
SCUOLA DI DOTTORATO

UNIVERSITÀ DEGLI STUDI MEDITERRANEA DI REGGIO CALABRIA

DIPARTIMENTO DI INGEGNERIA CIVILE, DELL’ENERGIA

DELL’AMBIENTALE E DEI MATERIALI (DICEAM)

DOTTORATO DI RICERCA IN
INGEGNERIA CIVILE, AMBIENTALE E DELLA SICUREZZA

S.S.D. ING-INF/05
XXXIII CICLO

OSMOTIC COMPUTING: SECURE AND
DEPENDABLE MICROSERVICES

ORCHESTRATION IN THE CLOUD-TO-
THING CONTINUUM

DOTTORANDO:

MIHAELA-ALINA BUZACHIS

TUTOR:

Prof. Massimo Villari

CO-TUTOR:

Prof. Giovanni Pioggia

COORDINATORE:

Prof. Felice Arena

REGGIO CALABRIA, FEBBRAIO 2021

0List of Publications
Articles in Refereed Journals

(IJ.1) Buzachis A., Galletta A., Celesti A, Jiafu Wan, Fazio M., Villari M. - “A
Map-Reduce Approach for the Dijkstra Algorithm in SDN over Osmotic
Computing Systems”. International Journal on Parallel Programming (IJPP).
[accepted]

(IJ.2) Buzachis A., Celesti A., Galletta A., Jiafu Wan, Fazio M. – “Evaluating a
Distributed Dijkstra Routing Algorithm in Hybrid Computing Environ-
ments for IoT Applications”. IEEE Transactions on Sustainable Computing,
Special Issue on Sustainability of Fog/Edge Computing Systems. [under
revision]

(IJ.3) Buzachis, A., Celesti, A., Galletta, A., Fazio, M., Fortino, G., & Villari, M.
(2020). A multi-agent autonomous intersection management (MA-AIM)
system for smart cities leveraging edge-of-things and Blockchain. Inf. Sci.,
522, 148-163.

(IJ.4) Summa, S., Tartarisco, G., Favetta, M., Buzachis, A., Romano, A., Bernava,
G., Sancesario, A., Vasco, G., Pioggia, G., Petrarca, M., Castelli, E., Bertini,
E., & Schirinzi, T. (2020). Validation of low-cost system for gait assessment
in children with ataxia. Computer methods and programs in biomedicine,
196, 105705 .

(IJ.5) Summa, S., Tartarisco, G., Favetta, M., Buzachis, A., Romano, A., Bernava,
G.M., Vasco, G., Pioggia, G., Petrarca, M., Castelli, E., Bertini, E., & Schirinzi,
T. (2020). Spatio-temporal parameters of ataxia gait dataset obtained with
the Kinect. Data in Brief, 32.

(IJ.6) Buzachis A., Celesti A., Galletta A., Fazio M., Fortino G., and Villari M. -
“An Edge Computing Based Post-Disaster Communication Network for
Industrial Applications”, Journal of Computers & Electrical Engineering -
VSI on Edge Intelligence in Industrial Applications (VSI-eiia). [under review]

Articles in Refereed Conference Proceedings

(IC.1) A. Buzachis, A. Galletta, L. Carnevale, A. Celesti, M. Fazio and M. Villari,
"Towards Osmotic Computing: Analyzing Overlay Network Solutions

i

to Optimize the Deployment of Container-Based Microservices in Fog,
Edge and IoT Environments," 2018 IEEE 2nd International Conference on
Fog and Edge Computing (ICFEC), Washington, DC, 2018, pp. 1-10, doi:
10.1109/CFEC.2018.8358729.

(IC.2) A. Buzachis, G. M. Bernava, M. Busà, G. Pioggia and M. Villari, "To-
wards Osmotic Computing: Future Prospect for the Health Information
Technology (HIT) Systems of ISASI-CNR (ME)," 2018 IEEE Symposium on
Computers and Communications (ISCC), Natal, 2018, pp. 01255-01260, doi:
10.1109/ISCC.2018.8538714.

(IC.3) A. Celesti, A. Buzachis, A. Galletta, G. Fiumara, M. Fazio and M. Villari,
"Analysis of a NoSQL Graph DBMS for a Hospital Social Network," 2018
IEEE Symposium on Computers and Communications (ISCC), Natal, 2018,
pp. 01298-01303, doi: 10.1109/ISCC.2018.8538469.

(IC.4) A. Buzachis, A. Galletta, A. Celesti, L. Carnevale and M. Villari, "Towards
Osmotic Computing: a Blue-Green Strategy for the Fast Re-Deployment
of Microservices," 2019 IEEE Symposium on Computers and Communica-
tions (ISCC), Barcelona, Spain, 2019, pp. 1-6, doi: 10.1109/ISCC47284.2019.
8969621.

(IC.5) A. Celesti, A. Buzachis, A. Galletta, M. Fazio and M. Villari, "A NoSQL
Graph Approach to Manage IoTaaS in Cloud/Edge Environments," 2018
IEEE 6th International Conference on Future Internet of Things and Cloud
(FiCloud), Barcelona, 2018, pp. 407-412, doi: 10.1109/FiCloud.2018.00065.

(IC.6) Buzachis, A., Galletta, A., Celesti, A., & Villari, M. (2018). An Innovative
MapReduce-Based Approach of Dijkstra’s Algorithm for SDN Routing
in Hybrid Cloud, Edge and IoT Scenarios. In Service-Oriented and Cloud
Computing (pp. 185–198). Springer International Publishing.

(IC.7) A. Buzachis, G. M. Bernava, M. Busa, G. Pioggia and M. Villari, "Towards
the Basic Principles of Osmotic Computing: A Closed-Loop Gami�ed Cog-
nitive Rehabilitation Flow Model," 2018 IEEE 4th International Conference
on Collaboration and Internet Computing (CIC), Philadelphia, PA, 2018, pp.
446-452, doi: 10.1109/CIC.2018.00067.

(IC.8) A. Buzachis, A. Celesti, A. Galletta, M. Fazio and M. Villari, "A Secure
and Dependable Multi-Agent Autonomous Intersection Management (MA-
AIM) System Leveraging Blockchain Facilities," in 2018 IEEE/ACM Inter-
national Conference on Utility and Cloud Computing Companion (UCC Com-
panion), Zurich, Switzerland, 2018 pp. 226-231, doi: 10.1109/UCC-Companion.
2018.00060.

ii

(IC.9) A. Buzachis and M. Villari, "Basic Principles of Osmotic Computing:
Secure and Dependable MicroElements (MELs) Orchestration Leveraging
Blockchain Facilities," 2018 IEEE/ACM International Conference on Utility
and Cloud Computing Companion (UCC Companion), Zurich, 2018, pp.
47-52, doi: 10.1109/UCC-Companion.2018.00033.

(IC.10) A. Buzachis, A. Galletta, A. Celesti, M. Fazio and M. Villari, "Develop-
ment of a Smart Metering Microservice Based on Fast Fourier Transform
(FFT) for Edge/Internet of Things Environments," 2019 IEEE 3rd Interna-
tional Conference on Fog and Edge Computing (ICFEC), Larnaca, Cyprus,
2019, pp. 1-6, doi: 10.1109/CFEC.2019.8733148.

(IC.11) A. Buzachis, A. Celesti, M. Fazio and M. Villari, "On the Design of a
Blockchain-as-a-Service-Based Health Information Exchange (BaaS-HIE)
System for Patient Monitoring," 2019 IEEE Symposium on Computers and
Communications (ISCC), Barcelona, Spain, 2019, pp. 1-6, doi: 10.1109/
ISCC47284.2019.8969718.

(IC.12) Buzachis, A., Filocamo, B., Fazio, M., Ruiz, J.A., Sotelo, M., & Villari, M.
(2019). Distributed Priority BasedManagement of Road Intersections Using
Blockchain. 2019 IEEE Symposium on Computers and Communications
(ISCC), 1159-1164.

(IC.13) A. Buzachis, M. Fazio, A. Galletta, A. Celesti and M. Villari, "Infrastruc-
tureless IoT-as-a-Service for Public Safety and Disaster Response," 2019 7th
International Conference on Future Internet of Things and Cloud (FiCloud),
Istanbul, Turkey, 2019, pp. 133-140, doi: 10.1109/FiCloud.2019.00026.

(IC.14) Buzachis, A., Fazio, M., Celesti, A., & Villari, M. (2019). Osmotic Flow
Deployment Leveraging FaaS Capabilities. In Internet and Distributed
Computing Systems (pp. 391–401). Springer International Publishing. 2019,
Napoli, Italy.

(IC.15) Buzachis, A., Fazio, M., Galletta, A., Celesti, A., & Villari, M. (2019). In-
telligent IoT for Non-Intrusive Appliance Load Monitoring Infrastructures
in Smart Cities. AI&IoT@AI*IA.

(IC.16) M. Fazio,A. Buzachis, A. Galletta, A. Celesti andM. Villari, "A proximity-
based indoor navigation system tackling the COVID-19 social distancing
measures," 2020 IEEE Symposium on Computers and Communications (ISCC),
Rennes, France, 2020, pp. 1-6, doi: 10.1109/ISCC50000.2020.9219634.

(IC.17) A. Buzachis, D. Boruta, M. Villari, J. Spillner, “Modeling and Emulation
of an Osmotic Computing Ecosystem using OsmoticToolkit”, emph2021

iii

Australasian Computer Science Week Multiconference (ACSW ’21)., Asso-
ciation for Computing Machinery, New York, NY, USA, Article 9, 1–9. doi:
https://doi.org/10.1145/3437378.3444366

(IC.18) J. Spillner, P. Gkikopoulos, A. Buzachis and M. Villari, "Rule-Based
Resource Matchmaking for Composite Application Deployments across
IoT-Fog-Cloud Continuums," 2020 IEEE/ACM 13th International Conference
on Utility and Cloud Computing (UCC), Leicester, United Kingdom, 2020,
pp. 336-341, doi: 10.1109/UCC48980.2020.00053.

Book Chapters

(BC.1) Taheri, Javid; Shuiguang Deng, (ed.): ’Edge Computing: Models, tech-
nologies and applications’ (Computing, 2020) DOI: IET Digital Library,
https://digital-library.theiet.org/content/books/pc/pbpc033e

Patents

(P.1) L. Carnevale, A. Buzachis, A. Galletta, C. Cincotta, F. Martella, and M.
Villari, ”Communication System based on Mesh Networks,” November 22,
2018 (P4548IT00).

iv

0
“You can’t connect the dots looking forward; you can only connect them looking
backwards. So you have to trust that the dots will somehow connect in your future.
You have to trust in something – your gut, destiny, life, karma, whatever. Because
believing that the dots will connect down the road will give you the con�dence to
follow your heart even when it leads you o� the well worn path; and that will make
all the di�erence.”

Steve Jobs
(Stanford commencement speech, June 2005)

0Abstract
Internet of Things (IoT) is a profound technology evolution incorporating billions
of devices (e.g., sensors, RFIDs, smartphones, and wearables) owned by di�erent
organizations and people who are deploying and using them for pervasive digital
services. Their number, capabilities, scope of use and data volume keep growing
and changing rapidly, leading to higher complexity in IoT applications. Thus, new
distributed computing paradigms, such as Edge Computing (EC) or IoT-Cloud
Computing, have been investigated to extend IoT resources into centralized data
centres (e.g., clouds) or at the edge of IoT systems (e.g., edge micro datacenters).
Among the most promising ones is Osmotic Computing (OC), motivated by

the lack of a scalable, interoperable, con�gurable solution for delivering IoT ap-
plications in complex, heterogeneous and dynamic computing environments. OC
looks at the opportunistic management of microservices (called MicroELements
- MELs) to improve the Quality of Service (QoS) and networking management,
interoperability, and e�ciency of next-generation IoT applications. This thesis
investigates howOC can be leveraged to achieve secure and dependable microser-
vices orchestration in the Cloud-to-Thing (C2T) continuum where deployment
and orchestration strategies depend on IoT applications’ speci�c requirements
and physical/virtual resources availability.

This contribution can be divided into four major parts. The �rst part overviews
the C2T continuum in general and faces the resource management challenges.
The second part details basic concepts, methodologies and key technologies
behind OC and investigates how IoT applications into the C2T continuum can
bene�t from it. The third part showcases OsmoticToolkit, a cost-e�ective and
�exible toolkit for OC ecosystems’ from-scratch design and real-world appli-
cations emulation. Finally, the fourth part gives a more in-depth look into
the application deployment strategies and presents a Rule-Based MatchMaker
(RBMM) for supporting applications deployment in the C2T continuum.

vii

0Sommario

Internet of Things (IoT) è una radicale evoluzione tecnologica che incorpora
miliardi di dispositivi (ad esempio, sensori, RFID, smartphone e dispositivi in-
dossabili) che possono essere utilizzati da organizzazioni e/o persone per servizi
digitali pervasivi. Il loro numero, le loro capacità, l’ambito di utilizzo e il volume
di dati continuano a crescere e cambiare rapidamente. Questo comporta una
maggiore complessità nelle applicazioni IoT. Così, nuovi paradigmi di calcolo
distribuito, come Edge Computing (EC) o IoT-Cloud Computing, sono stati stu-
diati per estendere le risorse dell’IoT in data center centralizzati (ad esempio,
cloud) o ai margini dei sistemi di IoT (ad esempio, micro data center edge).

A tale scopo il paradigma più promettente è l’Osmotic Computing (OC), moti-
vato dalla mancanza di una soluzione scalabile, interoperabile e con�gurabile
per la fornitura di applicazioni IoT in ambienti di calcolo complessi, eterogenei e
dinamici. OC si occupa della gestione opportunistica dei microservizi (chiamati
MicroELements - MELs) per migliorare la gestione della Quality of Service (QoS)
e della rete, l’interoperabilità e l’e�cienza delle applicazioni IoT di nuova gene-
razione. Questa tesi è incentrata sullo studio del paradigma OC e approfondisce
i meccanismi che permettono di ottenere un’orchestrazione sicura e a�dabile
dei microservizi nel continuum Cloud-to-Thing (C2T), dove le strategie di imple-
mentazione e orchestrazione dipendono dai requisiti speci�ci delle applicazioni
IoT e dalla disponibilità di risorse �siche/virtuali.
Questo contributo può essere suddiviso in quattro parti principali. La prima

parte descrive il continuum C2T in generale e a�ronta le s�de della gestione delle
risorse. La seconda parte descrive in dettaglio i concetti di base, le metodologie
e le tecnologie chiave alla base della OC e indaga su come le applicazioni IoT nel
continuum C2T possono bene�ciarne. La terza parte presenta OsmoticToolkit,
un toolkit �essibile ed economico per la progettazione di ecosistemi osmotici da
zero e l’emulazione di applicazioni reali. In�ne, la quarta parte o�re uno sguardo
più approfondito sulle strategie di implementazione delle applicazioni e presenta
un Rule-Based MatchMaker (RBMM) per supportare la distribuzione e�ciente
delle applicazioni nel continuum C2T.

ix

0Acknowledgments

My Ph.D. has been a fantastic journey that constantly challenged me to push
my knowledge and capabilities boundaries. It was a journey that gave me
many memories that I will always cherish but would remain incomplete without
acknowledging the people who made it possible. I was lucky to work with and
make friends with several people who helped me become a researcher, and here
I would like to thank them all for their endless love, support and understanding.
First and foremost, I would like to express my deepest appreciation to my

advisor, Prof. Massimo Villari, for his support and guidance throughout my
doctoral studies. I am deeply impressed by his penchant for innovative thinking
and brainstorming ideas with his students, as well as his tireless workaholism
and strong self-discipline.

Sincere thanks are due to my co-supervisor, Dr. Giovanni Pioggia, with whom
I also had the pleasure of collaborating. I extend my thanks to the National
Research Council (CNR-IRIB) sta� fromMessina (Italy), especially to Dr. Massimo
Bernava, who allowed me to collaborate with the Ospedale Bambino Gesù sta�
from Rome (Italy) and who made me appreciate the biomedical research.

Special thanks go to Prof. Josef Spillner for hosting me as a visiting researcher
at the Service Prototyping Lab (SPLAB), Zürich University of Applied Sciences
(ZHAW). Thank you for your support and incredible professional vision. My
experience there was truly remarkable.

I would also like to thank my committee members, Drs. Javid Taheri and Jörg
Domaschka for their constructive feedback and valuable insights that made it
possible for me to improve this dissertation’s overall quality.
My Ph.D. journey would not have been possible without my family. I would

like to thank my mother for her love, support, and encouragement. Special
thanks go to my boyfriend, Adriele Magistro, for his continuous encouragement
and support that helped me overcome many obstacles.

Alina Buzachis
(Zürich, Switzerland, February 2021)

xi

0Contents
List of Publications i

Abstract vii

Sommario ix

Acknowledgments xi

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Research Questions . 4
1.3 Thesis Contributions . 6
1.4 Thesis Outline . 8

I Cloud-to-Thing Continuum 9

2 A Service Model for IoT Applications 11
2.1 The Emergence of IoT-as-a-Service (IoTaaS) 11

2.1.1 Why IoTaaS? . 12
2.2 IoTaaS for Public Safety and Disaster Response 13

2.2.1 Introduction . 13
2.2.2 Literature Review . 14
2.2.3 Public Safety and Disaster Recovery Problem 16

Reference Scenario . 17
2.2.4 Prototyping . 19
2.2.5 Evaluation . 24

Experimental Methodology 24
Real-World Performance Evaluation 26

2.2.6 Summary . 31
2.3 IoTaaS-based Smart Metering . 32

2.3.1 Problem Analysis and Objectives De�nition 33
2.3.2 Smart Metering IoTaaS Prototype 34

Hardware Design . 34
Software Design . 35

2.3.3 Case Study: Smart University Campus 38

xiii

2.3.4 Measurements and Observations of Di�erent Non-Linear
Loads . 39
Calibration Phase . 40
Validation Phase . 40
Discussion . 42

2.3.5 Conclusions and Future Work 43
2.4 IoTaaS-based Gait Assessment for Ataxia 45

2.4.1 Introduction . 45
2.4.2 Population De�nition 46
2.4.3 Experiment Approach 47
2.4.4 Kinect-based IoTaaS Prototype for Gait Assessment . . . 47

Hardware Design . 47
Software Design . 47

2.4.5 Results . 52
Relationship Between the Measures 53
Agreement Between the Measures 53
Correlation with Clinical Tests 53
Classi�cation . 53

2.4.6 Discussion . 55
2.4.7 Conclusions . 58

3 Network Management 59
3.1 Introduction . 59
3.2 Related Work . 61
3.3 Motivation . 62
3.4 Overlay Network Technologies 64

3.4.1 Open Virtual Networking 64
3.4.2 Weave Net . 65
3.4.3 Flannel . 65

3.5 Cloud/Edge Layers Management 66
3.5.1 Kubernetes Overview 66
3.5.2 Distributed Microservice Management 69

3.6 Work�ow . 70
3.6.1 Cluster Con�guration 71

3.7 Experiments . 72
3.7.1 Testbed Con�guration 72
3.7.2 FTP Microservice . 73

Cloud-to-Cloud Scenario 73
Cloud-to-Edge Scenario 74
Edge-to-Edge Scenario 75
Cloud-to-Cloud Scenario 75
Cloud-to-Edge Scenario 75

xiv

3.7.3 CoAP Microservice . 77
Edge-to-Edge Scenario 77

3.7.4 Discussion . 77
3.8 Conclusions and Future Work 79

4 Security Management 81
4.1 BaaS-based Multi-Agent System for Intersection Management . 81

4.1.1 Introduction . 81
4.1.2 Related Works . 83
4.1.3 Motivations . 85
4.1.4 Enabling Technologies 86

Tra�c Simulator . 86
Blockchain Technology 87
Node-RED . 89

4.1.5 Design . 89
Intersection Model . 89
Design of the Blockchain-based AIM System 94

4.1.6 Implementation . 95
Blockchain Network Setup 97
AIM Simulator Setup . 101

4.1.7 Performance . 104
Experimental Setup . 105
Testbed Con�guration 106
Scenario #1 . 107
Scenario #2 . 110

4.1.8 Conclusions and Future Directions 112
4.2 BaaS-based Health Information Exchange System for Patient

Monitoring . 112
4.2.1 Introduction . 112
4.2.2 Motivations and Related Works 113
4.2.3 System Design . 115
4.2.4 Implementation . 116

Patient-Centric User Experience 117
Blockchain Ecosystem 118
IPFS Decentralised Storage 120

4.2.5 Performance . 121
4.2.6 Conclusions and Future Work 123

xv

II The Confluence of Osmotic Computing in the Cloud-to-
Thing Continuum 125

5 Osmotic Computing on the Rise 127
5.1 Introduction and Motivation . 127
5.2 Osmosis Technique . 129
5.3 Osmotic MicroELements . 131
5.4 Software De�ned Membrane Concept 131
5.5 Osmotic Computing Ecosystem Design 132

5.5.1 Research Challenges . 134
5.6 Osmotic Computing Ecosystem Implementation 138

5.6.1 How to Implement an Osmotic Application 139
5.6.2 Experiments . 142

Experimental Setup . 143
Results . 143

5.7 Summary . 144

6 A Gamified Flow Model Leveraging Osmotic Computing 145
6.1 Introduction . 145
6.2 Related Works . 147
6.3 Motivations . 148
6.4 Design Goals of the Osmotic Flow 149
6.5 Use Case: A Closed-Loop Gami�ed Cognitive Rehabilitation

Flow Model . 150
6.5.1 General Description . 150
6.5.2 Closed-Loop Osmotic Flow Implementation 152

6.6 Conclusions and Future Work 154

7 Function-as-a-Service (FaaS)-based Osmotic Flow 157
7.1 Introduction . 157
7.2 Related Works . 158
7.3 Motivations . 159
7.4 Osmotic Flow Model Design . 161
7.5 Experimentation and Evaluation 162

7.5.1 Use Case De�nition: Face Recognition in a Video Surveil-
lance Application . 162

7.5.2 Environment . 163
7.5.3 Results . 164

7.6 Conclusions and Future Work 166

xvi

III How toModel and Emulate Osmotic Computing Ecosys-
tems 169

8 OsmoticToolkit 171
8.1 Introduction . 171
8.2 Background and Related Work 172

8.2.1 Simulation Tools . 172
8.2.2 Emulation Tools . 174

8.3 Motivations and Requirements 175
8.4 OsmoticToolkit Work�ow Design 176

8.4.1 Design Principles . 176
8.4.2 OsmoticToolkit Infrastructure Model 177

8.5 Emulator Implementation . 179
8.5.1 Core Components and APIs 180
8.5.2 Command Line Interface 182
8.5.3 Emulated Environment 183

8.6 Experiments and Evaluation . 188
8.6.1 Methodology . 188
8.6.2 Application Use Case Scenario and Infrastructure Setup 189
8.6.3 Results and Findings . 190

8.7 Conclusions and Future Directions 193

IV Advanced Resource Scheduling for Composite Applica-
tions accross Continuums 195

9 Rule-based Resource Matchmaker (RBMM) 197
9.1 Introduction . 197
9.2 Models, Decision Factors and Rules 198

9.2.1 De�nitions and Models 198
9.2.2 Decision Factors . 199
9.2.3 Acquisition Techniques 200

Software Artefacts . 200
Computing Resources 201

9.2.4 Rules . 201
Propagation Rules . 201
Skipping Rules . 202
Deployment Rules . 202
Accumulation Rules . 203

9.3 Rule-Based and Weighted Matchmaking Concept 203
9.3.1 Design and Architecture 203

xvii

9.3.2 Matchmaking Algorithms 204
Combinatorial Algorithm 204
Tree search algorithm 204

9.4 Implementation . 205
9.4.1 Acquisition Tools . 205
9.4.2 Matchmaker Library . 205
9.4.3 Emulator Integration . 206
9.4.4 Limitations . 207

9.5 Related Works . 207
9.6 Conclusions . 208

10 Conclusions 209
10.1 Contributions Summary . 209
10.2 Future Directions . 211

Bibliography 213

xviii

1 Introduction

1.1 Context and Motivation

Current advances in the cost, performance, and energy e�ciency of Internet
of Things (IoT) devices (e.g., sensors and gateways), network technologies (e.g.,
5G, Wi-Fi, RFID/NFC, Bluetooth, IEEE 802.15.4), and Cloud Computing (CC) has
triggered a ubiquitous connection among people, devices and services anywhere,
anytime and anyhow. IoT is predicted to reach 500 billion devices connected to
the Internet by 2030 [1], while the global mobile tra�c is expected to increase
sevenfold by 2021 [2]. This ubiquity has driven unprecedented growth in data
management, forcing us to rethink how to e�ciently tackle massive volume,
velocity, and variety of the generated big data [3, 4].

A plethora of new heterogeneous connected “things”, called in general Inter-
net of Everything (IoE) [5], are expected to be deployed in the next years. IoE
expands the IoT concept by adding links to data, people (e.g., Internet of People)
and processes (Industrial Internet) [6]. IoE is expected to fuel the evolution of
traditional services and deploy novel categories of services into several applica-
tion domains such as healthcare, cities, utility grids, transportation, agriculture,
industry 4.0, and disaster management. In this panorama, the need for investi-
gating on-the-�y computation over the IoT data streams is ever more critical.
IoT is generally characterized by real-world small things, widely distributed,

with limited storage and processing capacity, which involve concerns regarding
reliability, performance, security, and privacy. On the other hand, CC has virtu-
ally unlimited storage and processing power capabilities, is a much more mature
technology, and partially solves most IoT issues. Thus, a novel IT paradigm
in which cloud and IoT are two complementary technologies are integrated is
called IoT cloud.

Traditional IoT cloud infrastructures tend to be ine�cient due to the following
challenges. First, the traditional solutions have mainly relied on centralized
communication models, e.g., central cloud, for IoT service operations, making it
di�cult to scale when IoT networks become more widespread [7]. Further, tradi-
tional IoT cloud systems mandate trust to a third party, e.g., a cloud provider, for
IoT data processing, which raises data privacy concerns. Finally, the centralized
network infrastructure results in more high communication latency and power
consumption for IoT devices due to long data transmission, limiting large-scale
deployments in practical scenarios [8].

A solution implies decoupling the network delay from the computation time

1

Chapter 1 Introduction

for processing big data by bringing computations towards the edge of networks
(i.e., closer to the end-users who process and consume data). This drove Edge
Computing (EC) and Fog Computing (FC) ’s emergence, an essential endeavour
to sustain such applications’ growth.
EC allows performing computations outside the boundaries of data centres.

Many approaches have already leveraged on some form of EC to improve the
latency perceived by end-users, such as Content Delivery Networks (CDNs) [9],
or tapping into resources of client devices [10], among others. This has moti-
vated the emergence of di�erent architecture proposals for taking advantage
of EC. In particular, Cisco has proposed the model of FC [11] which strives at
increasing the overall performance of IoT applications by placing servers (and
network equipment with computing capacity) close to sensors. Fog servers can
then pre-process data enabling timely reaction to variations on the sensed envi-
ronment and �lter the relevant information that must be propagated towards
cloud infrastructures for further processing. The Open Fog Consortium de�nes
FC as "A horizontal system-level architecture that distributes computing, storage,
control, and networking functions closer to the users along a Cloud-to-Thing con-
tinuum” [12]. Cloud-to-Thing (C2T) continuum has emerged as a revolutionary
paradigm for developing infrastructures that extend beyond centralized data
centres from the cloud to the edge.
Unlike horizontal system-level architecture, a vertical platform may provide

strong support for a single application type (silo). It does not account for platform-
to-platform interaction in other vertically focused platforms. A vertical platform
promotes siloed applications.
On the other hand, EC/FC proposes to lay computing needs on resource-

constrained edge devices. Usually, edge/fog applications are highly time-sensitive
(e.g., tactical warning applications for natural disaster management for weather
conditions). They are required to act immediately on analysis or response to
acquired sensing data.
Mist Computing is an evolution of the FC that has been adopted by indus-

try [13] and intends to push computation towards micro-controllers and sensors
in IoT applications, enabling sensors to make data �ltering computations and
ease the load foisted on fog and cloud servers. Mist Computing can enable local
decision-making with the help of micro-controllers and sensors. It can help
conserve bandwidth and battery power as only essential data is transferred to
the gateway, server or router. Micro-controllers and sensors can only be used for
lightweight data processing and a narrow range of tasks. Hence, these devices
can be used for limited applications.
Thus, the traditional centralized IoT cloud model is undergoing a paradigm

shift towards a decentralized model where data processing occurs in part at the
network edge or anywhere else along the IoT-to-cloud path (edge/fog) rather
than entirely in the cloud.

2

Context and Motivation Section 1.1

Therefore, where computation occurs depends on the speci�c requirements
of each application. For instance, real-time constraints need computation to be
performed as closer to the data source as possible (e.g., IoT Gateway). Conversely,
batch-wise tasks (e.g., big data analytics) are recommended to run on the cloud
where computing resources are su�cient. Edge/fog may be a good compromise
if a concomitant demand for both computing power and elaboration timeliness.
A key concern with using computing models to support IoT applications is

managing di�erent physical and virtual infrastructures (e.g., data centres, edge
devices, and IoT devices) according to speci�c application and service require-
ments (e.g., latency, data volume, responsivity, and processing delays). However,
these models address speci�c application issues and often coexist or need to co-
operate. The coexistence of these computing paradigms in the same application
scenario can be hard to manage, and it requires additional services to support
interoperability and service management.

C2T infrastructure is characterized by extreme heterogeneity, geographic dis-
tribution, and complexity, where the Key Performance Indicators (KPIs) for the
traditional model of CC may no longer apply in the same way. Existing resource
management mechanisms may not be suitable for such complex environments
and require thorough testing, validation, and evaluation before considering live
system implementation. A breakthrough approach to address these issues is
decoupling user data and applications from networking and security services.

Osmotic Computing (OC) [14], a new computing paradigm that aims to over-
come such constraints moves in this direction by addressing issues related to
deployment, networking, and security of microservices, called MicroELements
(MELs), that are composed and interconnected over cloud/fog/edge and IoT
infrastructures with speci�ed levels of Quality of Service (QoS) and security
constraints.
OC, borrowing the term from chemistry, goes beyond simple elastic man-

agement of deployed resources because deployment strategies are related to
requirements of both infrastructure (such as load balancing, reliability, and
availability) and applications (such as sensing/actuation capabilities, context
awareness, proximity, and QoS). Speci�cally, OC is based on an innovative
application-agnostic approach, exploiting lightweight container-based virtu-
alization technologies to deploy MELs in heterogeneous fog/edge and cloud.
Application delivery follows an osmotic behaviour where MELs in containers
are deployed opportunistically in cloud and fog/edge systems. Because of the
high heterogeneity of physical resources, the MELs’ deployment task needs
to adapt to virtual environments and involved hardware equipment. Thus, a
bidirectional �ow of adapted MELs from cloud to fog/edge (and vice versa) must
be managed. Moreover, the migration of MELs in the cloud/fog/edge system
implies the need for dynamic and e�cient management of virtual network issues
to avoid application breakdown or QoS degradation.

3

Chapter 1 Introduction

As the movement of solvent molecules through a semipermeable membrane
into a region of higher solute concentration to equalize the solute concentrations
on the two sides of the membrane - that is the osmosis process. In OC, cloud
and fog/edge resources’ dynamic management evolves toward the balanced
deployment of MELs satisfying well-de�ned low-level constraints and high-level
needs. Additionally, intelligent, QoS-aware, and contention-aware resource
orchestration algorithms should be developed based on the described models,
monitoring systems, and con�guration selection techniques.

1.2 Research �estions

This thesis investigates how OC can be leveraged to achieve secure and de-
pendable microservices orchestration in the C2T continuum, where deployment
and orchestration strategies depend on both infrastructure and applications’
requirements, as previously said.

To ground the OC’s fundamentals, a thorough investigation of the C2T contin-
uum challenges is necessary. One of the major challenges in the C2T continuum
is resource management. Resource management is an umbrella term that en-
compasses all the characteristics and usage of cloud resources. It includes two
main steps: i) resource provisioning (resource detection and resource selection)
and ii) resource scheduling (resource mapping, resource allocation and resource
monitoring) [15].
Resource management in the C2T continuum faces similar challenges to

traditional CC; however, with signi�cant resource constraints, heterogeneity,
multi-tenancy, and dynamism. The complexity of such distributed infrastructure
mandates automated orchestration of applications and end-to-end management
of networking, infrastructure, security and workload placement.
This is required to e�ciently and dynamically deploy workloads that satisfy

speci�c requirements (many of which may have geographic, latency, or other
user pro�le idiosyncrasies), while at the same time (i) minimize the cost and
energy consumption of �nite physical hardware resources, and (ii) meet Service
Level Agreement (SLA) commitments.
Designing resource management mechanisms that identify and select re-

sources (resource provisioning) and then map and execute workloads based on
those resources and the required service levels (resource scheduling) across the
C2T continuum at hyper-scale increases complexity signi�cantly.
Resource management is also responsible for a high standard of security be-

cause in the IoT architecture, the data is divided into many data streams gathered
from di�erent sensors and di�erent types of services are provided by the net-
worked devices.

In the quest to assist this, we decouple user data and applications manage-
ment from networking and security management. Hence, we focus on each

4

Research�estions Section 1.2

of those aspects and formulate the following research questions (RQ) covering
the whole IoT application’s lifecycle, i.e., development, deployment, execution,
management, and orchestration.

(RQ.1) How to model and deliver IoT applications in the C2T continuum?

(RQ.2) Can existing network technologies support the requirements imposed by the
end applications for optimal performance?

(RQ.3) How can existing cloud virtualization technologies be exploited to optimize
the application service deployment and orchestration in the C2T continuum?

(RQ.4) Which emerging technologies can be used to ensure the security and data
privacy of services?

IoT applications, therefore, need to have the ability to adapt to a contracting
environment. An osmotic application takes advantage of such infrastructures’
ephemeral and heterogeneous nature by continuously practising resource, cost,
and quality elasticity. Application components scale vertically and horizontally
in the infrastructure to where they incur the least cost, perform the best, or
where they can take advantage of a unique resource. In OC, it is necessary
to develop holistic decision-making frameworks that automate con�guration
selection across microservices and resources in cloud and edge data centres to
meet QoS constraints.

However, using an osmotic infrastructure poses new challenges for IoT work-
�ow application developers and operations managers as they need awareness
of resource/device heterogeneity, virtualization software heterogeneity (e.g.,
hypervisor vs container), data analytic programming model heterogeneity (e.g.,
stream processing vs batch processing), geographic distribution and network
performance uncertainties. The seamless orchestration and operation of such an
infrastructure are hard due to the involved devices’ heterogeneity and network
connectivity. Accordingly, there is no established solution available yet. In the
quest to assist this, we derived the following RQs:

(RQ.5) How does OC mitigate the heterogeneity of physical resources to support
the deployment and elastic management of MELs with di�erent levels of
requirements of both applications and infrastructure?

(RQ.6) How to implement an osmotic orchestration of the resources (application
and infrastructure) within the cloud, fog, edge, IoT, and manages the appli-
cation lifecycle including deployment, chaining, execution, monitoring, and
migration?

(RQ.7) How to dynamically determine the optimal placement plan for composite
applications given a speci�c set of objectives and constraints, and deploy

5

Chapter 1 Introduction

these components over the C2T continuum as suggested by the placement
plan?

1.3 Thesis Contributions

Based on the RQs mentioned above, the main overarching contributions of this
thesis are presented below. Our contributions to the scienti�c community can
be classi�ed into four parts.

I We investigate the C2T continuumn resource management deriving four
research directions by decoupling user data and applications management
from networking and security management.

• Namely, the �rst direction answer to (RQ.1) by proposing an e�-
cient new service delivery model for IoT applications called IoT-as-a-
Service (IoTaaS). We consider three use case scenarios (e.g., IoTaaS
for Public Safety and Disaster Response (based on publications (IJ.6)
and (IC.13)), a smart home scenario that proposes a smart meter
IoTaaS consisting of a Fast Fourier Transform (FFT)-based microser-
vice (based on publication (IC.10)), and an IoTaaS Kinect-based gait
assessment for Ataxia (based on pubblications (IJ.4) and (IJ.5))) as an
application example and show the potential bene�ts of the continu-
ums.

• The second direction investigates connectivity challenges in the C2T
continuum by proposing cutting-edge approaches, methodologies,
technologies and IoT applications that are bene�ting from the in-
novative use of Software De�ned Networking (SDN) and Network
Functions Virtualization (NFV) edge-cloud integration (answer to
(RQ.2) and (RQ.3)). We analyze the performance of four SDN net-
work overlays that are Open Virtual Networking, Calico, Weave, and
Flannel, in di�erent setups. According to the use case scenario, the
obtained results give valuable support for deciding the most suitable
overlay solution. This contribution is based on publication (IC.1)

• Finally, the third contribution provides a comprehensive discus-
sion of integrating the IoT system with blockchain technology. The
Blockchain-as-a-Service (BaaS) for the IoT is presented to show how
various blockchain technology features can be implemented as a ser-
vice for various IoT applications. Moreover, two innovative use case
scenarios highlight the feasibility and bene�ts of using blockchain
technologies (e.g., Hyperledger Fabric, Ethereum) in the continu-
ums. Further, the �rst use case scenario proposes a Hyperledger
Fabric-based BaaS for intersection management. It faces the problem

6

Thesis Contributions Section 1.3

of preventing vehicular collisions in intersections by proposing a
Multi-Agent Autonomous Intersection Management (MA-AIM) sys-
tem based on V2I/I2V (based on publications (IC.8)). The second use
case proposes an Ethereum-based BaaS solution for Health Infor-
mation Exchange (HIE) systems suitable for an EHRs/EMRs-IoMT
scenario. This contribution addresses (RQ.4) (based on publication
(IC.11)).

II The second part investigates how IoT applications into the C2T continuum
can bene�t from OC. The contributions of this part can be summarized as
follows.

• The �rst contribution seeks basic concepts, methodologies, key tech-
nologies behind OC ecosystems. Also, an approach enabling OC
environments to quickly redeploy containerized microservices elim-
inating the application outage and promptly reacting to failures is
proposed. To achieve such a goal, we discuss a blue-green deploy-
ment technique. Moreover, to test such a mechanism, an osmotic
application is discussed and tested. This contribution is based on
publications (IC.4) and (IC.9).

• In the second contribution, two use case scenarios highlight the ben-
e�ts of using OC for IoT application management in continuums.
Driven by the needs of complex management mitigation, greater
agility, �exibility, and scalability, the �rst use case aims to propose
an innovative OC ecosystem leveraging Functions as a Service (FaaS)
(based on (IC.14)). Furthermore, to support the FaaS-based OC ecosys-
tem, an osmotic �ow model for video surveillance in smart cities
is presented. The second use case proposes a closed-loop OC �ow
model applied to a gami�ed cognitive rehabilitation use case. More-
over, the use case introduces a customized virtual reality system
based on a serious game that allows the patient to carry out physical
and cognitive rehabilitation therapies using a natural user interface
based on Microsoft© Kinect (based on publication (IC.7)). This con-
tribution addresses (RQ.5)).

III The third part introduces OsmoticToolkit, a cost-e�ective and �exible
toolkit for the from-scratch design of OC ecosystems and the emulation
of real-world applications and workloads in virtualized environments.
The toolkit enables network topologies design according to the use-case,
deploying private/public cloud, edge/fog, and IoT nodes as Docker contain-
ers running a QoS- and contention-aware orchestration of Docker-based
applications on those nodes. The toolkit provides valuable support for un-
derstanding the impact of processing power, workloads, and QoS require-

7

Chapter 1 Introduction

ments while preserving the users’ Service Level Agreements (SLAs). We
conduct an extensive experimental evaluation of the Osmotic Monitoring
system to study the proposed solution’s scalability (based on publication
(IC.17)). This contribution answers to (RQ.6).

IV The fourth part implements a solution to support engineers while transi-
tioning from cloud-native to continuum-native by proposing a Rule-based
Matchmaker called RBMM that combines several decision factors typically
present in software description formats and applies rules to them. To in-
crease the work’s applicability, there is implemented matchmaking along
with a composite application deployment scenario, where the Osmotic-
Toolkit is taken into consideration as a practical demonstrator. Further,
we present novel approaches to service integration and orchestration in
the cloud as well as rule-based and dynamic work�ow management with-
out a priori design-time knowledge (based on publication (IC.18)). This
contribution addresses (RQ.7)

1.4 Thesis Outline

In this section, the structure for the rest of the thesis is presented in detail.
Further, each research chapter is self-contained and introduces an overview of
related works looking at its future directions.

Part I overviews the C2T continuum in general and faces the resource manage-
ment deriving four research directions, each corresponding to a chapter. A new
type of service model for IoT applications into the C2T continuum is proposed
in Chapter 2. Network management leveraging SDN and NFV is addressed in
Chapter 3, while security management leveraging blockchain technologies is
faced in Chapter 4.

Part II investigates how IoT applications into the C2T continuum can bene�t
fromOC. Basic concepts, methodologies, key technologies behind OC ecosystems
are introduced in Chapter 5. There is also presented an e�cient orchestration
approach to redeploy containerized microservices eliminating the application
outage and promptly reacting to failures. Finally, Chapter 7 and Chapter 6 pro-
posed two use case scenarios illustrating the bene�ts of applying OC in the
continuums.
Part III proposes OsmoticToolkit, a cost-e�ective and �exible toolkit for the

from-scratch design of OC ecosystems and the emulation of real-world applica-
tions.

Part IV presents a Rule-based Matchmaker called RBMM for supporting com-
posite applications deployment in the C2T continuum.

Chapter 10 summarizes the proposed ideas of this thesis and concludes.

8

Part I

Cloud-to-Thing Continuum

2 A Service Model
for IoT Applications

Leveraging the bene�ts of service computing technologies for the Internet of Things
(IoT) can help in rapid system development, composition and deployment. Further,
private, public, and hybrid cloud providers are pushed to integrate their systems
with IoT devices to provide along with the traditional Infrastructure, Platform and
Software-as-a-Service (IaaS, PaaS, SaaS), even a new type of service level, that is
called IoT-as-a-Service (IoTaaS) or IoT cloud. Besides, a mesh of IoT cloud providers
can be federated to provide a universal decentralized sensing and actuating envi-
ronment where everything is driven by constraints and agreements in a ubiquitous
infrastructure. In this panorama, e�cient IoTaaS has strengthened the need to
shift services from the ”central” cloud into an intermediate layer, closer to users,
de�ned edge. Edge Computing (EC) has become an essential endeavour to sustain
the growth of such applications. Hence, IoTaaS is a service delivery model to pro-
vide IoT resources in infrastructure, platform, and software through suitable APIs.
This creates an ecosystem of invisible technology that operates behind the scenes,
providing rich, real-time insights that dynamically respond to the Cloud-to-Thing
(C2T) continuum’s ever-changing conditions. This chapter deals with transferring
the computing intelligence from the cloud to the edge, enabling accurate service
delivery with low response time avoiding delays and network failures that may
interrupt or delay the decision process and service delivery. Three use case scenarios
(e.g., IoTaaS for Public Safety and Disaster Response, a smart home scenario that
proposes a smart meter IoTaaS consisting of a Fast Fourier Transform (FFT)-based
microservice, and a Kinect-based IoTaaS for gait assessment) show the potential
bene�ts of the continuums.

2.1 The Emergence of IoT-as-a-Service (IoTaaS)

As a consequence of the digital revolution, the democratisation of technology has
made it possible for businesses to access a wide range of technological services
and solutions. The rise in the Infrastructure, Platform and Software-as-a-Service
(IaaS, PaaS, SaaS) delivery model ensured that tools such as arti�cial intelligence
(AI), big data analytics, and Cloud Computing (CC), despite being deemed expen-
sive to own, have permeated the mainstream industrial environments with ease.
The “as-a-service” culture was initially popular in the software segment, but
with the introduction of software into the industrial environments, the business

11

Chapter 2 A Service Model for IoT Applications

model is gaining traction in traditionally non-technological segments such as
manufacturing and retail.

Today industrial environments are increasingly software-driven, as software
serves as a key competitive di�erentiator. Software-assisted systems can cus-
tomise functionality over time and scale as desired. To achieve this, the environ-
ment’s products should be connected and network-native to allow for dynamic
updates, support, maintenance, and repair.

