pro 640 

R as used to carry out surveys. 

 

Figure 5.8  FLIR Vue Pro APP used to set the thermal camera FLIR Vue Pro. 

In the field, 9 ground GCP were placed and geo-referenced using a Leica RTK GNSS with a 

planimetric accuracy of 0.03 m. For each GCP, two types of targets were used, i.e., for multispectral 

and thermal surveys (Figure 5.9b). GCPs were made using 50 cm × 50 cm white polypropylene 

panels and covering two quadrants by respectively black cardboard and aluminum sheets in MS 

and thermal GCPs in order to locate the control point. Based on thermal cameras' characteristics, 

aluminum is used as the GCP material, with their size identified clearly in the thermal images. 

Being aluminum a material with low emissivity, the control target can be seen clearly as a cold 

object in thermal imagery. 

Moreover, typically having thermal cameras mounted on UAVs uncooled microbolometer sensors, 

the thermal signal can be highly affected by the sensor, body, and lens temperature. Therefore wet 
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and dry reference panels/surfaces with known temperatures were used by taking images of them 

before and after each flight. Reference surfaces (Figure 5.9a) were placed near the UAV take-off and 

landing point. Then, their temperature was measured three times using a handheld infrared 

thermometer (FLIR E6): at take-off, during, and at the end of every flight. Temperature 

measurements can be used afterward to compensate for changes in sensor temperature. For this 

reason, four reference surfaces were used.   

Three surfaces were dry: three panels of polypropylene (white, grey, and black). The fourth 

reference surface was made delimiting with circular targets, covered with aluminum, a square 

piece of ground keeping it constantly wet for the flight duration. Instead, the temperature of the 

dry soil near the targets was measured using a probe thermometer.  

UAV MS imagery was calibrated using a panel with known reflectance and a spectroradiometer 

for ground truth measurements (Apogee Ps-300) on bare soil, vegetation and using Parrot Sequoia 

calibration target (Figure 5.9c). 

 

Figure 5.9 (a)  Temperature reference targets used during thermal surveys. (b)  Thermal 

(above) and multispectral (below) targets are used as ground control points (GCPs) in the 

onion field. c  The Parrot Sequoia calibration target (source, Messina et al., 2019). 
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All consecutive images were processed via aerial image triangulation with the geo-tagged flight 

log and the GCPs using the software Pix4D. The digital elevation model (DEM) was generated 

based on the point cloud, which is a set of matching points between overlapping images. The DEM 

has a 5 cm/pixel resolution and a mean geolocation accuracy of 0.37 for X/Y axes and 0.43 for Z 

axis. Finally, a georeferenced orthomosaic was built using the DEM as the surface reference. 

5.6.2 Results 

Orthomosaics obtained from both thermal and MS and characterized by 8.5 and 5 cm of ground 

sample distance (GSD), respectively, showed a clear difference in both temperature and vegetative 

state of the crop in at least two distinct areas of the analyzed experimental field (Figure 5.10 b-c).  

Furthermore, a geographical object-based image classification (GEOBIA) procedure for the 

identification and classification of onions and weeds was performed. GEOBIA was implemented 

through eCognition Developer 9.1 (Trimble GeoSpatial, Munich, Germany). The classification was 

developed starting from images in the bands Green, NIR, Red, Red edge using only the vegetation's 

spectral response in the different bands. The images were segmented into uniform multi-pixel 

objects using the multiresolution segmentation algorithm (Baatz and Schäpe, 2000) and setting the 

following parameters: 1, 0.1, and 0.5 for scale, shape, and compactness, respectively. After 

segmentation, onions were classified according to Green Normalized Vegetation Index (GNDVI) 

(Equation 5.5) values (Figure 5.10a). In particular, onions objects were attributed to GNDVI ≥ -0.15. 

GNDVI = 
(𝜌𝑁𝐼𝑅− 𝜌𝐺𝑟𝑒𝑒𝑛) 

(𝜌𝑁𝐼𝑅+ 𝜌𝐺𝑟𝑒𝑒𝑛)
      (5.5) 

Given these results, a monitoring plan was prepared to detect the presence of any diseases that 

often cause damage to the production of the farm (for example, the Onion Yellow Dwarf Virus-OYDV 

and the fungus Sclerotinia Cepivorum) and other causes and concauses that determine conditions of 

vegetative stress of a part of the crop as can be seen. The plan provides for the monitoring of the 

crop from the transplantation phase to harvesting. The first step involves a systematic sampling of 

soil. Sampling will consist of collecting soil samples distributed according to a grid pattern. For 

each sample, the corresponding position will be stored using GNSS. 

Following the soil analysis, constant UAV surveys (weekly or fortnightly) will be carried out until 

the harvesting to verify the state of growth and the crop's phytosanitary status. 
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Figure 5.10 (a) Above, a map showing the image-object classification of weeds (yellow) and 

onions (green)  performed in the eCognition suite. Below, the two obtained orthomosaics from 

the UAV surveys carried out on 23 November 2018. (b) Map of the temperatures [°C]. (c) Map 

of the Normalized Difference Vegetation Index (NDVI) (source, Messina et al., 2019). 

The proposed methodology, especially in the presence of an area with homogeneous soil 

characteristics, could be a useful tool in studying the response of various crops to phytosanitary 

and fertilizer treatments in different areas.  
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6 Comparison of UAV and satellites multispectral imagery: a 

case study in monitoring onion “Cipolla Rossa di Tropea” 

Adapted from 

A comparison of UAV and satellites multispectral imagery in monitoring onion crop. 

An application in the ‘Cipolla Rossa di Tropea’ (Italy). Remote Sensing. 2020, 12, 

doi:10.3390/rs12203424  
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The agricultural sector is one of the most significant areas of application of geographic information 

systems (GISs), remote sensing (RS) methods, and data (Solano et al., 2019). The remote platforms 

and their associated imaging systems are distinguished based on platform altitude, spatial, and 

temporal resolution. The spatial resolution determines the area of the smallest pixel that can be 

identified. Thus, as the spatial resolution increases, the pixel area decreases, and soil or crop 

characteristics' homogeneity inside the pixel increases (Mulla, 2013).  

The temporal resolution is essential for the evaluation of time patterns in plant and soil 

characteristics. However, the availability of RS images from satellite and aerial platforms is limited 

by cloud cover (Moran et al., 2000; Vasit Sagan et al., 2019). Landsat platforms, among the most 

used satellites, have spectral resolutions of the order of 30 m in the visible and near-infrared (NIR) 

and have a temporal resolution close to 17 days (McCabe et al., 2016). For many precision 

agriculture (PA) applications, this temporal resolution is not suitable, even considering cloud cover 

problems that increase the time interval in which images without coverage are available. The same 

applies to spatial resolution, which may not be suitable for determining variability within the field. 

The launch of satellites by government space agencies and commercial earth-observing companies 

has provided a significant improvement in revisiting time and multispectral (MS) detection 

capability. In this respect, two examples are given by Sentinel-2 and PlanetScope satellites. 

Sentinel-2 satellites are equipped with sensors capable of exploiting as many as 13 spectral bands 

ranging from the visible to NIR and short wave infrared region, with spatial resolutions between 

10 to 60 meters (earth.esa.int/web/sentinel/missions/sentinel-2/instrument-payload/resolution-

and-swath, last access 2 April 2020) and a temporal resolution of about 5 days at the European 

latitudes (Modica et al., 2019; Vizzari et al., 2019). PlanetScope constellation composed by a large 

number of small nano-satellites equipped with RGB and NIR camera provides a 3-5 m ground 

sampling resolution with a one-day revisiting time (Houborg and McCabe, 2016). 

While satellite observation has guided many information-based advances in agricultural 

management and practice (McCabe et al., 2016), critical technological developments and steep rise 

have affected unmanned aerial vehicles (UAVs), in the last decade, which represent a potential 

game-changer in PA applications (Colomina and Molina, 2014). In comparison with other RS 

platforms, UAVs are generally more independent of climatic variables.  

Being able to provide data with higher temporal and spatial resolution, today represent a 

significant source of RS imagery in PA (Zhang and Kovacs, 2012) considering also that, as 

highlighted by scholars in PA applications, the knowledge of the within-field spatial variation of 
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edaphic factors and the state of crops constitute an essential prerequisite (Maes and Steppe, 2019). 

Among the sensors mounted on UAVs employed in agriculture, MS cameras are the most common 

(Khanal et al., 2017).  

Thanks to UAVs and high-resolution MS images, managers and specialists in agriculture can use 

new tools and have more information to optimize management decisions and formulate precision 

farming solutions (He and Weng, 2018). In particular, this technology can be used to determine the 

amount number of agricultural inputs, including agrochemicals and fertilizers, based on non-

invasive monitoring of crop growth status (Jeong et al., 2014). The ability to better control the use 

of agrochemicals and fertilizers brings benefits, in addition to the enhanced quality and quantity 

of production, reducing the environmental risks arising from the excessive use of inputs, increasing 

the use efficiency, and also reducing them, using variable management practices (Benincasa et al., 

2017; Tang and Turner, 1999). 

Many MS UAV cameras, in particular, permit to obtain spectral information in the Red, Red edge, 

and NIR band for vegetation applications with a very high spatial resolution (Yao and Qin, 2019). 

Based on the combination of these three bands, most of the indices (i.e., vegetation indices, VIs) 

were developed with the aim to monitor, analyze, and map temporal and spatial variations of 

vegetation in both field and tree crops (Yao and Qin, 2019). In the framework of PA applications, 

among the techniques capable of extracting reliable and reusable information, the geographic 

object-based image classification (GEOBIA) techniques have demonstrated their effectiveness 

(Solano et al., 2019).  