IoTaaS refers to the ability to bring together the capabilities of the Internet of
Things (IoT) and CC technology stacks to bring forth value to the customer over
an end-to-end service delivery mechanism.

2.1.1 Why IoTaaS?

• Decisions Utilising Data The major advantage of IoT is the ability to ex-
tract critical, business-speci�c insights that enable organisations to make
informed decisions using data from the devices operating within their
ecosystem.

• Automation for E�ciency The increasing automation capabilities provided
by service providers through IoT products help save cost and generate
revenue and allow organisations to free up critical resources.

• Scalability and Large Scale Deployment Industries looking to expand and
those entering the IoT market are bene�tted.

The IoT ecosystem’s complexity is further exacerbated as services and solu-
tions are delivered through multiple layers of technology sourced from di�erent
vendors, requiring varied skillsets for maintenance, support, and repair.

• Smart Maintenance In the IoTaaS ecosystem, physical assets can report
status and usage metrics. It is instrumental during critical maintenance
and repair scenarios. IoTaaS vendors aim to take the device owner out of
the equation and provide software updates directly to the connected device.
This enables the device manufacturer to analyse trends and identify issues
that can potentially increase warranty costs.

• Service Value Addition There is a signi�cant shift in the way services are
o�ered in the IoTaaS ecosystem. Providers are increasingly looking to o�er
services that can augment the product rather than merely improving the
functionality. IoTaaS providers o�er IoT-based services around the physical
product combined with other process information, such as visualisation
and analytics, that can deliver actionable insights to improve the business.

• Product as Service IoTaaS o�ers a modern way in which physical assets
are consumed in work environments. Along with maintenance and repair,

12

IoTaaS for Public Safety and Disaster Response Section 2.2

compliance and regulatory norms are critical elements for the industry’s
non-disruptive functioning. IoTaaS o�ers services that alleviate organisa-
tions’ concerns when it comes to cost surge relating to maintenance and
compliance. Through de�ned Service Level Agreements (SLAs), service
providers o�er a gamut of services that can address organisations’ unique
requirements.

• Data as Product In today’s connected environment, data is the new oil.
With the increase in connected o�erings comes an abundance of data
about how assets are being utilised and services are consumed. IoTaaS
providers are increasingly looking at ways to monetise the opportunities
brought by the data output. Successful organisations, through insightful
information, will be able to leverage their IoT investments and optimise
operations and di�erentiate their products and services.

2.2 IoTaaS for Public Safety and Disaster Response

2.2.1 Introduction

Nowadays, emerging Information and Communication Technology (ICT) for
disaster recovery systems are of paramount importance for public safety in
general and critical scenarios such as the industrial one in particular. Devastat-
ing consequences caused by recent disasters (e.g., hurricanes, earthquakes, or
other disasters) manifest the vulnerability of existing Public Safety Communica-
tions (PSC) infrastructures unable to ful�l the critical requirements of mobility,
ubiquitous access, reliability, scalability, con�gurability, and �exibility at the
same time, and indicate the need for dependable and resilient disaster rescue
networks [16]. Thus, this results in the lack of a network that transmits and
shares information generated within the emergency. As a consequence, the use
of traditional emergency-management systems is no longer viable.
Due to disasters’ signi�cant impact on human life, emergency planning and

disaster response/recovery approaches vary from one incident to another, de-
pending on each disaster’s size and nature. Interoperability, coverage and �exi-
bility of �rst-aid communication systems are among the most critical problems
highlighted by such events. In disasters, communication systems for Public
Safety and Disaster Response (PSDR) must be highly reliable and robust and
should be able to function in hostile environments.

Many techniques exist to transfer data from the widely distributed sensors that
make up the IoT (e.g., using 3G/4G networks or cables), and several emerging
wireless technologies have been proposed to provide long-range communication
for IoT devices.

However, these solutions have prohibitively high costs, making them imprac-
tical for real-life applications. In the last years, Wireless Mesh Network (WMN)

13

Chapter 2 A Service Model for IoT Applications

has been considered the most suitable network for disaster recovery applica-
tions [17]. The reason is that a WMN is self-organized and self-con�gured and
can be easily implemented without any wired connection between the network
nodes. Furthermore, since each node in WMN can also act as a router for for-
warding packets, we can build wireless networks covering large areas. WMNs
o�er many advantages like robustness, stable topology, and reliable coverage.
We present a novel, cost-e�ective infrastructure-less IoTaaS-WMN able to

auto-detect an Emergency Relief State (ERS) due to a disaster and auto-con�gure
itself, federating resources di�erent tenants, in order to remain up and running
regardless of the disaster nature. The proposed solution does not require a worker
or personnel to con�gure and manage the PSDR infrastructure. For instance, in
the case of ERS detection, the system sets up ad hoc connections self-organizing
links according to a tandem-based WMN topology and self-con�guring access
points (APs) for wireless devices (e.g., mobile phones of disaster victims). De-
vices connected to ad hoc APs become APs in turn, thus extending the network
coverage. Available devices of di�erent stockholders (e.g., municipality, �rst
aid organizations, volunteer groups, etc.) are federated in a whole cooperat-
ing system, where each device works simultaneously as a node, gateway and
router. The performance analysis carried out on top of our preliminary prototype
con�rm the feasibility and e�ectiveness of the proposed IoT-WMN system for
multi-hop paths within a tandem and tree-based topology.

The rest of this section is organized as follows. Section 2.2.2 reviews the related
work. Research problems and potential solutions are discussed in Section 2.2.3.
Section 2.2.4 explains the prototype implementation. Performance are discussed
in Section 2.2.5 and, �nally, Section 2.2.6 concludes the chapter.

2.2.2 Literature Review

Wireless multi-hop and hoc/access networks dedicated to disaster recovery [18,
19, 20, 21, 22] have been an active research �eld in the last decade. Catastrophic
disasters, such as earthquakes and tsunamis, can destroy large industrial sites
and, in the process, leaving many victims isolated from the rest of the world.

Recovering the communication infrastructure is typically slow and expensive,
which is not suitable for emergency response. Among many kinds of networks,
ad-hoc networks have been widely investigated since suitable for disaster sce-
narios.
An analysis in terms of performance using several well-known routing pro-

tocols metrics to evaluate real case disaster scenarios is provided in [23]. An
Unmanned Aerial Vehicles (UAVs) known as Flying ad-hoc Networks (FANETs)
for disaster monitoring and surveillance applications is studied in [24]. In partic-
ular, Urgency Aware Scheduling (UAS) approach for disaster data classi�cation
using urgency levels is proposed to e�ciently transmit high and low priority
packets with minimum delays in the transmission queue. The optimization of a

14

IoTaaS for Public Safety and Disaster Response Section 2.2

single UAV’s location and movement to improve the network throughput using
high mobility of the UAV to adapt to heavy �uctuation of network tra�c under
disaster situations is investigated in [25]. Using a discrete-event simulation of
a model that includes an ad-hoc network, Monte Carlo simulation, Random
WayPoint mobility model, and an IoT network, the planning steps, in terms of
routing optimization and redundancy in an emergency scenario, were introduced
in [26]. Speci�cally, the processor utilization and mean queueing time of the
network under the emergency scenario where nodes and links may be severely
a�ected are analyzed. In [27] a wireless sensor ad-hoc network system that is
having the fastest way to sense and respond to the detection of movement of
tectonic plate movements is presented, whereas a disaster management scheme
based on a cognitive radio ad hoc network (CRAHN) is presented in [28].
LoRaWAN, a promising technology for IoT applications in the Low Power

Wide Area Network (LPWAN) space that can also serve as an alternative com-
munication media in post-disaster scenarios when conventional networks are
down, is presented in [29]. A �exible network architecture for Emergencies
using WMNs based on a Report Message Forwarding Algorithm (REPMSGFW),
a location-based on-demand QoS routing algorithm for reliable delivery data for
the �rst responder in the disaster recovery, is discussed in [30].
State of the art on network disaster recovery includes initiatives based on

smartphones. A study on how they can be used for providing communications in
disaster recovery is presented in [31]. Speci�cally, they implement a TeamPhone
application consisting of two components: a messaging system and a self-rescue
system. The messaging system integrates cellular networking, ad-hoc network-
ing, and opportunistic networking, enabling communications among rescue
workers. The self-rescue system energy-e�ciently groups the smartphones and
sends out emergency messages to assist rescue operations.
Among ad-hoc networks, in this context, WMN is considered as one of the

most suitable solutions because it can easily con�gure a network without any
wired infrastructure [21, 32]. Closely related to our work, in [33], the authors
build a WMN by using a Movable and Deployable Resource Unit (MDRU) as a
base station, which has processing servers, storage servers, and Internet con-
nectivity in an emergency scenario. In [34], the authors propose an ad-hoc
networking approach for emergency mobile communications in a satellite and
wireless mesh scenario, in which ad hoc and IPv6 mobility mechanisms are
combined. Similar to our work, in [35], the authors present an approach for the
on-the-�y establishment of multi-hop wireless access networks (OEMAN) for
disaster response and conduct an experimental evaluation on top of our prelim-
inary prototype over Windows-based laptops to verify the feasibility and the
e�ectiveness for multi-hop paths of up to seven hops. A proof-of-concept proto-
type for this approach has been built and demonstrated in practice. However,
this approach still lacks a high-level fundamental communication abstraction

15

Chapter 2 A Service Model for IoT Applications

that can simplify network establishment and con�guration, a more rigorous
design, and a thorough analysis of its e�ectiveness in di�erent real-life settings.
These solutions are expensive for deployment and could be slow because

speci�c equipment is not always available on-site. Therefore, it may take a
substantial amount of time before emergency rescue/technical teams reach the
disaster areas to deploy these equipment/networks. Our approach complements
these solutions with a fast mechanism to extend connectivity to the disconnected
victims by leveraging their on-site mobile devices.

This contribution overcomes these drawbacks and presents the following
main new contributions: i) di�erent from the works mentioned above, our ap-
proach aims at simplifying the establishment of multi-hop communication by
implementing an infrastructure-less WMN leveraging cost-e�ective and e�cient
PRUS, e.g., IoT and on-site devices (see Section 2.2.4); ii) it does not require
the intervention of a PDSR worker or personnel to con�gure and manage the
PDSR infrastructure; iii) it allows to extend the connectivity covering a larger
disaster-a�ected area by connecting more WMNs through 2.4/5 GHz WiFi links.
Our solution is realized by carefully integrating existing technologies in a

practical implementation. As a result, in an ERS, the WMN can self-organize and
auto-heal as injured people can easily connect to the multi-hop access network
right after a disaster occurs using their commodity mobile devices. To the best
of our knowledge, this is the �rst infrastructure-less IoTaaS-WMN system for
PSDR scenarios.

2.2.3 Public Safety and Disaster Recovery Problem

Information on people’s safety (e.g., the number of injured, their positions, health
status, etc.) is essential to mitigate disasters. People must share their safety
status with rescuers as soon as possible. Unfortunately, when disasters occur,
network infrastructures can be damaged while emergency communications,
such as con�rmation of security and management by the government, become
much more critical. However, the recovery of existing PSC infrastructures can
be complex and need a long time if we consider that the recovery e�ort analysis
suggests that the �rst 24 hours represent the golden time [36] for ERS.
This work investigates how, in a disaster environment, available battery

supplied communication devices can actively work in a federated system to
provide a seamless communication service towards rescue and �rst aid teams.
Over such a distributed self-con�guring network, innovative applications and
services are easily deployed through the node closest to the �xed infrastructure,
which acts as a gateway [37]. These networks must be installed quickly and
transparently for users to achieve this goal, as victims cannot be expected to
perform con�guration operations or certainmulti-hop-enabled software installed
on their devices. In practice, three research questions must be overcome:

16

IoTaaS for Public Safety and Disaster Response Section 2.2

1. How to con�gure addressing, naming, and routing in these networks simply
and automatically?

2. How to establish multi-hop access networks without requiring any action
from the victims?

3. How to implement cost-e�ective multi-hop access networks?

Reference Scenario

Figure 2.11 illustrates, at a high level, an example of a wireless multi-hop access
infrastructure in a PSDR scenario in a smart city. Several tenants in normal
working conditions, such as ambulances, public illumination, and semaphores,
use IoT devices to exchange messages for their purposes.As shown in Figure 2.11,
devices belonging to a tenant are isolated from the others. For instance, this
means that semaphores can communicate only with other semaphores (red-
line network) and similarly for public illumination and ambulances. A soon as
emergency conditions arise, as shown in Figure 2.2, all the communication links
are automatically re-con�gured in order to provide a federated communication
environment for PSDR.
Now, we deal with the above questions considering the smart city reference

scenario.

Figure 2.1: Reference scenario: normal conditions.

Research �estion #1 Among many types of networks, WMN has been
considered the most suitable network for disaster recovery applications. WMN
networks can provide wireless coverage of large areas without relying on a wired
backbone infrastructure or dedicated access points.
In WMN, a collection of wireless mesh routers provides wireless access to

the network, similar to access points in traditional Wireless Access Networks

17

Chapter 2 A Service Model for IoT Applications

Figure 2.2: Reference scenario: emergency conditions.

(WLANs). However, communication between these mesh routers is achieved
through the wireless network, which typically involves multiple wireless hops.
One or more mesh routers connected to the Internet can act as a gateway for all
other nodes and provide Internet connectivity for the entire mesh network. One
of the key features of WMNs is their ability to self-organize and dynamically
self-con�gure. The nodes of a WMN network automatically detect neighbouring
nodes and establish and maintain network connectivity in an ad-hoc manner,
generally through the use of ad-hoc routing protocols [38]. The self-con�guring
nature of WMNs allows for easy and rapid implementation of the network.
WMNs also can dynamically adopt evolving environments and essentially self-
heal in the event of node or link failures.
The proposed scenario involves di�erent types of devices, such as routers,

base stations, etc. In detail, a client device is referred to as a “station”, while the
access router is termed an Access Point (AP). In standard infrastructure mode,
the AP controls the hand-o� procedure and is responsible for:

• Determining that a hand-o� is necessary;

• De-associating with the current AP;

• Scanning the 802.11 channels looking for another AP;

• Authenticating to the new AP;

• Re-associating with the new AP.

When a disaster occurs, and at the same time the electrical power grid is also
damaged, the network nodes auto-power using the battery. Thus, the"# 0 node
belonging to the semaphore tenant identi�es an ERS and starts re-con�guring
the network. In particular, the "#0 node itself becomes an AP and then the
adjacent node identi�es the newly created ad-hoc AP and connects to it. As

18

IoTaaS for Public Safety and Disaster Response Section 2.2

previously mentioned, the device works both as a client, against an AP, and from
an AP creating a network.
At that moment, the devices that are close to the con�gured AP, regardless

of which tenants belong, start to federate their resources; that is, "#1 (that
belongs to the public illumination tenant), try to associate to this AP ("#0).
The AP initiates the"# 1 and also transforms"# 1 into an AP, thus extending
the connectivity to farther nodes as shown in Figure 2.2. Therefore,"# 1 works
as a common AP for nearby nodes.

Research�estion #2 In this scenario, we can identify two kinds of victims
- passive and active; for instance, the system must behave di�erently for each
victim. An active victim has access to his mobile phone and can connect using
WiFi to the nearest AP (e.g., helpPoint); once connected, the victim will be
automatically forwarded on a web page to share his position safety state. This
information is then crucial to saving the victim within the golden time. A passive
victim does not have the possibility of using mobile devices to inform rescuers
about his position because he/she was injured (we also suppose that the victim
disposes of a mobile device). The recovery communication system must also
deal with these situations. To do so, the system will scan, through Bluetooth up
to 15m [39], to �nd the victim’s mobile devices and collect this information to
help rescuers identify if there could be injured people. In this case, the timeliness
of intervention makes it possible to reduce the number of deaths and missing
persons. In fact, through this system, there is no longer the need to waste time
to make statistics about the number of people present within the disaster area
at that moment, understand if people are missing and possibly trying to search
them, in this way, there could be necessary sometimes even days or weeks.

Research �estion #3 The proposed system leverages cost-e�ective IoT de-
vices. Section 2.2.4 clari�es the motivations behind IoT devices used.

2.2.4 Prototyping

This section gives an overview of the prototyping of the proposed system.

Hardware Our system’s prototype has been developed using IoT devices
⇢(%32 micro-controllers and a Raspberry Pi 3 model B+ Single Board Unit
(SBU). We chose to involve these devices due to their costs, speci�cations (e.g..
⇢(%32 3.53$, Raspberry Pi Model 3⌫+ 35$) and ease of use. We involved
Raspberry Pi Model 3 B+ in using both 2.4 and 5GHz WiFi interfaces to extend
the connectivity between two WMNs quantifying the communication overhead
impact on PDSR applications’ suitability where timeliness is required. The
Raspberry Pis are also auto-powered using Battery Pack for Raspberry Pi 3 B+
4000mAh, allowing it to be active up to 3-4 hours.

19

Chapter 2 A Service Model for IoT Applications

Figure 2.3: Device prototype.

⇢(%32 module is excellent as it can do both the work of an application mi-
crocontroller and WiFi-Bluetooth radio at the same time. Given the low energy
consumption of the ESP32 microcontroller, we also chose to auto-power by a
rechargeable lithium Odec (3.7 V, 2600mAh) battery (in battery-powered mode,
the device is still active up to 2 hours using WiFi and Bluetooth simultaneously).

The device is illustrated in Figure 2.3. Raspberry Pi also acts as an edge node
allowing to minimize the communication delay with the IoT devices. We imple-
mented three di�erent WMNs topologies, as shown in Figure 2.4. For instance,
we involved a Raspberry PI 3 Model B+ acting as an AP and 6 ESP32 devices
to implement the tandem and tree-based topologies. Next, the last scenario is
focused on the communication establishment between two WMNs. Here we
used a 2.4/5 GHz router with auto-power 12V power bank, 2 Raspberry Pis
Model 3 B+, where each implements an AP for each WMN and connecting to
the router, and 4 ESP32 devices.

So�ware In general, a WMN is an infrastructure-less system, where com-
munication between distant nodes of the same network takes place through
adjacent hops; therefore, every node acts as an AP for other nodes to connect to
and as a client to connect to one AP of another node. There is a limit of 10 station
nodes per AP for ESP32. Each node that is not already/anymore connected to
AP scans for AP’s from other nodes periodically. It will connect to the AP with
the strongest signal, which is not already present in the list of connections or
sub-connections, i.e., unknown yet to the node. By only connecting to unknown
APs, the mesh avoids the creation of network loops, such that there is a single
route between each pair of nodes in the mesh.

In order to implement the infrastructure-lessWMN,we adopted the painlessMesh
protocol. painlessMesh allows creating a self-organizing and repairing network
where all nodes are connected. painlessMesh is designed to be used with Ar-

20

IoTaaS for Public Safety and Disaster Response Section 2.2

duino, but it does not use the Arduino WiFi libraries, as we were running into
performance issues (primarily latency) with them. Instead, the networking is all
done using the native ESP32 and ESP8266 SDK libraries, available through the
Arduino IDE.

painlessMesh does not create a TCP/IP network of nodes. Rather each of the
nodes is uniquely identi�ed by its 32bit bit 2⌘8?�3 which is retrieved from the
⇢(%32 using the system_get_chip_id() call in the SDK. Messages can either be
broadcast to all of the nodes on the mesh or sent speci�cally to an individual
node identi�ed by its =>34�3 . Messages sent through painlessMesh are encoded
as JSON objects.

Raspberry Pi acts as AP for the gateway node of theWMN and, simultaneously,
as a server for gathering stats and managing the WMN. We used the Mosquitto
(MQTT) broker installed on the same Raspberry Pi. The broker is responsible for
receiving all messages, �ltering the messages, decide who is interested in them,
and publishing the messages to all subscribed clients. Therefore, an essential
element of WMN is the gateway, which will act as an MQTT client subscribing
and publishing to speci�c topics.
As previously mentioned, the device works both as a client against an AP

whose SSID and password are indicated and as an AP creating a network whose
SSID, password, and port must be speci�ed. Besides, the address and port through
which the broker may be reached for the publication and reception of messages
must also be indicated (see Listing 2.1).

Listing 2.1: Con�guration parameters.
#de�ne MESH_PREFIX "xxxxxx"
#de�ne MESH_PASSWORD "xxxxxx"
#de�ne MESH_PORT 5555
#de�ne STATION_SSID "xxxxxx"
#de�ne STATION_PASSWORD "xxxxxx"
IPAddress mqttBroker(x, x , x , x) ;
painlessMesh mesh;
WiFiClient wi�Client ;
PubSubClient mqttClient (mqttBroker, 1883, mqttCallback, wi�Client) ;

The setup() function (see Listing 2.2) allows initializing the mesh node (call-
ing the init() function) by setting the serial to 115200 baud per second to read
from the serial port. Then, it allows the device to create its network, exploiting
the previously speci�ed pre�x, password, and port. Besides, the STA_AP is
set to allow devices to act as clients against APs, APs against the mesh net-
work. Next, the password encryption mode is set to WPA-PSK2 through the
WIFI_AUTH_WPA2_PSKd parameter. Finally, the channel on which the gateway
works is set; it must be the same for the mesh network devices; otherwise, it will
be impossible to �nd the gateway and then connect to the network. Subsequently,
the functions to be called are indicated if: i) a message is received using onRe-

21

Chapter 2 A Service Model for IoT Applications

ceive(&receivedCallback), ii) establishment of a new connection using onNewCon-
nection(&newConnectionCallback), ii) modify or remove a connection using on-
ChangedConnections(&changedConnectionCallback) and �nally iv) Synchroniza-
tionwith other nodes through onNodeTimeAdjusted(&nodeTimeAdjustedCallback).
Then, the connection to the AP is established for sending data outside the mesh
network.

Listing 2.2:Mesh setup() function snippet.
void setup () {

Serial .begin(115200) ;
mesh.setDebugMsgTypes(ERROR |
STARTUP | CONNECTION);
mesh. init (MESH_PREFIX, MESH_PASSWORD,
MESH_PORT, STA_AP,
WIFI_AUTH_WPA2_PSK, 1);
mesh.onReceive(&receivedCallback) ;
mesh.onNewConnection(&newConnectionCallback);
mesh.onChangedConnections(&changedConnectionCallback);
mesh.onNodeTimeAdjusted(&nodeTimeAdjustedCallback);
pinMode(LED,OUTPUT);
mesh.stationManual(STATION_SSID, STATION_PASSWORD);

}

The receivedCallback() function (see Listing 2.3) allows the execution of dif-
ferent actions depending on the messages received. For example, if the mes-
sage received begins with the word "data", it must be published under the topic
“painlessMesh/data”; otherwise, it has to be published on “painlessMesh/from/broad-
cast”. In this way, the messages coming from the mesh network are certainly
delivered to the server.

Listing 2.3:Mesh receivedCallback() function snippet.
void receivedCallback (const uint32_t &from, const String &msg) {

Serial . printf ("bridge: Received from %u msg=%s\n", from,
msg.c_str());

if (msg.startsWith ("data")){
String topic = "painlessMesh/data";
mqttClient . publish (topic . c_str () , msg.c_str ()) ;

}
else {

String topic = "painlessMesh/from/broadcast";;
mqttClient . publish (topic . c_str () , msg.c_str ()) ;

}
}

For the communications from the server to the mesh network instead, the func-
tion mqttCallback() (see Listing 2.4) is used. If the topic contains the "broadcast"

22

IoTaaS for Public Safety and Disaster Response Section 2.2

keyword, it means that the message must be forwarded to all the mesh network
nodes using the command mesh.sendBroadcast(msg). Conversely, if the topic
contains the "gateway" keyword, it means that the message must be forwarded to
the gateway node. Finally, if the topic does not contain any of the two words, it
means that the message is addressed to a speci�c node, so the device’s connection
will be veri�ed through the mesh.isConnected(target) command, and in case of
an a�rmative reply, the message is then sent with the mesh.sendSingle (target,
msg) command. If the target device is not connected, the message "client not
connected" will be sent to the broker to warn the user of the impossibility of
delivering the message.

Next, according to Figure 2.4, the last arrangement allows extending the con-
nectivity on a larger disaster-a�ected area by connecting two di�erent WMNs.
To do so, we used a router to connect both Raspberry Pis where each one acts as
publisher and subscriber to the other network sending messages on the topic
“painlessMesh/to/broadcast” and forwarding the message received to own mesh.

Listing 2.4:Mesh mqttCallback() function snippet.
void mqttCallback(char∗ topic , uint8_t ∗ payload, unsigned int length) {

...
String targetStr = String (topic) . substring (16) ;
if (targetStr == "gateway"){

if (msg.startsWith ("GetEpochTime")){
String mex=(String)(data+(millis () /1000)) ;
mqttClient . publish ("painlessMesh/from/gateway",mex.c_str());

}
...

}
else if (targetStr == "broadcast") {

...
mesh.sendBroadcast(msg);

}
else {

uint32_t target = strtoul (targetStr . c_str () , NULL, 10);
if (mesh.isConnected(target)) {

mesh.sendSingle(target , msg);
}
else {

mqttClient . publish ("painlessMesh/from/gateway", "Client
not connected!");

...

23

Chapter 2 A Service Model for IoT Applications

2.2.5 Evaluation

The evaluation’s main purpose is to verify whether WMN works well to bring
connectivity to isolated people in the case of disasters. Several �eld experiments
have been conducted to quantify the network performance when the number of
nodes and the number of hops increases. Speci�cally, we evaluated the network
establishment’s e�ectiveness and its performance in terms of round trip time
delay (RTT), packet loss, throughput, and goodput in multi-hop topologies. We
evaluated the WMN in 2 di�erent con�gurations, such as a) tandem-based with
5 hops and b) tree-based mesh network with 5 nodes ("#8 , i=1...5) respectively,
with varying packet size of 10, 100 and 1000 bytes. As mentioned before, each
WMN topology was established with 15m hop-distance between"#8 , 8 = 0...5)
nodes. Concretely, RTT delay, packet loss, throughput and goodput between
"#8 , 8 = 1...5 and"#0 in both topologies were evaluated.

To extend connectivity on a wide area, we also gathered the communication
performance between two di�erent WMNs (,"#1 and,"#2) in terms of
inter-mesh delay using WiFi links of 2.4 and 5GHz respectively. Finally, we
calculated the entire infrastructure’s delay to show how WiFi links impact the
entire infrastructure.
Every experiment was conducted, repeating it 30 times (calculating average

values and con�dence interval of 95%). During the experimentation, it was
drawn out that the testing condition (a�ected by the surrounding environment)
in each setting (5-hops tandem and 5-hops tree-based mesh networks) did not
change signi�cantly during the experiments.

Experimental Methodology

In order to quantify throughput and goodput in WMNs, we adopted the PPTD
(packet pair/packet train dispersion probing) with VPS (variable packet size
probing) methodology proposed in [40]. For instance, the PPTD technique
allowed to quantify the goodput metrics, which is de�ned as the total useful
application-level bytes transferred as indicated in Equation (8.1),

6 =
B

C
(2.1)

where B is the packet size (bits), C is the transmission time (seconds), hence and
6 is the goodput(bits per second). For instance, 6 could also be used as a measure
of throughput. This does not happen in wireless networks; for instance, the
application-level throughput is never close to the channel level throughput. In
fact, at the Maximum Size Data Unit (MSDU), the goodput for 802.111 networks
reaches only 60%. Hence, we must quantify the overhead per packet.
In order to do so, supposing the overhead G to be constant, if G is overhead

in bits, the bandwidth (e.g., throughput) at the channel level is given in Equa-

24

IoTaaS for Public Safety and Disaster Response Section 2.2

tion (4.2).
) =

B + G
C

(2.2)

where B is the packet size, C is the dispersion time of packet pair and) the
throughput in mega bits per second.
As mentioned above, in our experiment, we uses packet sizes of 10, 100 and

1000 bytes. We collect many values of 6 (68 , 8 = 1...=), we then �lter this data
with a band pass near the median which allows all values of [<4380=(6) � A0=64 ,
<4380=(6) + A0=64]. Then,

B8 + G
C8

=) =
B8 � B88 + 1
C8 � C8+1

(2.3)

By replacing C8 with B8
68
and C8+1 with B8+1

68+1
, we obtain

B8 + G
B8
68

=) =
B8 � B8+1
B8
68
� B8+1

68+1

(2.4)

which gives the overhead G as,

G =
B8 � B8+1
B8
68
� B8+1

68+1

⇥ B8
68
� B8 (2.5)

Using di�erent combinations of packet sizes as (B8 , B8+1), (B8 , B8+2), (8 = 1...=))
we obtainmany values ofG (overhead) in bits. The values obtained for G , are again
�ltered over a range, which was chosen at [<4380=(G) � <4380= (G)

2 ,<4380=(G) +
<4380= (G)

2]. The remaining values are averaged to get a �nal measure of G .
Then, we can calculate throughput) using.

)8 =
B8 + G
B8
⇥ 68 (2.6)

We obtain many values of) ; for instance, the �nal value is averaged as shown
in Equation (2.7).

) =
Õ
)8
=

(2.7)

Finally, the goodput is calculated using the formula Equation (2.8).

6 =
B

B + G ⇥) (2.8)

As well as, we also calculated packet loss using Equation (2.9) and RTT delay.

⇡!' = 100 ⇥ = �"
=

(2.9)

25

Chapter 2 A Service Model for IoT Applications

where"is the number of bytes received and = is the number of bytes sent.

NM0: GW1

NM1

AP

NM1

NM2 NM3 NM4 NM5

NM0: GW

AP1 AP2 NM0: GW2

NM2

WMN 1

Level O Level 2Level 1 Level 3

NM0: GW
AP

NM1

NM2

NM3

NM4 NM5

c)
 I
n
tr
a-
W
M
N
s

C
om

m
u
n
ic
at
io
n

a)
 T
an
d
em

-b
as
ed
 W
M
N

b)
 T
re
e-
ba
se
d
 W
M
N

Router

WMN 2

Figure 2.4: Proposed WMN topologies.

Real-World Performance Evaluation

Although a WMN is physically extensible, we carried out further studies to
understand how transmissions via multiple wireless hops su�er from rapid
drops in performance as the number of hops and payloads increases.

Tandem-based WMN with 5 Hops In the �rst set of tests, we arrange tan-
dem WMN topology with 5 hops ("#8 , 8 = 1...5) and a"#0 gateway as shown
in Figure 2.5. Figure 2.5 (a), Figure 2.5 (c) and Figure 2.5 (e) show how packet
size and the number of hops impact on the variation of the average RTT and
throughput.
For example, the avg. RTT delay is small as 0.075 s when the number of

hops is equal to 1, and the packet size is 10 bytes; the avg. throughput reaches

26

IoTaaS for Public Safety and Disaster Response Section 2.2

A
vg

. R
TT

 D
el

ay
 (s

)

0

1

2

3

4

5

A
vg

. T
hr

ou
gh

ou
t (

M
bp

s)

0

4

8

12

16

20

Node ID

NM1 NM2 NM3 NM4 NM5

Avg. Throughput (Mbps)
Avg. RTT Delay (s)

(a) 10 bytes

A
vg

. P
ac

ke
t L

os
s

(%
)

0

7

13

20

27

33

40

A
vg

. G
oo

dp
ut

 (M
bp

s)

0,0

0,6

1,2

1,8

2,3

2,9

3,5

Node ID

NM1 NM2 NM3 NM4 NM5

Avg. Goodput (Mbps)
Avg. Packet Loss (%)

(b) 10 bytes

A
vg

. R
TT

 D
el

ay
 (s

)

0

1

2

3

4

5

A
vg

. T
hr

ou
gh

ou
t (

M
bp

s)

0

4

8

12

16

20

Node ID

NM1 NM2 NM3 NM4 NM5

Avg. Throughput (Mbps)
Avg. RTT Delay (s)

(c) 100 bytes

A
vg

. P
ac

ke
t L

os
s

(%
)

0

7

13

20

27

33

40

A
vg

. G
oo

dp
ut

 (M
bp

s)

0,0

0,6

1,2

1,8

2,3

2,9

3,5

Node ID

NM1 NM2 NM3 NM4 NM5

Avg. Goodput (Mbps)
Avg. Packet Loss (%)

(d) 100 bytes

A
vg

. R
TT

 D
el

ay
 (s

)

0

1

2

3

4

5

A
vg

 T
hr

ou
gh

ou
t (

M
bp

s)

0

4

8

12

16

20

Node ID

NM1 NM2 NM3 NM4 NM5

Avg. Throughput (Mbps)
Avg. RTT Delay (s)

(e) 1000 bytes

A
vg

. P
ac

ke
t L

os
s

(%
)

0

7

13

20

27

33

40

A
vg

. G
oo

dp
ut

 (M
bp

s)

0,0

0,6

1,2

1,8

2,3

2,9

3,5

Node ID

NM1 NM2 NM3 NM4 NM5

Avg. Goodput (Mbps)
Avg. Packet Loss (%)

(f) 1000 bytes

Figure 2.5: 5-hops tandem WMN: packet size impact and number of hops on RTT,
throughput, goodput, packet loss.

14.83Mbps. With the same packet size of bytes, the last hop ("#5 node) of the
WMN has an avg. throughput equal to 1.41Mbps and an avg. RTT delay of
0.419 s.
As a result, the avg. RTT delay is still low, namely less than 0.5 s, even

for the last nodes of the networks ("#4 and "#5) when the packet size is
10 and 100 bytes, respectively. Therefore, we can state that as the number
of hops increases, we obtain a degradation in the throughput and RTT delay
performances; consequently, a high latency implies a low throughput.

27

Chapter 2 A Service Model for IoT Applications

Again, the avg. RTT linearly increases at a rate of around 0.07 s per hop for a
packet size of 10 bytes, around 0.15 s per hop for a packet size of 100 bytes, and
around 1 s per hop for a packet size of 1000 bytes. Conversely, sending payloads
of 1000 bytes saturates the network degrading the performance; the worst case
is registered with the last hop ("#5 node), which has an avg. RTT delay of
4.209 s while the avg. throughput is around 0.3Mbps, but still reaches acceptable
values. For instance, we observe that RTT delay almost linearly increases with
the number of hops and the packet size while the throughput decreases.

Next, we want to investigate the impact of packet size on goodput and packet
loss (see Figure 2.5 (b), Figure 2.5 (d) and Figure 2.5 (f)). For a packet size of
10 bytes the �rst three nodes (#"1, #"2 and #"3) have avg. packet loss of 0%,
for a packet size of 100 bytes only the �rst two nodes have avg. packet loss of 0%,
while for a packet size of 10 bytes only the �rst one has avg. packet loss of 0%.

However, we can state that the achievable throughput after two hops decreases
to less than half of the achievable throughput after one wireless hop. When
data travels 4 or 5 hops, the throughput drops to less than 10% of the achievable
throughput after one wireless hop. This is mainly caused by interference between
wireless hops; the connections at nodes "#4 and "#5 were still intermittent
because of high link failure probability. That is why packet loss at those nodes
signi�cantly increases. It can also be noted that those nodes have similar average
values of goodput, throughput, and RTT delay. As the packet size is increased,
the goodput is also increased. However, with the increase in packet size, the cost
of error, such as packet loss, is increased as well.

Tree-basedWMNwith 5 nodes In addition to the tandem topology, the tree-
based WMN shown in Figure 2.4, is useful for verifying the network’s usability
when an intermediate node serves several clients. This experiment evaluated
the same performance parameters in terms of RTT, packet loss, throughput, and
goodput.

Figure 2.6 (a), Figure 2.6 (c) and Figure 2.6 (e) show how packet size, number
of nodes and network type impact on throughput and RTT delay. For instance,
by analyzing the network topology illustrated in Figure 2.4, since no fairness
mechanism has been employed, performances are slightly di�erent at the nodes
belonging to the same level.
For instance, with a packet size of 10 bytes,"#1 and"#2 nodes, which are

directly connected to the gateway and both at level 1, have almost similar per-
formances in terms of RTT delay and throughput as expected; "#1 has avg.
RTT delay almost 0.024 s and avg. throughput of 3.98Mbps, "#2 has an avg.
RTT delay equals to 0.025 s and an avg. throughput equals to 3.53Mbps. Also,
"#3 and"#4 follow the same trend as they are connected at level 2. Compared
with the tandem-based topology, the results reveal that the avg. throughput is
around 60% lower - however, the lowest throughput around 0.36Mbps, which is
still adequate for web browsing. The RTT delay follows the same trend for the

28

IoTaaS for Public Safety and Disaster Response Section 2.2

A
vg

. R
TT

 D
el

ay
 (s

)

0

1

2

3

4

5

A
vg

. T
hr

ou
gh

ou
t (

M
bp

s)

0

2

3

5

6

8

Node ID

NM1 NM2 NM3 NM4 NM5

Avg. Throughput (Mbps)
Avg. RTT Delay (s)

(a) 10 bytes

A
vg

. P
ac

ke
t L

os
s

(%
)

0

17

33

50

67

83

100

A
vg

. G
oo

dp
ut

 (M
bp

s)

0,0

0,6

1,2

1,8

2,3

2,9

3,5

Node ID

NM1 NM2 NM3 NM4 NM5

Avg. Goodput (Mbps)
Avg. Packet Loss (%)

(b) 10 bytes
A

vg
. R

TT
 D

el
ay

 (s
)

0

1

2

3

4

5

A
vg

. T
hr

ou
gh

ou
t (

M
bp

s)

0

2

3

5

6

8

Node ID

NM1 NM2 NM3 NM4 NM5

Avg. Throughput (Mbps)
Avg. RTT Delay (s)

(c) 100 bytes

A
vg

. P
ac

ke
t L

os
s

(%
)

0

17

33

50

67

83

100

A
vg

. G
oo

dp
ut

 (M
bp

s)

0,0

0,6

1,2

1,8

2,3

2,9

3,5

Node ID

NM1 NM2 NM3 NM4 NM5

Avg. Goodput (Mbps)
Avg. Packet Loss (%)

(d) 100 bytes

A
vg

. R
TT

 D
el

ay
 (s

)

0

1

2

3

4

5

A
vg

. T
hr

ou
gh

ou
t (

M
bp

s)

0

2

3

5

6

8

Node ID

NM1 NM2 NM3 NM4 NM5

Avg. Throughput (Mbps)
Avg. RTT Delay (s)

(e) 1000 bytes

A
vg

. P
ac

ke
t L

os
s

(%
)

0

17

33

50

67

83

100

A
vg

. G
oo

dp
ut

 (M
bp

s)

0,0

0,6

1,2

1,8

2,3

2,9

3,5

Node ID

NM1 NM2 NM3 NM4 NM5

Avg. Goodput (Mbps)
Avg. Packet Loss (%)

(f) 1000 bytes

Figure 2.6: Tree-based tandem WMN: packet size impact and number of hops on RTT,
throughput, goodput, packet loss.

nodes belonging to the same level. Moreover, compared with the tandem-based
topology, the highest avg. RTT delay is almost 2 s, which is around 50% less.
In fact, within this kind of topology, we notice the nodes belonging to the

�rst level have RTT delays comparable with those registered with one hop in
the tandem-based topology. The same can be seen for the nodes at the second
level, in which RTT delays are comparable with those of the second hop in
the tandem-based topology. For instance, this behaviour is mainly caused by
interference between nodes within the same level.
Figure 2.6 (b), Figure 2.6 (d) and Figure 2.6 (f)) show the goodput and packet

29

Chapter 2 A Service Model for IoT Applications

loss trends as well. As previously mentioned, the nodes belonging to the same
level also have similar goodput and packet loss performances. Comparing the
goodput and throughput values with those of the tandem-based topology, we
notice a signi�cant degradation, mostly in the packet loss. As said above, this is
mainly caused by interference between nodes within the same level. In the worst
case, the avg. packet loss reaches around 91%. Lower throughput performances
imply greater packet loss values.

For both implemented WMN topologies, the overall trend is clear: as the dis-
tance and packet size increases, the throughput and goodput values are degraded
and become less predictable, RTT and packet loss are increased. Tree-based
topology seems to perform better than the tandem con�guration in terms of
RTT delay and goodput. Conversely, the tandem-based WMN performs better
than the tree-based in terms of throughput and packet loss.

To conclude, for both topologies, the RTT values are quick enough for emer-
gency response, throughput, and goodput values. For most nodes in the tandem-
based topology, the packet loss is in the range of 0–4%, acceptable in an inter-
mittent wireless environment. The packet loss measured with the tree-based
network is not acceptable at all.

Intra-WMNs Communication In this experimentation, we tested the exten-
sibility of the WMN to cover more extensive areas by connecting two WMNs
(see Figure 2.4) using WiFi links of 2.4 and 5 GHz, respectively. We calculated
the intra-WMNs communication delay and the delay of the entire infrastructure,
as illustrated in Figure 2.7. In this experiment, we did not evaluate the perfor-

NM0: GW1NM1 AP1 AP2 NM0: GW2 NM2

WMN 1

Router

WMN 2 Inter-Mesh Delay

Overall Delay

Figure 2.7: Intra-WMNs communication scheme.

mance considering more complex WMNs as above presented because previous
experiments already demonstrate each topology’s behaviour. This experiment
evaluates the impact of WiFi links of 2.4 and 5GHz on the communication be-
tween two WMNs.

Figure 2.8 (a) revels the intra-WMNs delay using WiFi links of 2.4 and 5GHz,
respectively. The intra-mesh delays quantify the time necessary a message
arrives from �%1 to �%2. We notice the values obtained with the 5GHz WiFi

30

IoTaaS for Public Safety and Disaster Response Section 2.3

outperforms those obtained with 2.4 GHz WiFi. Hence, the 5GHz WiFi intro-
duces less overhead, translating in higher bandwidths and lowering latencies.
For instance, the infra-mesh delays are reduced by around 30% by using 5GHz
WiFi.

Figure 2.8 (b) illustrates how the intra-WMNs delay impacts the entire infras-
tructure delay. The entire infrastructure delay quanti�es the time necessary for
the message sent by the "#1 node of the,"#1 takes to arrive "#2 of the
,"#2. As expected, the intra-WMNs delay obtained with the 2.4 GHz WiFi
impacts the overall delay; however, the performances are still acceptable.

A
vg

. I
nt

er
-M

es
h

D
el

ay
 (s

)

0

0,2

0,4

0,6

0,8

1

1,2

Payload (bytes)

10 100 1000

5 GHz
2,4 GHz

(a) Impact of 2.4/5 GHzWiFi on the intra-mesh
delay.

A
vg

. D
el

ay
 (s

)

0

0,2

0,4

0,6

0,8

1

1,2

Payload (bytes)

10 100 1000

5 GHz
2,4 GHz

(b) Impact of 2.4/5GHz WiFi on the overall
delay.

Figure 2.8: Intra-WMNs communication performance.

2.2.6 Summary

This section’s focus was on providing a novel, cost-e�ective, robust, reliable
and �exible infrastructure-less IoTaaS-WMN communication system to extend
connectivity to disaster victims in a PSDR scenario in the fastest and simplest
way using on-site mobile devices. The novelty of the IoT-WMN system is the
ability to detect an ERS, to auto-power whether the power grid is damaged and to
auto-organize into a tandem-based WMN topology federating devices belonging
to di�erent tenants and self-con�gure ad-hoc APs to disaster victims using their
own mobile devices; furthermore, it does not require the intervention of a PSDR
worker or personnel to con�gure and manage the PSDR infrastructure. As well
as if they were connected to conventional APs, and automatically contribute to
the network extension. Therefore, after the victims connect to the APs, generally,
the resulting topology is a tree-based WMN.

Our �eld experiments carried out on top of our preliminary prototype con�rm
the feasibility and e�ectiveness of the proposed IoTaaS-WMN system for multi-
hop paths within a tandem and tree-based topology.

31

Chapter 2 A Service Model for IoT Applications

2.3 IoTaaS-based Smart Metering

In recent years, great attention has been given to smart grid applications in
the C2T continuum. Power Quality (PQ) is one of the major topics associated
with the Internet of Things (IoT) from the beginning in both industrial and
domestic �elds. It determines the �tness of electric power to consumer devices.
PQ management is possible through a smart grid, i.e., an electrical grid that
includes various operation and energy measures, including smart meters, smart
appliances, and energy e�ciency resources.