GEOBIA is a typology of a digital RS image analysis and classification approach that studies 

geographical entities through the definition and analysis of object-based instead of single pixels 

(Blaschke, 2010; Blaschke et al., 2014). Image objects are objects that can be distinguished in the 

scene. They are formed by groups (or clusters) of neighboring pixels that share a common meaning, 

such as, for example, in a farm context, pixels that join together to form trees’ canopies of an 

orchard or crops in a field (Chen et al., 2018). In the literature applications of GEOBIA, starting 

from satellite or UAV data, have concerned both herbaceous and tree crops (Belgiu and Csillik, 

2018; Csillik et al., 2018; De Castro et al., 2018, 2017; López-Granados et al., 2016a; Ok and Ozdarici-

Ok, 2018; Ozdarici-Ok, 2015; Peña-Barragán et al., 2012; Torres-Sánchez et al., 2015). 

Onion (Allium cepa L.) is a vegetable bulb crop widely cultivated and known to most cultures 

(Ballesteros et al., 2018; Córcoles et al., 2013). For economic importance among vegetables, the 

onion ranks second after the tomato (Aboukhadrah et al., 2017; Mallor et al., 2011). This plant 
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belongs to Amaryllidaceae's family and is biannual or perennial (depending on the cultivar). The 

plant has shallow adventitious, fibrous roots (Ranjitkar, 2003), which grow, usually in the first 20-

25 cm of soil. The umbrella-shaped inflorescence develops from an apical ring meristem and is 

formed by the aggregation of small single flowers (from 200 to 600). 

The bulb has variable shapes (flat to globular to oblong) and colors (red, white, or yellow). The 

bulb, the edible part, comes from the enlargement of the basal part of the inserted leaves, 

superimposed on a central cauline axis. The bulb's thick outer leaves lose moisture and become 

scaly until harvest, while the inner leaves thicken as the bulb develops (Pareek et al., 2017).  

In this framework, this study is aimed at comparing data acquired by fixed-wing UAV and the 

PlanetScope and Sentinel-2 satellites in onion crop monitoring. RS techniques applied to onion 

crops could help to monitor the crop growth, guide localized fertilization, phytosanitary 

treatments, and harvest and, in general, support PA techniques implementation. At our best 

knowledge, very few studies have dealt with onion crop monitoring using UAV and Satellite data 

in the PA framework (Ballesteros et al., 2018; Belgiu and Csillik, 2018; Córcoles et al., 2013; Jeong 

et al., 2014; Zhao et al., 2019).  

Considering these research objectives, the study site was located in a very relevant onion 

production area of Southern Italy. The comparison is performed to achieve the following 

objectives: a) evaluate the similarities and the informative content of the vegetation index at 

different spatial resolutions; b) evaluate the contribution made by each platform for monitoring 

the vegetative status of the onion crop and in guiding fertilization and phytosanitary treatments.  

This chapter is structured as follows. In Section 6.1, information about the study site, data 

acquisition and processing, and data analysis are reported. Section 6.2 is devoted to presenting and 

discussing the results. Section 6.3 deals with conclusions and future research perspectives. 
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6.1 Materials and methods 

6.1.1 Study site 

The onion field is located in Campora S. Giovanni, in the municipality of Amantea (Cosenza, Italy, 

39°02’ 55’’ N, 16°05’ 59’’ E, 5 m a.s.l) (Figure 6.1a).  

 

Figure 6.1 (a) The location of the study site. (b - c- d) The onion field in which the surveys 

were carried out (Campora S. Giovanni, CS – Italy) (source, Messina et al., 2020c). 
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The onions produced here are an essential local crop that, as a typical product, plays a crucial role 

in the economic and rural development of this territory (Bernardi et al., 2013). This particular pink-

red colored onion type, since 2008, is labeled with the European Protected Geographical Indication 

“Cipolla Rossa di Tropea IGP”. It is well-known worldwide for its sweet flavor and for its high 

content of nutraceuticals that make it an upcoming “functional food”(Tiberini et al., 2019).  

These unique characteristics have given the product a reputation at the national level and in 

markets outside Italy. The producing farms are organized in a consortium whose cultivated area 

is over 500 hectares (www.consorziocipollatropeaigp.com, last access 30 April 2020). The study area 

covers a surface of 4 hectares. The field is crossed by 10 paths, 2.5 m wide, used for the passage of 

agricultural vehicles necessary for phytosanitary treatments and fertilization. The plants are placed 

at a distance of 15 cm from each other, on baulature, 1 m wide, as shown in Figure 6.1 (b - c - d). 

The transplant took place between mid-August (end of the summer) and mid-September (early 

autumn). In particular, in a portion of the field, about 0.47 ha, transplantation took place 3 weeks 

later. 

6.1.2 Platforms and data acquisition 

UAV images 

The UAV surveys were carried out between the middle (November) and the end of the cultivation 

cycle (January). Onion crop was, in this time frame, in the principal stage 4 (development of 

harvestable vegetative plant parts) (Figure 6.2) of the BBCH (Biologische Bundesanstalt, 

Bundessortenamt and Chemical Industry) extended scale (Meier, 2001). Surveys were carried out 

at 50 m of flight height using a very light fixed-wing UAV Parrot Disco-Pro AG made with foam 

and a weight of only 780 g (Figure 6.3). The UAV was equipped with an MS camera Parrot Sequoia, 

a light-weight camera employed in several pieces of research related to PA, on herbaceous crops, 

monitoring wheat (Bukowiecki et al., 2020), maize, and poppy crops (Iqbal et al., 2018), 

phenotyping of soybean (Maimaitijiang et al., 2017), and on tree crops proving useful in identifying 

citrus trees (Csillik et al., 2018), mapping irrigation inhomogeneities in an olive grove (Jorge et al., 

2019) and the vigor in vineyards (Pádua et al., 2019). The Parrot Sequoia MS has four different 

channels, each with 1.2 Mp of resolution: Green (530–570 nm), Red (640–680 nm), Red edge (730–

740 nm) and NIR (770–810 nm). Furthermore, it is also equipped with an RGB composite sensor, 

an external irradiance sensor with a global navigation satellite system (GNSS), and an inertial 

measurement unit (IMU) modules placed on top of the UAV. The irradiance sensor, which 
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measures the sky down-welling irradiance, is placed on top of the UAV and continuously captures 

the sky irradiance at the same spectral bands as the MS camera (Cubero-Castan et al., 2018; Deng 

et al., 2018). The IMU allows capturing sensor angle, sun angle, location, and irradiance for every 

image taken during the flight. This data was mainly used for image calibration. The UAV flights 

were carried out three times as follows: 23 November 2018, the second on 19 December 2018, and 

the last on 18 January 2019. As shown in Figure 6.2, the first two dates concern the phase of the 

crop cycle of the full development of harvestable vegetative plant parts. In this phase, crucial 

operations are carried out, such as a large part of the fertilization and phytosanitary treatments. 

Instead, on the last date of monitoring, in January, onions are close to harvesting. 

The procedure performed for field surveys is similar to the one shown in Messina et al. (2020a, 

2020d). In the field were placed 9 ground control points (GCPs) whose position was geo-referenced 

using a Leica RTK GNSS with a planimetric accuracy of 0.03 m. In particular, GCPs were made 

using 50 cm × 50 cm white polypropylene panels and covering two quadrants using black 

cardboard to locate the point. MS imagery was calibrated using a panel with known reflectance, 

the Parrot Sequoia calibration target. In particular, photos of the target were taken before and after 

the flight and it is assumed that the raw sensor data was transformed into percentage reflectance 

in combination with the data provided by the solar radiation sensor. All consecutive images were 

processed via aerial image triangulation with the geo-tagged flight log and the geographic tags 

through the software Pix4D mapper (Pix4D S.A., Switzerland). Following the recommended 

Sequoia image correction procedure, corrections were applied to the raw data generating four 

single reflectances calibrated GEOTIFFs.  
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Figure 6.2 Crop cycle of the onion, dates of the unmanned aerial vehicles (UAVs) surveys and 

of imagery acquisition (source, Messina et al., 2020c). 

 

Figure 6.3 The Parrot Disco-Pro AG fixed-wing unmanned aerial vehicle (UAV) during the 

pre-flight calibration using the Parrot Sequoia calibration target (source, Messina et al., 2020c). 

Satellites images 

Sentinel-2 is managed through the Copernicus Program proposed by the European Union (EU) 

and the European Space Agency (ESA). The first satellite was launched in 2015 (Bartsch et al., 2020). 
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Sentinel-2 consists of two twin satellites, Sentinel-2A and Sentinel-2B, both operating on a single 

orbit plane but phased at 180° with a temporal resolution of 5 days with this bi-satellite system 

(Spoto et al., 2012; X. Yang et al., 2017). The Sentinel-2 data consists of 13 bands in the visible, NIR, 

and short-wavelength infrared (SWIR) spectral range (Rapinel et al., 2019; X. Yang et al., 2017) with 

a spatial resolution of 10 m, 20 m or 60 m depending on the band. Sentinel-2 images used in this 

work are the four spectral bands at 10 m spatial resolution in Blue, Green, Red, and NIR spectra 

showed in Table 6.1. Data were downloaded from the Copernicus Open Access Hub 

(scihub.copernicus.eu) in level 2A, which provides Bottom Of Atmosphere (BOA) reflectance 

images ortho-rectified in UTM/WGS84 projection.  

Table 6.1 Characteristics of the multispectral camera and of the satellites whose images were 

used in this research. 

Platform 
UAV SATELLITE 

Parrot Disco-Pro AG Planet Scope Sentinel-2 

    
  

Number of 

channels used 
4 4 4 

Spectral 

wavebands (nm) 

Green    550 (width 40) 

Red      660 (width 40) 

Red edge 690 (width 10) 

NIR      790 (width 40) 

Blue     464-517 

Green    547-585 

Red      650-682 

NIR      846-888 

Blue    426-558 (width 66) 

Green  523-595 (width 36) 

Red  633-695 (width 31) 

NIR   726-938  (width 106) 

Radiometric 

resolution 
10 bit 16 bit 16 bit 

Dimension 59 mm x41 mm x 28 mm 100 mm x100 mm x300 mm 3.4 x1.8 x2.35 m 

Weight 72 g 4 kg 1000 kg 

FOV 
HFOV: 62° 

VFOV: 49° 

HFOV: 24.6 km 

 VFOV: 16.4 km 
HFOV: 290 km 

Flight quote AGL 50 m 475 km 786 km 

Ground 

resolution 

distance (GSD) 

5 cm 3.7 m 10 m 

Number of 

images  
>1000 1 1 

 

3U Cubesat Camera Parrot Sequoia 
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PlanetScope’s imagery was acquired from the PlanetScope archive (Planet Labs Inc., 2020), which 

manages the largest satellite constellation consisting of more than 150 satellites orbiting the Earth. 

PlanetScope satellites follow two different orbital configurations (Ghuffar, 2018). Some satellites 

are in International Space Station Orbit (ISS), and they are at a 52° inclination at about 420 km of 

altitude. Other satellites are in the Sun Synchronous Orbit (SSO) with an altitude of 475 km (at 98° 

inclination) and have equatorial crossing between 9:30 and 11:30. These sensors called 3U CubeSats 

(Table 6.1), also called “Doves”, have small dimensions (10 cm ×10 cm ×30 cm and a weight of 4 

kg) and provide daily sun-synchronous coverage images of the whole Earth landmass (Ghuffar, 

2018).  

Dove satellites’ CCD array sensor (6600×4400 pixel) allows capturing images using three bands 

RGB or four (in addition, there is NIR) (Kääb et al., 2017). PlanetScope imagery has a scene footprint 

of about 24.4 km × 8.1 km and a ground sample distance of 3.7 m. PlanetScope imagery available 

used are Ortho Scene (Level 3B), i.e., imagery processed to remove distortions caused by terrain. 

Imagery is radiometrically, sensor, and geometrically corrected (Planet Labs Inc., 2020). 

Furthermore, imagery was atmospherically corrected by Planet Labs using the 6S radiative transfer 

model with ancillary data from MODIS (Moderate-resolution imaging spectroradiometer) (Planet 

Labs Inc., 2020). 

6.1.3 Vegetation indices  

In view of comparing satellite data with UAV data, three satellite images from each satellite 

platform were collected. Images were selected among those available without cloud cover in the 

days closest to those of the UAV surveys, as follows: 1) 29 November 2018, 19 December 2018 and 

15 January 2019 from Sentinel-2, and 2) 23 November 2018, 19 December 2018 and 19 January 2019 

from PlanetScope (Figure 6.4). As one of the objectives of this work is to select a proper VI to 

perform the subsequent comparison between the three platforms, using UAV images, four VIs 

were calculated and compared in their capabilities to analyze the vegetative vigor of onion 

cultivation. To this aim, four VI were selected: Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Red edge Vegetation Index (NDRE), Green Normalized Difference 

Vegetation Index (GNDVI), Soil-Adjusted Vegetation Index (SAVI) (Table 6.2). NDVI is one of the 

most used indices derived from the MS information and is calculated by the normalized ratio 

between the NIR and Red bands (Karnieli et al., 2010). It can assume values between -1 and 1 and 

measure healthy vegetation exploiting the highest chlorophyll absorption and reflectance regions 
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(Xue and Su, 2017). NDRE has a range of values and formula similar to that of NDVI but takes 

advantage of the sensitivity of the vegetation to the Red edge wavelengths by replacing the Red 

band. GNDVI (Gitelson et al., 1996) was developed to estimate leaf chlorophyll concentration and 

uses a Green band rather than a Red band as in the classic NDVI.  

 

Figure 6.4 RGB orthomosaics of the three datasets (November-December and January) derived 

from the platforms UAV (top), satellite PlanetScope (center), and Satellite Sentinel-2 (bottom). 
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Table 6.2 Formulation of the four vegetation indices (VIs) used in the present research. 

Index denomination Index formula References 

Normalized Difference 

Vegetation Index (NDVI) 

(𝜌𝑁𝐼𝑅 −  𝜌𝑅𝑒𝑑) 

(𝜌𝑁𝐼𝑅 +  𝜌𝑅𝑒𝑑)
 (Rouse et al., 1974) 

Normalized Difference 

Red edge Vegetation 

Index (NDRE) 

(𝜌𝑁𝐼𝑅 −  𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒) 

(𝜌𝑁𝐼𝑅 +  𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒)
 (Barnes et al., 2000) 

Green Normalized 

Difference Vegetation 

Index (GNDVI) 

(𝜌𝑁𝐼𝑅 −  𝜌𝐺𝑟𝑒𝑒𝑛) 

(𝜌𝑁𝐼𝑅 +  𝜌𝐺𝑟𝑒𝑒𝑛)
 (Gitelson et al., 1996) 

Soil-Adjusted Vegetation 

Index (SAVI) 

(𝜌𝑁𝐼𝑅 −  𝜌𝑅𝑒𝑑)

(𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑 + 𝐿)
(1 + 𝐿) (Huete, 1988) 

 

Since NDVI is very sensitive to background factors, SAVI was developed by Huete (1988) to 

minimize the effects of soil background on the vegetation signal by inserting in the NDVI formula 

a constant soil adjustment factor L (Taylor and Silleos, 2006), the value of which can assume values 

between 0 and 1 depending on the level of vegetation cover. To better understand the behavior of 

the selected VIs, compared to each MS band, and to choose the most VI suitable for the subsequent 

comparison, a correlation analysis between them was implemented using Python. The 

implementation of the scatter plots, and the final correlation matrix was performed using seaborn 

libraries.  

6.1.4 Comparison of vegetation indices (VIs) from the three platforms 

A preliminary correlation analysis between a set of indices, including the four UAV bands and four 

commonly used VIs - NDVI, NDRE, GNDVI, and SAVI, was performed. Then, SAVI was calculated 

at the native MS band's resolution of each sensor (5 cm for UAV, 3 m for PlanetScope, and 10 m for 

Sentinel-2).  

The SAVI was chosen to analyze the vegetative vigor of onion cultivation. SAVI was developed by 

Huete (1988) to minimize the effects of soil background on the vegetation signal by inserting in the 

NDVI formula a constant soil adjustment factor L (Taylor and Silleos, 2006), according to the 

following formula (Equation 6.1): 

𝑆𝐴𝑉𝐼 =
(𝜌𝑁𝐼𝑅 −  𝜌𝑅𝑒𝑑)

(𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑 + 𝐿)
(1 + 𝐿) (6.1) 

Where L is the constant soil adjustment factor, and which can assume values between 0 and 1, 

depending on the level of vegetation cover, and ρ is the reflectance at the given wavelength.  
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The various SAVI maps were used to describe and assess the variability within the onion field, as 

also shown in (Khaliq et al., 2019). Descriptive statistics and histograms, calculated with R software, 

were used for a preliminary comparison of image data with native image resolutions. The degree 

of correlation between pairs of SAVI maps was then investigated using Pearson's correlation 

coefficients. Initially, three comparisons were made taking into account the three dates 

investigated: a correlation between UAV (images resampled at 3 m resolution) and PlanetScope, a 

correlation between PlanetScope (images resampled at 10 m resolution) and Sentinel-2 and finally 

a correlation between UAV (images resampled at 10 m resolution) and Sentinel-2. Then, to 

investigate the relationships between crop and soil cover, further correlation analyzes were 

performed between the UAV SAVIs, including only onions and only soil and the SAVIs from the 

two satellite platforms. 

6.1.5 Image Segmentation and Classification 

A GEOBIA process was developed to explore the potentiality of UAV images in discriminating soil 

coverage types and in producing other UAV SAVI maps for the subsequent comparison. 

Considering the type of crop and the structure of the field, which imply the presence of portions 

of soil, clearly visible from above, both among the plants and in the paths used for the passage of 

agricultural vehicles, classification was performed to separate crop and soil. Firstly, to extract the 

onion crop, the GEOBIA image classification procedure was performed. The classification was 

developed considering only the spectral response of the vegetation in the different bands. The first 

step performed in the GEOBIA procedure is the segmentation of the image. It is a fundamental 

prerequisite for classification/feature extraction (Drǎguţ et al., 2014). It foresees the image's 

segmentation into separate, non-overlapping regions (Aguilar et al., 2016), then extracted in the 

form of vectorial objects.  

Segmentation, which consists of dividing objects into smaller ones and creating new ones, altering 

the previously existing ones' morphology, takes place according to precise rules. Segmentation’s 

algorithm used is the multiresolution segmentation (MRS) algorithm (Baatz and Schäpe, 2000). This 

algorithm operates by identifying single objects, having a pixel size, and merging them with the 

nearby objects following a criterion of relative homogeneity while minimizing the average 

heterogeneity (Trimble Inc., 2019). The homogeneity criterion is linked to the combination of the 

spectral and shape properties of the original image’s objects and of those of “new” objects obtained 

by the merging process. Two parameters regulate homogeneity criteria by two parameters: shape 
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and compactness. The setting of the shape parameter concerns the importance/weight given by the 

segmentation process to the shape of objects with respect to color. The shape parameter can assume 

a value between 0 and 0.9. Color homogeneity derives from the standard deviation of spectral 

color. Indeed, shape homogeneity results from the deviation of a compact (or smooth). Color and 

shape are linked, and the user's value or weight to the shape parameter determines different results 

of the segmentation. In particular, the higher is the chosen value (between 0 and 0.9) the higher the 

influence of shape, respect to the color, in the segmentation, and vice versa (Drǎguţ et al., 2010). 

Compactness is the second adjustable parameter and determines the importance of shape with 

respect to smoothness. It results in the product of width and length calculated on numbers of pixels 

(El-naggar, 2018). The third parameter is the scale. The scale parameter determines the final size 

and dimension of the objects resulting from segmentation (Drǎguţ et al., 2014; Ma et al., 2017). 

Attributing higher values or smaller values of scale parameter generates larger and smaller objects, 

respectively. Since the objects' size depends on this parameter, it indirectly defines the maximum 

allowed heterogeneity for the obtained image objects. In addition, different weights can be 

attributed to the several input data (i.e., band layers). To perform the segmentation, the following 

parameters were chosen: 0.1 for shape, 0.5 for compactness, 0.3 for scale parameter, and weight 1 

assigned to layers that correspond to the bands provided by Parrot Sequoia: Green, Red, Red edge, 

and NIR. Before choosing these parameters, some trial-and-error tests were performed, attributing 

different values to the segmentation parameters until the segmentation considered better (based 

on visual interpretation) was obtained. In this case, it was essential to obtain segments that would 

allow the single plants to be distinguished.  