In particular, as far as smart metering in IoT, several initiatives have been pro-
posed up to now. A smart IoT-based energy metering system for microgrids with
a load management algorithm is proposed in [41]. A smart metering platform
using big data and IoT technologies has been proposed in [42]. A platform pro-
totype was developed and tested for detailed pro�ling of energy consumption in
buildings that allows measuring and monitoring the electric power consumption
of individual appliances. An emerging paradigm based on Low Power Wide Area
Networks (LPWAN) - LoRa, i.e., a straightforward solution for IoT networks,
is discussed in [43]. The deployment analysis of a Narrowband IoT (NB-IoT)
system for smart metering is discussed in [44]. A combination of an advanced IoT
metering infrastructure with Cloud-based analytics to optimize smart electricity
distribution in residential areas is discussed in [45], whereas an IoT based smart
home with real-time e-metering using an e-controller is discussed in [46].

A few initiatives have been proposed so far regarding Fast Fourier Transform
(FFT) applied for smart metering in IoT. A grid frequency estimation algorithm
based on the fractional FFT for IoT nodes time stamps is proposed in [47]. A
maximum merging model in the fractional spectrum domain for dealing with
complicated power grid channel interference in China grids with data measured
by the wireless sensor networks is discussed. An ultra-low-power variable-
accuracy bit-serial FFT butter�y processing element for IoT devices is proposed
in [48]. Speci�cally, an ultra-low-power Decimation-in-Time (DIT) radix-2
butter�y arithmetic block for an FFT processor, designed using a bit-serial archi-
tecture and operating at a near-threshold voltage (0.6 V), is discussed.
Apart from electric energy monitoring, security is one of the major issues

in IoT smart metering. In this regard, a dynamic group authentication and key
exchange scheme based on threshold secret sharing for IoT smart metering
environments is proposed in [49]. Even regarding security, e�cient certi�cate re-
vocation management schemes for IoT-based advanced metering infrastructures
in smart cities is discussed in [50]. In contrast, privacy-preserving protocols for
secure and reliable data aggregation in IoT-enabled smart metering systems are
discussed in [51].

In this section, di�erently from the aforementioned scienti�c initiatives avail-
able in the literature, we focus on a smart home scenario proposing a smart

32

IoTaaS-based Smart Metering Section 2.3

meter IoTaaS consisting of an FFT-based microservice running on a Raspberry Pi
3 device able to coordinate the acquisition and perform harmonic analysis of the
frequency signal of the domestic electric grid frequency signal to characterize
the non-linear loads originated by the current absorption of electronic devices
(e.g., smart TV, computers, etc.) connected on it in order to monitor their status
and prevent possible malfunctions and breakdowns.
The rest of this section is organized as follows. Motivations along with an

overview of our system prototype are described in Section 2.3.1. Implementa-
tion details along with a reference scenario are provided in Section 2.3.2 and
Section 2.3.3 respectively. A performance analysis is discussed in Section 2.3.4.
Conclusions are summarized in Section 2.3.5.

2.3.1 Problem Analysis and Objectives Definition

Nowadays, electric energy is an essential factor for the development of di�erent
application domains. Inmodern electrical energy systems, voltages and especially
currents become less sinusoidal and periodical and even steady-state behaviour
may be completely lost due to the increase of non-linear loads such as smart
TV, computers, LHE lamps, variable speed drives, fax, laser printers, and other
electronic devices representing a critical issue in the power system.

Generally, a linear electrical load draws a sinusoidal current proportional to the
sinusoidal voltage. The reason for such a behaviour is that the linear loads do not
depend on the voltage to determine their impedance at a given frequency. These
loads do not cause any issue to the network they are connected to or other utility’s
consumers. They always follow Ohm’s law. Instead, power electronics loads do
not always follow Ohm’s law. Unlike linear loads, they do not consume power
continuously. When a sinusoidal voltage is applied to a non-linear electrical load,
it does not draw a sinusoidal current. The non-sinusoidal current is due to the
device impedance changing over a complete voltage cycle. These loads can distort
the supply voltage waveform and might cause problems to other loads as well.
In fact, harmonic distortions could produce Power PQ problems such as voltage
distortion, equipment malfunction, low quality of power, and component failure.
Moreover, harmonic distortion also causes �nancial loss of the customers and
electric power companies. Harmonic disturbances encountered are, for instance,
harmonics, voltage sags, rapid amplitude variations (�icker), and transients.
At the same time, manufacturing processes and various equipment become
increasingly sensitive to a distorted voltage waveform.
In this situation, accurate measurement techniques to detect, classify and

assess di�erent PQ problems in distorted environments need to be developed and
applied. Therefore, developing a proper real-time power quality measurement
system based on Digital Signal Processors (DSPs) is essential. DSPs are well
suited for mathematical techniques and real-time waveform processing and form
a powerful power quality assessment tool.

33

Chapter 2 A Service Model for IoT Applications

Advanced signal processing techniques and quantities have to correctly de-
scribe changes in all their aspects, whereas it must be possible to assess them
accurately and quickly with a limited amount of data. With this identi�cation,
power system operators can decide on a strategy to reduce harmonic distortion
level with �lter placement. FFT allows analyzing the current waveform input
in the presence of multiple devices. Moreover, it allows identifying the devices
from the current harmonics.
We aim to achieve the objective in this contribution to distinguish di�erent

loads and electronic devices based on the spectral variations of the current
generated by their connection to the electric grid. To give a clarifying example,
we intend to distinguish a smart TV from a computer according to the analysis
of their harmonic characteristics. In order to achieve such a goal, it is necessary
to develop a smart metering IoTaaS including a microservice able to:

• Acquire the analog electrical signal coming from the domestic grid and to
perform A/D conversion;

• Process the sampled data with FFT algorithms and interpret the obtained
results to characterize the non-linear loads.

2.3.2 Smart Metering IoTaaS Prototype

Hardware Design

We opted to use Raspberry Pi 3, a small, powerful and lightweight ARM-based
computer, to implement the metering system due to its ease of use and cost (only
35$). Raspberry Pi cannot read analog inputs. Analog inputs are useful because
many sensors produce analog outputs, so we need to make the Pi analog-friendly.
Nevertheless, this can be easily carried out by wiring up an ADC chip on it. In
order to �nd the best trade-o� in terms of cost and sapling frequency range for
the ADC, we tested two di�erent chips:

1. �⇡(1115 : 1618C, 860(%(, � 2⇠, %⌧�, 2>BC ' 5 €;

2. "⇠%3008 : 1018C, 75 (%(0C2.7+ , (%� , 2>BC ' 3 €.

Even though the ADS1115 chip guarantees excellent resolution and more
advanced programming possibilities, unfortunately, it has a low sampling rate.
This, for practical purposes, would limit the sampling band to about 4001Hz
to comply with the Shannon-Nyquist sampling theorem. Such a narrow band
may not be enough; there could be harmonics at higher frequencies that our
system would not be able to capture. Instead, the MCP3008 chip, even though it
has a resolution limited to only 10 bits, allows us to evaluate a wider frequency
band. According to the sampling theorem, we could go to sample signals with a

34

IoTaaS-based Smart Metering Section 2.3

Figure 2.9: Metering system’s real architecture.

maximum frequency of about 37 kHz, covering the hypothetical band of interest
widely. For this reason, we decide to use the MCP3008 chip.

The MCP3008 chip uses the SPI bus protocol, con�gured by the Raspberry Pi’s
GPIO header as shown in Figure 2.9. The MCP3008 chip is electrically powered
with 3.3 V since the power supply with 5V would imply output pulses of the
same amplitude that would damage Raspberry Pi 3. By choosing VDD = 3.3 V, we
can guarantee the correct output voltage. In order to understand how to interface
the MCP3008 chip with the Italian electrical grid providing an alternating voltage
of 220 V, we used the LEM HAIS 50-P current transducer with low pass �lter with
cut-o� frequency 5) = 3KHz as depicted in Figure 2.10.

Figure 2.10: Smart metering device.

In order to read analog data, the following pins were used: VDD (power) and
DGND (Digital Ground) to power the MCP3008 chip, DOUT (Data Out from
MCP3008), CLK (Clock pin), DIN (Data In from Raspberry Pi), and /CS (Chip
Select), AGND (Analog Ground, sometimes used in precision circuitry), GND
and VREF (Analog Voltage Reference, used for changing the scale).

So�ware Design

This system’s software side was developed using a container-based microservice
that runs on Raspberry Pi 3 (Raspbian OS) and manages the acquisition, pro-

35

Chapter 2 A Service Model for IoT Applications

cessing, and output phases of the smart metering IoTaaS. The container-based
approach was adopted in order to simplify service deployment according to an
IoT-Cloud scenario. The microservice was developed according to the producer-
consumer paradigm. Two Java libraries have been identi�ed and used to process
sampled electrical data: Pi4J and JTransforms. In particular, these Java libraries
allow us to manage the Raspberry Pi device and execute the FFT algorithm
respectively on the acquired sampled electric grid signal.

Producer In our structure, the producer is represented by the ADC chip,
which produces data at each performed conversion. In this paper, we used the
com.pi4j.io.spi package because the MCP3008 chip uses SPI to communicate
with the Raspberry Pi device. The package also includes: SpiDevice interface,
SpiFactory, SpiChannel and SpiMode classes. Therefore, the Producer class cre-
ates a reference of type SpiDevice (interface) that will be used to manipulate
the object of type SpiDeviceImpl necessary for the SPI communication. The
DEFAULT_SPI_SPEED parameter is used to set the clock frequency to 1MHz.
An in�nite loop repeats the read() method, passing as a parameter the channel
number (pin) on which the input the need to be digitized is connected.

Listing 2.5: Producer classs nippet.
public class Producer implements Runnable {

private �nal BlockingQueue queue;
public static SpiDevice spi = null ;
Producer (BlockingQueue q) {

queue = q;
}
public void run() {

try {
spi = SpiFactory . getInstance (SpiChannel.CS0,
SpiDevice .DEFAULT_SPI_SPEED,
SpiDevice .DEFAULT_SPI_MODE);
boolean continueLoop = true ;
while (continueLoop) {

read (1) ;
}

} catch (IOException ex) {
System.out . println ("Error");

}
}

}

Consumer The consumer is represented by the FFT algorithm, which con-
sumes the data produced by the MCP3008 chip. The JTransforms library en-
compasses several packages, each containing classes that deal with di�erent

36

IoTaaS-based Smart Metering Section 2.3

transformations, e.g., DCT, DHT, DST, and FFT. Thus, we used org.jtransforms.�t
package. The packages include two sub-classes that could perform the FFT
calculation with either single or double precision and the calculation of mono/-
multidimensional transforms. Given the limited resources of Raspberry Pi 3, we
chose to use the single-precision FloatFFT_1D class that consumes less memory
and compute resources. Although the JTransforms library allows the processing
arrays of any size, it is important to emphasize that the performance is better
when the array has a power of 2.

Listing 2.6 reports a snippet of the Consumer class. The = variable represents
the size of the array that will be processed by the FFT. The following instructions
create two arrays that will contain the amplitude and time values extracted from
each element of the FIFO queue. The next instruction creates the array that
will contain the data to be transformed. It is 2= size because the FFT algorithm
is designed for complex numbers, for instance, each sampled value must be
followed by an imaginary part equal to zero. Then, the vector which will contain
the modules returned by the FFT is created. It has =/2 size as it contains the
values of the positive part of the spectrum. The negative part will be mirrored
with respect to the vertical axis. The last instruction of this snippet creates
the object of type Float ��)_1⇡ which will allow the transformation to be
performed.

Listing 2.6: Consumer class snippet.
public class Consumer implements Runnable {

private �nal BlockingQueue queue;
Consumer (BlockingQueue q) {

queue = q;
}
public void run() {

try {
int n = (2048) ;
�oat [] data = new �oat [n];
double[] time = new double[n];
�oat [] �t = new �oat [n ∗2];
�oat [] module = new �oat [n /2];
FloatFFT_1D �t = new FloatFFT_1D((long) n) ;
...
...

Bu�er for writing/reading data Producer and consumer must be executed
concurrently by two threads. Thus, a shared data structure is required and at the
same time, concurrent access to the resource must be managed. The ideal data
structure is a FIFO queue. The java.util.concurrent package provides a series of
interfaces and classes for multithreading and concurrent access.
The BlockingQueue < ⇢ > interface de�nes blocking methods for inserting

37

Chapter 2 A Service Model for IoT Applications

and extracting data from the queue. The put() method inserts an element in the
queue, while the take() one extracts an item from the queue. Among the classes
that implement the BlockingQueue < ⇢ > interface, the LinkedBlockingQueue
< ⇢ > class creates a dynamic queue that is optionally limited in size, in which
the elements are arranged according to the FIFO logic. The put() and take()
methods allow us to insert and retrieve data from the structure respectively. We
chose to use this class for our microservice.

A solution for calculating fs through the Sample class The acquisition at
a speci�c frequency from the MCP3008 chip requires real-time I/O management.
Our Raspberry Pi device, equipped with a Raspbian Operating System (OS), does
not handle real-time applications. In fact, all the running processes and threads
need to be scheduled in advance, whereas the microservice has to manage the
variable reading frequency from the MCP3008 chip. In order to handle this incon-
venience, the Sample class was created (see Listing 2.7). This class conceptually
represents a single sample returned by the ADC conversion performed by the
MCP3008 chip. It contains two instance variables: a �oat variable named voltage
and a double variable named time. For each conversion, the value of the sampled
signal coming from the domestic electric grid will be saved within voltage, while
time will save the chronological instant (nanoseconds) in which the data have
been stored. Through this arti�ce, the consumer will know the time interval
elapsed for the sampling of the elements taken from the FIFO queue. By saving
the time instants relative to the following samples, it will be possible to calculate
the frequency 5B with a reasonably reliable approximation.

Listing 2.7: Sample class snippet.
public class Sample {

�oat voltage ;
double time;
Sample (�oat voltage , long time) {

voltage=voltage ;
time=time;
...

}
}

2.3.3 Case Study: Smart University Campus

In a university campus, several actors, e.g., professors, students, employees,
can connect their own devices to the grid. These devices could be dangerous
for others or forbidden by internal faculty regulations. Checking every device
connected to the grid is very di�cult and expensive. Therefore, the idea is to
create a smart metering IoTaaS system that can monitor a speci�c part of the
campus electricity grid and disconnect whether a problem occurs.

38

IoTaaS-based Smart Metering Section 2.3

Figure 2.11 shows the proposed scenario. As the reader can observe, the
scenario labelled with 1 represents the case in which a device (e.g., microwave
oven) is damaged and generates on the grid undesired harmonics. The latter could
damage other devices potentially connected to the same part of the domestic grid.
Therefore, the smart metering IoTaaS can identify that device and eventually
disconnect it from the grid.
The scenarios marked as 2 and 4 consider the presence of forbidden

devices. In particular, the scenario 2 considers the presence of cryptocurrency
mining [52], instead scenario 4 represents the charging of an electric car. In
both cases, the smart metering system can identify the forbidden devices and
disconnect them from the electrical grid.

Scenario 3 , instead, shows the normal usage of a personal computer. In this
case, no action has to be done because there is a normal usage of the electrical
grid. Apart from a smart university campus, the smart metering IoTaaS can be

Figure 2.11: Reference scenario.

used in any smart building.

2.3.4 Measurements and Observations of Di�erent Non-Linear
Loads

The experiments have been conducted according to two phases, namely cali-
bration and validation. Both phases have been performed in the Laboratory of
Electronics, Department of Engineering, University of Messina.

39

Chapter 2 A Service Model for IoT Applications

Calibration Phase

Before using the smart meter IoTaaS with real loads, it was necessary to perform
calibration tests to ascertain the system’s correct functioning, i.e., if it can
correctly sample an analog electrical signal and detect its frequency components.
To do this, we used a signal generator that allowed us to test themeter’s behaviour
by varying the input signal at di�erent frequencies and using signals of di�erent
shapes (e.g., triangular, sinusoidal, square wave). Furthermore, we have also used
an oscilloscope capable of calculating FFT, connected in parallel to the realized
system, to verify if the meter’s output corresponds to the input signal spectrum.

The FFT algorithm executed on the Raspberry Pi 3, in this con�guration, was
able to detect with high approximation the frequency components up to about
8 KHz; data processed by the meter deviate slightly from those of the equipment
used for the test. Thus, the transform of a pure sine wave with f = 100Hz, has
a spectral component exactly at 100Hz. The implemented system places the
component at a frequency equal to 100Hz±3%. As previously explained, this error
is due to the sample windows and spectral leakage that can occur. This result
meets our expectations, as the system allows us to distinguish the fundamental
harmonic of the electrical network (50Hz) from the higher-order replicas (e.g.,
100Hz, 150Hz, 200Hz, an so on) that must be detected to characterize the
load. This result meets our expectations, as the system allows us to distinguish
the fundamental harmonic of the electrical network (50Hz) from higher order
replicas (e.g., 100Hz, 150Hz, 200Hz, and so on) which must be detected to
characterize the load.

Validation Phase

The experimentation aim is to characterize non-linear loads generated by speci�c
electrical devices by looking for an identifying pattern in the spectrum of each
of them. The IoTaaS has been tested with: (i) a computer monitor, (ii) a drill, and
(iii) monitor and drill together.

For each characterized load, a bar graph illustrating the representation of the
frequency components will be shown. During this phase, windows of di�erent
sizes were used. The window of 2048 samples with 5B = 20KHz allowed us to
obtain fairly faithful spectra and acceptable processing times. The consumer’s
threshold was set to 1, for instance, data saved and displayed in bar graphs do
not contain frequency components with an amplitude less than 1mV. We tried
to isolate the most signi�cant components for the characterization of loads.

Computer Monitor Figure 2.12 shows the FFT transform of the computer
monitor active obtained from the smart metering system. It can be noticed that
when the monitor is active there is the presence of many signi�cant harmonics,
for instance, at 48Hz, 148Hz, 249Hz and 340Hz respectively. Such harmonics
characterize the computer monitor load.

40

IoTaaS-based Smart Metering Section 2.3

Figure 2.12:Monitor active: FFT spectrum obtained with the metering system.

Drill With respect to the computer monitor, which has a very low current
absorption in standby mode, the drill presents a slight current absorption. In
particular, we have two peaks corresponding to 48Hz and 144Hz as shown
in Figure 2.13. As well as in the active mode with 100% of velocity, the FFT
transform calculated with the smart metering system is illustrated in Figure 2.14.
By turning on the drill, we notice the presence of two signi�cant harmonics

Figure 2.13: Drill stand-by: FFT spectrum obtained with the metering system.

(Figure 2.14) corresponding to 51Hz and respectively 152Hz.

Monitor and Drill Together In the last experiment of the validation phase,
we considered both computer monitor and drill active. Therefore, we illustrate
the FFT transform in Figure 2.15. By analyzing Figure 2.15, we can notice that the
obtained spectrum presents two signi�cant harmonics in the neighborhood of

41

Chapter 2 A Service Model for IoT Applications

Figure 2.14: Drill active at 100% of velocity: FFT spectrum obtained with the metering
system.

50Hz and respectively 157Hz. Therefore, these two harmonics are characteristics
for both monitor and drill; the amplitude of these two peaks is signi�cantly
increased due to both loads active.

Figure 2.15:Monitor and Drill active: spectrum obtained with the metering system.

Discussion

The proposed metering system can correctly place the harmonics detected in a
neighbourhood of the correct frequencies to which they should be located. The
phenomenon is linked to the slight variability of the 5B , and the window size,
as explained above. However, despite this imprecision margin, it is possible to
distinguish between them, the signi�cant harmonics and the correct frequency
value to which they refer.

During the validation phase, we also tried to use wider windows. This allowed

42

IoTaaS-based Smart Metering Section 2.3

Table 2.1: Signi�cant harmonic components of the analyzed loads.

Device 50HZ 100Hz 150Hz 250Hz 350Hz 450Hz

Monitor active 6.35 - 4.73 2.93 2.43 -
Drill stand-by 3.01 - 1.53 - - -
Drill active 100% 9.81 - 3.37 - - -
Drill + Monitor
active 15.41 - 6.67 4.41 2.46 2.24

obtaining a better frequency resolution of the FFT at the expense of processing
times. By setting n = 4096, the consumer thread’s processing times became
higher than those needed to acquire the samples’ block. These conditions would
not have allowed the system to process the information acquired in real-time.
For instance, the plots realized with the measured values produced by the smart
metering IoTaaS are quite similar to the spectra shown by the digital oscilloscope.
This shows the presence of a disturbance to f ⇡ 950Hz caused by the system
itself.

Table 2.1 summarizes the amplitudes associated with the harmonics of various
orders for each electrical load produced by the considered electronic devices.
Each row of the table (except for the last one) de�nes a unique pattern for
identifying the electronic devices. Only the computer monitor presents the
pattern (fund! 6.35mV, 3� ! 4.73mV, 5� ! 2.93mV, 7� ! 2.43mV). A well as
the drill is characterized by (fund! 108.08mV, 2� ! 10.86mV, 3� ! 4.71mV).
The spectrum generated by several simultaneous loads does not allow the devices’
immediate distinction due to the overlap between the harmonics. Still, however,
it can be noticed a signi�cant increase in the amplitude of harmonics placed at
50Hz and respectively 157Hz which characterize both loads.

2.3.5 Conclusions and Future Work

In this contribution, we developed a smart metering IoTaaS that can recognize
non-linear loads generated by electronic devices connected over on a common
electrical grid, based on the harmonic spectral content originating from their cur-
rent absorption calculated using the FFT transform. This has been pursued using
the Raspberry Pi 3 device, which, suitably programmed using a container-based
microservice, coordinates an ADC chip’s acquisition operations and processes
the data returned by the FFT algorithm in order to monitor the status of the
connected electrical devices.

During the experimental phases, it was possible to identify the characteristic
patterns for each examined load, which allowed us to recognize the individual
power loads connected to the network. The simultaneous use of multiple loads

43

Chapter 2 A Service Model for IoT Applications

entails di�culties in distinguishing them due to the overlap between the har-
monics. To solve this, in future work, we are planning to use convolutional
neural networks (CNNs). Moreover, we would like to extend our e�orts to more
complicated grid models to get a more complex view of these new evaluation
methods’ usefulness, mainly from the point of view of distribution network
operators.

44

IoTaaS-based Gait Assessment for Ataxia Section 2.4

2.4 IoTaaS-based Gait Assessment for Ataxia

2.4.1 Introduction

Ataxic syndromes are a group of motor disorders due to primary (inherited
or idiopathic) or secondary nervous system disorders characterized by poor
balance, coordination and gait di�culties. Depending on the clinical progres-
sion, ataxic syndrome can be divided in Progressive Ataxias (PAs) and Chronic
Ataxias (CAs), encompassing non-progressive or very-slow-progressive entities
[53, 54, 55, 56, 57, 58, 59]. PAs are usually neurodegenerative diseases, often with
a genetic cause, responsible for highly disabling conditions (e.g., Friedreich’s
Ataxia, FRDA, and other spinocerebellar ataxias) [56]; CAs, on the other hand,
may include secondary forms (e.g., due to vascular causes, trauma, tumour) or
inherited neurodevelopmental diseases (e.g., Joubert Syndrome, metabolic or
ion-channels diseases), with possible better course and prognosis [54, 55, 57].
Ataxias are still incurable disorders as e�ective treatments are not available.

However, the therapeutic scenario might rapidly change due to the imminence of
disease-modifying treatments [60] or other symptomatic interventions (physical
therapy or neuromodulation) [61].
The development of e�ective therapeutic interventions adapted to both PAs

and CAs, and the subsequent conduct of clinical studies, however, strictly de-
pends on identifying speci�c and reliable biomarkers, which allow for early
strati�cation of patients and accurate follow-up both natural than interventional
frames. Indeed, the assessment tools to be used as outcome measures for Ataxia
are limited and are mainly based on clinical scores, such as the Scale for the
Assessment and Rating of Ataxia (SARA) [62], which are inevitably a�ected by
�oor and ceiling e�ects, rater variability [53, 63, 64] and, especially, low accuracy
when used in young patients (<10-year-old) [64, 65].

In recent years, new technologies have emerged, including computer inter-
faces, video games, and wearable sensors, for clinical applications, particularly
in the �eld of neurology and neurorehabilitation, as there have been successful
attempts to obtain several reliable, objective, accurate and continuous both in
standardized contexts (hospital, laboratory) and at home [66, 67, 68, 69, 70, 71,
72, 73].

Speci�cally, promising results seem to come from Microsoft Kinect v2 sen-
sor (Microsoft Cop., Redmond, WA, USA), a low-cost RGB-D camera originally
manufactured for entertainment, which actually enables a marker-less human
motion tracking system [71], particularly useful in movement analysis [66, 67, 68,
69, 70, 71, 72]. Despite some limitations, the use of Kinect v2 in clinical practice is
increasing across di�erent neurological disease [74, 75] and innovative protocols
for quantitative measurement of Ataxia have been proposed [76].
Signi�cant abnormalities in spatio-temporal gait parameters (reduced speed

and stride length, increased base width and greater variability of stride charac-

45

Chapter 2 A Service Model for IoT Applications

teristics) are a key feature of ataxic syndromes [77]. Accordingly, gait analysis
represents a valuable source for clinical biomarkers in Ataxia, enabling accurate
quantitative assessment of patients throughout the disease, from non-manifest to
overt phases [78, 79, 80]. However, the gait analysis is currently based on complex
and expensive systems available only in a few specialized centres. Conversely, a
Kinect-based technology, using machine learning processing methods [81, 82,
83, 84], can lead to a low-cost and easily accessible system [81, 82, 84, 85, 86] for
gait analysis [87] in ataxic patients.
This contribution proposes a Kinect-based IoTaaS for gait analysis system

to assess ataxic patients, providing the corresponding spatio-temporal gait pa-
rameters; besides, we validated its reliability and accuracy compared with the
standard motion capture system. Finally, to support this novel tool’s potential
for clinical applications, we explored clustering algorithms’ capability to classify
di�erent groups of ataxic patients (PAs vs CAs) and classify di�erent levels of
disease severity (Low, Medium or High severity).

2.4.2 Population Definition

The study population was enrolled in the Neurorehabilitation Unit - Department
of Neurosciences of the Bambino Gesù Children’s Hospital (Rome, Italy) in 2018
and included 51 individuals: 31 patients and 20 healthy subjects (H). H group
included sex/age-matched healthy volunteers with no personal/family history of
neurological diseases and no clinical examination signs (age 14.12(9.1); 12F/8M).
Patients were further divided into a PA group (n=15) and a CA group (n=16)
depending on the diagnosis and clinical course.

All patients had genetically con�rmed diagnosis (Table 2.2 and Table 2.3) and
a routine diagnostic work-up, including general and neurological examination,
brain MRI, sensory evoked potentials, nerve conduction study and visual acuity
assessment; moreover, they were in follow-up at for at least 2 years, in order to
guarantee a correct group classi�cation (Table 2.2 and Table 2.3).
None of the enrolled subjects had relevant cognitive impairment or took

psychoactive drugs (other usual medications, such as vitamin or antioxidant).
Patients with severe disability, moderate-severe cognitive impairment a�ecting
tests execution, brain and/or cerebellar lesions were excluded. Demographics
data were collected for the three groups. Motor disturbances were assessed
in patients based on standardized clinical scores:: SARA, 6 Minutes Walking
Test (6MWT) and Timed 25 Foot Walk Test (T25FW). Clinical assessment was
performed by expert personnel. The research complies with the ethical standards
established in the 1964 Helsinki Declaration. All subjects participated voluntarily;
subsequently, they or their legally responsible signed the informed consent (the
local ethics committee approved the study).

46

IoTaaS-based Gait Assessment for Ataxia Section 2.4

2.4.3 Experiment Approach

Enrolled patients �rst received a clinical evaluation. Then, all 51 subjects under-
went a Kinect-based assessment. Only 31 of them were instead able to undergo
gait analysis by standard system. In fact, while standard gait analysis is needed
that the subjects autonomously walk, the Kinect recognizes automatically multi-
ple people, thus enabling safety assistance to patients. The order of gait analysis
acquisition was randomly assigned to avoid bias due to fatigue or poor collabo-
ration. Likewise, su�cient time of rest was assured after clinical tests. Therefore,
to validate the Kinect with the standard motion capture system, we analyzed a
subgroup of 31 components obtained from those participants who performed
both tests regardless of their group.

2.4.4 Kinect-based IoTaaS Prototype for Gait Assessment

Hardware Design

Motion capture system set-up and protocol Standardized gait analysis
was conducted by a twelve-cameras motion capture system (Vicon MX, UK)
and two force plates (AMTI, or-6, US). Sampling rates were set at 200Hz for the
motion capture system and at 2 kHz using the two force plates. The two force
plates were hidden in the middle portion of a 10m walkway in order to avoid
acceleration and deceleration phases into the gait cycle considered. Assessments
were video recorded to assist clinical interpretation of data. The 33 markers were
located on the subjects’ anatomical landmarks as indicated by the Plug-in-Gait
protocol to reconstruct a full-body kinematic and kinetic model.

Kinect-based system set-up and protocol The Kinect v2 was placed on a
tripod (tilt angle 0°in front of the participant to obtain the front view and at the
height of 1m. It has been suggested that the gait trace should be between 1.5m
and 3.5m from the Kinect [85]. Kinect v2 framerate is 30 frames per second.
In order to ensure that a minimum of one full gait cycle per leg was captured,
we placed the Kinect at a distance of 4.5m from the starting line and asked the
patient to walk barefoot at their self-selected speed up to at the stop line that
has been placed at 1.5m from the Kinect, avoiding from the step cycle to analyze
the start and end phases of acceleration and deceleration (Figure 2.16).

So�ware Design

The system’s software side was implemented using a container-based microser-
vice that runs on Raspberry Pi 3 (Raspbian OS) that manages the acquisition and
preprocessing and another container-based microservice running on the cloud
managing the processing and output phases of the Kinect-based IoTaaS. The
container-based approach was adopted to simplify service delivery according to
an IoT cloud scenario. Both microservices have been implemented in Python.

47

Chapter 2 A Service Model for IoT Applications

Table
2.2:D

em
ographic

and
clinicalparam

etersofthe
study

population.

Progressive
A
taxia

D
iagnosis

Patientn.
G
ender

A
ge

[y]
A
ge

of
onset[y]

SA
RA

G
aitscore

T25FW
6
M
W
T

FRD
A

PA
1

F
8

7
13.5

2
6.63

345.6
FRD

A
PA

2
F

12
6

7.5
1

5.05
465.0

FRD
A

PA
3

M
32.3

23
9

3
5.50

400.4
FRD

A
PA

4
F

14
5

16.5
4

10.04
225

FRD
A

PA
5

M
15

12
12

3
8.98

369.8
FRD

A
PA

6
M

8
4

11
2

4.65
464.0

FRD
A

PA
7

F
16

12
8

2
4.70

516.2
FRD

A
PA

8
F

9
5

10
2

4.74
450.0

FRD
A

PA
9

M
19

17
11

3
4.77

448.2
FRD

A
PA

10
M

32
21

19
6

-
-

A
RSA

CS
PA

11
M

36
15

11
4

10.53
-

AT
PA

12
F

4
1

9
2

-
-

SCA
PA

13
F

22
17

12
3

5.23
469.6

SCA
2

PA
14

M
14

5
10.5

2
5.80

410.7
A
RSA

CS
PA

15
F

10
1.5

11.5
2

4.59
410.7

m
ean(st.dev)

7M
/8F

17.2
(9.5)

10.1
(6.9)

11.4
(2.9)

2.7
(1.2)

6.25
(2.1)

414.5
(76.1)

A
ge

and
disease

duration
are

expressed
in

years;U
C
A
=
U
ndiagnosed

CerebellarA
trophy/H

ypoplasia;SEC
O
N
D
A
R
Y
A
.=

Secondary
A
taxia

due
to

posteriorcranialfossa
tum

or;FR
D
A

=
Friedreich’sA

taxia;A
R
SA

C
S
=
A
utosom

alrecessive
spastic

A
taxia

ofCharlevoix-Saguenay;A
T

=
A
taxia–Telangiectasia

syndrom
e;SC

A
=
SpinocerebellarA

taxia;SC
A
2
=
SpinocerebellarA

taxia
type

2;JO
U
B
ER

T
S.=

Joubertsyndrom
e;

PM
M
2,A

D
C
K
3,ITPR

1
=
are

the
nam

e
ofthe

genesresponsible
forthe

disease;T25FW
expressed

in
secondsand

6
M
W
T
expressed

in
m
eters;n

=
num

ber;otherabbreviationsare
spelled

outin
the

text.

48

IoTaaS-based Gait Assessment for Ataxia Section 2.4
Ta

bl
e
2.
3:

D
em

og
ra
ph

ic
an
d
cl
in
ic
al
pa
ra
m
et
er
so

ft
he

st
ud

y
po

pu
la
tio

n.

N
on

-p
ro
gr
es
si
ve

A
ta
xi
a

D
ia
gn

os
is

Pa
tie

nt
n.

G
en
de
r

A
ge

[y
]

A
ge

of
on

se
t[
y]

SA
RA

G
ai
ts
co
re

T2
5F
W

6
M
W
T

A
D
CK

3
CA

1
F

8
6

10
2

5.
27

50
7.
6

A
D
CK

3
CA

2
F

13
2

10
2

6.
30

46
8.
4

U
CA

CA
3

F
14

10
6.
5

1
5.
30

43
8

JO
U
BE

RT
S.

CA
4

M
11

1
6

1
5.
81

58
5

JO
U
BE

RT
S.

CA
5

F
15

0.
5

5
2

5.
23

48
1.
5

A
D
CK

3
CA

6
F

25
7

10
.5

2
7.
23

48
9

A
D
CK

3
CA

7
M

7
3

15
2

5.
64

44
6

A
D
CK

3
CA

8
M

10
3

12
.5

2
7.
11

43
6.
8

JO
U
BE

RT
S.

CA
9

F
13

0.
5

11
2

5.
03

29
5.
6

IT
PR

1
CA

10
F

8
0.
5

11
2

5.
95

43
2.
6

A
D
CK

3
CA

11
M

8
5

3.
5

1
5.
17

39
0

U
CA

CA
12

M
13

1
26
.5

6
9.
46

-
U
CA

CA
13

M
8

1
22
.5

6
9.
40

-
PM

M
2

CA
14

M
17

1
12

2
4.
93

54
8

SE
CO

N
D
A
RY

A
.

CA
15

F
14

11
.5

11
2

6.
42

41
6.
7

JO
U
BE

RT
S.

CA
15

M
10

0.
5

8
3

6.
69

32
1.
3

m
ea
n(
st
.d
ev
)

8M
/8
F

12
.6

(4
.5
)

3.
3
(3
.6
)

11
.3

(5
.9
)

2.
4
(1
.5
)

6.
3
(1
.4
)

44
6.
9

(7
8.
3)

A
ge

an
d
di
se
as
e
du

ra
tio

n
ar
e
ex
pr
es
se
d
in

ye
ar
s;
U
C
A
=
U
nd

ia
gn

os
ed

Ce
re
be
lla
rA

tr
op

hy
/H

yp
op

la
si
a;
SE

C
O
N
D
A
R
Y
A
.=

Se
co
nd

ar
y
A
ta
xi
a

du
e
to

po
st
er
io
rc

ra
ni
al
fo
ss
a
tu
m
or
;F

R
D
A

=
Fr
ie
dr
ei
ch
’s
A
ta
xi
a;
A
R
SA

C
S
=
A
ut
os
om

al
re
ce
ss
iv
e
sp
as
tic

A
ta
xi
a
of

Ch
ar
le
vo
ix
-S
ag
ue
na
y;
A
T

=
A
ta
xi
a–
Te
la
ng

ie
ct
as
ia
sy
nd

ro
m
e;
SC

A
=
Sp

in
oc
er
eb
el
la
rA

ta
xi
a;
SC

A
2
=
Sp

in
oc
er
eb
el
la
rA

ta
xi
a
ty
pe

2;
JO

U
B
ER

T
S.
=
Jo
ub

er
ts
yn

dr
om

e;
PM

M
2,

A
D
C
K
3,

IT
PR

1
=
ar
e
th
e
na
m
e
of

th
e
ge
ne
sr

es
po

ns
ib
le
fo
rt
he

di
se
as
e;
T2

5F
W

ex
pr
es
se
d
in

se
co
nd

sa
nd

6
M
W
T
ex
pr
es
se
d
in

m
et
er
s;
n
=
nu

m
be
r;
ot
he
ra

bb
re
vi
at
io
ns

ar
e
sp
el
le
d
ou

ti
n
th
e
te
xt
.

49

Chapter 2 A Service Model for IoT Applications

Edge
Device

Kinect

Cloud
Datacenter

(i) Data collection
and pre-processing

(ii) Data processing

Figure 2.16: Kinect-based IoTaaS. From the starting line to the Kinect there is a total
distance of 4.5m. The stopping line is placed 1.5m from the Kinect in order to ensure
the tracking of the skeleton. The 3m walkway is enough to guarantee a gait cycle.

Data acquisition and pre-processing The 25 anatomical landmarks, includ-
ing the spine base, left/right hip, left/right knee, and left/right ankle, and the
left/right foot (representing the toes), were collected.

Kinect’s markers time series were smoothed with a 4th order Savintzky–Golay
�lter with a time window of 0.96 s. Although the cut-o� frequency of about
1.5Hz is low compared to motion analysis standards, this value has su�ciently
addressed the low accuracy of the Kinect v2 sensor. While the standard motion
capture system uses the force platform to identify the gait events that de�ne a
cycle, the Kinect does not o�er automatic data about the timing of interaction
between the �oor and the feet. Other methods have been proposed to estimate
the timing automatically from the limb displacement, velocity or acceleration. To
identify gait events, we examined the evolution of the horizontal displacement
di�erences between the hip and foot of the Kinect markers. In particular, we
identi�ed the Initial Contact (IC) and the Final Contact (FC) as the maximum
and the Foot O� (FO) as the minimum.
We tested this algorithm’s accuracy measuring the mean absolute error of

gait events recognition in three standard gaits with respect to the gait events
recognized from the system that uses the force platforms.

50

IoTaaS-based Gait Assessment for Ataxia Section 2.4

Motion capture system data have been computed by Nexus 2.7 (Vicon, Oxford
UK) following the c3d format convention. The list of variables that have been
selected to detect the main strategies adopted by the patients while walking is
described in Table 2.4.

To test if there was a signi�cant di�erence between the spatio-temporal param-
eters obtained from the two measures, we examined correlation and agreement
tests. In other words, we examined the Pearson coe�cient (r), hypothesizing a
linear relationship between the same parameter but acquired with the two sys-
tems. Moreover, we used, for each spatio-temporal parameter, the Bland–Altman
test to quantify the agreement of the Kinect measures by comparing it with the
standard motion capture system, which is the Vicon system, looking at possible
�xed or proportional bias and at the Limits of Agreement (LoA) [88, 89, 90].

We applied the Kolmogorov–Smirnov test to study the normality distribution
of the di�erence between the two measures of each parameter. Fixed bias was
evaluated by a 1-sample t-test to see if the mean value of the di�erence di�ered
signi�cantly from 0. Proportional bias was assessed by linear regression analysis
using the di�erence between measurements as the dependent variable and the
gold standard as the independent variable. If this test is statistically signi�cant,
it can be shown that there is or that there is not proportional bias [90].
In the case of bias, we applied the appropriate corrections. In particular, the

�xed biases were removed and when a proportional bias was shown, the pa-
rameter was log-transformed [90]. This comparative analysis was conducted
considering a subgroup of 31 participants who had made both acquisitions with
the Kinect and the motion capture system. We examined possible correlations
using the Spearman test between all the corrected variables and the SARA and
using the Pearson test between all the variables and the 6MWT or T25FW.
In particular, we looked at correlations with the parameters obtained by the

Kinect corrected. Due to the multiple correlation tests, we applied a correction to
the alpha value of 0.05/9, which is 0.006. This analysis was conducted considering
all ataxic patients as a unique group (CA+PA groups).

Data processing: machine learning-based classification We transformed
the score (from 0 to 6) assigned by the clinician into the gait task of the SARA
scale in three main classes functional impairment: Low (from 0 to 1), Medium
(from 2 to 3), High (from 4 to 6). The �nal dataset for machine learning models
contained 51 subjects: 24 Low, 21 Medium, 5 High and all kinematic features
collected with the Kinect. After the new categorization, the new gait classes
were predicted by comparing the overall accuracy and Cohen’s kappa value [91]
of �ve most common classi�ers, e.g., Multilayer Perceptron (MLP), Naive Bayes
(NB) [92], k-Nearest Neighbors (k-NN) [93], random forest (RF) decision tree
and Support Vector Machine (SVM). All models and classi�ers presented here
were obtained using the caret (version 6.0-84), randomForest (version 4.6-14)
and e1071 (version 1.7-2) packages for R using default parameters optimized ad

51

Chapter 2 A Service Model for IoT Applications

Table 2.4: List of the spatio-temporal parameters and de�nitions, considered in this
study to assess Ataxia gait.

Variable name Variable de�nition

cadence [steps/min] The rate at which a person walks, expressed in
steps per minute.

speed [m/s] Mean velocity of progression.

stride length [m] Longitudinal distance from one foot strike to the
next one of the same limb.

stride time [s] Total time that begins with initial and �nal contact
of the same limb.

base width [m] Transversal distance between the right and left foot.

step length [m] Longitudinal distance from one foot strike to the
next one.

stance phase [% cycle] Percentage of gait cycle that begins with initial
contact and ends at toe-o� of the same limb.

swing phase [% cycle] The period during which the foot is in the air for
the purpose of limb advancement.

double support phase
[% cycle]

Time in which both feet are in contact with the
�oor.

hoc for each model. For each algorithm, we performed 10-fold cross-validation,
using 90% for training and the remaining 10% for testing and measure accuracy.
This method has been shown to work best in reducing bias in the resulting
classi�er [94].

The selectedmachine learningmodels were also adopted to classify CA, PA and
H subjects. In this case, the dataset contained 51 subjects labelled in this way: 16
CA, 15 PA and 20 H. Finally, we used the Principal Component Analysis (PCA) to
reduce the Kinect dataset’s multiple dimensionalities given by all the 9 kinematic
features and visualize classes. The 1st and 2nd principal components were used
for the scatter plot and observed the similarity of gait classes, respectively, low,
medium, high and PA, CA, and H. This analysis was conducted considering the
three groups CA, PA and H.

2.4.5 Results

Gait events, identi�ed by the algorithm that we used with the Kinect, were
compared with those of the standard motion capture system. The mean absolute
error of the gait events recognition algorithm was 9 samples.

52

IoTaaS-based Gait Assessment for Ataxia Section 2.4

Relationship Between the Measures

Pearson test revealed that there is a linear relationship between each parameter
acquired with the two methods (see Table 2.5, �rst two columns). Pearson
coe�cient shows a strong correlation of cadence (r = 0.81, p < 0.0001), speed (r
= 0.80, p < 0.0001), stride length (r = 0.81, p < 0.0001), step length (r = 0.80, p
< 0.0001) and stride time (r = 0.77, p < 0.0001). There is still a correlation but
moderate between the two acquisitions of base width (r = 0.44, p = 0.01), stance
and swing phase (respectively r = 0.45, p = 0.01 and r = 0.46, p = 0.01).

Agreement Between the Measures

The results obtained from the Bland–Altman test are reported in Table 2.5. The
�xed bias is the discrepancy between the two measures. The proportional bias is
a slope that resulted from the regression analysis. The reproducibility coe�cient
is equal to 1.96 × the standard deviation and it is used to assess the LoA. All the
spatio-temporal parameters except speed have a signi�cant �xed bias (p<0.05).
No proportional bias was found with the exception of base width (p = 0.003,
slope = -0.55).

Correlation with Clinical Tests

We found a signi�cant inverse correlation between speed (rho = -0.54, p-value
= 0.001), stride length (rho = -0.58, p-value = 0.0006) and step length (rho =
-0.61, p-value = 0.0002) and SARA total score. We found a signi�cant inverse
correlation between speed (r = -0.74, p-value < 0.0001), stride length (r = -0.55,
p-value = 0.003), swing phase (r = -0.55, p-value = 0.003), cadence (r = -0.61,
p-value = 0.001) and the T25FW test. Stride time (r = 0.73, p-value < 0.0001) and
stance phase (r = 0.56, p-value = 0.003) and double support (r = 0.58, p-value
= 0.002) directly correlate with the T25FW test. Moreover, we found a direct
correlation between 6MWT and speed (r = 0.58, p-value = 0.002) and a negative
correlation with stride time (r = -0.58, p-value = 0.002).