After completing the segmentation phase, the onion crops were classified based only on a SAVI 

threshold value ≥ 0.25. The value was chosen as a result of some trial-and-error tests, and judged 

better based on visual interpretation of its ability to detect plants, following the methodology used 

in Modica et al. (2020). The data obtained concerning the vegetation coverage of the field was used 

to create a mask (and a second for the soil) to be applied to the map. The masks obtained by 

exporting a vector file containing only the class “onions”, were applied to the UAV images at their 

native resolution with the aim to obtain only parts of orthomosaics concerning the onion crop. 

In order to evaluate the presence of pure and mixed pixels of the vegetation class in Sentinel-2 and 

PlanetScope images, a spatial analysis procedure was developed in eCognition. First of all, 

shapefiles containing vector grids matching the Sentinel-2 and PlanetScope images' pixel size were 

prepared on eCognition using a chessboard segmentation.  
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These grids were then superimposed on the classified UAV images at an upper level of the 

hierarchy. Several levels of segmentation constitute a hierarchical structure in the GEOBIA 

paradigm (Peña et al., 2013), and in our case, the super-objects (the grids) belong to the upper level 

and include as a sub-object the vegetation class present in the lower level. Following this 

procedure, the area percentage occupied by the class “onion” within each pixel at Sentinel-2 and 

PlaneScope resolutions was calculated. 

6.2 Results and discussions 

The scatter plot of the November dataset (Figure 6.5) shows a high correlation between Red edge 

and NIR (r = 0.96) bands. Regarding the correlations between vegetation indices, NDVI and SAVI 

have quite the same behavior (r = 0.95). Analogous consideration can be made for the comparison 

between NDVI and GNDVI (r = 0.95) and between GNDVI and SAVI (r = 0.94). Also, in the case of 

the December dataset (Figure 6.6), the scatter plot matrix shows a high correlation between Red 

edge and NIR (r = 0.94).  

The correlation between NDVI and SAVI indices shows that they coincide (r = 1). The same can be 

observed between NDVI and GNDVI (r = 0.99) and between GNDVI and SAVI (r = 0.99). In 

January’s dataset (Figure 6.7), the scatter plot shows data similar to the previous two. In particular, 

there is a high correlation between bands Red edge and NIR (r = 0.98), NDVI and SAVI (r = 0.98), 

NDVI, and GNDVI (r = 0.99), GNDVI and SAVI (r = 0.98).  

The SAVI, belonging to the family of soil-corrected vegetation indices (Huete et al., 1985), is 

suitable to further reduce the background contribution reflectance by facilitating the identification 

of plants and their discrimination from the soil.  

Therefore, also considering the high correlations with the other VIs, we choose to analyze the crop 

vegetative vigor using only the SAVI that limits the soil effect. In this case study, the species 

monitored, onions, have thin and small leaves, especially in the early and middle stages of growth 

(mid-August-October, Figure 6.2) and in monitoring their growth, it is difficult to effectively extract 

the images from the background (Jeong et al., 2014).  
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Figure 6.5 Scatter plots matrix showing the correlation between the four bands (Green, Red, 

Red edge, and NIR) and the four vegetation indices (VIs) analyzed (NDVI, NDRE, GNDVI, 

and SAVI). Dataset of 23 November 2018. 
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Figure 6.6 Scatter plots matrix showing the correlation between the four bands (Green, Red, 

Red edge, NIR) and the four vegetation indices (VIs) analyzed (NDVI, NDRE, GNDVI, and 

SAVI). Dataset of 19 December 2018. 
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Figure 6.7 Scatter plots matrix showing the correlation between the four bands (Green, Red, 

Red edge, NIR) and the four vegetation indices (VIs) analyzed (NDVI, NDRE, GNDVI, and 

SAVI). Dataset of 18 January 2019. 

SAVI calculated at the native MS band's resolution of each sensor is shown in Figure 6.8. 

Considering the imagery of November, UAV SAVI’s value range from 0 to 0.4, PlanetScope SAVI’s 

value range from 0.15 to 0.5, while Sentinel-2 SAVI’s value range from 0.15 to 0.8. In December, 

UAV SAVI’s value range from 0 to 0.7, PlanetScope SAVI’s value range from 0.3 to 0.9, and 

Sentinel-2 SAVI’s value range between 0.15 and 1. Lastly, in January, as far as the UAV is 

concerned, the range is similar to that of the previous month, while SAVI’s value range between 

0.15 and 0.8 and from 0.3 to 1 in PlanetScope and Sentinel-2, respectively. 
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Figure 6.8 SAVI maps showing onion crop, derived from the platforms UAV (top), satellite 

PlanetScope (center), and Satellite Sentinel-2 (bottom) at their native resolutions (5 cm for 

UAV, 3 m for PlanetScope, and 10 m for Sentinel-2) (source, Messina et al., 2020c). 
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The histograms reported in Figure 6.9 show the frequency distribution of SAVI values as a 

percentage of the total values and the native resolution of each imagery. The histograms show 

interesting differences between the three platforms used and differences between the same 

platforms' datasets. In general, histograms showed a reduced range of UAV images compared to 

the broader ranges of Planetscope and especially Sentinel-2.  

 

Figure 6.9 Histograms showing the distribution of SAVI values as a percentage of total values. 

The imagery of UAV is represented in blue, PlanetScope in red, and Sentinel-2 in green (source, 

Messina et al., 2020c). 

UAV SAVI average has values of 0.11, 0.14, and 0.19 in November, December, and January, 

respectively (Table 6.3). As for PlanetScope images, the mean value of the SAVI is 0.27, 0.53, and 

0.48 in November, December, and January, respectively. In Sentinel-2 images, the SAVI index's 

mean value is 0.36 in November, 0.42 in December, and 0.59 in January.  

SAVI varied among different platforms, increasing its value from imagery with a higher resolution 

(UAV) to those with the lowest (Sentinel-2). However, even though the satellite and the UAV maps 

have different index ranges, it is possible to see some similarities in the distribution of vigor in the 

onion field. The SAVI values of UAV and PlanetScope showed a high correlation, with values 
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between 0.82 and 0.86 (Figure 6.10). Similar correlations resulted from the comparisons with 

Sentinel-2 imagery. This was highlighted by similarities in the localization of some areas of greater 

or lesser vigor of the field.  

This is evident by imagining to divide the image into two parts: in the upper part, there are areas 

of less vigor, while in the lower part, there are areas of the field with high vigor. Therefore the 

satellites show that they are capable of assessing the general conditions of the field. 

 

Figure 6.10 Scatter plots of SAVI values from the UAV, PlanetScope and Sentinel-2 (S2) map 

in three months surveyed (source, Messina et al., 2020c). 

However, it is essential to remember that the heterogeneity of the surfaces analyzed in terms of 

land cover (rows, inter-rows, and paths) and the spatial resolution of Sentinel-2 imagery implies 

that a single pixel is made up for the most part of rows, inter-rows, and paths used for the passage 

of agricultural machines (Malacarne et al., 2018). Evaluating the three platforms' spectral 
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resolution, taking into account the coefficient of variation (CV), there is a clear difference between 

the CV of UAV images and that of satellites, as shown in Table 6.3. Considering the UAV imagery, 

CV has a value of 62% in November, 70% in December, and 55% in January, while the CV in satellite 

imagery ranges between 24% and 35% in the three months/datasets. In general, there is an increase 

of CV low (satellite) to high resolution (UAV) imagery. However, the increase in CV is not 

accompanied by a greater range of SAVI values in UAV images than those of the satellites. Higher 

standard deviation values also confirm this in satellite imagery than those of the UAV. 

Table 6.3 Basic statistics considering images of the three platforms (UAV, PlanetScope, and Sentinel-2) 

at their original resolution. 

Date Platform 
Number of 

pixels 
SAVI mean 

SAVI Standard 

deviation 

SAVI CV 

(%) 

November 

2018 

UAV 28,132,559 0.112 0.07 62.5 

PlanetScope 8,118 0.276 0.09 32.6 

Sentinel-2 696 0.360 0.12 33.3 

December 

2018 

UAV 28,132,559 0.142 0.10 70,4 

PlanetScope 8,118 0.536 0.13 24.2 

Sentinel-2 696 0.420 0.15 35.7 

January 

2019 

UAV 28,132,559 0.199 0.11 55,2 

PlanetScope 8,118 0.484 0.14 28,9 

Sentinel-2 696 0.590 0.16 27.1 

 

The onion crop surveyed is a highly heterogeneous crop characterized by the alternation of plants 

(higher values), inter-rows and bare soil of background (lower values). The 5-cm very high-

resolution of UAV images detected the oscillation of these values allowing a distinction between 

plants and soil. On the other hand, the discontinuity between plants and bare soil was not detected 

by the lower satellites’ resolution that averages plants and bare soil reflectance values, therefore 

resulting in a narrow distribution. 

Regarding the degree of correlation between pairs of SAVI maps based on Pearson's correlation 

coefficients, observing the coherence between SAVI maps of the UAV (resampled at 3 m) and 

PlaneScope satellite platforms (Figure 6.10), high correlations emerge in the three months with r 

index values of 0.84 in November, 0.86 in December, and 0.82 in January. A similar correlation was 

found when comparing Sentinel-2 and UAV in November (0.81). Higher values are that of 

December and January, 0.9 and 0.88, respectively. Comparing PlanetScope images with those of 

Sentinel-2 can be observed the highest correlation values each month, compared to previous 
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correlations with 0.84, 0.94, and 0.92 in November, December, and January, respectively. Indeed, 

even comparing visually at their respective resolutions (Figure 6.8), this was highlighted by 

similarities in the localization of some areas of greater or lesser vigor of the field. 

The results obtained from the correlations of the UAV images resampled first at 3 m and then at 10 

m, seem to indicate a certain coherence between the three platforms' information. 

With the aim of obtaining a more comprehensive picture of the analyzed crop, the SAVI index was 

also calculated by classifying the onion crop and the soil separately, using the UAV imagery as 

reference. Therefore, on the one hand, we obtained crop pixels (i.e., SAVI onions) and, on the other 

hand, bare soil pixels observed in the inter-rows and the paths (i.e., SAVI soil). This allows taking 

into account the presence of mixed spectral pixels, dependent on the spatial resolution (Chuvieco, 

2016) and more evident, considering the size of the pixels compared to the object of study, in 

PlanetScope and Sentinel-2 images. 

Then, further correlation analyzes were performed to analyze platforms' ability to provide 

information on crop and soil. Observing the correlation between SAVI onions and PlaneScope 

(Figure 6.11), values are 0.61 in November, 0.84 in December, and 0.7 in January. The analysis of 

the correlation between SAVI onions and Sentinel-2 (Figure 6.11) showed the following values 0.63, 

0.83, 0.77 in November, December, and January, respectively. The lower correlation in November 

values found with both satellites could be explained by a lower crop coverage compared to the soil, 

unlike December, where there is an increase in coverage.  

Observing the correlation between SAVI soil and PlaneScope (Figure 6.12), values are 0.56 in 

November, 0.24 in December, and 0.28 in January. The analysis of the correlation between SAVI 

soil and Sentinel-2 (Figure 6.12) showed similar following values 0.55, 0.31, 0.25 in November, 

December, and January, respectively. The correlation values in December and January are quite 

similar, while the highest value was found in November. This probably confirms what was said 

before, considering that in November, the bare soil is prevalent within the scene compared to the 

crop. The results obtained confirm what was shown in Khaliq et al. (2019). In particular, satellite 

imagery shows some limitations indirectly providing reliable information concerning the status of 

the crops where the crop radiometric information can be altered by the presence of other sources 

like the soil, in this case, which in November is predominant. In the following months, lower 

correlation values are due to a smaller presence of bare soil, compared to parts of the field 

completely covered or sporadically covered by the crop. 
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Figure 6.11 Scatter plots of SAVI values from UAV onions mask (SAVI onions) (x-axis), 

PlanetScope and Sentinel-2 maps in the three months surveyed (source, Messina et al., 2020c). 

 

Figure 6.12 Scatter plots of SAVI values from UAV considering only soil pixels (SAVI soil) (x-

axis) , PlanetScope and Sentinel-2 maps in the three months surveyed (source, Messina et al., 

2020c). 
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The aspect of the influence exerted by the different types of coverage on the pixel signal is related 

to spectral mixing pixels. This is a problem that concerns lower resolution images, i.e., those of 

PlanetScope and Sentinel-2.  

Using the onion class mask extracted from the UAV images, the percentage of area occupied by 

vegetation (onion) within the PlanetScope and Sentinel-2 pixels was calculated and showed in 

Figure 6.13. Pixels in orange contain a percentage of the pixel area occupied by vegetation between 

0 and 10% and can be assimilated to bare soil's pure pixels. On the other hand, pixels in dark green 

can be assimilated, with a percentage of the pixel area occupied by vegetation between 90 and 

100%, to pure vegetation pixels. The remaining pixels, colored with different shades of green, are 

mixed pixels. A preponderant presence of orange pixels and, therefore, bare soil is easily visible in 

PlanetScope and Sentinel-2's maps of November. 

On the other hand, pure pixels of vegetation are mostly present in the maps of the following 

months, as a natural consequence of the cultivation cycle course. During these months, where the 

crop is regularly growing and the underlying soil cover capacity is improved, there are many pure 

vegetation pixels. This happens especially in PlanetScope images, whose pixels cover an area of 9 

m2 each. After all, the smaller the pixel size, the less likely it is that a pixel contains more coverage 

types. Fewer pure pixels are present in Sentinel-2 images whose pixels have a size of 10 m x 10 m. 
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Figure 6.13 Maps showing onion crop area, derived from the UAV imagery (top), and the 

percentage of area covered by onion crop within PlanetScope’s (center), and Sentinel-2’s 

(bottom) pixels at their native resolutions (3 m for PlanetScope, and 10 m for Sentinel-2) 

(source, Messina et al., 2020c). 
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A correlation analysis between SAVI values and the percentage of area covered by onion crop 

within PlanetScope’s, and Sentinel-2’s pixels was performed in order to deepen the aspect related 

to the presence of mixed pixels (Figure 6.14). Regarding PlanetScope images, the highest value was 

that of November with 0.86, probably explained by a predominant presence of bare soil's pure 

pixels. In the following months, the value obtained is 0.7; fewer bare soil pixels are present, but the 

pure pixels of vegetation increase. This trend is similar in the correlation between Sentinel-2 

images, but the values are lower: 0.74 in November, 0.6 in December, and 0.59 in January. In these 

images, the problem of mixed pixels is more pronounced. 

 

Figure 6.14 Scatter plots showing the correlation between SAVI values from satellites and the 

area covered by onion crop (x-axis) in the three months surveyed (source, Messina et al., 2020c). 

Finally, we produced the SAVI maps using the images surveyed of the three months and all the 

three platforms (Figure 6.15). With this aim, the UAV and PlanetScope maps were resampled at 

Sentinel-2’s 10 m geometrical resolution. 

Looking at the map, the main effect of resampling UAV images is evident: the impossibility of 

distinguishing the details, which permit to discriminate among the crop, the soil, and the inter-

rows. The resampling of the UAV images to a coarser spatial resolution, resulting in fewer pixels, 

has as its main visible consequence the loss of information related to the different SAVI values of 

rows, inter-rows, and paths. Indeed, the upscaling of spatial resolution has the consequence of 

erasing the original data's details (Jones and Vaughan, 2010). Increasing pixel size determines the 
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decreasing of spatial variability of a vegetation index, as shown in Tarnavsky et al. (2008). Besides, 

radiometric resolution influence VIs’ dynamic range. Indeed, observing SAVI in Figure 6.15, 

differences between platforms in the range of the index values appear immediately evident. What 

is evident at first glance is the difference between the SAVI values of the UAV images compared 

to the images of the two satellites, resulting from lower spectral variability in UAV images. 

 

Figure 6.15 SAVI maps showing onion crop with 10 m resolution, derived from the platforms 

UAV (top), satellite PlanetScope (center), and Satellite Sentinel-2 (bottom) (source, Messina et 

al., 2020c). 

As far as UAV images are concerned, the lowest values are close to 0, while the highest values 

are 0.3 in November and December and 0.4 in January. Looking at the PlanetScope images instead, 

the highest values reached by the SAVI are 0.5, 0.9, and 0.8 in November, December, and January, 
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respectively. In the Sentinel-2 images, there are minimum values higher than those of the other 

platforms, between 0.2 (from November) and 0.3 (in January). The maximum values reached by 

the SAVI are 0.7, 0.9, and 1 in November, December, and January, respectively. One important 

aspect must be stressed. The SAVI trend, proceeding from November, two months after the 

transplantation, until January, the period close to the onion harvest, is the same regardless of the 

platform used.  The same trend was confirmed by comparing the bands of the SAVI highlighted in 

trend was confirmed by comparing the bands of the SAVI highlighted in the spectral signatures 

derived from pure pixels of onion in the three periods (Figure 6.16). The SAVI increased 

progressively from November to December and January. 

 

Figure 6.16 The spectral signature of onion crop derived from the reflectance data of pure 

onion pixels for the three platforms in the three periods surveyed (November, December, and 

January). The shaded light violet indicates the region of the two bands used for the soil 

adjusted vegetation index (SAVI) calculation (red and near-infrared, NIR) (source, Messina et 

al., 2020c). 

This aspect appears less apparent when looking at the UAV images resampled due to the loss of 

information. However, the SAVI calculated on the satellites' lower resolution images has higher 

values, from the dominant green color of the relevant vigor maps. While it is not clear how 

differences in spatial resolution affect VIs values under field conditions, some studies 

demonstrated this effect by comparing different satellites (Abuzar, 2014; Anderson et al., 2011; 

Goward et al., 2003; Psomiadis et al., 2016; Soudani et al., 2006; Xu and Zhang, 2010) showing that 
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VIs values are higher in coarser spatial resolution images. Factors responsible for inter-sensor VIs 

variations can be several (Abuzar, 2014). Firstly, is the calibration procedure that may cause inter-

sensor SAVI variations. Calibration provides precision and correctness to the data derived from a 

sensor so that all the datasets obtained from the same sensor can be compared. For calibration, 

including those useful for radiometric correction, algorithms are different between one sensor and 

another. These uncertainties remain when VIs produced by different sensors are compared (Miura 

et al., 2008; Yin et al., 2012). However, as far as the calibration aspect is concerned, Sentinel-2's 

images are better than PlanetScope (Li et al., 2020). Obviously, the technological differences 

between the UAVs' sensors and those present on the satellites cannot be ignored. Other variation 

can be due to the lack of bandwidth correspondence, as shown in Gallo and Daughtry (1987) and 

Teillet et al. (1997). Besides, the differences in the spatial and radiometric resolution of the several 

sensors must also be taken into account (Abuzar, 2014). Therefore, since several factors are 

responsible for the differences between the sensors concerning the values of the vegetation indexes, 

it must be taken into account that these differences are not necessarily attributable to a single factor. 

It is rather prudent to consider all the cumulative effects of factors on VIs (Abuzar, 2014). 

In addition to the maps with 10 m resolution, another was made, including the SAVI computed 

only on the onion crop. This was done in order to evaluate the contribution made by the UAV 

images. As shown, the UAV images proved useful for a separation between vegetation and soil, 

where, due to obvious limitations (related to the size of individual plants) due to the satellites' 

spatial resolution. The maps were produced using the masks produced on eCognition, already 

shown in Figure 6.17. In particular, the masks obtained by exporting a vector file containing only 

the class “onions”, were applied to the UAV images at their native resolution with the aim to obtain 

only parts of orthomosaics concerning onion crop. As a result, parts of the scene occupied by soil 

are excluded from the onion’s map.  
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Figure 6.17 A map showing the image-object classification of bare soil (in brown) and onions 

(in green) performed using eCognition Developer. Dataset of 23 November 2018 (source, 

Messina et al., 2020c). 