Classification

The classi�cation respectively of three new gait impairment classes (Low,Medium,
High) and PA, CA, H, was carried out performing the 10-fold cross-validation
of the whole Kinect dataset and comparing the best classi�cation performance
of the selected machine learning models. The mean and interquartile range
(IQR) of accuracy and Cohen’s Kappa values, sensitivity and speci�city for each
class have been reported in Table 2.6 and Table 2.7. The PCA scatter plot of
1st and 2nd components reduces the multidimensionality of Kinect measures
and provides a visualization of data by each subject respectively for gait score
classi�cation (Figure 2.17 (a)) and recognition of PA/CA/H (Figure 2.17 (b)).

53

Chapter 2 A Service Model for IoT Applications

Table
2.5:Relationship

betw
een

m
easuresofeach

param
eteracquired

w
ith

the
Kinectsystem

and
those

acquired
w
ith

the
m
otion

capture
system

,reported
in

the
�rsttw

o
colum

ns.Bland–A
ltm

an
testand

correlation
analysisbetw

een
the

param
etersm

easured
w
ith

the
tw

o
system

s.

M
easure

r
p-value

Fixed
bias

Proportional
bias

LoA
RPC

KinectM
ean

[CI]
Vicon

M
ean

[CI]

Cadence
[steps/m

in]
0.82

<0.0001
20

0.31
[-12

51]
32

114.81
[82.81
146.81]

134.61
[83.02
86.21]

Speed
[m

/s]
0.80

<0.0001
0.04

0.31
[-0.3

0.37]
0.34

1.01
[0.68

1.34]
1.05

[0.51
1.59]

Stride
length

[m
]

0.81
<0.0001

-0.13
-0.05

[-0.33
0.08]

0.20
1.06

[0.76
1.36]

0.93
[0.59

1.28]
Base

w
idth

[m
]

0.44
0.01

-0.04
-0.55

[-0.13
0.06]

0.09
0.19

[0.11
0.28]

0.16
[0.07

0.25]
Step

length
[m

]
0.80

<0.0001
-0.05

-0.03
[-0.16

0.06]
.11

0.53
[0.38

0.68]
0.48

[0.30
0.67]

Stride
tim

e
[s]

0.77
<0.0001

-0.14
0.11

[-0.4
0.13]

0.27
1.07

[0.78
1.35]

0.93
[0.51

1.35]
Stance

phase
[%]

0.45
0.01

-2.3
0.09

[-11
6.7]

9.1
60.7

[56.51
64.91]

58.4
[48.21

68.53]
Sw

ing
phase

[%]
0.46

0.01
-0.04

0.10
[-6.7

11]
9.1

39.29
[35.07

43.52]
41.63

[31.47
51.79]

D
ouble

support
[%]

0.58
<0.0001

-0.03
0.56

[-11
5.3]

7.9
10.63

[7.10
14.16]

7.99
[-1.42

17.41]

m
ean

(st.dev)
8M

/8F
12.6
(4.5)

3.3
(3.6)

11.3
(5.9)

2.4
(1.5)

6.3
(1.4)

446.9
(78.3)

LoA
=
Lim

itsofA
greem

ent;R
PC

=
Reproducibility

Coe�
cient(1.96

×
standard

deviation);C
I=

Con�dence
Interval;r

=
Pearson

coe�
cienta

p-value<0.05
given

by
the

respective
statisticaltest.

54

IoTaaS-based Gait Assessment for Ataxia Section 2.4

Table 2.6: Accuracy & Cohen’s Kappa value [mean (IQR)%], for each tested classi�er
respectively for gait score (Low/Medium/High) and Ataxia Groups (PA/CA/H). Moreover,
Sens.x|Spec.x are respectively the sensitivity and speci�city of each selected class (x)
respect to all the other classes.

Classi�er Accuracy & Kappa
(Low/Medium/High)

YensRo| |
YpecRo|

YensSed |
YpecSed

YensN igh |
YpecN igh

MLP 67.5 (19) & 57 (12.1) 0.58 | 0.48 0.62 | 0.60 0.63 | 0.60
NB 78.2 (20) & 61.5 (37) 0.65 | 0.58 0.63 | 0.64 0.68 | 0.69
k-NN 68.5 (2.7) & 43.7 (5.8) 0.61 | 0.60 0.61 | 0.62 0.64 | 0.58
RF 83.2 (0.9) & 72.8 (1.8) 0.75 | 0.72 0.70 | 0.66 0.78 | 0.80
SVM 90.4 (19) & 82.8 (34) 0.88 | 0.80 0.86 | 0.80 0.97 | 0.94

MLP = Multilayer Perceptron; NB = Naive Bayes; k-NN = k-Nearest Neighbors; RF =
Random Forest; SVM = Support Vector Machine.

Table 2.7: Accuracy & Cohen’s Kappa value [mean (IQR)%], for each tested classi�er
respectively for gait score (Low/Medium/High) and Ataxia Groups (PA/CA/H). Moreover,
Sens.x|Spec.x are respectively the sensitivity and speci�city of each selected class (x)
respect to all the other classes.

Classi�er Accuracy & Kappa
(Low/Medium/High)

YensRo| |
YpecRo|

YensSed |
YpecSed

YensN igh |
YpecN igh

MLP 55.1 (5.5) & 30.4 (10.2) 0.50 | 0.51 0.53 | 0.49 0.57 | 0.44
NB 51.1 (23.6) & 24.3 (34.6) 0.49 | 0.47 0.51 | 0.47 0.53 | 0.50
k-NN 45.1 (10) & 14.2 (10.4) 0.46 | 0.48 0.52 | 0.54 0.51 | 0.45
RF 58.9 (12.12) & 36.5 (15.8) 0.60 | 0.62 0.57 | 0.62 0.58 | 0.59
SVM 68.6 (3.4) & 49.7 (8.95) 0.62 | 0.63 0.64 | 0.59 0.64 | 0.57

MLP = Multilayer Perceptron; NB = Naive Bayes; k-NN = k-Nearest Neighbors; RF =
Random Forest; SVM = Support Vector Machine.

2.4.6 Discussion

This study aimed to evaluate a cost-e�ective Kinect-based IoTaaS for gait analysis
in young patients with Ataxia to provide a reliable de�nition of spatio-temporal
gait parameters [95, 96]. Moreover, we applied a series of machine learning
algorithms to classify subjects depending on the disease severity or the ataxia
subtype (CA or PA) to estimate a potential clinical use of the Kinect-based gait
analysis.
We demonstrated that the Kinect was able to identify speci�c gait events,

whose computation is necessary to analyze spatio-temporal parameters. Gait
events are the interaction of the foot with the ground. The spatio-temporal
parameters’ accuracy can vary remarkably depending on the algorithms used
to detect the gait events or the low frequency of acquisition of the Kinect.
We found a mean absolute error of gait events recognition of 9 samples. The

55

Chapter 2 A Service Model for IoT Applications

(a) PCA with cluster of gait score
(low-medium-high).

(b) PCA with cluster of Ataxia groups
(PA-CA-H).

Figure 2.17: PCA results. Data are projected in the �rst two PCs. Observations are
colored in green, yellow or red representing, respectively, high, low, medium or PA, CA
or H.

appropriateness of this error is due to the frequency of acquisition. Despite
such low frequency (30 frames per second), the use of Kinect is spreading across
di�erent neurological diseases.
[81, 82, 83, 84, 85, 86, 87], supported by the numerous advantages of the

methodology. Compared to standard gait analysis systems, Kinect is a low-
cost marker-less tracking system that simpli�es acquisitions and reduces costs,
allowing wider use in clinical settings. Besides, it can acquire motion from more
than one subject, thus enabling assistance and evaluation of non-autonomously
walking patients.

To demonstrate the validity and quality of Kinect acquisition, we compared
its measures with those of a standard motion capture system for gait analysis,
observing both the agreement and the relationship between the same parameters
acquired with the two systems. The Bland–Altman test quanti�es the agreement
between two measurements by studying the mean di�erence and constructing
the LoAs. Ideally, we would expect that the average of the di�erence would
be equal to zero. This has been easily tested by a 1-sample t-test used to test
if the mean value of the di�erence di�ers signi�cantly from zero. We found
fundamental information on the presence of a �xed bias in all the parameters
acquired with the Kinect, except for speed.
We exceeded this by subtracting the �xed bias from the measured Kinect

parameter. The proportional bias a�ects a measure when the di�erence in
values resulting from the two methods increases or decreases in proportion
[97]. A proportional bias a�ected the base width measure obtained with the
Kinect system. A similar de�ciency in base width measurement has already been
documented in healthy subjects [98]. A possible explanation of this could be that
base width is the only parameter computed in the x-axis and, while Kinect uses
a depth camera to measure distances on the z-axis, x- and y-axes are computed

56

IoTaaS-based Gait Assessment for Ataxia Section 2.4

with the RGB camera. Therefore, di�erent types of transformations are needed
to obtain the joints’ positions in the camera space.
LoAs are often challenging to understand because they are highly context-

dependent. It is critical to assess if the LoAs are clinically acceptable. Comparing
with other studies, we found that temporal parameters’ LoAs are acceptable while
spatial parameters are characterized sometimes by larger but still acceptable
limits [99, 100, 101].
Although the biases can be overcome, the results obtained show that only

base width had a proportional bias, but all the parameters showed a �xed bias
except the speed. The presence of di�erent biases means that the spatio-temporal
parameters measured by the Kinect cannot be used interchangeably with those
parameters acquired with a standardmotion capture system used for gait analysis
in clinical practice. However, we found linear relationships between all the
parameters acquired with the two systems, suggesting that a gait acquired with
the Kinect cannot be used for gait analysis as a replacement for a standard motion
capture system but can still provide essential clinical information. Indeed, we
observed signi�cant correlations between the SARA score and the speed, the
stride length and the step length parameters acquired with the Kinect, which
are consistent with the correlations found between the SARA score and the
parameters acquired with the standard motion capture system [78].

Finally, we used all the Kinect dataset (from 51 subjects, patients + H) to test
the ability of obtained parameters, that is, the technology-based biomarkers,
to di�erentiate clinical conditions (PA, CA, H) and classify motor disability,
such as to predict a potential use of Kinect-based evaluation for early patients
strati�cation. The SVM algorithm gave the best results in this examination,
showing an overall accuracy of gait score classi�cation of 90.4%, a sensitivity
greater than 85% and a speci�city of 80% and more, for each class respectively, as
reported in Table 2.6 and Table 2.7 (accordingly Figure 2.17 (a) shows separated
clusters); conversely, the recognition accuracy of PA/CA/H was about 70%,
the sensitivity and the speci�city of each class were respectively about 63%
and 60% (overlapped clusters are shown in Figure 2.17 (b)), consistently with
previous studies disclosing some overlap in gait patterns of di�erent clinical
conditions [102]. These results, therefore, suggest that a machine learning
approach to measures derived from a Kinect-based evaluation could provide an
immediate index of Ataxia severity, useful for clinical applications, although the
contribution of other disturbances (movement disorders, spasticity, weakness),
the �nal result was not isolated in this context.

Finally, Kinect-based assessment has been successfully used on a population of
young subjects, suggesting that this methodology can also be applied to pediatric
patients, which is known to be poorly collaborative with standard evaluation
systems, as our previous study initially disclosed [76].

57

Chapter 2 A Service Model for IoT Applications

2.4.7 Conclusions

Our �ndings pave the way to developing a novel and cost-e�ective Kinect-based
IoTaaS for gait assessment in ataxic patients capable of providing technology-
based biomarkers useful for clinical application in the �eld of Ataxia. Indeed, we
con�rm that the Kinect technology can reliably derive space-time gait param-
eters, as the comparison with the standard motion capture system showed. In
particular, our data suggest that speed, stride length and step length are the most
promising parameters for evaluating and following-up patients into a clinical
setting, relying on Kinect-based gait analysis. Although further con�rmatory
studies are now necessary, possibly using two or more Kinects in the setup,
this preliminary experience indicates a new tool for quantitative assessment
of Ataxia and strati�cation of patients (even young), which are critical unmet
needs in this �eld.
Indeed, a Kinect-based IoTaaS could represent a potential tool that allows

assessing the progression of gait even in the phases of the disease in which assis-
tance is needed and permitting an intensive home follow-up, bene�cial for some
advanced patient. Besides, the SVM algorithm demonstrated the accuracy of
such a system in distinguishing di�erent clinical conditions, further highlighting
the potential applications of this novel tool; however, the main limitations of
such methodology should be taken into consideration (restricted tracked area,
frontal view acquisition, low sampling frequency, which collectively preclude
monitoring in real-life or unconstrained context) [103].
Overall, these �ndings encourage the implementation of fully technology-

based systems for objective assessment of Ataxia, even in remote contexts, as
we conceptualized in SaraHome [72].

58

3 Network Management

In an Internet f Things (IoT)-based system, billions or even trillions of devices are
connected to the global network infrastructure, contributing to the big data phe-
nomenon. Aside from data volume, the velocity, variety, and veracity of these data
will signi�cantly burden traditional networking infrastructures. Cloud Computing
(CC) has been integrated with IoT to address limitations in existing IoT networks
(e.g., computing and storage resources). However, cloud-centric IoT systems might
not be suitable for delay-sensitive and computationally-intensive applications due
to end-to-end latency, resource availability, bandwidth. Consequently, there has
been a shift to Edge Computing (EC), where computation and storage resources are
pushed closer to data sources. However, massive migration between edge and cloud
imposes communication delays and results in latency, bandwidth, and ine�cient
energy consumption issues. Thus, there have been attempts to explore the potential
of network softwarization paradigms, such as Software De�ned Networks (SDN)
and Network Function Virtualization (NFV). Furthermore, things in next-generation
IoT systems are expected to be extremely heterogeneous in platforms, resources and
connectivity. As a result, the amalgamation of SDN and NFV in Cloud-to-Thing
(C2T) interplay is, undeniably, promising in improving the Quality of Service (QoS)
for complex IoT-driven applications. This chapter seeks state-of-the-art approaches,
methodologies, key technologies, and typical IoT applications bene�ting from edge
cloud in the design, development, deployment, and innovative use of SDN and NFV
edge-cloud integration in next-generation IoT infrastructures.

3.1 Introduction

Currently, around 10% of enterprise-generated data is created and processed
outside a traditional centralized data centre or cloud. By 2022, Gartner predicts
this �gure will reach 50% [104]. Simultaneously, the exponential increase in the
number of users and the proliferation of the Internet of Things (IoT) devices and
associated data streams has put signi�cant stress on the network and edge layer,
leading to the emergence of new data con�dentiality problems and network
performance.

In recent years, the ongoing evolution of Cloud Computing (CC) and the adop-
tion of the microservices-based architecture led to a drastic change in application
building, deployment, and delivery to tackle those problems. Microservices-
based architecture is tailored to today’s software, which requires a high degree

59

Chapter 3 Network Management

of �exibility and dynamism. Therefore, it combines many sources of informa-
tion, devices, applications, services, and distributed microservices D`S, into a
�exible architecture where applications extend over multiple endpoint devices
and coordinate with each other to produce a continuous digital experience.

However, one of the signi�cant issues for applying the microservice architec-
tural style in cloud/edge environments is represented by the network con�gura-
tion over the fog. Each speci�c `S or `S requires particular network capabilities
that can not be easily carried out by con�guring the physical network due to
the complexity of existing systems’ infrastructures.

This problem can be solved through network softwarization or virtual network
technologies that enable creating several virtual overlay networks that meet the
requirements of each speci�c `S and D`S. Network softwarization o�ers many
advantages for Information and Communications Technology (ICT) operators, as
demonstrated by the recent keen interest of industry and academics regarding the
virtualization of telecommunication networks for CC and Edge Computing (EC)
infrastructures [105]. This chapter’s main contribution is to provide a targeted
analysis that can help cloud/edge architects choose the most suitable overlay net-
work solution. Speci�cally, this chapter’s objective is to propose an innovative
system able to face softwarized network connectivity problems for the execu-
tion of distributed microservices. In particular, we have created an innovative
solution based on Kubernetes, i.e., a portable, extensible open-source platform
for managing containerized microservices that facilitate both declarative con�g-
uration and automation, to which various overlay network technologies have
been associated, namely Open Virtual Networking (OVN), Weave Net and Flan-
nel. We deployed two di�erent distributed microservices-based respectively on
the File Transfer Protocol (FTP) and Constrained Application Protocol (CoAP).
Then, to quantify the implemented system’s network performances, we realized
a benchmark based on the transfer times registered using each implemented
microservice.
Experimental results compare the di�erent overlay network technologies’

performances by considering Cloud-to-Cloud, Cloud-to-Edge, and Edge-to-Edge
scenarios. Thus, analyzing the deployed system’s performances, we noticed that
the OVN based solution is better than others. Indeed, it presents lower execution
time and o�ers more functionalities for managing microservices geographically
distributed. Furthermore, independently of their performance analysis, choosing
the best network overlay is not an easy task because it mostly depends not only
on the user’s needs but also on the scenario speci�cations.

The rest of the chapter is organized as follows. Section 3.2 highlights several
relevant works form literature. Section 3.3 discusses the motivation behind this
contribution. Section 3.4 provides an overview of the analyzed overlay network
technologies. Our reference architecture based on Kubernetes for managing mi-
croservices in both cloud and edge layers is discussed in Section 3.5. Section 3.6

60

Related Work Section 3.2

provides the implementation work�ow for the proposed system. Experimental
results comparing the di�erent overlay network technologies in Cloud-to-Cloud,
Cloud-to-Edge, and Edge-to-Edge environments are discussed in Section 3.7.
Finally, Section 3.8 concludes the chapter.

3.2 Related Work

In recent years, several scienti�c works have been proposed regarding network-
ing in CC/EC. Hence, communication networks such as SDN and NFV are the
key enabling technology that provides ample opportunities for highly �exible
network operations in this context [106, 107].

Reliable design for virtual network requests with location constraints in Edge-
of-Things (EoT) is proposed in [108]. In particular, the problem of mapping
multiple Virtual Networks (VNs) with geographic location constraints onto a
physical network is studied while considering the survivability and reliability
requirements of each VN request in EoT-based data centres. In [109], the authors
propose PerSoNet, a Virtual Private Network (VPN) that automatically creates
and manages private, authenticated overlay links across personal devices of
social network peers and automatically manages SDN rules in software switches
for packet forwarding, name resolution and mapping (for IP addresses and DNS
names), and device network access control.
The integration of SDN with IoT, edge, and cloud computing for dynamic

distribution of IoT analytics and e�cient use of network resources, is proposed
in [110]. In particular, an experimental IoT-aware multilayer transport SDN and
edge/cloud orchestration architecture that deploys IoT-tra�c control and con-
gestion avoidance mechanisms for the dynamic distribution of IoT processing to
the edge of the network is presented based on the actual network resource state.
[111] proposes a use case to illustrate the concept of NFV as a new paradigm
in designing telecommunication networks. Notably, the authors implement an
overlay network between vehicles and the cloud, based on distributed Docker
containers, orchestrated by Open Baton. A V2V data o�oading for cellular
networks based on SDN inside a mobile EC architecture is presented in [112]. A
study on joint computation o�oading and resource allocation optimization in
heterogeneous networks with mobile EC is presented in [108]. A novel collabora-
tive vehicular EC framework is presented in [113]. In [114], the authors attempt
to introduce a new concept of an ecosystem for Multi-access Edge Computing
(MEC) based on the combination of ultra-broadband mmWave communications.

The task o�oading problem in an ultra-dense network aiming to minimize
the delay while saving the battery life of user’s equipment leveraging SDN is
investigated in [115]. In [116], an SDN-based edge/cloud interplay is presented
to handle big data streaming in the industrial IoT environment. In particular,
a multi-objective evolutionary algorithm using Tchebyche� decomposition for

61

Chapter 3 Network Management

�ow scheduling and routing in SDN is presented. An EC-aware Non-Orthogonal
Multiple Access (NOMA) technique can enjoy uplink NOMA’s bene�ts in reduc-
ing mobile EC users’ uplink energy consumption. The collaborative computation
o�oading for multi-access EC over �bre-wireless networks is presented in [117],
presenting an approximation collaborative computation o�oading scheme and
a game-theoretic collaborative computation o�oading scheme. A full-duplex
aided user virtualization for mobile EC in 5G networks is presented in [118].
In particular, a novel framework with a user virtualization scheme in the SDN
virtualization cellular network is discussed, in which radio resources are virtual-
ized along with computation and storage resources. An integrated framework
that enables a dynamic orchestration of networking, caching and computing
resources to improve the performance of applications for smart cities is discussed
in [119]. A virtualized heterogeneous network framework aiming at enabling
content caching and computing is discussed in [120].
Di�erently from the previous scienti�c works, in this paper, we test and

compare di�erent network overlay technologies in a real cloud/edge system
based on the Kubernetes platform.

3.3 Motivation

EC is a method to optimize CC systems by performing data processing at the net-
work’s edge, closer to users. It allows minimizing the communication bandwidth
needed between IoT devices and the central cloud datacenter by performing
analytics and knowledge generation at or near the data source. Doing this com-
putation closer to the edge of the network, organizations can analyze essential
data in near and real-time - a need for organizations across many industries, in-
cluding manufacturing, healthcare, telecommunications and �nance. EC reduces
latency from a networking point of view because data do not have to traverse
the whole network to reach the central cloud for processing, but only important
data are sent over the network.
Figure 3.1 illustrates a scenario including both cloud and edge layers inter-

connected through the Internet. Such a scenario makes massive use of both hy-
pervisor and container virtualization technologies to optimize virtual resources.
The Cloud Layer includes several Cloud Regions ⇠'8 , 8 = 1, ..., ! representing
cloud systems deployed in di�erent geographical areas. By de�nition, each ⇠'8
exploits the hypervisor virtualization to manage several Virtual Machines +" 9 ,
1, ...," and in turn, each+" 9 exploits the container virtualization to run several
Containers⇠: , 1, ...,# . In the end, each container⇠: runs a speci�c microservice
`(: , : = 1, ...,# . The Edge Layer includes several Edge Regions ⇢'G , G = 1, ...,$
representing edge systems deployed in di�erent geographical areas. Each ⇢'G
can manage several Edge Devices ⇢⇡~ , ~ = 1, ..., % , e.g., Single Board Comput-
ers (SBC) (such as Arduino, Raspberry), smartphones, and tablets. Each ⇢⇡~ ,

62

Motivation Section 3.3

Figure 3.1: Reference scenario.

according to the type of device, can run either several Containers⇠I , I = 1, ...,& ,
such as in the case of Raspberry Pi 3 Model B+ [121], each one running a speci�c
microservice `(I , I = 1, ...,& or directly `(I , such as in the case of devices that
do not have the hardware/software capabilities to run a container engine. Also,
several microservices `(: and `(I can be interconnected to arrange distributed
microservices ⇡`(; , ; = 1, ...,' representing mesh-up services and applications
including both central cloud and edge capabilities.

To optimize microservices, it is required to con�gure “mesh networks" of micro
data centres that process or store critical data locally. Each microservice requires
its speci�c network capabilities: for example, a CoAP real-time video streaming
microservice will require higher throughput compared to an FTP microservice
downloading batch data from the central cloud data centre. The possibility
of changing the physical network con�guration to meet the requirements of
microservices is not so feasible due to the high number of microservices that
quickly can appear and disappear and due to the complexity of the underlying
physical networking infrastructure. A possible solution consists of adopting
network softwarization or virtual network technologies that enable creating sev-
eral virtual overlay networks �tting each speci�c microservice’s requirements.
Currently, many network softwarization solutions have appeared on the market.
The question is: which of them is the best one? This contribution aims to provide
an answer to this question considering three of the major virtual overlay net-
work technologies: OVN, Weave Net, and Flannel. To the best of our knowledge,

63

Chapter 3 Network Management

a scienti�c work that compares such softwarized network technologies in a
cloud/edge environment has not been proposed yet. To overcome such a gap,
we will compare these technologies considering Cloud-to-Cloud, Cloud-to-Edge,
and Edge-to-Edge communication scenarios.

3.4 Overlay Network Technologies

This section provides an overview of the three overlay network solutions assessed
in our cloud/edge system testbed.

3.4.1 Open Virtual Networking

OVN, a sub-project within Open vSwitch (OvS), was announced in early 2015 and
recently released the �rst production-ready version, version 2.6. OVN enables
support for virtual network abstraction by adding native OvS support for L2 and
L3 overlays and extends the existing OvS capabilities by adding native support
for virtual network abstractions and security groups. OVN can be used as a
plug-in for OpenStack, Docker and Kubernetes. OVN features include:

• Virtual networking abstraction for OvS, implemented using L2 and L3
overlays, but can also manage connectivity to physical networks;

• Flexible ACLs implemented using �ows;

• Software-based L2 gateways;

• Networking for both VMs and containers, without the need for a second
layer of overlay networking;

• Native support for NAT and load balancing;

• Native support for distributed L3 routing using OvS �ows, with support
for both IPv4 and IPv6;

• L3 gateways from logical to physical networks.

In terms of L3 features, OVN provides a so-called distributed logical routing. L3
features provided by OVN are not centralized, so each host executes L3 functions
autonomously.
OVN allows users to control cloud network resources by connecting groups

of Virtual Machines (VMs) or containers into private L2 and L3 networks quickly
and without the need to provision Virtual Local Area Networks (VLANs) or
other physical network resources.

64

Overlay Network Technologies Section 3.4

3.4.2 Weave Net

Weave Net is a powerful cloud-native networking tool that creates virtual net-
works for connecting Docker containers across multiple hosts. It also enables
the automatic service discovery of the resources. Weave Net has two di�erent
connection modes:

• sleeve that implements a User Datagram Protocol (UDP) channel to traverse
Internet Protocol (IP) packets to containers. The main di�erence between
Weave Net sleeve mode and Flannel UDP backend modes is that Weave
Net treats all the container’s packets as a unique total packet containing
all those packets and transfer them via UDP channel, so Weave Net sleeve
is technically faster than UDP backend mode;

• fastdp mode that implements also a solution based on VxLAN.

Weave Net creates a fully L2 network, including Ethernet’s multicast packet
replication to address all network nodes. In multicast communication, the data
incoming from a single source is spread simultaneously to multiple sources; this
is useful for communicating and sharing data between multiple endpoints. By
integrating the Weave Net plug-in with Kubernetes, the users can create a micro-
SDN and multicast information to a large number of containers simultaneously.
Thanks to the micro-SDN capability, Weave Net o�ers containerized applications
with a simple network and full-service discovery without any con�guration,
coding, or external dependency.

3.4.3 Flannel

Flannel is a networking solution for Kubernetes developed by CoreOS. It can
be used as an alternative to existing SDN solutions. Flannel works by assigning
each host an IP subnet used by Docker to allocate IPs for each container. Flannel
holds two di�erent network models:

1. UDP backend, which is a simple IP-over-IP solution. It uses a TUN device
to encapsulate each IP fragment in a UDP packet, forming an overlay
network. The UDP encapsulation adds 50 extra bytes to the frame.

2. Virtual Extensible LAN (VXLAN) is faster than the UDP backend. VXLAN
extends the data link layer (OSI L2) by encapsulating MAC-based L2
Ethernet frames with network layer (OSI L4) UDP packets. From an
overhead encapsulation perspective, VXLAN is e�cient when compared
to UDP.

To integrate Flannel with Kubernetes, each node must get its subnet through
Flannel service - �anneld. At this point, Docker also needs to be con�gured to
use the subnet created by Flannel. To maintain a mapping between the allocated

65

Chapter 3 Network Management

subnet and the IP address, Kubernetes runs on each host, an etcd server and a
�annel service. The kube-apiserver component can get IP mappings and assign
service IPs accordingly. Subsequently, Kubernetes will create iptables rules,
which will allocate static endpoints and load balancing. If the node fails or the
Pod is restarted, the Pod will receive a new local IP, but the service IP originally
created by Kubernetes will remain the same in this way, allowing Kubernetes to
route tra�c to the appropriate set of Pods.

3.5 Cloud/Edge Layers Management

In this section, we describe a possible architecture that implements our refer-
ence scenario illustrated in Figure 3.1. In particular, after an overview of the
Kubernetes platform, we describe how it can be adopted to develop distributed
microservices in a CC/CE environment.

3.5.1 Kubernetes Overview

Nowadays, users require 24-hour applications. The constant development of
new versions of such applications and the need to upgrade them can lead to
their inactivity. Application development follows these pipelines, as applications
are updated and released quickly by eliminating downtime. Another essential
requirement is to intelligently scale-up applications while growing demand by
ensuring particular network capability to guarantee particular Service Level
Agreements (SLAs). Kubernetes is a platform designed as a highly available
cluster whose purpose is to meet those requirements. Its abstraction allows us
to deploy and scale applications that bene�t from this service and have to be
packaged or containerized to decouple them from the underlying host utilizing
the container virtualization technology. This approach is di�erent from the
previous one, where deployed applications were installed on speci�c physical or
virtual machines as deeply integrated packages in the host. The purpose of Ku-
bernetes is to automate the deployment of application containers on the various
cluster nodes. As de�ned on the o�cial website, "Kubernetes is an open-source
system for automating deployment, scaling, and management of containerized
applications" [122]. From a networking point of view, the components are in-
terconnected, as shown in Figure 3.2. The main Kubernetes components are
master and workeror minion nodes. The master node manages the whole platform
making global decisions, for example, performing task scheduling and detecting
and responding to system events. It interacts with the etcd cluster to store
data regarding the various operations, and it is also responsible for starting up
and access Pods on minion nodes. A Pod is a group of one or more containers
that include shared volumes, IP addresses, and information about how to run
them [123]. In other words, a Pod encapsulates a group of containers that are
scheduled on the same host. It consists of a single container or a small number

66

Cloud/Edge Layers Management Section 3.5

Figure 3.2: Basic Kubernetes architecture.

of tightly-enclosed containers that share the same resources. It represents the
smallest planning, distribution, and horizontal/vertical scaling unit created and
managed in Kubernetes.
The minion nodes interact with the master node via HTTPS or HTTP. They

provide the Kubernetes runtime environment using Docker as a container engine
to create Pods. Docker is an open-source platform for developers and system
administrators that automates application deployment by leveraging container
virtualization, such as cgroups and namespaces. Container isolation allows us
to perform simultaneously several containers on the same machine without
interrupting each other. It is also possible to establish safe connections between
containers to make them interactive. Containers placed in the same Pod can
reach each other via local addresses and communicate using interprocess com-
munications such as SystemV semaphores or POSIX shared memory. The same
is not valid for containers located in separate Pods that have to use an overlay
network. Minion nodes interact with an internal L2 switch connected with an
ISCSI Server, allowing for mounting a volume into a Pod. Moreover, an external
L2 switch connects minion nodes over the Internet.

From a networking perspective, in Kubernetes, it is possible to identify three
communication modes between the various components:

1. Pod-to-Pod Communication. In a Kubernetes cluster, each Pod is assigned

67

Chapter 3 Network Management

an IP address in a �at shared networking namespace that all other Pods
and hosts can access within the cluster. This forms a networking model
where every pod can communicate with the network just like in a VM;

2. Pod-to-Service Communication. Each service’s IP addresses belong to a pool
of addresses con�gured in the Kubernetes API Server using the service-ip-
range �ag. Microservices are deployed using virtual IP addresses accessible
by various clients and are intercepted by a kube-proxy process running on
all hosts to route the tra�c to the correct Pod. A service is an abstraction
that de�nes a logical set of Pods and a policy to access them (e.g., load
balancing). The Pod group covered by the service is speci�ed using a label
selector;

3. External-to-Internal Communication. Previous communication modes can
access a Pod or a service within the cluster itself. To access a Pod from
outside the cluster, it is necessary to adopt an external load balancer to
reach all cluster nodes. Each request to reach the correct node is recognized
as part of a particular service and routed by the load balancer to the
appropriate Pod through kube-proxy.

The coordination of dynamically allocated ports is challenging because each
application must be associated with a port through a �ag so that the API servers
have to know how to insert dynamic port numbers into con�guration blocks.
Moreover, microservices have to know how to �nd each other. To overcome these
issues, Kubernetes uses di�erent approaches to each one addressing particular
requirements:

1. all containers can communicate with all other containers without NAT;

2. all nodes can communicate with all containers (and vice-versa) without
NAT;

3. the IP address of all containers belonging to the same Pod is the same.

These assumptions allow a�rming that all containers within a Pod share the
same namespace and are reachable to each other through the localhost address.
This model is not only less complex overall, but it is principally compatible
with the desire for Kubernetes to enable low-friction porting of applications
from VMs to containers [124]. This implies that containers within a Pod must
coordinate port usage, but this is di�erent from having processes in a VM. We
call this the IP-per-Pod model. This is implemented in Docker as a Pod container
that holds the network namespace open while containerized microservices join
that namespace with Docker’s –net=container:<id> function. In this case, a port
will be allocated on the host node, and tra�c will be forwarded to the Pod. The
Pod itself is blind to the existence or non-existence of host ports. To implement

68

Cloud/Edge Layers Management Section 3.5

this networking model, Kubernetes does not natively provide any multi-host
networking solution but relies on third-party plug-ins: OVN, Weave Net, and
Flannel.

3.5.2 Distributed Microservice Management

Figure 3.3 shows an example of D`S running in a cloud/edge environment based
on Kubernetes. CR 2 runs in VM 1, a Kubernetes master node directly connected
with a master gateway (GW) and two minion nodes running Docker containers
containing microservices. The master GW connects through an overlay network
CR2 with CR 1 and CR 2 through their respective minion GWs. CR 1 and 3 are
similar to CR 2, with the only di�erence that they run only minion nodes. The
CR 2 master GW is also interconnected through the overlay network with ER 4
and ER 5, including di�erent IoT devices. In the Edge Layer, the Docker container
virtualization is partially adopted according to the hardware/software capability
of involved IoT devices. For example, considering ER 4, ED 1 (e.g., a smartphone)
and ED 2 (e.g., an SBC not supporting Docker) directly run `S(s), whereas ED N
(e.g., an SBC supporting Docker) runs containerized `S(s). Moreover, a D`S is
arranged interconnecting four `S(s) respectively deployed in regions CR 1, CR 3,
ER 4, and ER 5.

Figure 3.3: Example of distributed microservice in a Cloud/Edge environment based
on Kubernetes.

69

Chapter 3 Network Management

3.6 Workflow

The �rst step is to create the Docker containers needed to deploy the microser-
vices and con�gure the Kubernetes cluster. To perform these tasks, for each
level of a speci�c microservices, a Docker�le has been created for each tier of
a speci�c microservice. This contains the commands needed to create related
images automatically. Listing 3.1 shows a Docker�le snippet for the CoAP server
deployment.

Listing 3.1: Docker�le snippet - CoAP server.
FROM centos
MAINTAINER Alina Buzachis
ADD CoAPthon−master /dir
ADD �les / dir
WORKDIR dir
RUN python setup.py install
CMD ["python", "coapserver.py", "-i", "127.0.0.1", "-p", "5683"]

After executing the Docker�le, we have a real container ready for the start and
stop operations. Therefore, the container must be loaded on the Docker Registry
using a push operation to allow recovery, simple and scalable development. Thus,
the di�erent images are available in the Registry and ready to be orchestrated
by Kubernetes.

Listing 3.2: CoAP Pod YAML �le.
−−−
apiVersion : v1
kind: Pod
metadata:

name: coapserver
labels :

apps: coapserver
spec :

containers :
− name: coapserver

image: alinab /coapserver : alfa 0.1
imagePullPolicy : IfNotPresent

ports :
− containerPort : 5683

nodeSelector :
name: minion1−amd64

−−−

To create Pod and Service objects, it is necessary to execute the follow-
ing commands: (1) kubectl create -f server_pod.yaml and (2) kubectl create -f
server_service.yaml. Furthermore, analyzing the Listing 3.2, we notice that the

70

Workflow Section 3.6

CoAP server Pod is scheduled on the minion1-amd64 node. To access the CoAP
service externally, thanks to the NodePort mapping de�ned in the Listing 5.3, the
5683 port is mapped externally.

Listing 3.3: CoAP service YAML �le.
−−−
apiVersion : v1
kind: Service
metadata:

name: coapserver
labels :

apps: coapserver
spec :

type : NodePort
ports :

− protocol : UDP
port : 5683

selector :
apps: coapserver

−−−

3.6.1 Cluster Configuration

Once the containers could be accessed and managed by our platform, we needed
to create the Kubernetes cluster, a cluster with a master and two minion nodes,
and distribute the various Pods that will encapsulate all the containers. Also, the
creation of the cluster, thanks to the simplicity of using Kubernetes, can be done
using Vagrant through the vagrant up command.
At the end of this procedure, we will have a Kubernetes cluster consisting

of a master node and two minion nodes that communicate with each other
through a proposed network overlay. On the latter, using the kubectl command-
line interface, it is possible to deploy and test the relative microservices. In
this context, we have developed four proposed scenarios in which a di�erent
network overlay is applied to each of them: Flannel, OVN, Weave Net, and
Calico. Very interesting is OVN; it can create L3 gateways. To have this type of
con�guration, a gateway must be con�gured on each node of the cluster. In this
way, it is possible to pin the Pod subnet tra�c to go out of a particular gateway.
Additionally, the master’s GW is con�gured to control the Pods belonging to a
speci�c subnet. In this way, the �ow is directed to go out through the master’s
GW. To do this, we can provide –rampout-ip-subnets = "10.10.2.0/24,10.10.3.0/24"
option to the gateway-init command, as shown is Listing 3.4 during the gateway
initialization phase.
By analyzing the gateway initialization script in Listing 3.4, we note that

we share a single network interface for both management tra�c (e.g., ssh) and

71

Chapter 3 Network Management

cluster’s North-South tra�c. Speci�cally, we attach the physical interface to an
OvS bridge, move its IP address, and route to that bridge. If we choose enp0s9 as
the primary interface, with the IP address PUBLIC_IP, we create a bridge called
br-enp0s9, add enp0s9 as a port and move the PUBLIC_IP address to br-enp0s9.
Then, we add the subnets that this gateway should manage and a default gateway
GW_IP.

Listing 3.4: Gateway initialization command.
sudo ovn−k8s−overlay gateway−init −−cluster−ip−subnet="10.10.0.0/16" \

−−bridge− interface br−enp0s9 \
−−physical−ip "$PUBLIC_IP"/"$MASK" \
−−node−name="kube-gateway-master" \
−−rampout−ip−subnets="10.10.2.0,10.10.3.0" \
−−default−gw "$GW_IP"

This is an essential feature because it represents the starting point for realising
a network �ow segmentation, the object of future work.

3.7 Experiments

In this section, we present the experimental results of the deployed system. In
particular, we analyze the network performances in terms of transfer times col-
lected using di�erent overlay networks and running two di�erent microservices
(`S): FTP and CoAP based, respectively. Moreover, the experiments have been
conducted accordingly to three scenarios: (i) Cloud-to-Cloud, (ii) Cloud-to-Edge
and (iii) Edge-to-Edge. Mainly, these experiments aim to calculate the overhead
introduced by the overlay networks in each proposed scenario and compare
them.
Unfortunately, we have not found any similar work in the scienti�c commu-

nity to compare our system and other solutions. In all the experiments conducted,
we compare the performance of three overlay networks: (i) OVN, (ii) Weave Net
and (iii) Flannel with the case where we did not apply any overlay networks. To
evaluate the system’s performances, for each proposed scenario, we collected
30 subsequent experiments and calculated the average times and the 95% con�-
dence interval for both services implemented in four di�erent con�gurations
with increasing payloads.

3.7.1 Testbed Configuration

As previously described, we propose three di�erent scenarios: i) Cloud-to-Cloud,
ii) Cloud-to-Edge and iii) Edge-to-Edge. As a public cloud, we used GARR’s
platform (an Italian no-pro�t organization founded by several research organi-
zations).

72

Experiments Section 3.7

Scenario #1: Cloud-to-Cloud In this scenario, our testbed is made up of
3 VMs: one acts as a Kubernetes master node, and the others as Kubernetes
minion nodes on which are scheduled the FTP/CoAP D`S and the service’s
client, respectively. Each VM presents the following HW/SW con�gurations:
4 VCPUs @ 3.2GHz, RAM 8GB, OS Ubuntu Xenial 16.04 with Linux Kernel
4.4.0-98-generic.

Scenario #2: Cloud-to-Edge Our testbed is consists of 2 VMs running in
the cloud in this hybrid scenario, acting respectively as Kubernetes master and
worker nodes. An edge device also acts as a Kubernetes worker node. On
the edge worker node is scheduled the FTP/CoAP `S while the cloud worker
runs the service’s client. We remark that in this scenario, the VMs’ HW/SW
con�gurations are the same as those adopted in the Cloud-to-Cloud scenario,
while as edge devices, we have used the Raspberry Pi 3 Model B+ with Raspbian
Stretch Lite and Kernel 4.9.

Scenario #3: Edge-to-Edge In this scenario, our testbed consists of three
Raspberry Pis: a Kubernetes master and 2 worker nodes. On the worker nodes,
the FTP/CoAP D`S and, respectively, the service’s client are scheduled.

We remark that in all presented scenarios for the Kubernetes cluster con�gu-
ration, we adopted the Kubernetes 1.17 version while for container deployment,
we used Docker version 17.05.0-ce, build 89658be. In all experiments, we con�g-
ured the following overlays network: i) OVN based on the Open vSwitch 2.7.0-1
version - overlay mode, geneve tunnel type, ii) Weave Net v2.1.5 - pcap mode
(sleeve), and iii) Flannel - v0.7.1-amd64 - vxlan mode.

3.7.2 FTP Microservice

Our �rst analysis allows us to verify the scalability of our deployed system
for each con�guration scenario (i) Cloud-to-Cloud, (ii) Cloud-to-Edge, and (iii)
Edge-to-Edge. Speci�cally, we increased the payload starting from 1MB up to
1GB. Hence, in the next, the �gures show the time performances registered
using the FTP `S in the three proposed scenarios.

Cloud-to-Cloud Scenario

Figure 3.4 illustrates the collected results obtained with the FTP experiment.
It can be observed that the performance of the Flannel overlay network is

worse than the other con�gurations. In particular, the performance drop is
because Flannel introduces a higher overhead compared to other overlay network
solutions. The Flannel-based solution has slower transfer times for each payload.
This overhead is a critical issue as it increases latency, compromising the

real-time sessions’ quality. A further improvement can be seen using Weave Net,
which, compared to Flannel, introduces less overhead. The best performance is

73

Chapter 3 Network Management

1 MB 10 MB
Payload

A
ve
ra
ge
 T
ra
ns
fe
r
T
im
es
 (
s)

0.0

0.2

0.4

0.8

1.0

1.2

0.6

1.4

1.6
No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN Flannel

Weave Net
Flannel

A
ve
ra
ge
 T
ra
ns
fe
r
T
im
es
 (
s)

0.0

100

200

400

500

300

100 MB 1 GBPayload

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN Flannel

Weave Net
Flannel

Figure 3.4:Cloud-to-Cloud Scenario: FTP `SAverage Transfer Times usingOVN/Weave
Net/Flannel overlays.

obtained by applying the OVN overlay network. It introduces less overhead in
all proposed con�gurations, as illustrated in Figure 3.7.
As a second consideration, as shown in Figure 3.4, transfer times worsen in

Cloud-to-Edge scenarios and Edge-to-Edge scenarios, respectively. This increase
in average transfer times and implicit decline in performance is mainly due to the
lack of computational resources on edge devices. We get the worst performances
in the Edge-to-Edge scenario.

Cloud-to-Edge Scenario

As in the case of the Cloud-to-Cloud scenario, even in the Cloud-to-Edge, we
conducted the same experiments. Therefore, the obtained results can be seen in
Figure 3.5. Also, for this scenario, the considerations previously made are valid;
indeed, the performances registered to apply the Flannel overlay are signi�cantly
dropped respect to those obtained in the other con�gurations. Compared to the
transfer times obtained in the previous scenario, here, time performances are
slightly higher due to the lack of computational resources of the edge device.