Observing SAVI maps (Figure 6.18), applied to UAV images, considering only the part of the 

imagery occupied by onion crop, the index for three months surveyed is between 0 and 0.9. The 

values for November are the lowest. This could be since the crop is still in the early stages of the 

cultivation cycle. Besides, during the segmentation phase, the software could not correctly separate 

the vegetation from the background. It is conceivable that the lower values in the map can be traced 

back to the underlying terrain. Considering the map of December, the values are higher than the 

previous month. In the portion of the field where the transplant took place in mid-September, the 

index values are lower and are between 0.15 and 0.45. There are also evident areas where 

vegetation is challenging to grow, as shown in Messina et al. (2020a). In the portion of the field in 

an advanced stage of cultivation, the values are higher. In particular, the values are between 0.45 

and 0.9. The contrast of colors between the two areas of the field with different transplanting times 

is evident. The January map shows an increase in SAVI values where the crop is at a near harvest 

stage.  



159 

 

 

Figure 6.18 SAVI maps from November 2018 (top) to January 2019 (bottom). Next to each 

dataset's image, blue and magenta rectangles magnify the details of onion crops' vegetative 

vigor in two different parts of the field and where the transplanting took place three weeks 

apart. The ellipses highlight areas of the field where the onion crops are absent or have had 

difficulty growing (source, Messina et al., 2020c). 
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Vigor maps produced are useful to investigate areas of the field where the crop is struggling to 

grow, providing the farmer with potentially helpful information. Indeed, as shown in Figure 6.18, 

we can well distinguish areas (white, in the absence of data) where the crop seems not to be present. 

In November, this area is higher than in the following months. Being in the month of November at 

the initial stages of growth, many plants, probably still too small, were not identified by the 

classification software and also given the structure of the epigeal part of the onion, especially in 

this phase would have required a resolution equal to or higher than 4 cm. In fact, in December, 

many of the voids present in November were filled. However, some areas of the field where the 

crop is absent remain circled in black. These voids persist in January and probably indicate a 

problem of stunted growth due to several possible causes. These causes may be attributable to the 

action of abiotic agents such as water stagnation, nutrient deficiency, or maybe the presence of a 

disease. In essence, beyond the values assumed by the index, the UAV has risen usefully and is 

able to identify the individual plants. Where this has not happened, we find voids. These voids can 

be explained either by the complete absence of the plants or by poorly cultivated plants or have 

had difficulty growing. So these vigor maps indirectly provide an indication to the farmer. This 

information could be used, for example, for localized fertilization or the grubbing up of diseased 

plants.  

When comparing the strength maps of the different platforms, the satellites, considering the 

altitude in which they are located, provide images characterized by a coarser resolution but 

applicable for monitoring large areas and still able to recognize the variation in vegetation growth 

and health crop status (Huete et al., 1997). Besides, as shown in this study, they are often 

characterized by a higher spectral variability and greater temporal and spatial reliability in the 

range of values assumed by the index, also taking into account a consolidated (in the case of 

Sentinel-2) calibration method. In addition, the SWIR band with which Sentinel-2 is equipped 

allows the calculation of other indices useful for monitoring, such as the Normalized Difference 

Moisture Index (NDMI) (Wilson and Sader, 2002). 

On the other hand, low altitude RS by using UAV is confirmed to be a useful tool in PA. In PA, 

considering agricultural monitoring, repeatable and timely information on variability within the 

field has a specific utility (Moran et al., 2000; Zhang et al., 2002) as it allows to optimize production 

efficiency through sustainable and spatially explicit management practices (Gebbers and 

Adamchuk, 2010; Robert, 2002). In the present case study, some details of Figure 6.18 were made 

evident only by the UAV images' vigor map. This is evident given the inability of satellites to 
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discriminate against specific details of the field, such as inter-row paths, as also shown in (Khaliq 

et al., 2019; Matese et al., 2015; Pádua et al., 2019), which implies that the value of a VI within a 

pixel is necessarily derived from the average of the crop and inter-row information. It is also 

necessary to consider the limits due to their spatial resolution, which prevents satellites from 

highlighting problems located in areas whose area is less than the minimum identifiable by them. 

6.3 Conclusions 

This chapter dealt with a comparison between images of onion crops derived from three 

different platforms, a UAV and two satellites, one free medium resolution platform, and the other 

low-cost, high resolution. The comparison was mainly based on the analysis of the spatial 

resolution differences and the effects they may have on data quality in a PA context. For this reason, 

vigor maps were generated, using the SAVI index, and resampled at the lowest resolution of the 

satellite Sentinel-2. 

Regarding the comparison between UAVs and satellites, the introduction of relatively new 

platforms, including nano-satellites, equipped with sensors that provide high or ultra-high 

resolution images, less than 3 m and 1 m respectively, makes satellites increasingly competitive 

with UAVs in PA applications. The feature that makes the latter unique is that they can mount 

several types of sensors simultaneously (Maes and Steppe, 2019). Otherwise, considering all the 

platforms available, there is probably not yet one that can provide high spectral, spatial, and 

temporal resolution images (J. Zhang et al., 2019). Currently, simultaneous requirements for ultra-

high spatial resolution images (<10 m) with almost daily time resolution can only be met by 

targeted acquisition via commercial programmable multi-sensor systems such as WorldView with 

an MS resolution of about 1 m. Simultaneously, Sentinel-2 is currently the finest resolution MS 

imaging mission in open source image data. In the case study, taking into account the crop 

characteristics, a resolution of less than or equal to one meter is preferable for more accurate data 

collection. 

This case study confirms the results of other studies that have highlighted the role of high-

resolution satellites in crop monitoring on a large scale. On the other hand, some limitations and 

uncertainties emerged in this case study where there is a need to discriminate localized conditions 

of inhomogeneity in the field, determined by abiotic or biotic stresses. This can be important in 

order to plan remedial interventions such as localized application of pesticides, herbicides, and 
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fertilizers. In this case, the images provided by UAVs make the difference proving to be useful in 

guiding agronomic localized operations such as fertilization and phytosanitary treatments. In the 

present case study, the monitoring regarded a crop such as onion, characterized mainly in the early 

stages of the crop cycle by the small size and a non-homogeneous soil cover capacity. It is necessary 

to specify that better monitoring with UAVs could be obtained with higher resolution images than 

the one used, below 4 cm. As for a more accurate comparison of the quality of the data provided 

on the vegetation index values, it would be interesting to make a further comparison, in the same 

context, by including higher-priced cameras. Considering the overall results of the comparison 

carried out, it emerges that the contribution made by each platform must be regarded as 

complementary to that made by the other and not sufficient by itself in accurate monitoring of the 

crop under study. This is true in light of the limitations shown by each platform. 

Considering contexts similar to the one presented, the frequent use of the UAV for weekly 

monitoring could be uncomfortable and expensive if executed in several fields, perhaps not too 

large and spaced out from each other. In this regard, in these cases, it would be easier to use satellite 

images to check the general conditions of the field, interspersed with the use of more detailed UAV 

images at critical moments in the crop cycle. The advisable solution is not the use and preference 

of one platform over another. Therefore, combining different platforms, taking into account the 

level of information quality that each one can give, is desirable when the proper technical 

knowledge is available. To overcome the limitations of all the platforms described above, it would 

be desirable to combine UAV images (preferable with higher than 4 cm of resolution) with high-

resolution satellite images to improve the overall quality of the final products. To be able to deepen 

the aspect related to the comparison between the different platforms, it would also be interesting 

to test the proposed approach on other crops. 
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7 General conclusions 

In the present Ph.D. thesis, several case studies were collected, which involved the application 

of remote sensing (RS) techniques to monitor herbaceous and tree crops of primary interest in the 

Calabria region (Italy). In particular, several RS platforms were used, including UAVs, in 

monitoring the investigated study sites. The use of the UAV platform, mounting several types of 

sensors, demonstrated flexibility and reliability in photogrammetric reconstruction at the farming 

scale, using ultra-high-resolution images to obtain a reasonable reconstruction of the orchards and 

monitoring of the crop conditions. Obviously, for obtaining good results, good quality of UAV 

field surveys is a pre-condition. Therefore, during the individual surveys’ execution, the correct 

UAV flight planning had a crucial role in obtaining satisfactory results. The same can be said about 

the field measures, such as the GCP laying (i.e., their number and correct distribution). 

Semi-automatic workflows involved the use of unsupervised and supervised classification 

techniques applied on crops characterized by different dimension, spatial pattern, density, and 

crop management. Specifically, some workflows allowed to produce vigor maps by extracting the 

whole field as in the case of onions or only the parts of interest as in the case of olive, bergamot and 

clementine tree crowns. The results obtained showed several important commonalities and 

strengths despite the differences in approaches and cases addressed. The first strength and novelty 

of the proposed procedures relies on their replicability, reliability, speed and simplicity of the 

approaches. The second strength concerns the ability of implemented approaches to to prove 

effective in different datasets characterized by heterogeneous agricultural contexts. The 

heterogeneity concerned several crop species, tree plantation distances and composition, different 

crop management, and different tree age, height, and crown diameters in the surveyed orchards, 

thus resulting in the scene’s high spatial variability. Therefore, the heterogeneity within the 

analysed scenarios also concerned in some cases the different arrangement of crops, not always 

regular, combined, in some cases, with problems of overlap (between tree crowns), and the spectral 

similarity between the species of interest and or between them and weeds. 

The promising results despite all the aspects and difficulties mentioned, proved that the proposed 

approaches could be applied to a wide range of vegetation types.  