A
ve
ra
ge
 T
ra
ns
fe
r
T
im
es
 (
s)

0.0

1.0

2.0

3.0

4.0

5.0

1 MB 10 MB
Payload

OVN
WeaveNet
Flannel

No Overlay NetworkNo Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN Flannel

Weave Net
Flannel

A
ve
ra
ge
 T
ra
ns
fe
r
T
im
es
 (
s)

0.0

100

200

400

500

300

100 MB 1 GBPayload

OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay NetworkNo Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN Flannel

Weave Net
Flannel

Figure 3.5: Cloud-to-Edge Scenario: FTP `S average transfer times using OVN/Weave
Net/Flannel overlays.

74

Experiments Section 3.7

Edge-to-Edge Scenario

Figure 3.6 shows the obtained average transfer time performances for the Edge-
to-Edge scenario; the behaviour is the same as the one already presented. As we
expected, due to the lower performances of the edge devices, transfer times are
higher than others presented in the two previous scenarios.

A
ve
ra
ge
 T
ra
ns
fe
r
T
im
es
 (
s)

0.0

1.0

2.0

4.0

5.0

6.0

3.0

1 MB 10 MBPayload

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN Flannel

Weave Net
Flannel

100 MB 1 GBPayload

A
ve
ra
ge
 T
ra
ns
fe
r
T
im
es
 (
s)

0.0

100

200

400

500

300

700

800 No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN Flannel

600

Weave Net
Flannel

Figure 3.6: Edge-to-Edge Scenario: FTP `S average transfer times using
OVN/Weave/Flannel overlays.

Following all the steps performed in the case of the FTP `S, also for the CoAP
`S, we performed the same scalability tests in the three proposed scenarios. In
these experiments, due to the nature of the CoAP, which is not suitable for large
�le transfers but only to exchange simple messages among hosts, we considered
a payload �le of 10, 100, 1000, and 10000 bytes.

Cloud-to-Cloud Scenario

Figure 3.8 (a) shows the behaviour of the average transfer times registered with
the deployed service. Similarly to the performance obtained with the FTP `S,
we note that Flannel introduces a higher overhead than other overlay network
solutions. OVN presents the best time performances in all con�gurations. In-
deed, it introduces less overhead in all proposed con�gurations, as illustrated in
Figure 3.9.

It is important to notice that the transfer times for experiments with payload
equal to 10, 100, and 1000 bytes are very similar; this behaviour is due to the
maximum size of the payload supported by CoAP that is equal to 1024 bytes.
For this scenario, further consideration highlights that the transfer times

worsen in the Cloud-to-Edge and, respectively, in the Edge-to-Edge scenarios.
This performance drop’s motivation explained in the Cloud-to-Cloud scenario
of the FTP `S is valid.

Cloud-to-Edge Scenario

Figure 3.8 (b) shows the obtained transfer time performances. Also, here, the
best performances are obtained using the OVN overlay network, while the worst

75

Chapter 3 Network Management

are obtained with the Flannel overlay. As in the FTP Cloud-to-Edge scenario, the
transfer times are slightly higher than those obtained in the previous scenario.

Av
er
ag
e
Tr
an
sf
er
 T
im
es
 (s
)

0.0

1.0

2.0

4.0

5.0

3.0

Cloud-to-Cloud Edge-to-Cloud Edge-to-Edge

1 MB 10 MBPayload

(a) FTP ` S transfer times - No Overlay
Av

er
ag
e
Tr
an
sf
er
 T
im
es
 (s
)

0.0

100

300

500

400

200

600

100 MB 1 GBPayload

Cloud-to-Cloud Edge-to-Cloud Edge-to-Edge

(b) FTP `S transfer times - No Overlay

Av
er
ag
e
Tr
an
sf
er
 T
im
es
 (s
)

0.0

1.0

2.0

4.0

5.0

6.0

3.0

1 MB 10 MBPayload

Cloud-to-Cloud Edge-to-Cloud Edge-to-Edge

(c) FTP `S transfer times - OVN.

Av
er
ag
e
Tr
an
sf
er
 T
im
es
 (s
)

0.0

100

300

500

400

200

600

100 MB 1 GBPayload

Cloud-to-Cloud Edge-to-Cloud Edge-to-Edge

(d) FTP `S transfer times - OVN.

Av
er
ag
e
Tr
an
sf
er
 T
im
es
 (s
)

0.0

1.0

2.0

4.0

5.0

6.0

3.0

1 MB 10 MBPayload

Cloud-to-Cloud Edge-to-Cloud Edge-to-Edge

(e) FTP `S transfer times - Weave Net.

Av
er
ag
e
Tr
an
sf
er
 T
im
es
 (s
)

0.0

100

300

500

400

200

600

100 MB 1 GBPayload

Cloud-to-Cloud Edge-to-Cloud Edge-to-Edge

(f) FTP `S transfer times - Weave Net.

1 MB 10 MBPayload

Av
er
ag
e
Tr
an
sf
er
 T
im
es
 (s
)

0.0

1.0

2.0

4.0

5.0

6.0

3.0

Cloud-to-Cloud Edge-to-Cloud Edge-to-Edge

(g) FTP `S transfer times - Flannel.

100 MB 1 GBPayload

Cloud-to-Cloud Edge-to-Cloud Edge-to-Edge

Av
er
ag
e
Tr
an
sf
er
 T
im
es
 (s
)

0.0

100

300

700

500

400

200

600

800

(h) FTP `S transfer times - Flannel.

Figure 3.7: FTP `S transfer times obtained using the proposed overlay networks.

76

Experiments Section 3.7

3.7.3 CoAP Microservice

Edge-to-Edge Scenario

Figure 3.8 (c) shows the transfer times obtained in the Edge-to-Edge scenario.
The behaviour is the same for the FTP Edge-to-Edge scenario.

No Overlay Network
OVN

Weave Net
Flannel

10 bytes 100 bytes 1000 bytes 10 000 bytes
Payload

A
ve
ra
ge
 T
ra
ns
fe
r
T
im
es
 (
s)

0.0

0.5

1.0

1.5

2.0
Flannel

(a) Cloud-to-Cloud Scenario

A
ve
ra
ge
 T
ra
ns
fe
r
T
im
es
 (
s)

0.0

0.5

1.0

1.5

2.0

10 bytes 100 bytes 1000 bytes 10 000 bytes

Payload

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN Flannel

Weave Net
Flannel

(b) Cloud-to-Edge Scenario

A
ve
ra
ge
 T
ra
ns
fe
r
T
im
es
 (
s)

0.0

0.5

1.0

1.5

2.0

2.5

10 bytes 100 bytes 1000 bytes 10 000 bytes
Payload

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN
WeaveNet
Flannel

No Overlay Network
OVN Flannel

Weave Net
Flannel

(c) Edge-to-Edge Scenario

Figure 3.8: CoAP `S average transfer times using OVN/Weave Net/Flannel overlays.

3.7.4 Discussion

The overhead introduced by the overlay networks is a critical issue, especially in
real-time applications. Indeed, it could introduce a non-negligible latency and, in
some cases, could also compromise the proper functioning of the sensor network.
Moreover, we note a considerable overhead introduced by Flannel. This could
cause problems in terms of synchronization, transfer time, slow connections, and
so forth. These problems are the critical elements of the proper functioning
of today’s software. Taking the example of FTP `S, a not negligible latency
means introducing a quality deterioration, for example, in a real-time session.
In the case of the CoAP protocol, this aspect leads to a lack of synchronism and
subsequently to the non-execution of quanti�able operations by sensors present
within a network. This could have a disastrous impact in situations where the
change (through code injection) of a speci�c variable is required.
In summary, Flannel allows the creation of a real bridged network on the

77

Chapter 3 Network Management

10 bytes 100 bytes 1000 bytes 10 000 bytes
Payload

Cloud-to-Cloud Edge-to-Cloud Edge-to-Edge

Av
er
ag
e
Tr
an
sf
er
 T
im
es
 (s
)

0.0

0.5

1.0

1.5

2.0

0.25

0.75

1.25

1.75

(a) CoAP `S transfer times - No Overlay.

Av
er
ag
e
Tr
an
sf
er
 T
im
es
 (s
)

0.0

0.5

1.0

1.5

2.0

10 bytes 100 bytes 1000 bytes 10 000 bytes
Payload

Cloud-to-Cloud Edge-to-Cloud Edge-to-Edge

(b) CoAP `S transfer times - OVN.

Av
er
ag
e
Tr
an
sf
er
 T
im
es
 (s
)

0.0

0.5

1.0

1.5

2.0

10 bytes 100 bytes 1000 bytes 10 000 bytes
Payload

Cloud-to-Cloud Edge-to-Cloud Edge-to-Edge

(c) CoAP `S transfer times - Weave Net.

Av
er
ag
e
Tr
an
sf
er
 T
im
es
 (s
)

0.0

0.5

1.0

1.5

2.0

2.5

10 bytes 100 bytes 1000 bytes 10 000 bytes
Payload

Cloud-to-Cloud Edge-to-Cloud Edge-to-Edge

(d) CoAP `S transfer times - Flannel.

Figure 3.9: CoAP `S transfer times obtained using the proposed overlay networks.

host with an associated subnet address and uses a host Linux routing table to
forward container packages to this bridge. Flannel does not allow the overlapping
between the bridged subnet and the host’s routing table. Unlike Flannel, Weave
Net does not use the host’s routing table to di�erentiate packages from containers;
it uses the pcap feature. Moreover, Weave Net allows allocating to container
the same IP address as the host. Compared to the previous overlay networks,
OVN provides a layer 2/3 virtual networking along with a set of services such as
�rewall, �exible security policies (ACLs), distributed L3 routing, IPv4, and IPv6,
native support for NAT, load balancing, DHCP, L2, and L3 gateways.

In conclusion, from an implementation point of view, Flannel and Weave Net
are easier and more intuitive than OVN, but this does not mean that the choice
easier to implement is also the best. To choose the best overlay network, we
need to evaluate the type of scenario and the complexity and, respectively, the
design requirements, i.e., in a system where the implementation of gateways or
ACLs is not required, we should exclude OVN and use a simpler one, as well as
in a scenario where no speci�c bandwidth usage or fast connections are required,
we can also use a simple overlay network; this also applies vice-versa. Despite
its complexity, taking advantage of the OVN’s features such as L3 gateways and
logical �ows, we can solve the network’s crucial problem: segmentation. We can
select the path that a particular type of packet must follow and di�erentiate the
streams: mice and elephant �ows. In this way, we obtain a coloured network that

78

Conclusions and Future Work Section 3.8

allows us to optimize bandwidth consumption and limit latency. Furthermore,
there is the possibility to change the path to be followed by speci�c packages
dynamically; in this case, congestion is limited.

3.8 Conclusions and Future Work

Nowadays, the need for e�cient pervasive services and applications has pushed
ICT operators to move part of their services from the central cloud into an
intermediate layer, closer to users, de�ned edge. In this context, the concept
of microservice architecture is gaining more and more consensus among the
industrial and academic communities because it allows the development of
emerging cutting-edge and e�cient Cloud/Edge Computing systems. However,
one of the major problems in achieving this system is the con�guration of
softwarized networks.
In this chapter, considering a reference cloud/edge system based on Kuber-

netes, we explored di�erent softwarized network technologies: OVN, Weave
Net, and Flannel considering Cloud-to-Cloud, Cloud-to-Edge, and Edge-to-Edge
communication scenarios. Experimental results have shown that OVN is the best
potential solution as it introduces the lowest overhead. Moreover, by exploiting
the OVN’s features like L3 gateways and logical �ows, we can tackle the network
segmentation problem.

We plan to study the dynamic orchestration of overlay networks integrating
the emerging Osmotic Computing paradigm in future work. In this way, we
obtain a coloured network that allows us to optimize bandwidth consumption
and limit latency. Furthermore, there is the possibility to change the path to be
followed by speci�c packages dynamically; in this case, congestion is limited.

79

4 Security Management

The IoT stages a new technology that empowers both virtual and physical objects to
be connected and communicate with each other and produce new digitized services
that improve our quality of life. The IoT system provides several advantages; how-
ever, the current centralized architecture introduces numerous issues involving a
single point of failure, security, privacy, transparency, and data integrity. These
challenges are an obstacle in the way of the future developments of IoT applica-
tions. Moving the IoT into one of the distributed ledger technologies may be the
correct choice to resolve these issues. Amongst the common and popular types of
distributed ledger technologies is the blockchain. Integrating the IoT with blockchain
technology can bring countless bene�ts. Therefore, this chapter provides a com-
prehensive discussion of integrating the IoT system with blockchain technology.
The Blockchain-as-a-Service (BaaS) for the IoT is presented to show how various
blockchain technology features can be implemented as a service for various IoT ap-
plications. Moreover, two innovative use case scenarios highlight the feasibility and
bene�ts of using blockchain technologies (e.g., Hyperledger Fabric, Ethereum) in the
continuums. Further, the �rst use case scenario proposes a Hyperledger Fabric-based
BaaS for intersection management and faces the problem of preventing vehicular
collisions in intersections by proposing a Multi-Agent Autonomous Intersection
Management (MA-AIM) system. The second use case proposes an Ethereum-based
BaaS solution for Health Information Exchange (HIE) systems.

4.1 BaaS-based Multi-Agent System for Intersection
Management

4.1.1 Introduction

Cooperative Intelligent Transportation System (C-ITS) o�ers a novel approach
in providing di�erent transportation modes, advanced infrastructure, tra�c
and mobility management solutions by revolutionizing the way people com-
mute in smart cities. It uses several electronics, wireless, and communication
technologies to allow consumers to access a smarter, safer, and faster way to
travel. Market reports estimate an annual growth rate of 25.1% in the automotive
industry for the coming �ve years. From USD 72.05 Billion in 2016 and $82
billion in 2020 [125] it is expected to reach USD 220.76 Billion by 2021 [126]. The
major proponents of this growth are smart cities, the need for public security and

81

Chapter 4 Security Management

safety and the government’s initiatives to improve present-day transportation
infrastructure. Concerning smart mobility, the new methodology that automated
industry advocates introduce the integrated design guidance and control systems
for Autonomous Vehicles (AVs).

Internet of Things (IoT) technologies in the automated industry enabled AVs
to become comprehensive Cyber-Physical Systems (CPS) with communication,
control, and sensing capabilities. On the other hand, AVs will be able to interact
through the Edge of the network [127] and/or the cloud [128] with intelligent,
secure tra�c monitoring and orchestration devices installed in the smart cities
able to make: i) roads safer for both drivers and pedestrian, and ii) reduce tra�c.

Cloud-to-Things (C2T), among others, can revolutionize the Intelligent Trans-
portation System (ITS) sector to impact vehicle safety, congestion, and travel
behaviour. Therefore, in the last decade, vehicles have been manufactured with
on-board diagnostic ports to retrieve vehicle controller diagnostics, Electronic
Control Units (ECU) and On-Board Units (OBUs) to receive data from several
on-board sensing devices. In this context, AVs represent a potentially disruptive
yet bene�cial change to our transportation system, having the potential to im-
pact vehicle safety, congestion, and travel behaviour. In recent years, many car
manufacturers such as Daimler, Tesla, and Nissan have successfully presented
cars with automatic driving in urban areas [129]. In this scenario, intersections
are a very challenging open issue. In fact, in urban areas where there is a high
density of vehicles, intersection management is not trivial. According to a re-
cent National Highway Tra�c Safety Administration report, 40% of crashes
typically occur in intersections [130]. Furthermore, many intersection vehicle
accidents occur in metro areas where high-density neighbourhoods, numerous
businesses, and pedestrian tra�c converge; any intersection can be dangerous.
AVs can take a lot of di�erent actions when approaching an intersection. Several
research centres are developing algorithms to solve one of the crucial aspects
of autonomous driving, i.e., intersections management, to avoid collisions and
tra�c congestion. In ITS, vehicular ad-hoc networks (VANETs) have signi�cant
roles in the communication process for ITS. Each vehicle is regarded as a node in
a VANET, where a vehicle can transmit information and provide request services
in a Vehicle-to-Intersection (V2I) and Vehicle-to-Vehicle (V2V) manner. There are
implementations based on Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I), Vehicle-to-Human (V2H), or in general Vehicle-to-Everything (V2X) com-
munications, which are currently a focus of research and standardization in the
USA, Europe, and Asia. Because many of these interactions transmit sensitive
data such as identi�cation, position, and speed of the vehicle, high security and
privacy level are prerequisites for the broad acceptance of these communication
systems. In particular, communication security and privacy are the main aspects
to consider: the physical security of the microcontroller, key injection, privacy
mechanisms implemented by government agencies, and policy questions around

82

BaaS-based Multi-Agent System for Intersection Management Section 4.1

security. This �eld is becoming even more important with the proliferation
of self-driving cars, prone to failures and cyber-attacks. Since an intersection
management system can transmit sensitive data such as identi�cation, position,
and vehicle speed, security is important.
This contribution investigates the current C-ITS solutions for intersection

management and faces the problem of preventing vehicular collisions in inter-
sections by proposing a Multi-Agent Autonomous Intersection Management
(MA-AIM) system based on V2I/I2V communication able to safely manage AVs
crossing through an intersection leveraging both C2T continuum paradigms
and blockchain facilities. Speci�cally, in this contribution, we present (1) a fully
functioning AIM system that combines V2I/I2V communication and blockchain
is implemented; (2) to increase the intersection robustness in terms of consensus,
several IMAs are run at each intersection; (3) careful performance analysis is
carried out to demonstrate the applicability of the BaaS-based AIM system is
real scenarios. In particular, we implemented a proof-of-concept integrating
the AIM 4.0 simulator with Hyperledger Fabric (HF) (implementing blockchain
capabilities) and with Node-RED (implementing V2I/I2V communications in
an EoT environment). To validate our system’s performance, we conducted a
series of experiments with di�erent road tra�c conditions, di�erent number
of intersections, and a di�erent number of IMAs. The collected results helped
us quantify how the HF framework’s overhead impacts the overall system’s
performance and its suitability for real-time use.
The rest of this contribution is organized as follows. Related works are dis-

cussed in Section 4.1.2. Motivation is discussed in Section 4.1.3. In Section 4.1.4,
we provide an overview of the adopted enabling technologies, whereas the
design of the proposed MA-AIM system is described in Section 4.1.5. Implemen-
tation highlights are described in 4.1.6. Experiments are discussed in the 4.1.7.
Section 4.1.8 concludes the paper and also providing lights to the future.

4.1.2 Related Works

In ITS, the rise of AVs has attracted attention in both industrial and academic
�elds. In this context, the ITS industry is focusing much of its attention on the
concepts of connected vehicles (United States) or cooperative ITS (Europe). These
concepts rely on data communication among vehicles (V2V) and/or between
vehicles and the infrastructure (V2I/I2V) to provide the information needed to
implement ITS applications.
With the rapid development of (IoT and CC, connected vehicles are set to

become a massive industry over the next few years. [131] discusses a model for
the next generation of ITS, which focuses on dynamic decision making of con-
nected vehicles based on a Swarm Intelligence (SI)-based algorithm. Speci�cally,
the authors propose a communication framework among connected vehicles for
sharing information of tra�c �ow �rstly, and secondly, connected vehicles are

83

Chapter 4 Security Management

regarded as arti�cial ants that can self-calculate to make an adaptive decision
following the dynamics of tra�c �ow. An IoT cloud system for tra�c monitor-
ing and alert noti�cation based on OpenGTS and MongoDB for car accident
prevention is discussed in [132]. In [133], the authors propose reliable V2V/V2I
communications to adaptively select parameters for improving communication
e�ciency by exploiting the surrounding environment information using the
spectrum environment map. In [134], considering a vehicular ad-hoc network, a
clustering method for gathering data related to vehicle movements is proposed.
The purpose of this scienti�c work is to extend the green wave. In particular,
tra�c lights, communicating with vehicles, can make decisions, and change line
priorities. In [135] an Intelligent Intersection Control System (ICS) to control
tra�c �ow in intersections is proposed. Speci�cally, a hybrid fuzzy-genetic
controller responsible for evaluating the appropriate action for each vehicle is
implemented.
The concept of the Internet of Agent has recently been introduced as a po-

tential technology that pushes intelligence, data processing, analytics, and com-
munication capabilities down to the point where the data originates [136]. The
authors introduce an approach for a Decentralized Home Energy Management
System by applying the Internet of Agent concept. Moreover, by applying the
Internet of Agent framework, connected appliances are regarded as smart agents
that can make individual decisions by agreeing over the exchange of opera-
tions on competitive resources. In [137], the authors propose an ICS based on
a Multi-Agent System (MAS) structure to control AVs in the intersections for
better road utilization. Therefore, a central Intersection Manager Agent (IMA) is
implemented at each intersection while each vehicle is controlled by a Driver
Agent (DA). The proposed approach is veri�ed using a developed simulation
environment by testing both PID and Fuzzy controllers. As well as, in [138] dis-
cusses a Multi-Agent AIM (MA-AIM) system based on V2I/I2V communication to
securely manage vehicles crossing where a central Intersection Manager Agent
(IMA) is implemented at each intersection while a DA controls each vehicle.
In [139], an approach to managing the crossing of autonomous vehicles through
an intersection, avoiding collisions, and decreasing the waiting time at the inter-
section is proposed. This approach is implemented using V2I communication,
and the safe trajectory of autonomous vehicles for the Autonomous Intersection
Management is determined using discrete mathematics. An SI-based model for
AVs is discussed in [140]. In particular, by sharing their position and other data,
vehicles can set-up the speed and �nd the best path to a destination.

Although AVs supports a better convenience for society, it also su�ers from
some concerns. Security is the primary concern in AVs technology due to its
high exposure to data and information communication. Among security, trust,
data accuracy, and communication data reliability in the communication channel
are the other issues in IV communication. Therefore, several studies on security

84

BaaS-based Multi-Agent System for Intersection Management Section 4.1

vulnerabilities have been conducted. In [141], the potential cyberattacks speci�c
to automated vehicles are investigated. Moreover, in [142], a blockchain-based
crypto Trust point (cTp) mechanism for IV communication to provide IV data
security and reliability is discussed. The cTp mechanism accounts for the le-
gitimate and illegitimate vehicle’s behaviour and rewarding, thereby building
trust among the vehicles. Blockchain technology is even adopted to provide a
secure and reliable way to communicate among AVs with trust [143]. Moreover,
a preliminary study on blockchain-based ITS (B2ITS) to develop real-time ride-
sharing services is discussed in [144].
In summary, there is a relevant number of recent research works focusing

on ITS applications. This contribution aims to enhance the state of the art by
proposing an autonomous intersection management system using the AIM 4
simulator through V2I and I2V communication leveraging C2T continuum and
blockchain facilities.

4.1.3 Motivations

This section explains the current problem in the state of the art concerning
intersection management and motivates this research.

One of the main advantages of autonomous vehicles is the ability to even out
human imperfection being more e�cient in avoiding accidents safer since they
can interact and react much faster and are prone to fewer errors than humans.
One of the most critical aspects of managing autonomous vehicles is their be-
haviour in proximity to intersections.
The future vehicles will be equipped with On-Board Units (OBUs) to enable

connectivity among vehicles and Road Side Units (RSUs) to provide collision
avoidance and congestion control. These safety features will be realized with
the wireless Dedicated Short Range Communications (DSRC) that will not only
enable broadcasting of Basic Safety Messages (BSM) (e.g., V2V) but also provide
the means to communicate with the infrastructure such as the tra�c lights,
railroad crossing (e.g., V2I).

AIM systems reduce the waiting and passing time of vehicles. In this scenario,
AVs are assumed to have V2I communication capabilities, which can interact
with the IMA. AVs communicate with the IMA through request and response
messages that embody vehicle id, speed, position, and approval/wait messages.
We assume that each intersection is managed by one dedicated IMA, which
elaborates the vehicles’ requests.
Architecturally, each AIM has a single centralized IMA responsible for han-

dling the tra�c. This centralization could introduce some drawbacks such as
bottleneck, single point of failure, and security risks. The bottleneck issue can
occur when a high density of vehicles makes request messages to IMA, causing a
high load, which translates into lower response times and collisions. There also
could be illegal vehicle requests that could cause the IMA to serve a non-existent

85

Chapter 4 Security Management

vehicle request.
For example, a hacker could exploit the IMA centralization by sending an

illegitimate request for passage. This request for a non-existent vehicle would
consume the space-time slot assigned by the IMA. In this way, hacking the IMA,
the hacker gets the tra�c control, and a vehicle can lie on its position in the
tra�c queue and ends up getting priority. The hacker will also be able to deceive
the vehicle into colliding with another one. For example, we consider a scenario
with two cars that send requests to this IMA for passing through the same area
at the same time. The compromised IMA will send an approval response to both
cars, which could ultimately lead these cars to a collision. Furthermore, the
hacker could exploit a Denial of Service (DOS) attack so that vehicles would end
up waiting at the road until the IMA recovers, and this could cost human lives
and the reputation of the vehicle company.

For instance, with the increasing privacy concerns of data, privacy and relia-
bility issues exist in building an e�ective VANET network. Ideally, all messages
must be forwarded anonymously in VANETs since they usually contain AVs’ sen-
sitive information, as said before. However, forwarding messages anonymously
does not assure the reliability of the messages, given that the fact that the IMA’s
centralization can be exploited for malicious scopes, as explained before.

Therefore, the fundamental aspects of being considered in automatic intersec-
tion management are authentication, privacy, security, reliability, availability,
and scalability. These characteristics can only be satis�ed by using a decentral-
ized approach and a blockchain implementation. The permissioned blockchain of
HF guarantees authentication and security of communications with the system.
HF supports Transport Layer Security (TLS) to secure communication between
nodes. TLS communication can use both one-way (server only) and two-way
(server and client) authentication. Furthermore, using Hyperledger Composer,
only through appropriate id cards will it be possible to forward requests to peers.
In this system, for hackers, the ability to acquire access is to detect a blockchain
node, and an authentication process can mitigate this in place. Moreover, these
nodes are added statically to the network, unlike public blockchain networks,
where anyone can join and listen to transactions.

4.1.4 Enabling Technologies

This section provides an overview of three enabling technologies on which our
MA-AIM is based, e.g., Tra�c Simulator, blockchain, and Node-RED.

Tra�ic Simulator

A variety of tra�c simulation software has been developed to model tra�c
networks. For example, SimTra�cis and Simulation of Urban Mobility (SUMO)
allow visual simulation of a surface street tra�c network. Recently a new tightly

86

BaaS-based Multi-Agent System for Intersection Management Section 4.1

integrated tra�c simulation/wireless communication system was developed,
called AIM4.
AIM was developed by the Learning Agents Research Group, which is part

of the AI in the Department of Computer Sciences at the University of Texas
at Austin, and it is a tra�c simulator that aims to create a scalable, safe, and
e�cient multi-agent framework for managing autonomous vehicles at intersec-
tions. AIM is an advanced management system that includes a scheduler and
a simulation manager to detect vehicles’ collisions and tra�c congestion. A
vital part of AIM is an intersection manager’s infrastructure component, which
manages the road crossing safely. AIM requires V2I communications, where
each Driver Agent (DA) present on each vehicle requests to the IMA to cross
through an intersection. In AIM, the central coordinator IM leads to a centralized
architecture with some drawbacks such as a single point of failure, security risk,
and bottleneck. A cyberattack on the intersection manager could let the hacker
send manipulated responses to the cars, raising doubts in trusting the AIM. A
compromised intersection manager could also lead to an accident.
The security risk of a central coordinator could cause a lack of trust among

the entities involved. The bottleneck issue might not be a critical one, but it
questions the AIM’s main necessity. The AIM was developed to reduce the travel
time of the vehicles crossing the road junction when the number of vehicles on
the road increases, the load on the intersection manager will be high and could
lead to a slower response.

Blockchain Technology

Blockchain is a novel technology that was �rst used as a public ledger for the
Bitcoin cryptocurrency. It consists of consecutive chained blocks, replicated and
stored by the nodes of a peer-to-peer network, where blocks are created in a dis-
tributed fashion using a consensus algorithm. Such an algorithm, together with
crypto mechanisms, provides two properties of blockchain: 1) decentralization
and 2) democratic control of data. This ensures that data on the chain cannot
be tampered with maliciously, operations on the chain are non-repudiable and
their origin is fully tracked. Blockchains are then typically classi�ed into two
main categories:

1. Permissionless: a block can be added to the blockchain by any peer who
can join and leave the network as reader and writer at any time [145].
There is no central entity that manages the membership or which could
ban illegitimate readers or writers. Examples are Bitcoin, Zerocash [146]
and Ethereum [147].

2. Permissioned: only an authorized closed group of entities can write and
read the respective blockchain. Here, a central entity decides and attributes

87

Chapter 4 Security Management

the right to individual peers to participate in the blockchain’s write or
read operations. Hence, consensus decisions are either taken unilaterally
by this central entity or by a preselected group (so-called "consortium
Blockchains"). Permissioned Blockchains can be further categorized into
public and private. The most widely known instances of permissioned
blockchains are HF [148] and R3 Corda [149].

The blockchain provides a tamper-proof data storage solution that makes
it possible to store reports. A detailed analysis of available distributed ledger
technologies was completed to identify HF as the best candidate for developing
a blockchain-based architecture for vehicular applications. HF is the blockchain
implementation proposed by IBM. It allows the creation of permissionless and
permissioned solutions: users can communicate and interact with the company’s
blockchain by invitation only. HF presents a modular architecture and allows
a division of roles between the infrastructure’s nodes, the execution of smart
contracts or chain codes, and the possibility to con�gure the consensus and the
membership services. Hyperledger Composer is a set of comprehensive develop-
ment tools to simplify blockchain applications’ development by facilitating the
integration of blockchain applications with existing business systems. An HF
network includes:

• Peer nodes execute chaincodes, access log data, approve transactions and
interface with applications;

• Ordering nodes ensure the consistency of the blockchain and deliver
blockchain transactions to the peers of the network;

• Membership Service Provider Services (MSPs), generally implemented as
Certi�cation Authorities, manage certi�cates used to authenticate mem-
bers’ identities and roles.

HF allows creating channels and a group of participants with a separate log
for their transactions. The HF register (ledger) combines a world state database
and a transaction log history. The world state component describes the log’s
status at a given time and represents the distributed ledger’s database. The
transaction log component records all the transactions that brought the world
state to the current state. By default, it is a LevelDB database of key-value type.
An alternative to LevelDB is CouchDB, a NoSQL solution. HF allows choosing a
consensus mechanism that best �ts business needs. Currently, the consensus
mechanisms made available by HF are SOLO, Kafka/Zookeeper, Byzantine Fault-
Tolerant (BFT).

• SOLO is the sorting mechanism most commonly used by developers who
experiment with HF networks. SOLO involves a single sorting node.

88

BaaS-based Multi-Agent System for Intersection Management Section 4.1

• Kafka is the recommended permissioned voting-based mechanism to use
in production. It uses Apache Kafka, an open-source �ow processing
platform that provides uni�ed, high-throughput and low-latency data
feeds in real-time. The Kafka mechanism provides a Crash Fault-Tolerant
solution (CFT) to the reordering.

• BFT prevents the system from reaching an agreement in the case of mali-
cious or faulty nodes. Practical Byzantine Fault Tolerant (PBFT) is available
for Fabric v0.6 and BFT-SMaRT available for Fabric v1.0 [150].

Node-RED

Node-RED is one of the best known �ow-based programming tools for the
Internet of Things. Its event-driven JavaScript model and the asynchronous
execution of I/O operations allow developing scalable solutions for the real-time
analysis of data �ows, with a strong orientation to the IoT. Node-RED gives
the possibility to connect di�erent devices (with any sensors and actuators)
and APIs and online services to create highly integrated and complex systems
straightforwardly and intuitively. It is entirely written in JavaScript and runs on
Node.js, the well-known platform based on Google’s JavaScript Engine V8 for
server-side applications.

4.1.5 Design

This section provides information on the design of our proposed BaaS-based
AIM system.

Intersection Model

We have considered a symmetrical four-way intersection with a single lane for
each incoming and outgoing street in this work. The model of the intersection
we worked on is illustrated in Figure 4.1. In detail, this intersection is composed
of four connected streets, where each street shares the common characteristic of
driving direction. Hence, there are three possible choices of driving routes for
each street that are composed of left, straight, and right directions (see Figure 4.1,
+1 red car).

Simulation parameters For the simulation purpose, the vehicle’s dynamics
are con�gured according to the geometry of the intersection. For our simulation,
we consider all vehicles having the same technical characteristics. Each vehicle
has length !{ = 4.5m and width,{ = 1.85m, the maximum allowance of driving
velocity is {<0G = 60m/s and the minimum is {<8= = �17m/s. The maximum
acceleration is 0<0G = 4.5</B2 and the minimum is 0<8= = �45</B2.

89

Chapter 4 Security Management

To limit the number of vehicles communicating with the IM, a vehicle will start
sending a message when it will reach the designated range of communication,
which is R = 100m away from the centre of the intersection as illustrated in
Figure 4.1. We assume the distance between the vehicle and the intersection
checkpoint !20AA = 25m and the width of the intersection equal to !2A>BB = 4m.

Reservation system The reservation system consists of two agents: Inter-
section Manager Agent (IMA) and Driver Agent (DA). For each intersection,
there is at least a corresponding IMA. As well as, we assume each vehicle is
equipped with a DA. IMAs are responsible for wirelessly communicating with
each incoming vehicle’s DA to manage its crossing through the intersection,
based on the message requested arriving from the DAs. To prevent the message
from crashing, the First-Come-First-Served (FCFS) principle is implemented for
ordering the message queue. The IMA will do a service based on the sequence
of the received message from the vehicle. Each DA is responsible for ensuring
the corresponding vehicle will strictly and accurately follow the IMA’s policy.

Va at t=0

Va at t=ta
Vb at t=0

.

North

South

West Est

Pb

.
Pa

R = 149 m

Lv

Wv

Lcarr

Lcross

Lcarr

Communication Area

Figure 4.1: A real representation of a symmetrical four-way intersection with a single
lane for each incoming and outgoing street.

To improve the system’s throughput and e�ciency, DAs request in advance
the corresponding space-time occupied in the intersection to the IMA. Then,
IMA checks whether the request can be satis�ed according to the intersection
control policy. If DA receives a positive response (e.g., reservation con�rmation),
it will ensure the vehicle will drive following the restrictions (if speci�ed) com-

90

BaaS-based Multi-Agent System for Intersection Management Section 4.1

...I1
IN

...Simulation for
Collision Detection

Simulation for
Collision Detection

BN1 BNN

LEGEND

I - Intersection
IMA - Intersection Manager
 Agent
BN - Blockchain Node

- Driver Agent
- Request Message
- Response Message

IMA1 IMAN

Figure 4.2: Blockchain-based Autonomous Intersection Management system.

municated by the IMA; when the crossing will be �nished, the vehicle will send
a message to the IMA to release the reservation. Otherwise, if DA will receive a
rejection message, it will retry by sending another request later and ensure the
vehicle will drive according to the IMA restrictions. The V2I communication is
the instrument in which the message requested by the vehicle is delivered to the
intersection manager and vice versa.

Intersection Control Policy For the AVs de�ned above to go through an
intersection safely, we de�ned a simple interface for negotiating with the IMA
and passing control between the IMA and the DA. The respective interface relies
on the intersection management algorithm, which implements the Intersection
Control Policy (ICP). The algorithm running on each IMA follows the FCFS
policy.
The IMA continuously listens to vehicle requests and, with the information

contained in the crossing requests, simulates vehicles’ trajectories and responds
according to the FCFS policy. In this way, FCFS will enable each AV to reserve
in advance the space-time it needs to cross the intersection.

The request message contains a tuple with 7 parameters A8 = ({8= ,�< ,A�⇡ ,C0 ,{,;0AA ,
;4G8C), where {8= is the vehicle’s identi�cation number, �< is the identi�cation
number of the IMA, A�⇡ is the identi�cation number of the request, C0 is the
estimated arrival time, { is the expected arrival speed, ;4G8C is the arrival lane
from which the vehicle arrives at the intersection, and ;0AA is the exit lane from
which the vehicle leaves the intersection. The prototype intersection control
policy divides the intersection into a grid of reservation tiles [151].

91

Chapter 4 Security Management

At each simulated time step, the intersection control policy determines which
reservation tiles will be occupied by the vehicle. When an incoming vehicle
reaches the designated line, it sends a reservation request to the IMA, indicating
arrival time and velocity. The IMA simulates the vehicle’s trajectory in the
intersection and responds to the vehicle’s corresponding DA with approval if the
trajectory has no overlap with the reserved tiles regarding existing vehicles. If
the request gets rejected, the vehicle prepares to follow the restrictions speci�ed
above or stop before the intersection line.

Request ID: 1
Request ID: 2
...

done
done
...

V2I/I2V MQ

...

DA1 DA2 DAN

Blockchain Network

P1

PNL1

L1

S1

S1

LEGEND

V2I/I2V MQ - Intersection-to-Vehicle/
 Vehicle-to-Intersection
 Message Queue
DA - Driver Agent
P - Peer Node
L - Ledger
S - Chaincode

P2

L1

S1 ...

Figure 4.3: Driver Agent and blockchain communication in Proof-of-Concept �ow.

Validate scenario We consider two vehicles in the communication range of
an IMA. Vehicle +0 drives on the North Street and plans to go to South Street.
On the other side, vehicle +1 drives on West street, and the destination is Est
street. Trajectories of vehicles are overlapped. Therefore, the collision can
occur when +0 turns left, and +1 goes straight if both vehicles arrive at the
con�ict point simultaneously. Both vehicles send a request to IMA asking to
cross the intersection. As shown in Figure 4.4, each request is forwarded to
the Intersection Control Policy (ICP), which is part of IMA and performs the
trajectory simulation. The simulation results are sent to the Postprocess, which
is in charge of generating and sending the appropriate response to the vehicle.

To avoid a collision, IMA extracts the proposed parameters from the crossing
request to estimate the arrival time to the intersection and the leaving time with
the maximum and minimum acceleration allowance back to the applicant vehicle.
Consequently, the IMA status is updated, and the new time slot is transmitted to
the applicant vehicle.
In a collision-free simulation, the response would contain the timing index

92

BaaS-based Multi-Agent System for Intersection Management Section 4.1

calculated together with the maximum and minimum acceleration allowance.
Otherwise, in a collision, the rejection message would contain restrictions to
decrease the velocity or stop to avoid the collision. For instance, we assume that

Preprocess

Po
st
pr
oc
es
s Intersection

Control
Policy

Intersection Manager

Driver Agent

Request

Reject

Confirm

No Restriction

Restriction

Figure 4.4: AIM simulator main components.

vehicle +0 moves at constant speed and it will arrive at point %0 at time C = C0
with Equation (8.1), where (0 is the distance between the vehicle and %0 point.

C0 =
(0
{0

(4.1)

As previously said, !20AA = 25m, !2A>BB = 4.5m, and !{ = 4.5m, and {0 is the
velocity of vehicle +0 . Therefore, the total time necessary to reach the point %0
is given by Equation (4.2).

C0 = (0/{0 =
!20AA + !2A>BB + !{

{0
(4.2)

In the present case C0 = 8.5 s (we are assuming a constant speed of 4m/s). If
the vehicle +1 is not allowed to cross the intersection, it will reach the %1 point
after a time equal of greater than C0 . Therefore, vehicle +1 should decelerate to
cross the intersection in safety.

(=
1
2
0C2 + {0C + (0 (4.3)

Time t will be equal to C0 , space S will be equal to the distance between vehicle
+1 and point %1 , speed {0 will be equal to vehicle +1 speed (assumed constant),
(0 is the assumed starting point of 0 Equation (4.3). So obtaining the following
reverse formula for a Equation (4.4).

0 = 2
(1 � {1C0
C02

= 2
(1 � {1 (0

{0

((0{0)
2 (4.4)

93

Chapter 4 Security Management

The speed limit and the distance of the communication have to guarantee an
acceleration or deceleration applicable. Otherwise, if the vehicle+1 is stopped, it
must restart to reach the end of the intersection. Therefore, we suppose that the
initial speed of {8 is 0, and the maximum acceleration 0. The time necessary to
cross the intersection is given by Equation (4.5) and Equation (4.6).

(=
1
2
0C2 + {8C (4.5)

C2 =

r
2(
0

(4.6)

Design of the Blockchain-based AIM System

According to Figure 4.2, which illustrates the architecture of the whole system,
among the components used, a vital one is the IMA. It manages the crossing
safety of vehicles through bi-directional communication among them.

The endpoints of this communication are DA and IMA. To have IMA accessible,
it should be installed on every road intersection, and it is responsible for deciding
which vehicle gets priority to cross the intersection.

As already explained in Section 4.1.3, the main security aspects in an AIM
system to be considered are authentication, privacy, and security, reliability,
availability, and scalability. To overcome those issues, a decentralized approach
is needed; blockchain technology is a potential solution.

We propose to make intersection management a remote service that runs on
a blockchain network with a certain number of nodes. We assume that these
nodes do not need to be present physically at the intersection location but at
a remote location like cloud/edge. First of all, we must establish the following
analogies:

• Blockchain nodes vs IMAs: In the blockchain, nodes are connected to the
peer-to-peer network; IMAs could also connect to form the peer-to-peer
network.

• Chaincode vs ICP: The chaincode is the software program that is deployed
on the network. Similarly, the implementation of the ICP could be deployed
on the blockchain network.

• Users vs Vehicles: For a transaction in the blockchain, a registered account
(public-key encryption) is required. Correspondingly, vehicles would need
to possess a registered account to send a request and receive a response.

• Transactions vs Vehicles request/response: Each transaction expresses a
request or response between the IMA and vehicles.

94

BaaS-based Multi-Agent System for Intersection Management Section 4.1

In the blockchain, only a valid user can communicate with the nodes. In this
case, the users are the vehicles, and the nodes are the IMAs. Thus, the vehicles
(users) should possess a valid public and private key to send digitally signed
messages to the IMA. These public keys, along with the corresponding vehicle’s
identity, should be stored by the IMAs as well. Using this public key encryption
for digitally signed messages, the IMA can trust the messages are produced only
by a valid vehicle rather than an impersonation.

Figure 4.3 illustrates a proof-of-concept �ow of the interaction between DAs
and the blockchain network, respectively. In detail, the architecture comprises
several DAs (⇡�8 , with i=1...N) and a blockchain network composed of several
peer nodes (% 9 , with j=1...N) each of which hosts a ledger (L1) and a chaincode
(S1). Each peer node hosts an IMA; this con�guration allows eliminating the
traditional AIM architecture’s centralization by overcoming the single point of
failure.
As said above, ICP can be deployed as the chaincode and is invoked on all

blockchain transactions, which are the vehicle’s request and response in this
context. Thus, each blockchain network peer (IMA) runs an ICP. This design
choice allows us to increase reliability and availability by ensuring a high level
of fault tolerance. As well as, we also increase the system’s scalability by de-
creasing the computation time. In fact, in case of an IMA failure between this
request/response handling, the vehicle will switch the IMA and send the request
again. To make the vehicles aware of the IMA’s status of failure (system down),
the blockchain framework will timeout this transaction (passage request) and
notify the corresponding vehicle. From the blockchain, these requests/responses
are stored to form blocks.
Thus, the system’s communication �ow implies that each DA initializes the

process by sending a request message to one of the available blockchain peer
nodes (IMAs) running the chaincode (ICP). Based on the request, the chaincode
(ICP) performs the simulation to check whether it results in a collision. IMA
stores the passage of this vehicle and forwards the response to the DA. In the
case of collision-free, the blockchain peer nodes combine to form a block through
mining. Otherwise, in case of collision, it sends a reject message to the DA, and
a request message is created again for a di�erent time.

4.1.6 Implementation

This section outlines the implementation �ow needed to integrate the blockchain
network within the AIM simulator to allow peer nodes to serve as IMAs.
A variety of tra�c simulation software has been developed to model tra�c

networks (e.g., SimTra�cis or SUMO), allowing visual simulation of a surface
street tra�c network. Recently a new tightly integrated tra�c simulation/wire-
less communication system has been developed, which is called AIM 41. AIM 4

1 http://www.cs.utexas.edu/~aim/

95

Chapter 4 Security Management

was developed by the Learning Agents Research Group, which is part of the AI in
the Department of Computer Sciences at the University of Texas at Austin, and it
is a tra�c simulator that aims to create a scalable, safe, and e�cient multi-agent
framework for managing autonomous vehicles at intersections. An advanced
management system includes a scheduler and a simulation manager to detect
vehicles’ collisions and tra�c congestion. A vital part of AIM is an infrastructure
called IMA, which manages the road crossing safely.

The most prevalent blockchain implementations (e.g., Bitcoin and Ethereum)
are not suitable for our proposed system as they demand many resources (compu-
tation and bandwidth), while in a smart city scenario, vehicular networks require
low latency to information exchange. Furthermore, conventional blockchains
require from a few seconds up to minutes to insert new information into their
distributed ledger (depending on the used consensus algorithm). In previous
work, Lunardi et al. [152] presented a lightweight permissioned blockchain that
creates blocks on demand. While Li et al. [153] and Sharma et al. [154] presented
solutions using blockchain for smart cities, their approach incurs long delays for
adding and retrieving information to and from the blockchain. Dinh et al. [155]
presented a benchmarking framework, called BLOCKBENCH, for evaluating
private Blockchain systems. According to the results obtained and our latency,
throughput, and scalability requirements, we adopted Hyperledger Fabric (HF)
to implement our blockchain network. HF is the blockchain framework proposed
by IBM we have chosen for our experiment, and its capabilities are explained in
Section 4.1.4. Hence, we used an HF permissioned Blockchain using the Kafka
consensus mechanism.

The smart contract or chaincode is the software program installed or deployed
on the blockchain network nodes to run on speci�c events or transactions. Our
solution design is to implement the IMA as a smart contract.
Figure 4.3 illustrates the communication �ow in the system where requests

from DAs are sent to the smart contract (IMA) on the Blockchain network. Based
on the request, the smart contract (IMA) performs the collision test and responds
to the DA.

The AIM 4 simulator’s source code has been appropriately modi�ed to imple-
ment the Hyperledger Protocol, a communication protocol that stores and im-
plements the V2I/I2V requests/responses to/from the IMA implemented through
a Node-RED �ow. Node-RED is one of the best known �ow-based programming
tools for IoT. Its event-driven JavaScript model and the asynchronous execution
of I/O operations allow developing scalable solutions for real-time data �ows
analysis. Node-RED gives the possibility to connect di�erent devices (with any
sensors and actuators) and APIs and online services to create highly integrated
and complex systems straightforwardly and intuitively.

96

BaaS-based Multi-Agent System for Intersection Management Section 4.1

Blockchain Network Setup

The implementation choice for the architecture and scenario described in Sec-
tion 4.1.4 and Section 4.1.5 goes towards a permissioned blockchain. The reason
is given by the fact that the network requires access control. In particular, a PKI
refers to a centralized (root) management controlling all the intersections.
Proper matching for this type of con�guration is represented by a HF setup

where each organization is a jurisdiction, and the ordering service resides at
the central level. The latter would run next to the CA to issue certi�cates for
blockchain nodes (peers in the Fabric denomination) in the jurisdictions. Al-
ternatively, a dedicated CA service can run in parallel. A peer is responsible
for endorsing transactions submitted to it and runs a smart contract that can
be di�erent across jurisdictions. This allows a certain degree of freedom in the
policies implemented in each jurisdiction and decentralizes the computational
load of the misbehaviour detection process.
In this context, the DAs represent the client that interfaces directly with the

peer in a jurisdiction and ordering service.
The functioning of the setup described above is the following:

1. Transaction submission. A DA submits a transaction proposal relating to
crossing the peer node associated with the intersection in its jurisdiction.

2. Transaction veri�cation. The peer veri�es the transaction’s validity, simu-
lates the execution of the related smart contract functionality, and returns
an endorsement result to the DA.

3. Transactions ordering. The DA sends the transaction proposal and the
related result to the ordering service. The last orders all the transactions
coming from di�erent DAs, build the blocks, and broadcast them to all the
di�erent jurisdictions’ peer nodes.

4. Transaction commitment. Upon verifying their validity, peer nodes write
the blocks of transactions received from the ordering service in their local
copy of the Blockchain.

However, all the peer nodes receive and synchronize the transactions that
occurred in all the jurisdictions. From the description above, it emerges that
the endorsement of transactions that occurred at the jurisdiction level is done
by one peer node in that jurisdiction, and the DA submits the transaction. To
make the process more robust in terms of consensus, a �rst option could be to
require the endorsement of more than one peer node in the same jurisdiction.
To this aim, in this setup, we focused on a single jurisdiction with several peer
nodes; several IMAs manage each intersection. For instance, we used an HF
business network topology with varying peers (hence, varying number of IMAs),
1 orderer, and 1 organization to support this setup. Before creating a Business

97

Chapter 4 Security Management

Network De�nition (BND), a Peer Admin Card must be generated, which is
necessary to control all network peers. This can be achieved by executing the
following command, as illustrated in Listing 4.1.

Listing 4.1: Peer admin card generation commmand.
composer card create −p DevServer_connection.json \

−u PeerAdmin −c "${CERT}" −k "${PRIVATE_KEY}" \
−r PeerAdmin −r ChannelAdmin \
−−�le PeerAdmin@fabricgp.card

Thus, by analyzing the command, we notice it requires the following parame-
ters: DevServer_connection.json contains the network con�guration; ${CERT}
indicates the certi�cate path relative to the Admin user; ${PRIVATE_KEY}, on
the other hand, indicates the path to the Admin user’s private key. These �les
were previously generated with the cryptogen command and are located within
the crypto-con�g directory. To use the newly created id card, we need to import
it with the command shown in Listing 4.2.

Listing 4.2: Peer admin card usage commmand.
card import −−�le ./ PeerAdmin@fabricgp.card

Next, we can create our BND; the most straightforward way is using the
Yeoman generator to create a corporate network skeleton. This will create a
directory containing all the components of a business network. The network
model skeleton can be generated with the command shown in Listing 4.3.

Listing 4.3: Network model skeleton creation commmand.
yo hyperledger−composer:businessnetwork

Generally, a business network consists of resources, participants, transactions,
access control rules and, optionally, events and queries. The template �le (.cto),
written using the modelling language of Hyperledger Composer, contains the
class de�nitions for all resources, participants, and transactions in the business
network, as illustrated in Listing 4.4. It also contains an access control �le
(permissions.acl) with basic access control rules, a script �le (logic.js) containing
transaction processor functions, and a package.json �le containing the business
network’s metadata.

Listing 4.4: "org.aim.net.cto"
namespace org.aim.net
participant ImParticipant identi�ed by id {

o String id
o String name

}
asset IntersectionAsset identi�ed by id {

o String id

98

BaaS-based Multi-Agent System for Intersection Management Section 4.1

o Integer vin
−−> ImParticipant im
o String startTime
o Integer reqID
o Double atTime
o Double atSpeed
o Integer arrLane
o Integer depLane
o String status

}
transaction ImTransaction {

o Integer vin
o Integer im
o Integer reqID
o String startTime
o Double atTime
o Double atSpeed
o Integer arrLane
o Integer depLane
o String assetId

}
transaction ImResponse {

−−>IntersectionAsset asset
o String status

}
event ImEvent {

o Integer vin
o Integer im
o Integer reqID
o String startTime
o Double atTime
o Double atSpeed
o Integer arrLane
o Integer depLane
o String assetId

}

Listing 4.5: ImTransaction implementation.
async function ImTransaction(tx) {

let assetRegistry = await
getAssetRegistry (’org.aim.net.IntersectionAsset’);

let asset=getFactory () .newResource(’org.aim.net’,
’IntersectionAsset’, tx.assetId);

let event=getFactory () .newEvent(’org.aim.net’, ’ImEvent’);
asset . vin=event.vin=tx . vin ;
asset . im=getCurrentParticipant () ;
event . im=tx.im;

99

Chapter 4 Security Management

asset . startTime=event. startTime=tx . startTime ;
asset . reqID=event.reqID=tx.reqID;
asset . atTime=event.atTime=tx.atTime;
asset . atSpeed=event.atSpeed=tx.atSpeed;
asset . arrLane=event.arrLane=tx.arrLane;
asset .depLane=event.depLane=tx.depLane;
event . assetId =tx . assetId ;
asset . status ="";
await assetRegistry .add(asset) ;
emit(event) ;

}

Listing 4.6: ImResponse implementation.
async function ImResponse(tx) {

let asset = tx . asset ;
asset . status = tx . status ;
let assetRegistry = await
getAssetRegistry (’org.aim.net.IntersectionAsset’);
await assetRegistry .update(asset) ;

}

Thus, in Listing 4.4, the ImParticipant class is used to identify each IMA with
an id and a name. As well, the IntersectionAsset class allows us to store all the
vehicle requests in the Blockchain. Each request is identi�ed by an id and is
correlated with the IMA that handled them. Next, the ImTransaction class de�nes
a transaction model necessary to create the initial asset of requests forwarded by
vehicles and set the initial status to “Pending”; the implementation is illustrated
in Listing 4.5. Then, the ImResponse class de�nes a transaction model that
allows updating the status of a request that has been evaluated to “Accepted”
or “Rejected”, whereas ImResponse is shown in Listing 4.6. Finally, the ImEvent
class de�nes the event that is generated by the ImTrasaction transaction.

After the business network has been de�ned, it is necessary to pack it into a
.bna (business network archive) aim-network@0.0.1.bna. To install the business
network, the command illustrated in Listing 4.7 must be executed.

Listing 4.7: Command to install the business network.
composer network install −−card PeerAdmin@fabricgp \
−− archiveFile aim−network@0.0.1.bna

Finally, to run the business network, it is necessary to execute the command
shown in Listing 4.8.

Listing 4.8: Command to run the business network.
composer network start

−−networkName aim−network \

100

BaaS-based Multi-Agent System for Intersection Management Section 4.1

−−networkVersion 0.0.1 −−networkAdmin admin \
−−networkAdminEnrollSecret adminpw \
−−card PeerAdmin@fabricgp \
−−�le networkadmin.card

Thus, by analyzing the command, a networkadmin.card id card is created
inside the directory, necessary for the management of the business network that
must be imported with the command shown in Listing 4.9.

Listing 4.9: Command to import the network admin card.
composer card import −−�le networkadmin.card

AIM Simulator Setup

By integrating the Hyperledger Protocol with the AIM 4 simulator, we can set
the following parameters from the con�guration panel:

• Server Address - de�nes the address of the server where the Node-RED
�ow is deployed;

• Tra�c level - de�nes the number of vehicles that are generated every hour
for each lane;

• Number of N-b S-b roads - de�nes the number of intersections in the map,
which may be 1 or 2 for our protocol;

• Number of seconds per Simulation - de�nes the duration in seconds of each
simulation;

• Number of Simulations - de�nes the number of times that simulation must
be repeated.

For instance, to support the Hyperledger Protocol integration, two fundamen-
tal methods have been implemented into theAIM 4 simulator: deliverV2IMessages
and deliverI2VMessages. The �rst method forwards the vehicle’s requests to the
Node-RED server.
Each request encloses the following information: vin - the identi�cation

number of the vehicle, im - the identi�cation number of the IMA, reqID - the
identi�cation number of the request, startTime - the time stamp of the start of
the simulation, atTime - the time at which the vehicle arrives at the intersection,
atSpeed - the expected arrival speed, arrLane - the arrival lane, depLane - the
destination lane and �nally assetId - the unique identi�cation code of the request.
This information is needed to generate an ImTransaction transaction in HF,
which will create an IntesectionAsset containing all request details. The initial
request’s status is set to "Pending".

101

Chapter 4 Security Management

On the other hand, the second method (deliverI2VMessages) is responsible
for forwarding to the vehicles the result of the request that can be “Accepted” or
“Rejected”. In the case of “Accepted” request, the vehicle must cross the intersec-
tion, respecting exactly the parameters supplied during the request phase. In the
case of “Rejected” request, the vehicle will have to re-formulate a new request as
the one already submitted was found to be ineligible and follow the constraints
indicated by the IMA. Therefore, we deployed 2 Node-RED �ows that allow the
management of 1 or 2 intersections with the corresponding IMAs.

One intersection Figure 4.5 illustrates the �ow used to manage the system
with one intersection. Each vehicle forwards its request through the POST
method on the path “/rest” (“[post]/rest” block); the request generates a Blockchain
transaction through the “ImTransaction” block, which creates a new asset con-
taining the details of the request into the Blockchain. Then, once executed, the
transaction generates an event that is captured by the “HL Event” block. The
event encloses the details of the request that has been inserted in the Blockchain
and which status that is initially set to "Pending" given the request has not been
evaluated yet. At this point, the request is inserted in the queue (“queue” block)
and then evaluated by the “evaluate request” block, which, after having carried
out the necessary checks, updates the status of the request by forwarding the
result both on the “insert” block of MongoDB and on the “ImResponse” block
of Hyperledger Composer. The “evaluate request” block hosts the algorithm
that evaluates all the vehicles’ incoming requests. The algorithm, written in
JavaScript, performs simple checks to determine if a particular request has to be
accepted or rejected. The “ImResponse” block generates a blockchain transaction
that updates the status of the request to “Accepted” or “Rejected”. Vehicles will
obtain the status of their requests by using the GET method (“[get]/rest” block),
which forwards to the “�nd request result” node that searches the request in the
database (“build response” block). The result is forwarded to the vehicle through
the “http” block. Once the crossing is �nished, the vehicle returns information
using the POST method using the [post]/stats block; these are used for statistical
purposes. For each vehicle, the following information is stored: vin - the vehicle
identi�cation number, rstReq - indicates when the �rst crossing request was
made, lastReq - indicates when the last crossing request was made, numReqs -
the total number of requests made before being able to cross the intersection,
rstDist - the distance from the intersection to the moment of the �rst request;
lastDist - the distance from the intersection to the moment of the last request,
arrLane - the arrival lane, depLane - the destination lane, accTime - indicates
when the crossing request has been accepted, and �nally vehicles - the number of
vehicles present near the intersection (including vehicles that have just crossed
it).

102

BaaS-based Multi-Agent System for Intersection Management Section 4.1

Figure 4.5: Node-RED �ow - one intersection.

Two intersections Figure 4.6 illustrates the �ow used to manage the sys-
tem with 2 intersections. As in the previous �ow, to concurrently manage the
requests coming from the 2 intersections, two di�erent paths have been cre-
ated (“[post]/rest#1” and “[post]/rest#2” blocks) for the “http” endpoint. To
concurrently manage the requests generated by the DAs within the range of
both intersections that generate blockchain transactions, two "ImTransaction#1"
and “ImTransaction#2” blocks have been used. Each one creates a new asset
containing the details of the request into the Blockchain. In this �ow, we also
notice the presence of two distinct “ImResponse#1” and “ImResponse#2” blocks.
Each IMA has its own identity associated with the relative “Participant” of

Hyperledger Composer. In this way, the transactions generate assets owned by
the Intersection Manager that handled the transaction. The “HL Event” block
captures the events generated by the requests from both intersections and then
are separated into two queues (“queue#1” and “queue#2” blocks) to be evaluated
in parallel by the two “evaluate request” blocks.
In this con�guration, a “set lane value” JavaScript block has been used to

monitor the number of vehicles in the lane which connects the two intersections
for statistical purposes. As in the previous �ow, two endpoints (“[post]/stats#1”
and “[post]/stats#2” blocks) have been created to collect statistical data.

103

Chapter 4 Security Management

Figure 4.6: Node-RED �ow - two intersections.

4.1.7 Performance

This section thoroughly tests all of the proposed BaaS-based AIM system features
to demonstrate its feasibility. The experiments carried out allow quantifying
the system’s performance using the di�erent number of intersections and road
tra�c con�gurations, respectively. Since V2I/I2V communications depend on the
network’s status, we concentrated our attention on how the overhead introduced
by blockchain impacts the performance of our proof-of-concept and on its suit-
ability for real-time use. Hence, we distinguish between 2 di�erent performance
scenarios. We start Scenario #1 by analyzing the impact of both the number of
intersections and the number of vehicles per hour per lane (vehicles/hour/lane)
on the system performance. In Scenario #2, we analyze the impact of the number
of intersections, the number of peer nodes and the number of transactions sent
per second on the system performance.

104

BaaS-based Multi-Agent System for Intersection Management Section 4.1

Experimental Setup

The experiments were carried out for both scenarios using a prototype version
of the simulator, which was fully described in our previous work [138].

For the simulation purpose, the vehicle’s dynamics are con�gured according to
the geometry of the intersection. The intersection in the simulation is the same
as the one shown in Section 4.1.5. As previously mentioned in Section 4.1.5, each
vehicle has length !{ = 4.5m and width,{ = 1.85m. Each intersection contains
one lane traveling in each direction and the maximum allowance of driving
velocity is {<0G = 60m/s and the minimum is {<8= = -17m/s. The maximum
acceleration is 0<0G = 4.5</B2 and the minimum is 0<8= = -45 </B2. The length
of each incoming street is 500m, and the V2I communication range with the
manager is set to R = 149m. Speci�cally, we analyzed two di�erent scenarios
con�gured according to the parameters speci�ed in Table 4.1 and Table 4.2.

Table 4.1: Scenario #1: Simulation Parameters.

Parameter Set of Values Unit

Tra�c Level {200, 400, 600, 800} vehicles/hour/lane
Simulation Time 15 minutes
Number of Intersections {1, 2} -
Number of Peer Nodes {1} -

Hence, according to Table 4.1, in Scenario #1, the Blockchain-based system
has 1 peer node, and the simulator is con�gured with (i) one intersection and (ii)
two intersections, respectively. We, therefore, performed a scalability analysis by
varying the number of vehicles/hour/lane from (a) 200, (b) 400, (c) 600, up to (d)
800, respectively. As reported in Table 4.2, in Scenario #2, the Blockchain-based
system is con�gured with varying number of peer nodes from (a) 1, (b) 4, (b) 8, up
to (d) 12 respectively. We performed a scalability analysis by varying the number
of transactions per second (tps) from (a) 10, (b) 20, up to (c) 30, respectively.

Table 4.2: Scenario #2: Simulation Parameters

Parameter Set of Values Unit

Transactions Per Second {10, 20, 30} tps
Simulation Time 15 minutes
Number of Intersections {1} -
Number of Peer Nodes {1, 4, 8, 12} -

For each experiment, we �xed 15 minutes of simulation time and calculated
the number of vehicles served, waiting time, response latency, throughput,

105

Chapter 4 Security Management

distance, and the number of requests. To have accurate results, we performed 30
subsequent iterations and calculated mean values and 95% con�dence intervals,
respectively.

Each performance is assessed according to the following criteria:

1. Number of completed vehicles - de�nes the total vehicles served during the
simulation.

2. Waiting time - is the time interval a vehicle waits at the intersection before
crossing.

3. Response time - is the time interval between when a vehicle �rst asks for
permission to cross the intersection and when it is granted permission.

4. Latency - is the increase in travel time due to the presence of an intersection.
Travel time is de�ned as the period between the moment when a vehicle
gets through the intersection and the moment when a vehicle enters the
V2I range. Then delay can be calculated as the di�erence between the real
travel time under intersection control and the estimated travel time if the
vehicle travels at the speed limit for the entire journey.

5. Throughput - quanti�es the number of vehicles that pass through the
intersection during a simulation.

6. Distance - represents the distance from the center of the intersection where
the IMA has con�rmed the crossing request sent by the vehicle.

7. Number of requests - totalizes the number of requests a vehicle does before
getting a con�rmation from the IMA.

Testbed Configuration

The hardware and software characteristics of each server of our testbed have
Intel(R) Core(TM) i7-6920HQ @3.4 GHz, 4 GB of RAM and 64-bit Ubuntu Server
18.04.01 LTS. We used the Node-RED 0.18 version, Docker 17.03.0, MongoDB
3.6 version, Hyperledger Fabric v1.1, and Hyperledger Composer v0.19.11, v1.8
of docker-compose, v8.9 of node, v5.7.1 of npm and Python v2.7 and AIM 4. In
Scenario #1, both existing and proposed systems are deployed on 2 servers. For
instance, to set up the existing system, we deployed the AIM 4 simulator on one
server and on another one the Node-RED and MongoDB instances. On the other
hand, the proposed system was con�gured with an HF network having 1 peer
node, 1 organization, and 1 orderer. Therefore, on one server we deployed the
AIM 4 simulator and a peer node while the remaining HF’s components and the
Node-RED instance.
To set up Scenario #2, we implemented an HF network with 1, 4, 8, and 12

106

BaaS-based Multi-Agent System for Intersection Management Section 4.1

peer nodes, 1 organization and 1 orderer. In the con�guration with one peer
node, all the HF’s components were deployed on one server. For the remaining
con�gurations with 4, 8, and 12 peer nodes, respectively, we solely deployed the
peer node on the di�erent number of servers. The AIM 4 simulator was deployed
to an additional server with the same software and hardware characteristics.

Scenario #1

One intersection Figure 4.7 illustrates the avg. number of completed vehicles,
avg. waiting time and avg. response latency for both existing and proposed
systems given certain road tra�c con�gurations. Next, Figure 4.9 shows the avg.
distance (m) and the avg. number of requests as well. For instance, for both with
and without Blockchain systems, we varied the number of vehicles/hour/lane
from 200 up to 800 and gathered the above-speci�ed metrics. In Figure 4.7, it
can be found that both systems can manage more or less the same number of
vehicles until the tra�c is around 500 - 600 vehicles/hour/lane; as the tra�c
gets heavier, the Blockchain-based system has worse performance and creates
long queues at the intersection. According to Figure 4.7, the Blockchain-based
system has a signi�cantly high average waiting time per vehicle comparing to
the existing one. It can be seen that the Blockchain-based implementation does
not show a meaningful improvement, the average waiting time performances
per vehicle are always greater (⇡31%) and grow faster than those obtained with
the existing one as well as, as the number of vehicles increases, the response
latency of both implementations follows a linear trend. It can be seen that the
avg. response latency of the Blockchain-based system is around 0.67 s while that
collected with the other one without Blockchain is below the thousandth of a
second.

A
vg

. T
im

e
(s

)

0,0

0,9

1,7

2,6

3,4

4,3

5,1

6,0

A
vg

. N
um

be
r o

f C
om

pl
et

ed
 V

eh
ic

le
s

0

100

200

300

400

500

600

700

vehicles/hour/lane

200 400 600 800

Avg. Number of Completed Vehicles
Avg. Waiting Time (s)
Avg. Response Latency (s)

(a) No blockchain

A
vg

. T
im

e
(s

)

0,0

0,9

1,7

2,6

3,4

4,3

5,1

6,0

A
vg

. N
um

be
r o

f C
om

pl
et

ed
 V

eh
ic

le
s

0

100

200

300

400

500

600

700

vehicles/hour/lane

200 400 600 800

Avg. Number of Completed Vehicles
Avg. Waiting Time (s)
Avg. Response Latency (s)

(b) Blockchain

Figure 4.7: Scenario #1: one intersection (avg. number of completed vehicles, avg.
waiting time (s), avg. response latency (s)).

We next examined the avg. distance and the avg. number of requests. For

107

Chapter 4 Security Management

instance, as can be seen from Figure 4.9 (a), the results show that more the
number of vehicles/hour/lane increases, more the avg. number of requests
increases, while the avg. distance decreases. This can be explained by the fact
that more crossing requests are received when the number of vehicles/hour/lane
becomes important more the system cannot handle them; this produces long
queues at the intersection. As a consequence, each vehicle will have to stop and
make more than one crossing request. Thus, as a consequence, the avg. distance
will decrease and the avg. number of requests will increase. Similar behavior
is also registered with the proposed system (see Figure 4.9 (b)). In detail, with
the blockchain-based system, there is an increase of ⇡13% on average for avg.
number of requests and a decrease of ⇡21% on average for the avg. distance
from the intersection.

Furthermore, by comparing the avg. number of requests of both existing and
proposed systems, we notice both systems behave similarly when the number of
vehicles/hour/lane is almost 500 - 600; exceeded this threshold, the avg. distance
in the existing systems is higher and the avg. number of requests is lower respect
to those in the proposed one. Besides, it has been noticed that the number of
transactions sent per second has an impact on the output of the proposed system
due to the overhead introduced by HF. The existing system performs better than
the proposed one.

Two intersections We gathered the same metrics using two intersections
as well. Figure 4.8 reveals the number of vehicles that have completed the
intersection crossing during the simulation. It can be noticed that both im-
plemented systems are able to manage more or less the same number of vehi-
cles; while for one intersection, this was possible until the tra�c was around
500-600 vehicles/hour/lane, for two intersections, this is possible up to a lower
threshold of about 400 vehicles/hour/lane. Under heavy tra�c conditions greater
than 400 vehicles/hour/lane, as for one intersection, the existing system performs
better compared to the proposed one.
In terms of avg. waiting time, it can be noticed that the existing system out-

performs the proposed one. In the presence of heavy tra�c, once the threshold
of 400 vehicles/hour/lane is exceeded, the waiting time saturates and becomes
constant. Because of the long queues formed in the intersections, everyone will
wait more or less the same time before crossing the intersection. The same trend
is also registered for the avg. response latency.

Next, we illustrate the avg. distance and the avg. number of requests for each
intersection using the existing (see Figure 4.8 (a) and Figure 4.8 (b)) and proposed
(see Figure 4.8 (c) and Figure 4.8 (d)) systems. As we expected, the trends are
similar for both IM0 and IM1. This is coherent with what has been previously
obtained. Indeed, as the number of vehicles/hour/lane becomes important the
avg. distance decreases, and the avg. number of requests increases. As previ-
ously explained, this behavior is because the system cannot handle the incoming

108

BaaS-based Multi-Agent System for Intersection Management Section 4.1

A
vg

. T
im

e
(s

)

0,0

0,9

1,7

2,6

3,4

4,3

5,1

6,0

A
vg

. N
um

be
r o

f C
om

pl
et

ed
 V

eh
ic

le
s

0

100

200

300

400

500

600

700

vehicles/hour/lane

200 400 600 800

Avg. Number of Completed Vehicles
Avg. Response Latency (s)
Avg. Waiting Time (s)

(a) No blockchain - intersection #1.

A
vg

. T
im

e
(s

)

0,0

0,9

1,7

2,6

3,4

4,3

5,1

6,0

A
vg

. N
um

be
r o

f C
om

pl
et

ed
 V

eh
ic

le
s

0

100

200

300

400

500

600

700

vehicles/hour/lane

200 400 600 800

Avg. Number of Completed Vehicles
Avg. Waiting Time (s)
Avg. Response Latency (s)

(b) No blockchain - intersection #2.

A
vg

. T
im

e
(s

)

0,0

0,9

1,7

2,6

3,4

4,3

5,1

6,0

A
vg

. N
um

be
r o

f C
om

pl
et

ed
 V

eh
ic

le
s

0

100

200

300

400

500

600

700

Number of Peers

1 4 8 12

Avg. Number of Completed Vehicles
Avg. Waiting Time (s)
Avg. Response Latency (s)

(c) Blockchain - intersection #1.

A
vg

. T
im

e
(s

)

0,0

0,9

1,7

2,6

3,4

4,3

5,1

6,0

A
vg

. N
um

be
r o

f C
om

pl
et

ed
 V

eh
ic

le
s

0

100

200

300

400

500

600

700

Number of Peers

1 4 8 12

Avg. Number of Completed Vehicles
Avg. Waiting Time (s)
Avg. Response Latency (s)

(d) Blockchain - intersection #2.

Figure 4.8: Scenario #1: two intersections (avg. number of completed vehicles, avg.
waiting time (s), avg. response latency (s)).

A
vg

. N
um

be
r o

f R
eq

ue
st

s

0,0

0,9

1,7

2,6

3,4

4,3

5,1

6,0

A
vg

. N
um

be
r o

f C
om

pl
et

ed
 V

eh
ic

le
s

0

23

46

69

91

114

137

160

vehicles/hour/lane

200 400 600 800

Avg. Distance (m)
Avg. Number of Requests

(a) No blockchain

A
vg

. N
um

be
r o

f R
eq

ue
st

s

0,0

0,9

1,7

2,6

3,4

4,3

5,1

6,0

A
vg

. D
is

ta
nc

e
(m

)

0

23

46

69

91

114

137

160

vehicles/hour/lane

200 400 600 800

Avg. Distance (m)
Avg. Number of Requests

(b) Blockchain

Figure 4.9: Scenario #1: one intersection (avg. distance (m), avg. number of requests).

crossing requests e�ciently. Each vehicle has to make the crossing request more
than one time and enqueue at the intersection. By comparing these results with
those obtained with one intersection, we notice the avg. distance is lower and
the avg. number of requests is higher as well. This can be explained by the

109

Chapter 4 Security Management

A
vg

. N
um

be
r o

f R
eq

ue
st

s

0,0

0,9

1,7

2,6

3,4

4,3

5,1

6,0

A
vg

. D
is

ta
nc

e
(m

)

0

23

46

69

91

114

137

160

vehicles/hour/lane

200 400 600 800

Avg. Distance (m)
Avg. Number of Requests

(a) No blockchain - intersection #1.

A
vg

. N
um

be
r o

f R
eq

ue
st

s

0,0

0,9

1,7

2,6

3,4

4,3

5,1

6,0

A
vg

. D
is

ta
nc

e
(m

)

0

23

46

69

91

114

137

160

vehicles/hour/lane

200 400 600 800

Avg. Distance (m)
Avg. Number of Requests

(b) No blockchain - intersection #2.

A
vg

. N
um

be
r o

f R
eq

ue
st

s

0,0

0,9

1,7

2,6

3,4

4,3

5,1

6,0

A
vg

. D
is

ta
nc

e
(m

)

0

23

46

69

91

114

137

160

vehicles/hour/lane

400 600 800 200

Avg. Distance (m)
Avg. Number of Requests

(c) Blockchain - intersection #1.

A
vg

. N
um

be
r o

f R
eq

ue
st

s

0,0

0,9

1,7

2,6

3,4

4,3

5,1

6,0

A
vg

. D
is

ta
nc

e
(m

)

0

23

46

69

91

114

137

160

vehicles/hour/lane

200 400 600 800

Avg. Distance (m)
Avg. Number of Requests

(d) Blockchain - intersection #2.

Figure 4.10: Scenario #1: two intersections (avg. distance (m), avg. number of requests).

fact that as the intersections are 2, both existing and proposed systems saturate
and have limitations to manage them with the given hardware and software
con�gurations.

Scenario #2

In the following, the impact of the network topology is studied. To do the
assessment, the number of peer nodes has been �xed from 1, 4, 8 up to 12, and
the input transactions number is varying. Figure 4.11 shows the avg. latency and
the avg. throughput of the proposed systems with one intersection by varying
the number of transactions per second (tps) from (a) 10, (b) 20, up to (c) 30,
respectively.

It can be seen that, as the number of peers increases, the performance becomes
worse as there are more servers, meaning that the system incurs some network
overheads. Because HF is communication bound, having more servers means
more messages being exchanged and higher overheads. The peer nodes use
more time to handle the communication between them rather than to manage
the incoming transactions. More communications are required to pre-vote and
pre-commit a block when the number of peers (validators) becomes important.

110

BaaS-based Multi-Agent System for Intersection Management Section 4.1

A
vg

. T
hr

ou
gh

pu
t (

tp
s)

0

4

9

13

17

21

26

30

A
vg

. L
at

en
cy

 (s
)

0

6

11

17

23

29

34

40

Number of Peers

1 4 8 12

Avg. Latency (s)
Avg. Throughput (tps)

(a) 10 tps

A
vg

. T
hr

ou
gh

pu
t (

tp
s)

0

4

9

13

17

21

26

30

A
vg

. L
at

en
cy

 (s
)

0

6

11

17

23

29

34

40

Number of Peers

1 4 8 12

Avg. Latency (s)
Avg. Throughput (tps)

(b) 20 tps

A
vg

. T
hr

ou
gh

pu
t (

tp
s)

0

4

9

13

17

21

26

30

A
vg

. L
at

en
cy

 (s
)

0

6

11

17

23

29

34

40

Number of Peers

1 4 8 12

Avg. Latency (s)
Avg. Throughput (tps)

(c) 30 tps

Figure 4.11: Scenario #2: avg. latency (s) and avg. throughput (tps).

Besides, it has been noticed that the number of transactions sent per second has
an impact on the output of the blockchain. This is coherent with what has been
previously obtained. Indeed, in a network containing an important number of
validators, a validator node requires additional time to inform/get informed about
the state of other nodes. That will undoubtedly delay the validation/creation of
new blocks in the network. This can be explained by the fact that in a complete
network, the validator nodes spend more time to synchronize their state with
the rest of the network. As a result, such nodes have less time to accomplish the
validation work.

Figure 4.11 (a) reveals the throughput and the avg. latency when the number
of transactions per second (tps) is 10. We notice the system can handle all the
incoming requests, and thus maintaining a high throughput value equals to 10
tps and a low avg. latency, until the system reaches 8 peers; exceeded the number
of peers, the throughput is lower and the avg. latency increases.
As well, Figure 4.11 (b) and Figure 4.11 (c) illustrates the same metrics using

several transactions per second (tps) equals to 20 and 30, respectively. In this
con�guration, we notice the system can maintain a high throughput and a low
latency when the HF network has 1 and 4 peers, respectively. The con�guration

111

Chapter 4 Security Management

with 12 peers has signi�cantly lower throughput values; therefore, a major
number of peer nodes cannot guarantee to have lower minimum delays and
maximum throughput values than those obtained with 1 and 4 peer node/s.
More precisely, this can be explained by the fact that more vehicles and more
transactions are sent per second in the proposed system, the more the network
accumulates some delays to validate transactions.
From the above results, it can be concluded that the performance of the

blockchain HF technology will undoubtedly limit its usage in practice to speci�c
use cases where the time required to validate a transaction is very high, and the
number of validators joining the network is not very important.

4.1.8 Conclusions and Future Directions

New emerging ICT technologies such as IoT, CC, EC, and blockchain that are
revolutionizing the whole ITS sector will represent the future research topics for
both industry and academic contexts in the next years. In particular, blockchain
technology’s apparent advantages will open toward new favourable horizons
regarding its integration in AIM systems.

This paper proposed a reliable and secure MA-AIM system based on both C2T
paradigms and blockchain. The proposed systems use V2I/I2V communication
to exchange information between AVs and an IMA placed on each intersec-
tion. Speci�cally, we implemented a proof of concept integrating the AIM 4.0
simulation tool with Node-RED and HF. We validated the proposed system’s
performance by conducting several experiments by varying the number of AVs
crossing through one and two intersections. The collected results helped us to
quantify the overhead introduced by the proposed HF-based implementation
compared with an alternative solution not using blockchain.
In future works, we initially plan to study further the integration of both

V2V and V2I communication capabilities to improve intersection management
further. Moreover, particular attention will be given to optimising the algo-
rithm to calculate the trajectory of vehicles approaching the intersection. In the
end, we plan to investigate an Infrastructure-to-Infrastructure (I2I) communica-
tion scenario, including multiple intersections, by creating a federated private
blockchain infrastructure.

4.2 BaaS-based Health Information Exchange System
for Patient Monitoring

4.2.1 Introduction

The healthcare industry has been slower than others in adopting IoT technologies,
but the rapid growth of IoT and wearable devices has opened up new possibilities
in the realm of medical equipment, particularly for remote patient monitoring.

112

BaaS-based Health Information Exchange System for Patient Monitoring Section 4.2

Monitoring devices can be seen as the Internet of Medical Things (IoMT) or
healthcare IoT, characterized by seamless data exchange between connected
devices followed by e�cient data analytics. Electronic Health/Medical Records
(EHRs/EMRs) are a key element of this new approach.

A new trend in eHealth information management arose in recent years, which
pushes towards patient-centred interoperability [156]. Unfortunately, patient-
centred interoperability brings new security and privacy challenges and issues
that need to be addressed, and many of them cannot be resolved with traditional
interoperability solutions [157]. Thus, it is necessary to look for novel or dis-
ruptive interventions that can facilitate the transition towards patient-centred
interoperability. Blockchain is a promising technology that can have a key role
in this direction and associated challenges.
To deal with security issues in health information systems, we propose a

Blockchain-as-a-Service based solution for Health Information Exchange (HIE)
or BaaS-HIE suitable for an EHRs/EMRs-IoMT scenario. Our proposed system
addresses the four major issues discussed right now, i.e., i) patient privacy and
medical record integrity, ii) slow access, granular access authorization and access
control, iii) private and auditable healthcare data sharing, and iv) system interop-
erability. In our BaaS-HIE system, the concept of smart contract is crucial because
it allows di�erent administrations to implement trustless functionalities in the
system. In this way, we have secure remote monitoring of patients, we provide
medical professionals with real-time noti�cations on patients’ status, and we
propagate health noti�cations from multiple devices through a seamless system.
Using smart contracts is a revolutionary approach that easily integrates new
medical technologies in their health solutions. This contribution provides some
experimental analysis to show the BaaS-HIE system’s feasibility and discuss how
the information system’s performance is related to the size of EHR.
The remainder of this contribution is organized as follows. We provide mo-

tivations and related works in Section 4.2.2. In Section 4.2.3, the design of the
BaaS-HIE system is presented, and our implementation is presented in Sec-
tion 4.2.4. Experimental analysis is discussed in Section 4.2.5. Then, conclusions
are provided in Section 4.2.6.

4.2.2 Motivations and Related Works

Digital and networked health services, such as EHR/EMR, play a key role in the
storage, sharing and maintenance of patients’ personal and medical records [158].
The inability to access medical data (generated by a doctor or device) quickly
and e�ciently is a long-standing problem in providing electronic healthcare
solutions globally. Current EHRs/EMRs implementations assume that a patient
meets professionals in a clinic (EMR) or in a political jurisdiction (EHR managed
by a province or a state). This assumption is based on a practitioner-centric
approach, and the opportunity to make systems interoperable is low.

113

Chapter 4 Security Management

In reality, patients do not interact with a single doctor or clinic. A survey
published in 2010 already stated that patients meet 18.7 di�erent doctors during
their lives [159]. This study did not consider the broader population of health
practitioners (i.e., pharmacists, physiotherapists, chiropractors). Patients also
do not restrict themselves to a single EHR coverage area; they travel for leisure,
work, and move for long periods. Now the situation is even worst because pa-
tients are increasingly interested in managing their health with the help of data
generated by wearable devices [160]. This kind of Patient-Generated Health Data
(PGHD) is easily shared with the device/service provider but not with health
practitioners. Despite huge investments by practitioners, medical facilities, the
provision of medical services and health management continue to be hampered
by inaccessibility to information, poor interoperability, inconsistent security of
data assets, cumbersome privacy controls, and exclusion of patients from access
control to data resources that they are the legitimate owners. However, many
shortcomings might lead to the loss of sensitive patient medical information. For
example, using current approaches to healthcare systems management makes it
di�cult for patients to track what entity is accessing health data and its purpose.
Therefore, this work’s core motivation is to use blockchain for healthcare sys-
tems and address the current HIE systems’ potential shortcomings.
Blockchain technology can be vital in these cases because it provides data

ledger-based features distributed to all network entities. The involvement of
blockchain across the healthcare sector has been a growing area of interest in
both academic research and industry [161, 162, 163]. [162] claim ownership
of the original attempt to employ blockchain for an EHR management system.
However, there have been various attempts to address the security and privacy
aspects of EHRs/EMRs in healthcare. In particular, in [164] authors studied
the decentralization of privacy using blockchain to protect personal data. As
well as, in [165], the authors proposed an application of the blockchain for
authentication and validation of identity. [162] proposes an access architec-
ture, Healthcare Data Gateways (HDG), for blockchain use in eHealth. [166]
constructs an access control scheme, called ESPAC, to implement granularity
authorization for data queries based upon attribute-based encryption (ABE)
in eHealth. The use of blockchain for medical data access was demonstrated
in a system called MedRec [167]. This decentralized system handles patients’
EHRs and o�ers a possibility to retrieve their medical information from di�erent
service providers.
Therefore, there is substantial work in integrating blockchain technology

in the healthcare domain. We identi�ed four major issues to be addressed: (i)
patient privacy and EHRs/EMRs integrity, (ii) slow access, granular access autho-
rization and access control, (iii) private and auditable healthcare data sharing and
(iv) system interoperability. Compared with the existing blockchain advances
in eHealth mentioned above, we highlight the following novel contributions.

114

BaaS-based Health Information Exchange System for Patient Monitoring Section 4.2

First of all, we address the four major issues addressed above by considering
an EHRs/EMRs-IoMT scenario, as illustrated in Figure 4.12 and explained in
Section 4.2.3, where the patient is monitored, and the data collected by the sen-
sors are accurately formatted and aggregated using the patient’s mobile device
as Gateway/Aggregator point. Each IoMT device is authenticated within the
patient’s Gateway/Aggregator point. Our Baas-HIE system can facilitate this
patient-centric transition by surmounting the current HIE systems’ interoperabil-
ity barriers, explicitly focusing on clinical data transaction volume, privacy, and
security. A patient can monitor which entity is accessing the data and grant the
accessibility permission to only the authorized entities accordingly. Therefore,
the interoperability issues related to the HIE system are patient-centric and
assessed adopting smart contracts. We also propose a DApp able to manage the
user’s authentication and authorization.

4.2.3 System Design

This section presents the model, which seeks to contemplate the four major
issues highlighted above. The BaaS-HIE proposed model consists of �ve parties:
i) constrained and unconstrained devices (IoMT), ii) patient (gateway/aggregator)
point, iii) authorities (healthcare centre personnel (e.g.,.e doctors) and patients),
iv) decentralized storage servers, and v) blockchain network.

Figure 4.12: Baas-HIE proposed model.

This system uses a private and consortium-led blockchain, which means that
only authorized viewers can read blocks and only designated nodes can execute
smart contracts and verify new blocks. Restricting viewers to only invested parts
as doctors and patients help reduce excessive information exposure by requiring
authentication to access the application. We propose three scenarios for this
model:

1. Patient collects data from IoMT devices to create an EHR from scratch;

115

Chapter 4 Security Management

2. Patient grants an authority to access an EHR;

3. Patient adds a new block to his chain due to sharing his EHR with a
healthcare centre doctor;

4. Patient adds a new block to his chain due to visiting a doctor in a healthcare
centre.

Therefore, according to Figure 4.12 we outline the system as follows. A patient
remotely monitored by a doctor is equipped with various IoMT devices (such
as a blood pressure monitor, pulse oximeter) to collect all health data from the
patient. First of all, each IoMT device must be authenticated with the patient
(e.g., gateway/aggregator point), therefore, it uses an Identity-Based Signature
(IBS) to calculate the signature of the pseudonym and sends it to the patient.
The patient veri�es the signature by decrypting it using the public key. If it
recovers the pseudonym, authentication is successful. Thus, the patient acts as
an authority that certi�es that the node has the private key corresponding to his
public key. Consequently, he/she accepts data from this node.

The raw data is sent to a gateway/aggregator point, typically a smartphone or
tablet, for the application’s aggregation and formatting. The patient creates the
EHR record from scratch (containing data collected from devices) and sends it
to the relevant smart contract for full analysis along with customized threshold
values. Next, the patient can also decide to share his EHR records with other
doctors belonging to di�erent healthcare centres.

The smart contract will then evaluate the data provided by adding a new block
to the chain and send alerts to both patient and doctor if the measured data is
outside the predetermined thresholds. The authorized authority could consult
the patient’s EHR through his blockchain decrypting EHR using the patient’s
public key when he granted the authorization. At the same time, after being
treated in a healthcare centre, the doctor adds a new EMR including appropriate
lab tests, diagnoses, and prescriptions, and all the information including the
hash of the EMR, visit ID, patient ID, authority ID and date is encapsulated in
one block. Patient treatments at di�erent times will be generated in di�erent
blocks. A series of blocks are then generated according to the time sequence
and a healthcare blockchain of this patient is constructed. Once the treatment is
�nished, the patient can deny further access to the doctor. The logic and state
transition events are recorded as immutable data in the blockchain. Using these
unique properties of blockchain, our system manages authentication, integrity,
con�dentiality, accountability, and health data auditing and sharing.