On the other hand, compared to traditional satellites, the introduction of other platforms, including 

nanosatellites, and equipped with sensors capable of offering very-high-resolution images of less 

than 3 m or the ultra-high resolution of fewer than 1 m, makes satellites increasingly competitive 
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concerning the use of UAVs in PA applications. For this purpose, a comparison has been made 

between images of onion crops derived from three different platforms, a UAV and two satellites, 

one free medium resolution platform, and the other low-cost, high resolution. The study was 

focused on the analysis of the spatial resolution differences and the effects they may have on data 

quality in a PA context. The results confirms the role of high-resolution satellites in crop monitoring 

on a large scale. However, some limitations and uncertainties emerged where there is a need to 

discriminate localized conditions of inhomogeneity in the field, thus proving UAVs make the 

difference in guiding agronomic localized operations. 

As things stand and taking into account the results, when considering the different platforms 

and sensors of RS, no one is probably able to offer a high resolution in all spatial, spectral, and 

temporal dimensions. Therefore, it would be desirable to synergize UAV images with high-

resolution satellite images to improve the quality of the final products to overcome these limits 

taking into account the level of information quality of each platform.  

Concerning the time, the implemented workflows needed one or two working days of two 

good skilled operators in geomatics, starting from the on-field data collection to obtaining vigor 

maps. These characteristics are in line with the need of the PA to provide information, in a short 

time, useful to guide farmers’ decisions. Considering the importance of PA for practical business 

uses, this work arises from the need to evaluate a quick, reliable, and repeatable approach for 

agricultural mapping. The results obtained in the case studies showed the potential of the 

approaches adopted in providing useful information to manage farm operations and guide 

farmers’ decisions in PA. This was proved with promising results even in small and medium-sized 

farms, not necessarily characterized by crop parcels of very large dimensions. Notwithstanding 

this aspect, an increasing use of RS tools, techniques and data, even if limited and aimed at 

monitoring and carrying out certain crop operations, brings undoubted benefits to the farm and is 

a fundamental step towards the agriculture of the future. 
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8 LIST OF FIGURES 

Figure 1.1 Olive orchard. 

Figure 1.2 Total area and production in Italy and Calabria and related percentages. 

Figure 1.3 Total area and production in Italy and Calabria’s provinces expressed in percentage.  

Figure 1.4 Bergamot orchard (top) and fruits at different degrees of ripeness (below). 

Figure 1.5 Trees and clementine fruits. 

Figure 1.6 Total area and production in Italy and Calabria and related percentages. 

Figure 1.7 Map of Calabria with the municipalities belonging to the production area of "Clementine di 

Calabria IGP" highlighted in yellow. 

Figure 1.8 Total area and production in Italy and Calabria’s provinces expressed in percentage. 

Figure 1.9 Onions on the field (left) and onions”Cipolla Rossa di Tropea”(right). 

Figure 1.10 Map of Calabria with the municipalities belonging to the production area of "Cipolla di 

Tropea IGP" highlighted in orange.. 

Figure 1.11 Total area and production in Italy and Calabria’s provinces expressed in percentage. 

 

Figure 2.1 The electromagnetic spectrum. In evidence, the visible region, in which the three bands blue, 

green and red (0.4 – 0.7 µm)  are further detailed. 

Figure 2.2 The electromagnetic radiation’s components according to the wave theory of light. 

Figure 2.3 The electromagnetic spectrum. In evidence, the infrared region (IR), in which the reflected-

IR (0.7–3.0 µm) and the emitted-IR (3.0–100 µm) are further detailed (Messina and Modica, 2020b). 

Figure 2.4 Atmospheric transmittance in the thermal region with typical absorption bands induced by 

gases and water (source (Messina and Modica, 2020b) modified from (Richter and Schlapfer, 2019)). 

Figure 2.5 Typical spectral signatures of a healthy and stressed plant (micasense.com). 

Figure 2.6 Interaction of electromagnetic energy in the different leaf layers. 

Figure 2.7 Typical spectral signature of different types of soil (Jones and Vaughan, 2010). 

Figure 2.8 Types of surface reflection. 

Figure 2.9 UAV quadcopter DJI Phantom 4 Pro. 
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Figure 2.10 An example of multispectral UAV, the Parrot Sequoia, capable of taking pictures in 4 

different bands: Green, Red, Red edge and NIR. 

 

Figure 3.1 Geographic location and photographic description of the study sites A1 (Clementine), A2 

(Olive), and B (Bergamot and olive) orchard (source, Modica et al., 2020). 

Figure 3.2 Workflow followed for the vegetation monitoring using UAV multispectral imagery in 

heterogeneous citrus and olive orchards (source, Modica et al., 2020). 

Figure 3.3 Top left (1), the UAV Multirotor G4 Surveying-Robot (Service Drone GmbH) equipped with 

Tetracam µ-MCA06 snap multispectral camera; top right (2), camera mounted on UAV gimbal and 

ready to capture images. Bottom left (3), a graphical scheme shows how the UAV takes into account the 

3D morphology of the surveyed area, guaranteeing a constant height of flight and (4) a 3D view of a 

flight plan (source, Modica et al., 2020). 

Figure 3.4 Ground control point (GCP) made by attaching two black cards to a polypropylene panel. 

Figure 3.5 Segmentation in the study site A1. 

Figure 3.6 Segmentation in the study site A2. 

Figure 3.7 Segmentation in the study site B. 

Figure 3.8 Map showing the study site B with, highlighted in red, the ten parcels identified according 

to the irrigation scheme (source, Modica et al., 2020). 

Figure 3.9 Correlation matrix between the six selected vegetation indices (VIs) implemented on the 

whole image of the study site A1. 

Figure 3.10 Study site A1. Scatter plot matrix showing all bivariate relationships between the input layer 

bands. For each scatterplot, implemented using the 2D kernel density estimate (KDE) with a Gaussian 

function, the correlation line (in red), was provided. The main diagonal reports the histograms showing 

the frequency distribution of pixel values. In the upper half-matrix, Pearson’s correlation (R) coefficients 

for all pairwise combinations of variables, are reported (source, Modica et al., 2020). 

Figure 3.11 Correlation matrix between the six selected vegetation indices (VIs) implemented on the 

whole image of the study site A2. 

Figure 3.12 Study site A2. Scatter plot matrix showing all bivariate relationships between the input layer 

bands. For each scatterplot, implemented using the 2D kernel density estimate (KDE) with a Gaussian 

function, the correlation line (in red), was reported. The main diagonal reports the histograms showing 
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the frequency distribution of pixel values. In the upper half-matrix, Pearson’s correlation (R) coefficients 

for all pairwise combinations of variables, are reported (source, Modica et al., 2020). 

Figure 3.13 Correlation matrix between the six selected vegetation indices (VIs) implemented on the 

whole image of the study site B. 

Figure 3.14 Study site B. Scatter plot matrix showing all bivariate relationships between the input layer 

bands. For each scatterplot, implemented using the 2D kernel density estimate (KDE) with a Gaussian 

function, the correlation line (in red), was reported. The main diagonal reports the histograms showing 

the frequency distribution of pixel values. In the upper half-matrix, Pearson’s correlation (R) coefficients 

for all pairwise combinations of variables, are reported (source, Modica et al., 2020). 

Figure 3.15 Land use maps of the three study sites obtained applying the implemented image object 

classification workflow: A1(Clementine), A2 (Olive), and B (Bergamot and Olive) (source, Modica et al., 

2020). 

Figure 3.16 Maps showing a visual picture of the obtained accuracy in the analyzed three study sites 

[A1 (Clementine), A2 (Olive) and B (Bergamot and Olive)], using the onscreen digitized canopy 

boundaries as reference data. Reference crowns (Rc) are in blue, true positives (TP) are in green, false 

negatives (FN) in red, and false positives (FP) in yellow (source, Modica et al., 2020). 

Figure 3.17 Correlation matrix between the six selected vegetation indices (VIs) implemented only using 

the class of trees (bergamot, clementine, and olive) as input data (source, Modica et al., 2020). 

Figure 3.18 Vegetative vigor maps of the three analyzed study site [A1 (Clementine), A2 (Olive) and B 

(Bergamot and Olive)] based on the Normalized Difference Vegetation Index (NDVI) values (source, 

Modica et al., 2020).  

Figure 3.19 Vegetative vigor maps of the three analyzed study site [A1 (Clementine), A2 (Olive) and B 

(Bergamot and Olive)] based on the Normalized Difference Red edge Vegetation Index (NDRE) values 

(source, Modica et al., 2020). 

 

Figure 4.1 Geographical location of the two study sites, 1 (citrus orchard) and 2 (onion crop). Below, we 

provided two representative photos of them. 

Figure 4.2 Training polygons of dataset 1: in green those belonging to the "bergamot" class; in brown 

those belonging to the "bare soil" class. 

Figure 4.3 Segmentation in the study site 1. 

Figure 4.4 Segmentation in the study site 2. 
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Figure 4.5 The main characteristics of the obtained classifications in the study site 1. On the left side (a), 

reported the distribution of the number of segments (in %) in each of the defined land use (LC) classes 

and according to each of the implemented classification algorithms were reported. On the right side (b), 

the distribution of the surface area of the obtained segments (in %) in each of the defined LC classes and 

according to each of the implemented classification algorithms were showed. 

Figure 4.6 The figure shows the main characteristics of the obtained classifications of the study site 2. 

On the left side (a), the distribution of the number of segments (in %) in each of the defined land use 

(LC) classes and according to each of the implemented classification algorithms were reported. On the 

right side (b), we provided the distribution of the surface area of the obtained segments (in %) in each 

of the defined LC classes and according to each of the implemented classification algorithms were 

showed. 

Figure 4.7 Study site 1. User's, Producer's and Overall accuracies, and F-scorei (single-class) and F-scoreM 

(multi-class) values obtained for each algorithm. 

Figure 4.8 Study site 2. User's, Producer's and Overall accuracies, and F-scorei (single-class) and F-scoreM 

(multi-class) values obtained for each algorithm. 

Figure 4.9 The classification of the study site 1 organized according to the four classification algorithms 

in order from top to bottom: K-Nearest Neighbour (KNN), Random Forest (RF), Support Vector 

Machine (SVM), and Normal Bayes (NB). 