4.2.4 Implementation

As previously mentioned, our system is envisioned for storing and sharing
healthcare data from medical institutions and individuals; it includes three main

116

BaaS-based Health Information Exchange System for Patient Monitoring Section 4.2

components: i) a patient-centric user experience accessed through a browser and
mobile app interface, ii) a blockchain network, iii) IPFS-based decentralized stor-
age. Figure 4.13 provides an overview of our architecture. Each main component
is described below. Firstly, we made the following implementation assumptions:

1. The constrained node is already authenticated with the patient gateway/ag-
gregator point;

2. There exists a security policy allowing secure communications within the
constrained network domain (and in particular between gateway/aggrega-
tor and the IoMT devices);

3. The gateway/aggregator is a trusted entity that is the owned system by
the patient.

Figure 4.13: BaaS-HIE architecture.

Patient-Centric User Experience

The user interface (UI) is managed by a decentralized application (DApp) on smart
devices responsible for communicating with smart contracts on the blockchain
and managing user pro�les. The information coming from the IoMT devices is
aggregated and formatted in the back-end of the DApp and forwarded to the
smart contracts, which are connected using a web3.js object. Patients choose
whom to include in their circle of care and, at the granular level, what information
is shared with each. For patients who need or want assistance from a trusted

117

Chapter 4 Security Management

party, the circle expands to include a caregiver who can act on behalf of the
patient.

To implement the front-end of the DApp, we used React, a JavaScript library,
for building user interfaces. The structure of the React application is relatively
simple. The main React components are: �?? . 9B , which contains the login
functionality and ⇡0B⌘1>0A3 . 9B where the user can enter and view his data.
Because we adopted uPort, we used uPort’s implementation of web3 for the
contract interactions.
When 8=8C�22>D=C () is called during the user’s registration, uPort injects

HTML into the page that contains a QR code. The user uses the uPort mobile
application to scan the QR code. When �nished, the user object is be populated
with its uPort identity details that were requested.

An uPort identity is a complete digital representation of a person (or app,
organization, device, or bot) that identi�es him when interacting with smart
contracts and other uPort identities, either on-chain or o�-chain. The uPort
mobile application generates a public and private key for a user and deploys
smart contracts to represent their identity. This ability to make statements about
themselves without relying on centralized identity providers is what makes
uPort a platform for self-sovereign identity. uPort consists of a combination
of Ethereum smart contracts, some of which are shared and some speci�cally
owned by the identity owner, including:

• An identity is identi�ed by an MNID encoded Ethereum address. MNID
includes the Ethereum network ID and a checksum, making it safer to use
in a world where users regularly transition between Mainnet, multiple
test networks, and private chains;

• A straightforward optional proxy contract designed to live permanently
with key recovery and management delegated to an upgradable Identity
Manager contract.

This also issues a push noti�cation connection between the mobile phone and
the application, so each time a transaction is initiated from the app, the user will
be prompted to accept the transaction on his mobile device.

Blockchain Ecosystem

We have chosen not to carry out our operations and smart contracts on the
Ethereum public blockchain but on a separate private chain using Ethereum’s
protocol. This o�ers the freedom to experiment outside the set parameters of
the Ethereum blockchain and eliminates the need to spend Ether. As a proof-of-
concept, we implemented smart contracts using the Ethereum coding language
Solidity. For implementation in Solidity, we coded our smart contracts using
Remix, a website that has a compiler to test contract functionalities. Then, we

118

BaaS-based Health Information Exchange System for Patient Monitoring Section 4.2

used Tru�e - a framework for compiling, migrating and testing contracts.
Next, we set up the con�guration �le for deploying the contract using Ganache

tools to locally emulate a complete blockchain on the top of the development
host. We used Clique - Proof-Of-Authority (PoA) consensus protocol. We used
Infura, a scalable back-end infrastructure for building DApps on the Ethereum
blockchain, to connect to both blockchain and decentralized storage. Once the
contract has been deployed, an account (address) is provided to record its binary
code and can not be changed; only an authorized user can invoke contracts.
As well, the next function will call a transaction on the contract. Here we

pass an address and InterPlanetary File System (IPFS) hash. The hash is passed
as an argument and the address is set as the �eld that our contract receives as
msg.sender. Note that the name of the B4C�0B⌘() function is the same name we
use in the Solidity contract. Next, the second function - 64C⇠>=CA02C�0B⌘() is
used to get the IPFS hash.

By interacting with smart contracts, patients can prove their own EHRs/EMRs
and manage the relationship with healthcare organizations. The functionalities
are constructed by three types of smart contracts: (i) Entity Contracts (EC), (ii)
Relationship Contracts (RLC), and (iii) Data Contracts (DC). The concept of these
contracts is motivated by MedRec [167] and DeepLinQ [168].

Entity Contract (EC) We distinguish between two types of EC contracts,
which are EC patients and healthcare centre ECs. A patient EC records the
patient’s encrypted data, including a digital uPort ID, patient name and relevant
RLC addresses. A healthcare centre EC records the hospital name, its RLC
address, and the government institution’s relevant ID for identi�cation. Patients
can verify a hospital’s identity by calling the EC’s smart contract methods and
vice versa. To protect themselves against malicious users, all participants are
certi�ed by the system administrator.

Relationship Contract (RLC) As well, there are two types of RLC: patient
and healthcare organization RLCs. RLC records the contract addresses of medical
data (MDC) it owns. Thus, a patient can share his medical records with selected
healthcare organizations and a healthcare organization can send an MDC to
a patient. For instance, we de�ne two roles, patient and healthcare centre,
of EC and RLC to achieve role-based access control so that transactions are
more e�cient and patients can better guarantee data ownership. We do not
allow the sending of MDC directly between healthcare organizations. Therefore,
authorized users of an MDC can access EHRs/EMRs. Any exchange of this type
must pass through the data owner, the patient. This element of di�erentiation
is crucial not only for e�ciency but also because the core of privacy is based
on the fact that a patient owns his EHRs. Access authorizations are managed
individually for each patient’s EHR and can be changed at any time via a mobile
application.

119

Chapter 4 Security Management

Medical Data Contract (MDC) An MDC represents the data stored in the
decentralized storage. We distinguish between two types of MDC: patient and
healthcare organization MDC. A patient MDC includes the scratch-generated
EHR containing data collected from IoMT devices; therefore, it stores metadata
including patient ID, device ID, timestamp, threshold, and �ngerprint of the
record. Similarly, a healthcare organization MDC contains the EMR generated
after the patient has visited the hospital. It stores metadata including hospital ID,
division, physician name, date and time, diagnosis and relevant considerations,
and the recorded �ngerprint.
Therefore, there will be a patient MDC smart contract in our system, MDC-

Caller, that the smart device will call to handle all data. Next, MDCCaller will
create the appropriate individual contract for the speci�c device it is receiv-
ing data from. For example, if receiving heart rate data, the smart device will
call MDCaller.heartMonitor(). This will call an object of the MDCCaller and the
function MDCCaller.heartMonitor(). The smart device will pass the data and
the speci�ed threshold values as parameters. The function will then create a
new HeartMonitor object and pass the same parameters to its analyze() function.
Therefore, the patient creates the EHR from scratch containing the collected data
and the result returned by the analyze() function, the subcontract will write this
transaction on the blockchain. Before being added to the blockchain network,
each EHR/EMR is cryptographed using OpenPGP. The EHR’s owner’s public
key is used, and thus only authorized entities can access the contents of the
EHR using its private key. Furthermore, if the measured data is outside the
predetermined thresholds, an alert will be triggered to the patient’s device and to
the healthcare organization authorized to access that EHR. At the same time, if a
patient wants to see a doctor belonging to a di�erent healthcare organization (i.e.,
Org B), he can share his EHRs in Org A with Org B by adding Org B to the viewer
list of the MDC. Subsequently, the contract will send the MDC address to the
north hospital’s RLC address, which can be obtained via the EC corresponding
to the hospital ID.

IPFS Decentralised Storage

To maintain the system’s performance and economic viability, EHR/EMRs are
stored in decentralized storage, and the data URI hash is the data element of the
block involved in the chain. Transactions involving data are signed with the
owner’s private key (patient or healthcare organization). The hash is created
based on the contents of the �les. If something in the �le changes, a di�erent
hash is returned, e�ectively making the �les tamper-proof. Using the URI hash
and private key cryptography, we minimize each block’s size and provide an
additional layer of data security. Therefore, IPFS is the perfect solution for
Ethereum DApps, since storage on Ethereum is expensive. Given that IPFS

120

BaaS-based Health Information Exchange System for Patient Monitoring Section 4.2

data are readable by anyone, to ensure con�dentiality, the EHR/EMR content is
encrypted using the OpenPGP API.

4.2.5 Performance

To validate the functionality and assess the performance of our prototype, several
experiments have been done. These experiments furthermore improve the
understanding of the usability of the blockchain in real-world applications.

Figure 4.14: Average times [s] necessary to grant/revoke permissions and to register/lo-
gin.

Experiments are performed on the server hosted locally on the local machine
with processor Intel Core i7 processor running with a 2.4 GHz clock speed, 16 GB
memory, and 1 TB SSD storage. Experiments performed on blockchain quantify
the response time necessary to perform each of the following operations: i)
registration, ii) login, iii) grant permission, iv) revoke permission, v) get data,
and vi) upload data, respectively. In order to have truthful results, we performed
30 subsequent iterations for each experiment. Figure 4.14 encloses the collect
response times for each experiment related to grant/revoke permissions and
respectively to register/login. We can notice that the average response times
necessary to revoke and grant permissions are comparable; the grant transaction
takes on average 0.32 s while the revoke transaction requires on average 0.21 s.
In the case of registration, it takes on average 3.7 s. Login requires only 1.3 s. In
the case of registration, the data needs to be inserted into the blockchain, and
the invoke function must be executed. The response times necessary to upload

121

Chapter 4 Security Management

Figure 4.15: Average times [s] necessary to download/upload an EHR of 1, 10 and
100MB in size.

Figure 4.16: Average times [s] necessary to encrypt/decrypt an EHR of 1, 10 and 100MB
in size.

an EHR of varying size from 1MB up to 100MB on IPFS and write its hash on
the blockchain are shown in Figure 4.15. We can notice that the download time
on average for each payload of a di�erent size is greater than the upload one. In
particular, for an EHR of 1MB in size upload and download times are comparable;
0.283 s for upload and 0.66 s for download. For an EHR of 10,MB and 100MB in

122

BaaS-based Health Information Exchange System for Patient Monitoring Section 4.2

size, the average time for upload is noticeable greater than the average time for
the upload; for instance, for an EHR of 10MB in size, the upload time takes in
average 0.928 s while to download it 1.567 s. Also, the download of an EHR of
100MB in size takes in average 8.521 s, while uploading 4.187 s. The response
time necessary to upload data also includes the time necessary to encrypt the data.
As well as, the response time necessary to download data from the blockchain
is greater than that necessary to upload the �le on the blockchain because, in
the case of data download, the blockchain checks whether the actor has the
permission to access the speci�c subject and the time necessary to decrypt data
(see Figure 4.16). Figure 4.16 illustrates the average times necessary to encrypt/
decrypt and EHR of varying size from 1MB up to 100MB. We can notice that for
an EHR of 1MB and respectively 10MB encrypt/decrypt operations are quite
comparable, while for an EHR of 100MB, the time necessary to encrypt/decrypt
data takes on average a couple of seconds. Thus, this impacts the time needed to
upload and download an EHR.

4.2.6 Conclusions and Future Work

This contribution vestigated the current state of the art of the healthcare systems,
with a particular interest in HIE between di�erent practitioners (e.g., healthcare
organizations). Driven by the recent shift towards patient-driven interoperability,
in which health data exchange is patient-mediated and patient-driven, we address
the new associated security and privacy challenges, requirements, technology,
incentives and governance necessary to ensure successful data sharing.
Therefore, this contribution aims to pro�er blockchain technology as a suit-

able platform to overcome interoperability and security challenges of patient-
mediated HIE of EHRs/EMRs among di�erent practitioners. The proposed BaaS-
HIE system enables HIE’s interoperability and permission management in a
secure, private, and auditable way by leveraging the blockchain technology’s fea-
tures in an IoT-EHRs/EMRs scenario. Finally, the experimental analysis carried
out helped us to verify the feasibility of the system.
To conclude, future work related to this research will focus on integrating

this system into a real use case. Furthermore, we are also planning to test other
blockchain solutions to understand better which technology is best suited to this
scenario.

123

Part II

The Confluence of Osmotic
Computing in the Cloud-to-Thing
Continuum

5 Osmotic Computing on the Rise

The widespread of the Internet of Things (IoT), e.g., mobile and sensor devices, has
led to the creation of a wide range of highly distributed, federated, data-intensive,
and latency-sensitive applications that are disrupting legacy-centralized computing
moving cloud resources closer to users and edge. In this context, Osmotic Computing
(OC) is a new paradigm that supports this by simplifying the dynamic management
of microservices (called MicroELements or MELs) on resource-constrained edge/fog
devices as well as cloud-hosted services in public/private, hybrid or multi-cloud,
thus providing reliable IoT support with speci�ed levels of Quality of Service (QoS).
On the one hand, de�ning when and how microservices can be migrated from edge
resources to cloud-based resources (and vice versa) and factors that in�uence such
migration remains a challenge. Monitoring plays a central role in identifying when
and where a speci�c microservice should be migrated. For migration to be e�ective, it
is necessary to monitor the performance of the microservices properly. On the other,
networking and security represent the enablers that allow the dynamically adjusting
the overall microservices behaviour according to user/infrastructure requirements.
Network management in a federated, highly dynamic, and distributed ecosystem is
challenging. This chapter seeks basic concepts, methodologies and key technologies
behind OC to tackle the challenges mentioned above.

5.1 Introduction and Motivation

As the Internet of Things (IoT) extends into several application domains such
as healthcare, utility grids, cities, agriculture, transportation, industry 4.0, and
disaster management, the need for investigating on-the-�y computation over
the IoT data streams is even more critical. However, despite the rapid advances
in IoT-related technologies, IoT applications’ major bottleneck is the limited
computing resources.

The situation is worsened by many IoT applications that need intensive use of
resources for data analysis and application processing in real-time. A common
way to overcome IoT devices’ limited computing resources is to o�oad some
tasks to systems with su�cient computing resources, e.g., cloud servers.

The o�oading approach improves IoT applications’ performance and reduces
energy consumption but often introduces additional overhead. This could in-
crease IoT applications’ latency and network congestion, especially in those
applications involving resource-intensive operations. These disadvantages are

127

Chapter 5 Osmotic Computing on the Rise

the main driving factors that motivate the recent development of Edge Comput-
ing (EC). EC exploits devices with larger computational power, such as cloudlets
or computing-enabled switches, at the network edge to support IoT applications.
The use of EC decreases the latency and increases the bandwidth by o�oading
some tasks.

Today’s digitalized ecosystem is federated and usually highly distributed, be-
coming complex and dynamic and extending through the cloud/fog/edge and
IoT layers and the federated organizational boundaries. Therefore, in a feder-
ated organizational system where organizations collaborate to share resources,
microservices, and exchange information, applications must be highly scalable
and available and run on heterogeneous infrastructures.
In this panorama, to facilitate highly distributed and federated computing

environments, a new promising paradigm to dynamically extend edge/IoT re-
sources towards the cloud (and vice versa) is OC [169, 170]. Borrowing the main
osmotic concepts from chemistry, OC assumes that each application can be slit
into many dynamic MELs [171] that can be executed across di�erent computing
systems.
Hence, OC implies the dynamic management of services and microservices

across cloud and fog/edge, addressing deployment, networking, and security
issues, thus providing reliable IoT support with speci�ed levels of Quality of
Service (QoS).

Application delivery follows an osmotic behaviour where MELs in containers
are deployed opportunistically in cloud and fog/edge systems. Because of the
high heterogeneity of physical resources, the MELs’ deployment task needs
to adapt to virtual environments and involved hardware equipment. Thus, a
bidirectional �ow of adapted MELs from cloud to fog/edge (and vice versa) must
be managed (see Figure 5.1). Moreover, the migration of MELs in the cloud/-
fog/edge system implies the need for dynamic and e�cient management of
virtual network issues to avoid application breakdown or QoS degradation.

Figure 5.1: Osmotic Computing MELs o�oading.

128

Osmosis Technique Section 5.2

A breakthrough approach to address these issues is decoupling user data and
applications from networking and security services. OC moves in this direc-
tion, providing a �exible infrastructure by o�ering an automatic and secure
microservice deployment solution. Speci�cally, OC is based on an innovative
application-agnostic approach, exploiting lightweight container-based virtual-
ization technologies (such as Docker and Kubernetes) to deploy microservices
in heterogeneous fog/edge and cloud.

However, using an osmotic infrastructure poses new challenges for IoT work-
�ow application developers and operations managers as they need awareness
of resource/device heterogeneity, virtualization software heterogeneity (e.g.,
hypervisor vs container), data analytic programming model heterogeneity (e.g.,
stream processing vs batch processing), geographic distribution and network
performance uncertainties.
The growth of microservices as independent and distributed components of

limited scope grouped in a federated architecture to "form" di�erent applica-
tions and meet di�erent business needs and the complex network model has
introduced data protection and privacy problems. In fact, federated environ-
ments often are not manageable by a single organization. Each organization
requires the ability to have proper administration and security policies to main-
tain data security while allowing selective sharing of resources. In this kind
of environment, classical models of access control e�ectively protect resources
while allowing users to access resources within their privileges. However, the
management of such microservices is not trivial at all.

This highly dynamic and distributed ecosystem’s network complexity further
increases when federated systems and corresponding microservices extend not
only through the cloud/fog/edge and IoT layers but also the federated organiza-
tional cross-boundaries. Consequently, this ecosystem requires suitable access
control systems that enable participants to de�ne and manage who can access
their resources independently.
The rest of the chapter is organized as follow. Section 5.2 discusses the os-

mosis process. Osmotic MELs are presented in Section 5.3, while the Software
De�ned Membrane (SDMem) is highlighted in Section 5.4. Section 5.5 highlight
the design on an OC ecosystem, while a proposed implementation in presented
in Section 5.6. Section 5.7 concludes the chapter.

5.2 Osmosis Technique

In chemistry, “osmosis” represents the unrestrained net movement of molecules
from a higher (mean solute concentration) to a lower water concentration (high
solute concentration) [169]. As shown in Figure 5.2 (a), when a semi-permeable
membrane separates pure liquid water and glucose, water moves from high to
low water activity, as shown in Figure 5.2 (b). So, osmotic pressure is important

129

Chapter 5 Osmotic Computing on the Rise

to be applied to a solution to stop water �ow across a semi-permeable membrane,
as shown in Figure 5.2 (c). It is presented in Equation (5.1) [172].

c = 82B>;DC4') (5.1)

where c is the osmosis pressure law, 8 is a correction factor, 2B>;DC4 is the
molar concentration of the solution, ' is the ideal gas constant, and) is the
temperature in Kelvin.

Figure 5.2: Osmosis technique and osmosis pressure. (a) Initial state (b) Equilibrium (c)
External Pressure.

In osmotic environments, this process can be used to represent how MELs
can be migrated across the cloud, as shown in Figure 5.3. Figure 5.3 (a) shows
over and underloaded hosts as two liquids in a tube, one is pure water and the
other is glucose. Figure 5.3 (b) shows how the osmosis technique a�ects hosts to
migrate MELs between them to achieve a more balanced cloud system.

(a) Without osmotic technique (b) With osmotic technique

Figure 5.3: The e�ect of osmosis technique in load balancing.

130

Osmotic MicroELements Section 5.4

5.3 Osmotic MicroELements

EachMEL contains a hierarchical structure and can split into twomain abstracted
components: MicroService (MS) and MicroData (MD). It can be noticed, the root
element of the hierarchy is represented by the MEL (see Figure 5.4), whereas
underneath, there are MS and MD. The leaves of the hierarchy are MUS & MOS
and MUD & MOD, respectively.

Further, MOS is the MicroOperationalService (like an operating system), MUS
is the MicroUserService (like a user application service), MUD is the MicroUser-
Data (user data), and MOD is the MicroOperationalData (MS con�guration). MS
and MD are portable, mobile and cross-platform. In a real example, an MS is
represented by a running Docker-based container. MD is a new entity wrapped
in JSON. MD can be both passive and active. Passive data can be read and written
on devices, while active data can be saved within databases (e.g., MongoDB) and
queried.

Figure 5.4: MEL hierarchical structure.

5.4 So�ware Defined Membrane Concept

MELs �ow through an osmotic membrane, a software-de�ned component (that
is SDMem) designed to monitor running MELs and manage their deployment
and migration (see Figure 5.5).

In OC, SDMems can be set up in federated environments, with di�erent admin-
istrative domains, and di�erent applications and services may require di�erent
security constraints. SDMem is responsible to dynamically manage MELs osmo-
sis by isolating independent �ows according to security levels and QoS.

131

Chapter 5 Osmotic Computing on the Rise

For example, in Figure 5.5, there are several �ows of MELs between a cloud
datacenter (L1) and a micro-cloud at the edge (L2). Such �ows belong to three
di�erent logic applications/services characterized by speci�c security require-
ments. Thus, three independent SDMems are instantiated to isolate MELs and
guarantee secure access to data and microservices. Similar considerations can
be done in the osmotic management of MELs across cloud datacenters (L1) and
IoT devices (L3) and micro-clouds at the edge (L2) and IoT devices (L3).

Figure 5.5: Software De�ned Membrane in Osmotic Computing.

The SDMem leverages the latest technologies to be formalized and deployed,
using abstractions and virtualization systems. The SDMem describes the services
composition and work�ow description, where its elementary elements are the
MELs. SDMem mainly looks at Kubernetes for managing the multitude of
containers deployed in the cloud and IoT. To specify security requirements
and osmosis constraints, SDMem can be described using both YAML and JSON
representations.

5.5 Osmotic Computing Ecosystem Design

Figure 5.6 illustrates today’s federated ecosystem, including cloud, edge and IoT
layers interconnected through the Internet. Such a scenario makes massive use
of both hypervisor and container virtualization technologies to optimize virtual
resources.

The Cloud Layer includes several Cloud Regions ⇠'8 , 8 = 1, ..., ! representing
cloud systems deployed in di�erent geographical areas and owned by di�erent
organizations $'⌧8 , 8 = 1, ..., !. By de�nition, each ⇠'8 exploits the hypervisor
virtualization to manage several Virtual Machines +" 9 , 9 = 1, ...," and in turn,
each +" 9 exploits the container virtualization to run several Containers ⇠: ,
: = 1, ...,# . In the end, each container ⇠: runs a speci�c microservice �S: ,
: = 1, ...,# .

132

Osmotic Computing Ecosystem Design Section 5.5

The Edge Layer includes several Edge Regions ⇢'G , G = 1, ...,$ representing
edge systems deployed in di�erent geographical areas. Each ⇢'G can manage
several Edge Devices ⇢⇡~ , ~ = 1, ..., % . Each ⇢⇡~ , according to the type of device,
can run either several Containers ⇠I , I = 1, ...,& .
The IoT Layer includes several IoT Regions �>)'C , C = 1, ...,⇡ representing

IoT systems deployed in di�erent geographical areas. Each �>)'C can manage
several IoT Devices �>)B , B,= 1, ..., � . Each �>)~ , according to the type of device,
can run either several containers ⇠; , ; = 1, ..., !, such as in the case of Raspberry
PI B+ [121], each one running a speci�c microservice �SI , I = 1, ...,& or directly
�SI , such as in the case of devices that do not have the hardware/software
capabilities to run a container engine. Besides, several microservices �S: and
�SI can be interconnected to arrange distributed microservices ⇡�S; , ; = 1, ...,'
representing mesh-up services and applications including both central cloud,
edge and IoT capabilities.
Each $'⌧8 , 8 = 1, ...,# can de�ne the microservices on the network, make

the services discoverable, grant to the consumer organization, transfer access
rights, and trace them. Besides, each $'⌧8 , 8 = 1, ...,# needs to de�ne their
access control permissions for each distributed microservice.

Generally, access control data is implemented and stored in centralized servers
and the centralized access control system manages the permissions of users to
access the centralized data storage. Therefore, each $'⌧8 , 8 = 1, ...,# manages
its independent access control system. According to the centralized approach,
all access requests go through a central authority, which decides whether grant
or deny. However, this centralized approach has some drawbacks:

• Single point of failure - if the centralized access control fails, then no one
can access the entire system;

• Central authority - all requests must be approved by the central authority,
which can cause performance problems due to bottlenecks;

• Limited transparency - since there is centralized control in a collaborative
environment, transparency becomes another challenging issue.

Traditional access control models like Discretionary Access Control (DAC) and
Mandatory Access Control (MAC) do not adapt to distributed and heterogeneous
systems. Role-based Access Control (RBAC) is more �exible and more used
for access control models. According to RBAC, roles are assigned to users,
and permissions are assigned to the roles [173]. Similarly, the Organization-
based Access Control (OrBAC) model is an extension of RBAC that de�nes
permissions independently from implementation and support organizations
to de�ne their security policies. Also, the OrBAC model does not �t a highly
decentralized federated organizational environment [174]. Therefore, these
classical access control models are not suitable and designed for heterogeneous

133

Chapter 5 Osmotic Computing on the Rise

Figure 5.6: Federated ecosystem spanning on the Cloud, Edge and IoT Layers.

and distributed systems. Hence, there is a lack of suitable security models for a
highly collaborative environment. Although some research has been done on
decentralized access control [175], most approaches do not support �ne-grained
access control policies nor the transfer of access rights. Thus, building access
control for the cross-boundary organization is an important and challenging
issue.

5.5.1 Research Challenges

In this scenario, we have identi�ed the following challenges that will be addressed
in the following:

• Federation Provisioning (discovery, selection, allocation);

• Service composability;

• Portability (data portability, model abstraction and data migration to avoid
vendor lock-in in federated environments);

• Federation Networking Model (network virtualization and connectivity,
addressing, naming, multicasting);

• Federation Security (trust, authorization and identity management, fed-
erated policy and semantic interoperability, federation level agreement,
legal issues, disaster recovery, multi-tenancy).

134

Osmotic Computing Ecosystem Design Section 5.5

To facilitate provisioning in highly distributed and federated computing envi-
ronments, we adopted the OC paradigm that enables the automatic deployment
of MELs over the cloud, edge and IoT layers. Our methodology to solve the
research questions consists of three phases:

Phase 1: MELs definition, deployment and orchestration We assume
that MELs are digital resources de�ned as RESTful web services and that each
federated organization will provide their own MEL for its digital artefacts. Ac-
cording to the osmotic principles, each MEL can be composed of two software
components: (i) MicroService and (ii) MicroData. This division enhances the
service composability concept.
A very challenging task in an osmotic ecosystem characterized by a high

heterogeneity level is MELs de�nition, deployment and orchestration. Each
federated organization must de�ne its MELs using manifests like YAML �les.
The deployment of such artefacts can be automated by adopting an orchestrator
tool like Kubernetes. Kubernetes is an open-source system that automates the
deployment, scaling, and management of containerized applications (see Sec-
tion 3.5 for further details). Each organization will set up its Kubernetes cluster
to deploy and manage the de�ned MELs. Then, Kubernetes clusters owned by
each organization will be federated to ensure federation provisioning and data
portability.

Phase 2: Federation network management Network management in a
federated, highly dynamic and distributed osmotic ecosystem is very challenging.
The network represents an enabler that allows us to dynamically adjust the
overall microservices behaviour according to user/infrastructure requirements.
Kubernetes orchestrator does not provide an own networking solution; it relies
on third-party network plug-ins called overlay networks. Both Software De�ned
Networking (SDN) and Network Function Virtualization (NFV) o�er useful
solutions for supporting network connectivity by enabling inter-domain and
federated networks in an osmotic system. A popular SDN overlay network is
Open Virtual Networking (OVN). OVN is treated in Section 3.4.

Phase 3: Federation security management In the highly dynamic and col-
laborative federated environment, classical models of access control e�ectively
protect resources while allowing users to access resources within their privi-
leges. Organizations need to have proper administration and security policies to
maintain data security while allowing selective sharing of resources.
In OC, we adopt the SDMem and integrate it with blockchain facilities to

tackle the security aspect. The SDMem is related to MELs �ow management
within the whole system, allowing organizations to manage security and privacy
issues.

A blockchain is essentially a distributed and decentralized database of records

135

Chapter 5 Osmotic Computing on the Rise

Figure 5.7: System architecture.

or public ledger containing chained blocks of transactions. Once the transaction
is stored in the chain, it can be modi�ed or deleted. Since the peer-to-peer
networks do not depend on a central entity, blockchains have no single point of
failure. Suppose the network nodes are su�ciently distributed across di�erent
authorities and geographical locations. In that case, the blockchain becomes
resilient to network outages by natural disasters, physical or cyber-attacks, and
falsi�cations from authorities.

In an ecosystem of federated organizations, SDMem allows each organization
to enable grouping and �ltering MELs based on their properties and use. SDMem
allows MELs migrations according to constraints identi�ed in the membrane
guaranteeing isolation of one system from another. Therefore, security in OC
involves two aspects: (i) MELs’ design and speci�cation; (ii) MELs’ migration and
management, subject to security and privacy policies. A private and permission-
based blockchain could help us keep the shared data and historical records of the
access permissions in this context. Each organization will manage its blockchain
node in the blockchain consortium cluster. We propose the adoption of Hy-
perledger Fabric - a blockchain implementation proposed by IBM. Blockchain
technology is detailed in Section 4.1.4.

Another advantage of blockchain technology is the built-in feature of de�ning
and handling assets (resources). In the blockchain network, each organization can
choose the type of resource that it wants to store, e.g., MELs de�nition manifests,
con�guration �les, users’ public key, and then de�ne for each registered resource
the access control list of permissions which enforces the federated policy and
semantic interoperability, federation level agreement and legal issues. Using the
blockchain as data storage makes this solution more robust, resilient, immutable,
transparent, and traceable. With respect to the traditional database systems that

136

Osmotic Computing Ecosystem Design Section 5.5

support Create, Read, Update, and Delete (CRUD) interfaces, blockchain is an
append-only data storage, so it does not support update and delete actions; it
supports the creation of new transactions. Tracking digital assets movements
using blockchain technology enables the capability to verify asset’s integrity
and authenticity. Every node can have a complete and continuously updated
copy of the ledger, and it allows them to be used for monitoring.
Another important aspect is authorization, identity management and multi-

tenancy. Speci�cally, when an organization grants access rights for its microser-
vices, the challenge is how the consumer organization can directly access the
MELs without interacting with additional third party services. Each organization
manages and certi�es local users through its authentication and authorization
server, and therefore it stores the users’ public key on the blockchain nodes. In
this way, organizations manage their public/private key pairs securely.

Figure 5.8: Access rights and transfer �ow.

For example, we suppose that users are uniquely identi�ed by their email
address in this architecture. Organization administrators and internal access
control systems have the �exibility to use their identi�cation mechanism to iden-
tify and authorize locally. However, to achieve authentication and authorization
across organization boundaries, they must have a mechanism by which all col-
laborative organizations agree on the Public Key Infrastructure (PKI) algorithms
and de�nitions of it. Figure 5.8 shows how the organizations manage their users
independently and exchange the public users’ data on the blockchain network.
Speci�cally, the blockchain-based SDMem allows organizations to de�ne MELs
on the network and expose them, grant access to the consumer organization,
transfer access rights, and trace them, respectively. Figure 5.7 illustrates the
architecture of the proposed MELs’ orchestration approach involving the de�ni-

137

Chapter 5 Osmotic Computing on the Rise

tion of an SDMem-based on Hyperledger Fabric (HF) technology able to satisfy
the above-explained research question and to support the research methodology.

5.6 Osmotic Computing Ecosystem Implementation

The bene�t of decomposing an application into di�erent smaller microservices
or MELs is that it improves modularity, making applications simpler and more
resilient. However, the management of such MELs is not trivial at all.
The Osmotic Orchestrator represents the choreographic element of our os-

motic system. Therefore, it encases the failover mechanism and interacts with
Kubernetes to manage microservices re-/deployment (either on IoT/edge devices
(e.g., Raspberry Pis) or cloud) through the manifests stored in a database sys-
tem (e.g., MongoDB). In order to monitor the deployed microservices, we used
Agento. Agento [176], an open-source project developed by the University of
Messina, whose purpose is to monitor host and guest resources usage. Figure 5.9
shows an overview of the implemented osmotic architecture.

Figure 5.9: The architecture of our osmotic platform.

Kubernetes allows achieving applications and services orchestration �exibly,
following a master-slave architecture. Thus, we deployed a master node on the
cloud and four worker nodes: three running on IoT/edge device (i.e., Raspberry
Pis) and the last one running on the cloud.

Master node The master node represents the brain of our Kubernetes cluster.
It is initialized through the kubeadm init command. Moreover, to ensure the
communication between the master and worker nodes, we used Open Virtual
Networking (OVN). We chose OVN due to its e�ciency and multi-platform
support (further details on OVN are provided in Section 3.4). The Osmotic Or-
chestrator is implemented as a Custom Controller integrated within Kubernetes.

138

Osmotic Computing Ecosystem Implementation Section 5.6

Worker nodes The worker or minion nodes are added to the cluster through
the kubeadm join command. Of particular interest is the Kubernetes con�guration
on the Raspberry Pi minion node. Since kube-proxy runs in a DaemonSet, it is
spread on all nodes.
However, in the kube-proxy DaemonSet, the image’s architecture type used

with the kubeadm init command is set to amd by default. Thus, the kube-proxy’s
image is gcr.io/google_containers/kube-proxy-amd64. Therefore, this causes issues
when adding to the cluster nodes with di�erent architectures, e.g., arm. To solve
this issue, before running the kubeadm join command on the arm worker node,
we must manually pull the gcr.io/google_containers/kube-proxy-arm image and
re-tag it.

Another fundamental element of the Osmotic system is the osmotic application
which has the following features: (i) highly horizontally/vertically scalable within
the environment, (ii) 24 hours 24 available, (iii) fault-tolerant, and (iv) secure.

5.6.1 How to Implement an Osmotic Application

Therefore, after exposing the osmotic application’s main characteristics previ-
ously, it is necessary to de�ne a proper model to achieve these. The monitoring
mechanism represents a crucial element of the osmotic work�ow. Thus, we
implemented it using Agento, which is deployed on each cluster node. It moni-
tors each node (host) and the relative guests (containers or MELs) by gathering
metrics related to CPU, memory usage and in and out network tra�c.
To implement the scheduling mechanism, these metrics are sent to the Os-

motic Orchestrator through a Publish/Subscribe bus event (e.g., Apache Kafka),
which uses them to implement the corresponding orchestration policies.

The orchestration is implemented according to the following logic. When a
container’s resources usage metrics (CPU or memory) reach almost 90% of the al-
located resources, the Osmotic Orchestrator applies a vertical scaling to increase
that available container’s resource by 10%. Speci�cally, if the host’s resources
allow the redeployment according to the new MEL resources requirements, the
MEL will be redeployed on that node; otherwise, the MEL will be redeployed on
another cluster node satisfying the new speci�ed requirements.

For example, we suppose that the MEL is initially deployed on a Raspberry Pi
device. If, at some point, the MEL’s resources usage exceeds the 90% threshold,
the MEL is redeployed with new increased speci�cations. As the Raspberry Pi
has limited computational resources, if the new requested resources cannot be
satis�ed, the application is moved to a more powerful node like a cloud node. On
the other hand, if none of the cluster nodes can satisfy the new speci�cations,
a horizontal scaling mechanism is actuated. This mechanism is also applied
vice-versa. The re/deployment of the MELs is de�ned through YAML �les - called
manifests. These are grouped in collections and stored in MongoDB.
As previously mentioned in ??, another important feature of an osmotic ap-

139

Chapter 5 Osmotic Computing on the Rise

plication is the 24 hours availability. However, the microservice redeployment
causes its unavailability. Kubernetes currently supports two di�erent deploy-
ment strategies: RollingUpdate and Recreate. The �rst one will replace each Pod
with a new one in turn so as no outage will occur. This is great if we have devel-
oped our application with backwards compatibility so that new deployments
can run alongside old ones. On the other hand, Recreate strategy destroys all
existing Pods before they are replaced with a set of new ones. This is useful if
we have introduced breaking changes, which could cause problems when Pods
are running older and newer code simultaneously. The downside here is that
there will be a brief outage between the old Pods being destroyed and the new
Pods being scheduled.
Thus, to eliminate the downtime due to application redeployment, we have

adopted the blue-green deployment technique, which occurs when we run two
complete deployments of our service: a deployment in production and a deploy-
ment with the changes we would like to introduce. Thus, after we deployed the
new version that meets the new requirements, we are ready to make production
changes. Thus, we update the Kubernetes Service object, which plays the role of
load balancer or router between the two Deployment resources, to send tra�c
to the new version by replacing the version label in the selector �eld. As shown
in Listing 5.1, Listing 5.2 and Listing 5.3, we can then toggle the Label Selector
on the Service to switch between blue and green, more speci�cally between 1.10
and 1.11 versions.

The blue-green deployment technique introduces a couple of advantages. One
of them is that by creating an entirely new deployment, we can be more certain
that nothing is broken before making changes to production; while the other
one is that if something goes wrong, such as automated testing or undetected
health checks, we can quickly and easily switch back as the previous deployment
is still running.

Listing 5.1: Blue deployment - YAML manifest.

apiVersion: extensions/v1beta1
kind: Deployment
metadata:

name: nginx-1.10
spec:

replicas: 1
template:

metadata:
labels:

name: nginx
version: "1.10"

spec:
containers:

- name: nginx
image: alexellis2/nginx-arm:latest
resources:
limits:

cpu: "0.1"

140

Osmotic Computing Ecosystem Implementation Section 5.6

memory: "128Mi"
ports:
- name: http

containerPort: 80

Listing 5.2: Green deployment - YAML manifest.

...
metadata:

labels:
name: nginx
version: "1.11"

spec:
containers:

- name: nginx
image: alexellis2/nginx-arm:latest
resources:

limits:
cpu: "0.5"
memory: "256Mi"

...

Essentially, we have the �1;D4 deployment with a CPU limit of0.1 (100milli
cores), 128 Mi of memory and the service resource con�gured with the Label
Selector on the �1;D4 service. If the CPU usage exceeds the 90% threshold,
then is created the �6A44= deployment. When the �6A44= deployment Pod’s
state is running, we patch the Label Selector on the service to switch on green
deployment.

In this context, Agento is applied to manage the blue deployment deletion. In
fact, when the new (green) deployment is up, the old (blue) deployment can be
deleted to free the host’s resources. We need to wait for the old (blue) version to
�nish the requests sent to it; indeed, Agento will continue to monitor it. When
no activity in terms of resources usage is registered, this one will be deleted.
The blue-green deployment mechanism is also applied to implement the

osmotic application’s security feature. Indeed, through the metrics reported by
Agento, if anomalous behaviour is identi�ed in terms of network tra�c, the
application is redeployed on a di�erent cluster node. To do so, we used the
Kubernetes node - a�nity feature, as shown in Listing 5.4.

Listing 5.3: Service YAML manifest.

apiVersion: v1
kind: Service
metadata:

name: nginx
labels:

name: nginx
spec:

ports:
- name: http

141

Chapter 5 Osmotic Computing on the Rise

port: 80
targetPort: 80

selector:
name: nginx
version: "1.10"

...

Listing 5.4: A�nity rules.

affinity:

nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:

nodeSelectorTerms:
- matchExpressions:

- key: kubernetes.io/region
operator: In
values:

- region-1
- region-2

preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1

preference:
matchExpressions:

- key: additional-label-key
operator: In
values:

- additional-value

There are currently two types of node a�nity, called requiredDuringSchedulingIg-
noredDuringExecution and preferredDuringSchedulingIgnoredDuringExecution.
The one is a "hard" rule, while the second is a "soft" one. Thus, requiredDur-
ingSchedulingIgnoredDuringExecution would be “only run the Pod on nodes with
Intel CPUs” and an example preferredDuringSchedulingIgnoredDuringExecution
would be “try to run this set of pods in availability zone XYZ, but if it’s not possible,
then allow some to run elsewhere”.
Moreover, node’s a�nity rule highlights that the Pod can only be placed on

a node with a kubernetes.io/region key label and the value is either region-1
or region-2. In addition, among nodes that meet that criteria, nodes with an
additional-label-key key label and additional-value value should be preferred.

5.6.2 Experiments

In this section, we present the experimental results obtained by evaluating our
system in di�erent usage scenarios. In particular, in the �rst scenario i) we
conducted two kinds of analysis: Kubernetes’ manifests split and store and
respectively manifests’ retrieval and recomposition in MongoDB. We carried
out these tests in two di�erent contexts: i) "local", where the Osmotic Orches-
trator and MongoDB belong to the same Local Area Network (LAN) and ii)
"remoteVPN", where the machines are interconnected through a Virtual Private

142

Osmotic Computing Ecosystem Implementation Section 5.6

Network (VPN). In the second scenario ii), we evaluated the Pod deploy and
delete time both on IoT and cloud nodes.

Experimental Setup

We deployed our osmotic platform on di�erent machines. In particular, we
implemented the Edge Layer using three Raspberry Pi 3 and the Cloud Layer
using two blade servers with the following hardware/software con�gurations:
CPU Intel(R) Core(TM) Xeon E7-8860V3 CPU @ 3.20GHz, RAM 32GB, OS:
Ubuntu server 16.04 LTS 64 BIT. We adopted Kubernetes 1.9.3 version for the
cluster con�guration and for applications containerization - Docker 17.05.0-ce,
build 89658be version. As a database system, we used MongoDB stand-alone
instance running on a workstation equipped by CPU Intel(R) Core(TM) i7-6700
CPU @ 3.40GHz, RAM 32GB, OS: Ubuntu server 16.04 LTS 64 BIT, while for
monitoring part we used Agento.

Results

In particular, to evaluate each scenario’s performances, we collected 30 sub-
sequent experiments and calculated the average time and the 95% con�dence
interval. We remark that this is the �rst concrete example of an osmotic applica-
tion; for this reason, we have not found other implemented solutions to compare
time performances. For the time evaluation in the (i) scenario, we considered a
dataset composed of 10, 100 and 1000 Kubernetes manifests.

Figure 5.10 (a) shows the trend of the time performances obtained during the
split and store phases on MongoDB. We notice that the "blue" bar is referred to
the local context, while the "red" one is referred to the remoteVPN context. The
computation time grows up according to the number of processed manifests in
both scenarios. As we expected, the local scenario is faster than the remote one.
As shown in Figure 5.10 (a), the trend is linear, and the values are acceptable.

(a) Manifest split and store. (b)Manifest recomposition.

Figure 5.10:Manifests operations.

Figure 5.10 (b) shows the trend of the time performances registered during the

143

Chapter 5 Osmotic Computing on the Rise

recomposition phase. The behaviour is very similar to that already presented;
indeed, as shown in Figure 5.10 (b), the trend is linear and also in this case the
local scenario is faster than the remote one; computation time is slower than
that obtained in the manifest split phase, but values are still acceptable.

(a) Service deploy time. (b) Service delete time.

Figure 5.11: Service operations.

To quantify the time performances necessary to deploy new Pods, we used
the manifests retrieved from MongoDB. We remark that to have real-time perfor-
mances, the Kubernetes’ manifest complexity and data are random. Figure 5.11 (a)
shows the trend of the time performances obtained during the deployment phase.
Therefore, the times necessary to deploy microservices on IoT nodes are greater
than that obtained on Cloud nodes. This behaviour is merely understandable; the
IoT device has lower computation performances. Similar behaviour is shown in
Figure 5.11 (b) which illustrates the time performance necessary to delete Pods.
Service deployment and destruction present high elaboration times, especially
in a real-time context, but this does not represent a critical issue for deploying
an osmotic application. In fact, the Osmotic Orchestrator guarantees the failover
feature by deleting the old Pods when the new ones are up and running.

5.7 Summary

The current challenges due to the IoT proliferation and the rapid development of
new technologies in cloud environments led to the adoption of new paradigms
able to act as integration layer among them, such as OC paradigm.
In this chapter, basic concepts, methodologies, key technologies behind OC

ecosystems have been introduced. There is also presented an e�cient orchestra-
tion approach to redeploy containerized microservices eliminating the applica-
tion outage and promptly reacting to failures. Time performances for manifests
management andmicroservices deployment and destruction proved the goodness
of the implemented system.