Figure 4.10 The classification of the study site 2 organized according to the four classification algorithms 

in order from top to bottom: K-Nearest Neighbour (KNN), Random Forest (RF), Support Vector 

Machine (SVM), and Normal Bayes (NB). 

 

Figure 5.1 DJI Phantom 4 Pro (a), (b) DJI Inspire 1, both equipped with a FLIR Vue Pro R 640  uncooled 

thermal camera (c) (sources (Messina and Modica, 2020b) and flir.it). 

Figure 5.2 The temperature reference targets used during thermal unmanned aerial vehicle (UAV) 

surveys carried out in an onion crop field in Calabria (Italy) (source, Messina and Modica, 2020b). 

Figure 5.3 Photo of the homemade target for ground control points (GCPs) designed to be easily 

detected in both thermal and multispectral UAV surveys. (a). The GCP target (white dashed circle) as it 

appears in thermal (b) and in near-infrared (NIR) multispectral images (c) (source, Messina and Modica, 

2020b). 
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Figure 5.4 (a) The weather station used during the thermal surveys carried on an onion field and (b) the 

handheld infrared thermometer used to measure the temperature of reference surfaces (source, Messina 

and Modica, 2020b). 

Figure 5.5 (a) The localisation of the study site (Campora S. Giovanni, CS – Italy). (b-c) The onion field 

where the experiments were carried out (source, Messina et al., 2019). 

Figure 5.6  The quadcopter DJI Phantom 4 equipped with the thermal camera Flir Vue Pro R 640 (on the 

left) and the fixed-wing Parrot Disco-Pro AG equipped with the multispectral camera Parrot Sequoia 

(on the right) (source, Messina et al., 2019). 

Figure 5.7 (a) Multispectral camera Parrot Sequoia and (b) thermal camera FLIR Vue Pro 640 R as 

used to carry out surveys. 

Figure 5.8  FLIR Vue Pro APP used to set the thermal camera FLIR Vue Pro. 

Figure 5.8 (a)  Temperature reference targets used during thermal surveys. (b)  Thermal (above) and 

multispectral (below) targets used as ground control points (GCPs) in the onion field. c  The Parrot 

Sequoia calibration target (source, Messina et al., 2019). 

Figure 5.9 (a) Above, a map showing the image-object classification of weeds (yellow) and onions 

(green)  performed in eCognition suite. Below, the two obtained orthomosaics from the UAV surveys 

carried out on 23 November 2018. (b) Map of the temperatures [°C]. (c) Map of the normalized difference 

vegetation index (NDVI) (source, Messina et al., 2019). 

 

Figure 6.2 (a) The location of the study site. (b - c- d) The onion field in which the surveys were carried 

out (Campora S. Giovanni, CS – Italy) (source, Messina et al., 2020c). 

Figure 6.2 Crop cycle of the onion, dates of the unmanned aerial vehicles (UAVs) surveys and of 

imagery acquisition (source, Messina et al., 2020c). 

Figure 6.3 The Parrot Disco-Pro AG fixed wing unmanned aerial vehicle (UAV) during the pre-flight 

calibration using the Parrot Sequoia calibration target (source, Messina et al., 2020c). 

Figure 6.4 RGB orthomosaics of the three datasets (November-December and January) derived from the 

platforms UAV (top), satellite PlanetScope (center), and Satellite Sentinel-2 (bottom). 

Figure 6.5 Scatter plots matrix showing the correlation between the four bands (Green, Red, Red 

edge, and NIR) and the four vegetation indices (VIs) analyzed (NDVI, NDRE, GNDVI, and SAVI). 

Dataset of 23 November 2018. 
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Figure 6.6 Scatter plots matrix showing the correlation between the four bands (Green, Red, Red 

edge, NIR) and the four vegetation indices (VIs) analyzed (NDVI, NDRE, GNDVI, and SAVI). 

Dataset of 19 December 2018. 

Figure 6.7 Scatter plots matrix showing the correlation between the four bands (Green, Red, Red 

edge, NIR) and the four vegetation indices (VIs) analyzed (NDVI, NDRE, GNDVI, and SAVI). 

Dataset of 18 January 2019. 

Figure 6.8 SAVI maps showing onion crop, derived from the platforms UAV (top), satellite 

PlanetScope (center), and Satellite Sentinel-2 (bottom) at their native resolutions (5 cm for UAV, 3 

m for PlanetScope, and 10 m for Sentinel-2) (source, Messina et al., 2020c). 

Figure 6.9 Histograms showing the distribution of SAVI values as a percentage of total values. The 

imagery of UAV is represented in blue, PlanetScope in red, and Sentinel-2 in green (source, Messina et 

al., 2020c). 

Figure 6.10 Scatter plots of SAVI values from the UAV, PlanetScope and Sentinel-2 (S2) map in three 

months surveyed (source, Messina et al., 2020c). 

Figure 6.11 Scatter plots of SAVI values from UAV onions mask (SAVI onions) (x-axis), PlanetScope 

and Sentinel-2 maps in the three months surveyed (source, Messina et al., 2020c). 

Figure 6.12 Scatter plots of SAVI values from UAV considering only soil pixels (SAVI soil) (x-axis) , 

PlanetScope and Sentinel-2 maps in the three months surveyed (source, Messina et al., 2020c). 

Figure 6.13 Maps showing onion crop area, derived from the UAV imagery (top), and the percentage of 

area covered by onion crop within PlanetScope’s (center), and Sentinel-2’s (bottom) pixels at their native 

resolutions (3 m for PlanetScope, and 10 m for Sentinel-2) (source Messina et al., 2020c). 

Figure 6.14 Scatter plots showing the correlation between SAVI values from satellites and the area 

covered by onion crop (x-axis) in the three months surveyed (source, Messina et al., 2020c). 

Figure 6.15 SAVI maps showing onion crop with 10 m resolution, derived from the platforms UAV 

(top), satellite PlanetScope (center), and Satellite Sentinel-2 (bottom) (source, Messina et al., 2020c). 

Figure 6.16 The spectral signature of onion crop derived from the reflectance data of pure onion pixels 

for the three platforms in the three periods surveyed (November, December, and January). The shaded 

light violet indicates the region of the two bands used for the soil adjusted vegetation index (SAVI) 

calculation (red and near-infrared, NIR) (source, Messina et al., 2020c). 



172 

 

Figure 6.17 A map showing the image-object classification of bare soil (in brown) and onions (in green) 

performed in the eCognition Developer suite. Dataset of 23 November 2018 (source, Messina et al., 

2020c). 

Figure 6.18 SAVI maps from November 2018 (top) to January 2019 (bottom). Next to the image of each 

dataset, blue and magenta rectangles magnify the details of the vegetative vigor of onion crops in two 

different parts of the field and where the transplanting took place with three weeks apart. The ellipses 

highlight areas of the field where the onion crops are absent or have had difficulty growing (source, 

Messina et al., 2020c). 
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Table 1.4 Total area cultivated and total production (quintals) in Calabria’s provinces. 

Table 1.5 Total area cultivated and total production (quintals) in Calabria’s provinces. 

 

Table 2.1 The emissivity of different surfaces over the range of 8–14 μm (Campbell e Wynne, 2017; 
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Table 3.3 Formulation of the six vegetation indices (VIs) used in the present work. 
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Table 4.2 Flight and UAV dataset characteristics. 

Table 4.3 Main parameters set for each of the implemented classification algorithms, K-Nearest 

Neighbour (KNN), Support Vector Machine (SVM) and Random Forest (RF). 

Table 4.4 The table shows the most significant metrics of the obtained segmentations and the requested 

processing time for each algorithm in the study sites 1 and 2. 

Table 4.5 Distribution of trainer points in land cover (LC) classes in the study sites sites. 

Table 4.6 Confusion matrix obtained for the classifier  K-Nearest Neighbour (KNN) in the study site 1.  

Table 4.7 Confusion matrix obtained for the classifier  Random Forest (RF) in the study site 1.  
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Table 4.8 Confusion matrix obtained for the classifier  Support Vector Machine (SVM) in the 

study site 1.  

Table 4.9 Confusion matrix obtained for the classifier  Normal Bayes (NB)  in the study site 1.  

Table 4.10 Confusion matrix obtained for the classifier K-Nearest Neighbour (KNN)  in the study site 

2.  

Table 4.11 Confusion matrix obtained for the classifier  Random Forest (RF) in the study site 2.  

Table 4.12 Confusion matrix obtained for the classifier  Support Vector Machine (SVM) in the 

study site 2.  

Table 4.13 Confusion matrix obtained for the classifier  Normal Bayes (NB) in the study site 2.  

 

Table 6.1 Characteristics of the multispectral camera and of the satellites whose images were used in 

this research. 

Table 6.2 Formulation of the four vegetation indices (VIs) used in the present research. 

Table 6.3 Basic statistics considering images of the three platforms (UAV, PlanetScope, and Sentinel-2) 

at their original resolution. 
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10 ACRONYMS 

CHM = canopy height model 

CVI = Chlorophyll Vegetation Index 

DSM = digital surface model 

DTM = digital terrain model 

EM = electromagnetic 

GEOBIA = geographic object-based image analysis 

GNDVI = Green Normalized Difference Vegetation Index 

GNSS = global navigation satellite system 

GRNDVI = Green and Red Normalized Difference Vegetation Index  

GCP = Ground Control Point 

GSD = ground sample distance 

KNN = k-nearest neighbour 

LAI = leaf area index 

LC = land cover 

ML = machine learning 

MRS = multiresolution segmentation 

MS = multispectral 

NB = normal bayes 

NDRE = Normalized Difference Red edge Index 

NDVI = Normalized Difference Vegetation Index 

NIR = Near-infrared  

p = precision 

PA = precision agriculture 

PDO = protected designation of origin 
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PGI = protected geographical indication 

r = recall 

RF = random forest 

RS = remote sensing 

SAVI = Soil-Adjusted Vegetation Index 

SE = standard error 

SR = simple ratio 

SVM = support vector machine 

TIR = thermal infrared 

VHR = very high resolution 

UAV = unmanned aerial vehicle 

VI = vegetation index 

VIS = visible 
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