144

6 A Gamified Flow Model Lever-
aging Osmotic Computing

The Internet of Medical Things (IoMT) is a sweeping revolution in the healthcare
industry, with IoT quickly establishing itself as a critical part of modern healthcare.
The rapid proliferation of such IoMT devices can bring limitations to the current
cloud-IoT-centric infrastructures, which are not designed to handle huge volumes
and velocity of data generated. To address this problem, it is necessary to revisit
the network architecture, pushing some data, processing, and services directly on
the network’s edge nodes where the data originates, away from the centralized
cloud. In this context, Osmotic Computing (OC) aims to provide a new paradigm
for integrating a centralized cloud layer and edge/IoT layers. The deployment and
migration strategies through the cloud and edge layers depend on the infrastructures
and applications requirements. This chapter promotes the OC paradigm’s basic
principles and proposes a closed-loop OC �ow model applied to a gami�ed cognitive
rehabilitation use case. Moreover, the use case introduces a customized virtual
reality system based on a serious game that allows the patient to carry out physical
and cognitive rehabilitation therapies using a natural user interface based on
Microsoft© Kinect.

6.1 Introduction

In the era of globalization and information age, healthcare industries are in-
tensely promoting and adopting Information Communication Technologies (ICT)
to improve patient care [177]. Internet of Things (IoT) has been one of the revo-
lutionary technologies in recent times, which has catalyzed the paradigm shift in
traditional healthcare methods. However, recent years have witnessed the rapid
growth and adoption of the IoT paradigm, the advent of medical smart biosen-
sors and self-monitoring systems, and research advances in big data techniques
for manipulating large, multiscale, multimodal, distributed and heterogeneous
data sets. These advances have generated new opportunities for personalized,
precision healthcare services.
Even though the healthcare industry has been slower to adopt IoT technolo-

gies than other industries, thanks to the concept of seamless data exchange
between connected devices followed by e�cient data analytics, the Internet
of Medical Things (IoMT) or healthcare IoT strives to cater to intelligent and
personalized healthcare services. IoMT can help monitor, inform and notify
not only caregivers but provide health professionals with real data to identify

145

Chapter 6 A Gamified Flow Model Leveraging Osmotic Computing

problems before they become critical or to allow for earlier invention.
According to some estimates, spending on healthcare IoT solutions will reach

a staggering $1 trillion by 2025 [178] and, hopefully, will set the stage for highly
personalized, accessible, and on-time healthcare services for everyone. Allied
Market Research’s report predicts that the IoT healthcare market will reach
$136.8 billion worldwide by 2021 [179]. Today, there are 3.7million medical
devices in use that are connected to and monitor various parts of the body to
inform healthcare decisions.
In this context, ICT covered all these needs revolutionizing the traditional

healthcare industry by proposing a new operating model to deliver services for
universal access to medical transformation at a very low cost. The new oper-
ating model proposed by ICT leverages the Cloud Computing (CC) emerging
technology to deliver �exible and scalable services enough to allow clients to
request computing, storage and networking capacities without investing in new
infrastructures. With this model, the eHealth Service Provider (HSP) will deploy
and deliver healthcare services rapidly and on-demand [180].

Simultaneously, such IoMT devices’ rapid proliferation can bring limitations
to the current cloud-IoT centric infrastructures that are not designed to handle
huge volumes and velocity of data generated. To tackle this issue, it is necessary
to revisit the network architecture [181], pushing some data, processing and
services directly on the edge nodes of the network where the data originates,
away from the centralized cloud.
Since 2016 [182], a new promising paradigm for the integration between a

centralized cloud layer and edge/IoT layers has been proposed. Osmotic Com-
puting (OC), borrowing the name from chemistry, implies the decomposition of
applications in microservices, called MicroELements (MELs), and their dynamic
management through the cloud and edge data centres.
This scienti�c work promotes the OC paradigm’s basic principles and pro-

poses a possible OC �ow applied to a real gami�ed cognitive rehabilitation use
case. Moreover, this cognitive rehabilitation use case introduces a customized
virtual reality system based on a serious game that allows the patient to carry
out physical and cognitive rehabilitation therapies using a natural user interface
based on Microsoft© Kinect.
The rest of the chapter is organized as follows. We survey related works in

Section 6.2. The motivation is explained in Section 6.3. The design require-
ments are highlighted in Section 6.4 along with the real use case is presented
in Section 6.5. Finally, conclusions and light to the future are discussed in Sec-
tion 6.6. Section 6.5.2 shows the implementation of the proposed system. Finally,
Section 6.6 concludes the chapter.

146

Related Works Section 6.2

6.2 Related Works

Recent years have witnessed the rapid growth and adoption of the IoT paradigm,
the advent of wearable biosensors, and research advances in big data techniques
for manipulating large, multiscale, multimodal, distributed and heterogeneous
data sets. Therefore, these advances have generated new opportunities for per-
sonalized precision healthcare services and the starting point for researchers to
leverage the ICT innovation in the healthcare industry by proposing new smart
healthcare systems (eHealth) [183].

Meanwhile, eHealth adoption introduced new challenges. In [184], the authors
present the security challenges in the cloud for the eHealth domain and recently
proposed solutions. In [185], the authors propose a new privacy-preserving
scheme adapted to eHealth systems, satisfying all privacy requirements, as well
as communication security and authentication. In [186], the authors identify the
limitations in the current eHealth organization cybersecurity solutions, espe-
cially the network layer and propose a next-generation cybersecurity solution
for eHealth organizations.
In [187] addresses all these important aspects of novel IoT technologies

for smart healthcare-wearable sensors, body area sensors, advanced pervasive
healthcare systems, and Big Data analytics. It identi�es new perspectives and
highlights compelling research issues and challenges such as scalability, inter-
operability, device-network-human interfaces, and security, with various case
studies.

The fast proliferation of such IoMT provides enormous opportunities in terms
of new approaches to innovate the ways that healthcare services are being pro-
vided to the patients and carrying out personalized therapies [188]. On the other
hand, recent advances in computer gaming technology, digital games design,
computer game engines stimulated active research in gami�cation of processes
and activities in “serious” areas such as simulation of complex physical objects
and phenomena, engineering, project management, healthcare, chemistry, plan-
ning, marketing, and other areas. Focusing on the �eld of health, the use of
serious games can provide an additional mean to increase interest in training,
education and evaluation of user performance. For instance, serious games can
be designed to educate and train health care professionals to avoid medical errors
or in rehabilitation processes to reproduce the repetitive tasks that have to be
done by the patient.
Many studies have been conducted to verify the feasibility of serious games

by leveraging Kinect-based systems. The playing experience and motivation,
various high-quality graphic implementations can be found, mostly using Unity
3D, in one case Blender [189]. “Kinect-o-Therapy” [190] is a complex environ-
ment consisting of four mini-games, which are gami�ed versions of the generally
prescribed exercises for arms and body. In [191], the authors presents a suite

147

Chapter 6 A Gamified Flow Model Leveraging Osmotic Computing

of serious Kinect™ - based games for rehabilitation. In [192], presents a serious
game-based system for dance notation training named LabanDance. The system
tracks the full-body motion via the Microsoft Kinect of the user while performing
the movement according to the dancing score. This article presents a serious
game framework developed using the Unity 3D game engine and Kinect V2
sensor as a natural user interface [193].

In summary, there is a substantial amount of research done in the area of IoT
and the area of eHealth, and it is expected that the integration between these
two areas gives a major boost to the development of new systems that help to
care for human health.

6.3 Motivations

The Internet of Medical Things (IoMT) is a sweeping revolution in the healthcare
industry, with IoT quickly establishing itself as a critical part of modern health-
care. As IoMT expands, the need to investigate on-the-�y computation over the
IoMT data streams is ever more pressing. The importance of data in delivering ef-
�cient and e�ective healthcare has long been obvious and has never been greater.
Indeed, most IoMT applications are modeled as data transformation �ows which
includes: i) multiple interdependent, heterogeneous data analysis computational
and programming models that perform various data tasks of data transformation
from data ingestion to analysis, ii) virtualized/non-virtualized computational and
network infrastructure, iii) means of communication of various types. Ultra-high
reliability and very low latency communication are essential for the health care
IoMT. The networks provide the framework for such communication and allow
the carrying out of activities such as surgical visits and remote surgery. Any
communication problem can result in a potentially catastrophic outcome for the
patient.

The classical approach for the realization of this type of IoT application work-
�ow is based solely on the Cloud Computing (CC) resources, which may be
distant from the data sources, thereby leading to an excessive delay of detection
of events (i.e tra�c congestion). The emerging availability of di�erent types and
complex IoT devices, along with the large volumes of data that they produce, can
reveal bottlenecks for the current Cloud-centric IoT infrastructure. The transfer
of large streams of information in a reliable and fast way to centralized Clouds
is a limitation of current systems [194]. A possible solution to augment the scal-
ability of CCs/ECs lies in taking advantage of the ever-increasing computational
and storage capabilities available at the network edge.

For example, the simple analysis of the data produced: the aggregation of the
data must be mapped to the nearby Edge Computing (EC) resource, while the
resource-intensive analytic task must be mapped to the CC resource, since it
must execute a complex computational model of the �ow. Currently, CC and EC

148

Design Goals of the Osmotic Flow Section 6.4

provide data processing and storage resources for IoT �ows, but su�er from lim-
ited bandwidth and network latency, and do not support either latency-sensitive
applications or applications that rely heavily on streaming data from IoMT data
sources for real-time information intelligence (in the form of data ingestion and
data analysis).
To facilitate the deployment of microservices in environments highly het-

erogeneous and distributed, we adopt the Osmotic Computing (OC) paradigm
that enables the automatic deployment of microservices, called MicroElements
(MELs), over inter-connected EC and CC infrastructures. In this way, we are
able to maximize the resources usage of the underlying host’s infrastructure
and at the same time to adapt the system availability accordingly to the user
requests, ensuring therefore the main requirements in terms of scalability, ease
management, fault-tolerance, CI/CD, �exibility and interoperability.

6.4 Design Goals of the Osmotic Flow

Therefore, a modern architecture should be robust, reliable and easy to be man-
aged. We identify the key requirements that drive the design of the osmotic
�ow.

Scalability and elasticity Because of the enormous amount of data that will
be processed in real-time, scalability is a key design requirement for the IoMT
�ow applications. The osmotic �ow should consider scalability and elasticity by
design so that MELs can automatically grow and shrink based on data volume
and velocity.

Flexibility The architecture must allow for di�erent business requirements
and existing assets to integrate and collaborate.

Fault-tolerance The system must be able to manage failures in order to avoid
services downtimes.

Data management The on-going �ow of data coming from the IoMT nodes
must be processed accordingly to limit latencies and overheads. Thus, the osmotic
�ow should allow an easy-to-implement interface where data transformations
should be easily de�ned, and at the same time, each transformation should be
mapped without problems on EC or CC based on performance needs. As a result,
the deployment process is performed transparently by the underlying runtime
engine. However, application providers can customize the behaviour of the
framework to target their speci�c performance needs better.

E�icient composition of data transformations The osmotic �ow should
support the composition of transformations and cross-�ow data links to create
complex �ows easily. To this end, the osmotic �ow should consider the possibility

149

Chapter 6 A Gamified Flow Model Leveraging Osmotic Computing

to compose data streams from multiple devices and public IoMT applications,
thereby promoting the principle of sharing and reusability. Our osmotic �ow
should enable the supplier to easily de�ne new �ows, which extract high-value
information from the raw data without worrying about low-level problems
related to their runtime execution, such as allocation of resources and distribution
of �ows, elasticity and governance.

Interoperability The modern healthcare systems span the cyber and phys-
ical world, involving many IoMT devices. Therefore, it is necessary to ensure
interoperability between such devices.

Network awarenes The emerging IoMT environment calls for strong net-
work awareness. The osmotic �ow should minimize communication delays
while performing the deployment of data transformation tasks to CC and/or
EC [181].

Cost The HW/SW infrastructure and management costs must be minimized.

6.5 Use Case: A Closed-Loop Gamified Cognitive
Rehabilitation Flow Model

6.5.1 General Description

As a multidisciplinary research �eld, Serious Games have evolved substantially
in recent years, solving problems in many di�erent areas: military, education,
rehabilitation and healthcare. Although there is no single accepted de�nition
of the term, it was a consensus among the scienti�c community that Serious
Games refer to games with a speci�c purpose beyond pure entertainment. In
particular, in the �eld of cognitive rehabilitation, Serious Games are used as
computer games whose main purpose is to achieve a speci�c goal (rehabilitate)
other than entertainment, and which use the entertainment component and the
game skills ability to hold the patient’s attention and interest during the game.

Several studies on rehabilitation show that the e�ect is greater when patients
follow intensive training programs aimed at achieving a goal and divided into
speci�c tasks that need to be performed repeatedly [195, 196]. This type of game
has become popular in recent years thanks to the appearance of consoles like
Nintendo Wii, Playstation or Xbox, which use gestural interaction interfaces.
Likewise, these technologies have become extremely useful rehabilitation tools
and are expected to reduce costs in social and health settings.
Accurate motion capture plays an important role in sports analysis in the

medical �eld and virtual reality. Current methods of acquisition of movement
often su�er from occlusions, limiting the accuracy of their pose estimation.

Considering a cognitive rehabilitation scenario, to address this limitation, we

150

Use Case: A Closed-Loop Gamified Cognitive Rehabilitation Flow Model Section 6.5

(a) Two
Kinect sensors

(b) Three
Kinect sensors

(c) Four
Kinect sensors

Figure 6.1: Kinect arrangements.

propose a virtual reality system that leverages two-Kinect sensor connected
each one to a Raspberry Pi Model B+ (peer node) and con�gured according
to Figure 6.1 (a); the proposed system is illustrated in Figure 6.2. According
to the OC principles, there are several distributed microelements (DMELs),
microservices (MS) or microdata (MD) that can be o�-loaded from the IoT to
the edge or back to the cloud. To measure the human body’s pose parameters
accurately, di�erent from previous monocular depth camera systems, the two-
Kinect sensors allow us to acquire more information about human movements,
ensuring that we can still get an accurate estimation even when signi�cant
occlusion occurs.
There could be di�erent types of Serious Games through which the patient

can train or rehabilitate several aspects such as strength, aerobic or cognitive
capacities. The system has been modelled so that the physical presence of a
therapist is not required during the session of the session and there is no need to
wear any marker or sensor. Whenever a patient begins his session, a particular
game that was previously con�gured by the therapist who de�ned certain aspects
of the game such as speed, the angle that a particular limb must perform, or the
game’s di�culty level are based on the patient’s condition.

151

Chapter 6 A Gamified Flow Model Leveraging Osmotic Computing

Figure 6.2: Virtual reality two-Kinect-based system for cognitive rehabilitation.

6.5.2 Closed-Loop Osmotic Flow Implementation

The proposed closed-loop �ow model use case follows two guidelines, as shown
in Figure 6.3. The �rst one relates to the development guideline, whereas the
second one concerns the evaluation guideline.
The development �ow includes selecting three-dimensional (3D) computer

graphics technologies and tools, the modelling of physical aspects, the design
of rehabilitation scenarios, and the implementation of the proposed scenario.
This �ow aims to design fun but useful game scenarios to motivate end users to
perform functional rehabilitation tasks.

The evaluation guideline is implemented with a Distributed Node-RED (DNR);
on each peer node is deployed a MS with a Node-RED instance. As illustrated
in Figure 6.4, the evaluation guideline is managed with four Node-RED �ows.
Therefore:

F1: Configuration andMetrics Definition Through a Graphical User Inter-
face (GUI), therapists register patients, con�gure the serious games’ parameters
according to the patient requirements and de�ne the evaluation metrics. All the
speci�ed information are saved in a MongoDB database instance MS running
in the cloud. The �rst patient’ evaluation requires the therapist interaction to
register it and con�gure the parameters. Moreover, in the next sessions of the
same patient, all the di�erent exercises’ parameters can be con�gured without
the physical presence of a therapist. This �ow concludes with the deployment
of the necessary MELs on each peer node. On each peer node is deployed a
KinectRTC [197] MS which allows communicating with each other to control
the streaming of di�erent data types and manages the connections (e.g. activa-
tion or deactivation of data streams, adjusting bit rates, etc.). KinectRTC takes

152

Use Case: A Closed-Loop Gamified Cognitive Rehabilitation Flow Model Section 6.5

Figure 6.3: Closed-loop osmotic �ow model.

advantage of the con�guration functionality that WebRTC o�ers to manage
media streams and adapt the quality of the RGB image and the audio to the
available bandwidth. This means that if necessary the video resolution and the
audio bit rate are automatically reduced to improve data transfer. Moreover, we
deploy the Serious Game MS and then the necessary components to store all the
patient’s data.

F2: Patient Data Stream Collection It manages patient’s data collection.
All the data (e.g., �les, video) are stored in di�erent MDs containers. According
to the osmosis principles, after a certain time, if the peer’s node resources are
not su�cient to host the Serious Game MS or MD container, they are migrated
in the cloud, and vice-versa, if the Serious Game MS or MD do not need the
Cloud resources and can be hosted by the peer they are migrated on it.

F3: Output Results Stream It manages the speci�ed evaluation metrics pro-
cessing. The collected data with the F2 �ow, at this point, can be processed
locally on the peer to evaluate the metrics. The metrics evaluation is done by
di�erent MSs accordingly to each speci�ed metrics. Also, in this case, accord-
ing to the OC principles, if the peer’s resources are not necessary to make the
computation, the MS is migrated and executed in the Cloud and vice-versa as
previously explained.

F4: Feedback Analysis and System Improvement The improved game is
reevaluated in a closed-loop technique and the corresponding parameters are

153

Chapter 6 A Gamified Flow Model Leveraging Osmotic Computing

updated in the MongoDB database collection to enhance successive patient’s
experience and evaluation.
The reports of each session can also be read o�ine, therefore, the therapist

will always know if a user has performed the session in a good way and act
accordingly, modifying whatever he deems necessary in the patient’s therapy and
�nally to assign an evaluation score. This user-centred game design approach
allows di�erent users (e.g., patients and medical experts) to participate actively
in the design and evaluation stages. Embracing the DevOps philosophy, any
change in the F1 �ow produces the automatic redeployment of all dependent
MELs according to the Continous Integration/Continuous Deployment (CI/CD)
pipelines.

Figure 6.4: Closed-loop osmotic �ow: evaluation guideline

6.6 Conclusions and Future Work

To summarize, driven by the IoMT proliferation and the associated data streams
in the healthcare sector that introduces limitations for the current cloud-IoT
centric infrastructures, which are not designed to handle huge volumes and
velocity of data, we investigated the OC basic principles to propose an OC
�ow applied to a real gami�ed cognitive rehabilitation use case. Moreover,
this cognitive rehabilitation use case introduces a customized virtual reality
system based on a serious game that allows the patient to carry out physical
and cognitive rehabilitation therapies using a natural user interface based on
Microsoft© Kinect.
Given the OC �ow and the proposed virtual reality cognitive rehabilitation

system described in this contribution, in our on-going work, we aim to evaluate

154

Conclusions and Future Work Section 6.6

the system’s performances and involve Arti�cial Intelligence (AI) techniques
to evaluate the rehabilitation session of each patient. This also implies the
development of an own evaluation system.

155

7 Function-as-a-Service
(FaaS)-based Osmotic Flow

Nowadays, the rapid development of emerging technologies such as cloud, fog,
edge and Internet of Things (IoT) technologies has accelerated the advancement
trends forcing applications and information systems (IS) to evolve. In this hybrid
and distributed ecosystem, the management of service heterogeneity is complex,
as well as the service provisioning according to classi�cation and allocation of
appropriate computational resources remains a challenge. A potential solution to
these issues is Osmotic Computing (OC) - a recently introduced paradigm that
allows the service migrations ensuring better resource utilization within Cloud, Fog
and Edge Computing environments. Driven by the needs of complex management
mitigation, greater agility, �exibility and scalability, this paper aims to propose
an innovative OC ecosystem leveraging Function-as-a-Service (FaaS); there is also
introduced the concept of hybrid architectural style combining both microservices
and Serverless architecture. Furthermore, to support the FaaS-based OC ecosystem,
an osmotic �ow model for video surveillance in smart cities is presented. To validate
the functionality and assess the performance and further improve the understanding
of the OC �ow’s usability in real-world applications, several experiments have been
carried out.

7.1 Introduction

In the era of globalization and information technology, the rapid development of
Cloud Computing (CC), Fog Computing (FC), Edge Computing (EC) and Internet
of Things (IoT) technologies has accelerated the advancement trends forcing
applications and information systems (IS) for smart environments to evolve. In
this hybrid ecosystem, the management of service heterogeneity is complex, as
well as services provisioning according to the classi�cation and allocation of
appropriate computational resources remains a challenge. Osmotic Computing
(OC) [14] is a new computing paradigm that has been introduced to address
these issues. It can manage heterogeneous computing infrastructures and pro-
cessing devices transparently, orchestrating the deployment of MicroElements
(MELs) among cloud, edge, and IoT nodes according to IoT applications’ speci�c
requirements and physical/virtual resources availability.
Usually, OC is implemented by using microservice-oriented architectures,

which structure each application as a collection of loosely coupled �ne-grained
MicroELements. This approach is not always suitable for deploying applications

157

Chapter 7 Function-as-a-Service (FaaS)-based Osmotic Flow

in a complex osmotic ecosystem that must extend between cloud, fog, edge and
IoT because it requires an enormous e�ort for careful planning and management.
Recently, a serverless and lightweight technology, also known as Function-as-a-
Service (FaaS), appeared as a disruptive alternative that organizes applications
as a set of stateless functions and delegates the management of the execution
environment to the infrastructure provider thus simplifying the development,
management and execution of such functions.

IoT applications and related services can be complex systems that need state-
fully interconnected and cooperating MELs. Thus, the FaaS approach can not
always be applied due to its stateless nature, and microservice-based approaches
are necessary. FaaS can also introduce signi�cant overhead management and
complexity reduction when several features can be provided as functions. Thus,
according to di�erent applications and developers requirements, a hybrid archi-
tectural approach that combines microservices and FaaS technologies must be
adopted in an OC ecosystem.
This chapter proposes the deployment of OC �ows over heterogeneous sys-

tems using FaaS. In particular, we modelled a video processing application as
an osmotic �ow of MELs. This kind of applications is usually adopted in video
surveillance scenarios.

The �ow management bene�ts from mainstream edge, private and public CC
infrastructures, and MELs rely on a set of FaaS implemented leveraging Open-
FaaS. OpenFaaS is a framework for building serverless functions executed within
Docker containers, and their orchestration is performed through Docker Swarm
from the edge up to private and public clouds. The proposed approach is capable
of e�ciently distributing and allocating MELs by following the principle of OC.
In our evaluation of the implemented application, we analyze the execution time
for di�erent implemented FaaS according to di�erent deployment strategies
across heterogeneous edge and cloud systems.
The remainder of the chapter is organized as follows. Section 7.2 analyze

the current state of the art. In Section 7.3 we discuss our motivations behind
the integration of FaaS in OC. The osmotic �ow model design is presented in
Section 7.4. Experimental analysis with reference to a video surveillance use
case is discussed in Section 7.5. Finally, our conclusions and highlight for future
works are provided in Section 7.6.

7.2 Related Works

In literature, several research works make use of microservice architecture for
OC.
In [198], the authors investigate OC and proposes an osmotic �ow model to

manage microservices-based MELs across Cloud and Edge datacenters. In [199],
a Message Oriented Middleware (MOM) to facilitate device-to-device commu-

158

Motivations Section 7.3

nication in IoT environments and also to integrate complex edge computing
applications that rely on message brokers, such as distributed real-time data
analytics applications, is proposed. [200] proposes a pervasive trust management
framework for POSNs which is capable of generating high trust value between
the users with a lower cost of monitoring using Flexible Mixture Model (FMM) to
develop the system and leveraging the concept of OC to perform computational
o�oading using 3 di�erent solutions: i) �tness-based movement, ii) probabilistic
movement, and iii) threshold-based movement. In [201], the authors investigated
the feasibility to apply OC in healthcare by designing a closed-loop �ow model
for a gami�ed cognitive rehabilitation use case. Moreover, the use case intro-
duces a customized virtual reality system based on a serious game executed by a
microservices-based MEL to allow patients to carry out physical and cognitive
rehabilitation. The osmotic �ow follows two guidelines. The �rst one relates
to the development guideline, whereas the second one concerns the evaluation
guideline. In the same context, in [197], the authors discussed the implemen-
tation of OC as a distributed multi-agent system where microservices-based
MELs and their management work�ow use an Executor - to run independent
microservices and a Monitor component to manages their dynamic migration.
We di�erentiate our work from the ones in the literature because we in-

vestigate an event-driven OC where osmotic �ows leverage FaaS capabilities.
This contribution also introduces for the �rst time an OC ecosystem that uses
a hybrid architectural approach combining microservices and serverless FaaS
architectures to deploy and manage MELs.

7.3 Motivations

OC is derived from the term "osmosis" which refers to the equalization of a solu-
tion concentration by allowing the solvent to move through a semipermeable
membrane [202]. A similar analogy can be applied to modern-day computing
infrastructure by separating the services to acquire processors to balance the load
and resource utilization without any redundancy. OC is extensively explained in
Chapter 5.

In OC, a microservice oriented solution allows deploying MELs over di�erent
computation nodes, thus optimizing available resources. Virtualization technolo-
gies, such as containerization, increase the �exibility in using heterogeneous
devices and infrastructures even characterized by di�erent constraints, such as
in the case of IoT, edge and cloud nodes. Nevertheless, splitting an application
into independent microservices is a complex task that requires careful planning,
massive programming e�ort and skills.
Due to this distributed approach in managing MELs, one of the major issues

in microservice-based OC is represented by the network con�guration among
MELs cooperating for the same application. To address the complexity of net-

159

Chapter 7 Function-as-a-Service (FaaS)-based Osmotic Flow

work con�guation [203], network softwarization approaches can be used to
enable the creation of virtual overlay networks that meet the requirements of
applications. However, this introduces much more complexity and overhead for
developers. Another limitation of microservice architecture is that often, some
microservices overload edge nodes and therefore degrade the performances.
Recently, Serverless Architectures, also known as Functions-as-a-Service

(FaaS), appeared as a disruptive alternative typically referring to a software ar-
chitecture where the application is decomposed into “triggers” and “actions” (or
functions), that delegates the management of the execution environment of an ap-
plication (in the form of stateless functions) to the infrastructure provider [204].
Functionalities o�ered by FaaS are more general-purpose in nature because
they aim to implement separate serverless functions on demand. Consequently,
a FaaS platform provides seamless hosting and execution of functions using
provider-managed containers that execute functions (MS) without pre-allocating
computing capability or dealing with scalability and load-balancing burden.
Functions are more granular than microservice architecture. However, server-
less functions can also act as scheduled jobs, event handlers, and not just as
application-oriented services.
An OC platform must orchestrate and deploy into IoT, Cloud and Edge in-

frastructures di�erent MELs; some are strictly related to the speci�c application
purpose, others are necessary for the management of the OC ecosystem (e.g.,
network monitoring and management, security management). Since such MELs
can be strongly interdependent, a FaaS approach to implement MELs is not
always feasible. For this reason, we aim to investigate a hybrid architectural
approach for OC that combines microservices and FaaS. Where boot time counts,
where many users access even indirectly, where applications are complex, where
�exibility is needed, and where cost is mounting, microservices can replace
those spots to increase performance and decrease costs. As well, where event-
driven is required, where need the speed of development, automatic scaling
and signi�cantly lowered runtime costs the Serverless architecture should be
adopted [205].

To summarize, the integration of FaaS in OC brings the following advantages:

• Elasticity and scalability: rather than scaling the entire service, MEL func-
tions can be automatically and independently scaled with usage; there is
the absence of scaling management according to the requests, it is man-
aged entirely by the service provider and potentially optimized, reducing
the execution time, and then the costs;

• Built in availability and fault tolerance; the system must manage failures
to avoid the services downtimes;

• Productivity and ease of deployment: the code is "packaged" and loaded,
ready to be executed;

160

Osmotic Flow Model Design Section 7.5

• Provisioning: decrease in the application complexity; fewer infrastructure
components (e.g., servers, load balancers) to manage;

• Reusability: possibility to reuse components already built for di�erent
applications;

• Costs: the user will pay only for the resources he has used; as well as
reduced operational costs;

• Decreased time to market: Create new apps in hours and days instead of
weeks and months.

Even if OC’s primary goal is to bridge the gap between the edge cloud and
the public cloud, it can also be demonstrated by adopting the private cloud.
The latter is mainly grounded to provide a "cloudlet" closed to the users that
requires an e�cient way to decide the procedures for the service’s execution.
Moreover, private cloud/cloudlet enhance resource-constrained edge nodes (e.g.,
computation o�oading and data staging) or provide an execution environment
for cloud-centric IoT applications.

7.4 Osmotic Flow Model Design

Let us consider a contemporary smart IoT application scenario composed of
di�erent private and public cloud, edge nodes, where several IoT devices are
disseminated all over the urban environment as shown in Figure 7.1. To manage
such IoT devices, several public and private cloud, edge and IoT MELs have been
distributed across each node.

In such a heterogeneous and highly distributed scenario, each IoT device must
be managed independently; this is due to the multitude and diversity of such
devices (e.g., sensors and gateways), requiring di�erent hardware and software
capabilities. According to the OC principles, the management must be done
following di�erent QoS policies, as explained in Section 7.3.

Therefore, according to di�erent QoS, MELs can be migrated from the public
cloud to the private cloud and up to the edge nodes and vice versa, where each
policy is managed through a pipeline. Given the complexity of the OC ecosystem,
a very challenging task is, therefore, managing the pipeline.

To this aim, we present an innovative osmotic �ow model able to holistically
manage deployment, execution and migration of MELs according to di�erent
pipelines (e.g., violet, grey, orange). Thus, each osmotic �ow will be independent
by each other, scalable and �exible. To e�ciently implement the osmotic �ow,
we leverage FaaS capabilities. In detail, the osmotic �ow is implemented using
functions acting as triggers, while pipelines are implemented using functions
acting as event handlers. MELs are just functions acting as generic IoT services.

161

Chapter 7 Function-as-a-Service (FaaS)-based Osmotic Flow

MEL
MEL

MEL

MEL

MEL

MEL

MEL
MEL

MEL

MEL

MEL
MEL

MEL
MEL

MEL

MEL

MEL

MEL MEL MEL

MEL MEL MEL

Public Cloud Private Cloud

Edge Nodes

IoT Devices

Osmotic Flow

IoT MEL

Edge MEL

MEL

Private Cloud MEL

MEL

MEL

MEL

Public Cloud MEL

Management
Pipelines

Figure 7.1: Reference Osmotic Computing scenario.

7.5 Experimentation and Evaluation

To validate the functionality and assess our OC �ow’s performance based on
FaaS, several experiments have been carried out. These experiments further-
more improve the understanding of the usability of the OC �ow in real-world
applications.

7.5.1 Use Case Definition: Face Recognition in a Video
Surveillance Application

Over the past decades, digital video surveillance (DVS) in smart city environ-
ments has attracted more and more researchers due to its enormous application
prospects. Even though the development of complex DVS schemes constitutes
a great challenge, the importance along with the necessity of preserving the
safeness of society have played a decisive role as one of the main incentives for
researchers and developers to work on the integration of some technologies, such
as data management and computer vision, to produce systems that are reliable
and e�ective enough to serve as a solution for tasks like cities surveillance, video
analytics and e�cient video management in order to support city o�cials and/or
security employees in their duty.

Contemporary smart cities are in prompt need ofmeans for intelligent decision-
making, where a crucial role belongs to smart DVS systems necessary to monitor
and detect early events in indoor and outdoor scenes of airports, train stations,

162

Experimentation and Evaluation Section 7.5

highways, parking lots, stores, and even shopping malls to avoid disasters such
as �re, terrorist attacks, tra�c congestion. Therefore, there is a need for the
development of smart DVS systems that will automatically detect potentially
dangerous situations. Furthermore, DVS might be performed using di�erent
VIoT characterized by heterogeneous constrained visual sensor nodes, lower cost,
smaller size, limited processing power, average quality cameras, and smartphone
cameras.

Let us consider a contemporary smart city scenario, where multi VIoT (Video
Internet of Things) Connected Surveillance Cameras (CCTV) are disseminated
all over the urban environment. Moreover, let us there are CCTV can be HD
and non as well as the video frame acquisition is variable, e.g., 30 FPS, 60 FPS. A
challenging task is, therefore, realizing such complex video surveillance archi-
tecture satisfying di�erent requirements. To this aim, an osmotic �ow must be
adopted. For example, by considering an HD CCTV and a frame rate of 60 FPS,
an edge node could not be able to manage the acquisition from an HD CCTVs
due to hardware constraints; so, the acquisition will be managed by a private
cloud node more powerful and able also to minimize latency - crucial for video
surveillance. Hence, the FaaS that manages the video frames acquisition will be
deployed on the private cloud node, which will also be connected to the CCTV
camera.

7.5.2 Environment

Experiments were carried out in three di�erent scenarios: i) Public Cloud-to-
Edge, ii) Private Cloud-to-Edge and iii) Hybrid Cloud (Private and Public), re-
spectively.
For each scenario, the cloud node is deployed on the public cloud platform

provided by GARR (an Italian no-pro�t organization founded by several research
organizations), having the following hardware and software characteristics: 4
VCPUs @3.2 GHz, RAM 18GB, OS Ubuntu 18.04 LTS. The private cloud node
is deployed on a locally hosted server having 2 VCPUs @2.4 GHz, RAM 4 GB,
OS Ubuntu 18.04 LTS. The edge node is hosted by a Raspberry PI 3 Model B+
having a quad-core CPU @1.4 GHz and RAM 1GB, OS Raspbian Jessie. Each
node has installed Docker version 18.09.1 with Docker Swarm and OpenFaaS
version 0.8.9.

We connected a 5MP video security camera on the private cloud/edge node
according to the con�guration scenario to capture frames in each scenario. Since
the OpenFaaS functions follow the stateless principle, they do not provide data
saving during execution. They are also distributed on the cluster, so they do
not see exactly the locally hosted data. To overcome this limitation, we used
MongoDB Database, which is accessible by the functions. So, the video frames
will be �rstly saved on MongoDB and then accessed by the OpenFaaS functions.

163

Chapter 7 Function-as-a-Service (FaaS)-based Osmotic Flow

Hence, our osmotic �ow is composed by three di�erent functions: �00(1, �00(2
and �00(3 respectively.

Workflow: As previously explained, the experimentation objective is to vali-
date the functionality and assess the performance of our OC �ow based on FaaS
in a smart city video surveillance scenario, detecting and recognizing objects/-
faces in a video stream coming from a video camera.
To achieve this, we created the �00(1 - a python function that acquires the

frames from the video camera and sends them, one by one, to a �00(2 - a Python
function that uses OpenCV, an Open Source Computer Vision library, to pro-
cesses them and returns the name of the recognized object/face.
In this work�ow, we also deployed a third �00(3, which saves frames into a

MongoDB database. We have chosen to use the MongoDB because, for example,
in scenario i) the video camera is connected to the edge node on which we
deployed �00(1, �00(3 and on the cloud one we deployed the �00(2, the latter,
given the stateless nature of OpenFaaS functions, the latter will not be able to
access the frames produced by the �00(1 and hosted by the edge node. As well
as, passing directly the image acquired from the video camera to the OpenFaaS
function is not simple because it is necessary to convert it into the required
format, which is limited from this point of view; in fact, the OpenFaaS functions
read in input from the STDIN channel coming from terminals. To overcome
this limitation, we introduced the �00(3, which saves the frames acquired from
the video camera into MongoDB, and then �00(2 will do the processing reading
directly them from the database. We also have evaluated the �00(2’s container
creation time on the edge, private and public cloud nodes.

In order to verify the feasibility to apply this work�ow in real-world applica-
tions, we quanti�ed the execution time of each proposed FaaS. To have truthful
results, for each proposed scenario, we collected 30 subsequent experiments and
calculated the average times and con�dence interval of 95% for all proposed
FaaS.

7.5.3 Results

The following examples explain the expected results of the proposed scenarios.

Scenario #1: Public Cloud-to-Edge In this scenario, the �00(2 and �00(3
execution is forwarded to the public cloud, while �00(1 is deployed on edge.
Hence, we have deployed the �00(3 and �00(2 on the public cloud. Instead, we
capture frames and invoke the �00(2 from the edge node. This scenario exem-
pli�es a situation where the requested �00(2 is hardware intensive, therefore
taking much time to execute on edge. As well as, the video camera is connected
to the latter one. Due to the cloud node’s high processing power, it is bene�cial
to forward the execution request to the public cloud.

164

Experimentation and Evaluation Section 7.5

Figure 7.2 (a) shows the collected execution times for all three FaaS in this
scenario. We notice that �00(1 requires in average 0.69 s, �00(2 5.05 s and �00(3
0.96 s.

Scenario #2: Private Cloud-to-Edge This scenario is similar to the previous
one, but with the di�erence that the �00(2 and �00(3 are deployed on the private
cloud; also, in this case, FaaS is invoked from the edge node. This scenario
describes a situation where the requested �00(2 is latency-sensitive and requires
computational capabilities that cannot be satis�ed by the edge node.
Figure 7.2 (b) shows the collected executions times for all three FaaS in this

scenario. Comparing the results with those obtained in Scenario #1 we notice
that �00(2 and �00(3 respectively have less execution times; in particular, �00(2
- 3.46 s and �00(3 - 0.22 s respectively. This trend is due to the private cloud node
closed to the edge node with respect to the public cloud one.

FaaS1 FaaS2 FaaS3

0

1

2

3

4

5

A
ve

ra
ge

Ex
ec

ut
io

n
Ti

m
e

[s
]

(a) Public Cloud-to-Edge

FaaS1 FaaS2 FaaS3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
ve

ra
ge

Ex
ec

ut
io

n
Ti

m
e

[s
]

(b) Private Cloud-to-Edge

FaaS1 FaaS2 FaaS3

0

1

2

3

4

5

A
ve

ra
ge

Ex
ec

ut
io

n
Ti

m
e

[s
]

(c) Hybrid Cloud

Figure 7.2: Average execution time [s].

Scenario #3: Hybrid Cloud In this scenario, the �00(2 and �00(3 are de-
ployed on the public cloud, while �00(1 is deployed on the private cloud. This sce-
nario exempli�es a situation where �00(1 captures frames from a high-resolution
video camera. This FaaS should be executed on a private cloud node instead of
an edge because the latter does not satisfy the hardware requirements. Moreover,
the processing done through �00(2 is hardware intensive and is executed on the
cloud. As well, the MongoDB is hosted on the cloud, given the high dimension
of the captured frames.
Figure 7.2 (c) shows the collected executions times for all three FaaS in this

scenario. As we expected, also in this scenario, �00(1 requires, on average, the

165

Chapter 7 Function-as-a-Service (FaaS)-based Osmotic Flow

same execution time as that collected in Scenario #1 and Scenario #2. Moreover,
�00(2 takes 4.78 s while �00(3 0.48 s respectively. We notice that the execution
time required by the �00(2 is greater than that obtained in Scenario #1; this is due
to latency communication with public cloud introduces. The �00(2 execution
time is less than that obtained in Scenario #2; this is because the public cloud
node has more computational resources with respect to the private cloud one
and requires less time to process. Finally, a similar trend is also registered for
�00(3.
We have also evaluated the �00(2’s container creation time on edge, private

and public cloud. Figure 7.3 illustrates the trend obtained. As we expected, the
�00(2’s container creation time on the edge is slower with respect to those ob-
tained on the private cloud node and edge; as well as the �00(2 creation time on
the private cloud is slower than that obtained on the public cloud. This behaviour
is due to the edge node’s hardware constraints with respect to the private and
public cloud. To conclude, we notice that in all three scenarios, the obtained

Edge Fog Cloud
0

10

20

30

40

50

A
ve

ra
ge

C
re

at
io

n
Ti

m
e

[s
]

Figure 7.3: �00(2’s container creation time [s]

execution times are acceptable for video surveillance real-world applications;
almost in average 0.7 s for �00(1, 4.4 s for �00(2 and 0.55 s for �00(3 respectively.
Moreover, each scenario’s choice depends on di�erent parameters, as explained
in Section 7.4.

7.6 Conclusions and Future Work

This chapter’s focus was on providing an innovative OC ecosystem leveraging
FaaS; there is also introduced the concept of hybrid architecture combining both
microservices and Serverless architectures. Furthermore, in order to support the
FaaS-based OC ecosystem, by using the event-driven nature of FaaS as well as

166

Conclusions and Future Work Section 7.6

given that Serverless functions can also act as scheduled jobs, event handlers
etc., and not just as services, an osmotic �ow model for video surveillance in
smart cities is presented. This allows simplifying the management complexity
due to the highly distributed and heterogeneous nature of the OC ecosystem
and ensuring a high level of scalability, elasticity, and �exibility.

To validate the functionality and assess our OC �ow’s performance based on
FaaS, a number of experiments have been made. These experiments furthermore
improve the understanding of the usability of the OC �ow in real-world applica-
tions.

In our on-going work, we plan to investigate the osmotic �ow’s feasibility in
more real use cases; we also plan to implement and test the OC ecosystem using
hybrid architectures based on microservices and FaaS.

167

Part III

How to Model and Emulate Osmotic
Computing Ecosystems

8 OsmoticToolkit

Digital services are increasingly becoming cyber-physical and osmotic, combining
cloud resources with fog, edge, and IoT devices. This trend can be observed in
the eHealth domain or in smart city applications where the location of software
deployments and data processing matters. Before such applications go live, careful
planning with real system emulation is necessary. We claim that the OsmoticToolkit,
although in the early stages, is the �rst emulation environment designed to address
this challenge. In this chapter, we introduce the emulator’s functionalities and
validate experimentally with an e-health scenario, using a reference deployment
of a microservice-based hospital application. The experimental results carried out
show its e�ectiveness providing valuable support for understanding the impact on
resources, workloads, and QoS requirements within cloud-ddge/fog-IoT scenarios
while preserving the users’ SLAs.

8.1 Introduction

Internet of Things (IoT) is a profound technology evolution incorporating bil-
lions of devices (sensors, RFIDs, smartphones, and wearables) owned by di�erent
organisations and people who are deploying and using them for pervasive digital
services. IoT-Business-News forecasts 24 billion connected things generating
$1.5 trillion in 2030 [206]. Their number, capabilities, scope of use and data
volume keep growing & changing rapidly. This leads to higher complexity in IoT
applications. Thus, new distributed computing paradigms, such as Edge Comput-
ing (EC) or IoT-Cloud Computing, have been investigated to extend IoT resources
into centralised data centres (e.g., clouds) or at the edge of IoT systems (e.g., edge
micro datacenters). Among the most promising ones is Osmotic Computing
(OC), motivated by the lack of a scalable, interoperable, con�gurable solution for
delivering IoT applications in complex, heterogeneous and dynamic computing
environments. As previously anticipated in Chapter 5, the OC paradigm looks at
the opportunistic management of MicroELements (MELs) to improve the Quality
of Services (QoS) and networking management, interoperability, and e�ciency
of next-generation IoT applications.

The main issue arising in using such combined computing models to support
IoT applications is the management of di�erent physical/virtual infrastructures
(e.g., data centres, edge devices, IoT devices & gateways) according to speci�c
application/service requirements (e.g., latency, data volume, responsivity, pro-

171

Chapter 8 OsmoticToolkit

cessing delay, privacy). In particular, it is hard to determine a priori how to
deploy the MELs composing IoT applications into di�erent infrastructures –
since resource availability, system load, and connectivity features can unpre-
dictably vary over time. OC provides convergence and holistic planning for IoT,
edge, fog, and cloud technologies of the C2T continuum in this scenario.
This chapter presents an OC emulation tool called OsmoticToolkit that exe-

cutes work�ows based on MELs in particular conditions where the edge has
limited computation and networking capabilities. We evaluate the work with
the case of a rural medical lab with limited processing power and rare ability to
use a cloud service. The toolkit provides valuable support for understanding the
impact of processing power, workloads, and QoS requirements while preserving
the users’ SLAs.
The chapter is organized as follows. After the background and related work

in Section 8.2, we provide motivations (Section 8.3) and explain the tool design
in Section 8.4, followed by the implementation in Section 8.5 and performance
evaluation in Section 8.6. Finally, Section 8.7 highlights the advantages of Os-
moticToolkit and reasons about future directions.

8.2 Background and Related Work

Planning and testing applications in distributed computing environments that
involve a high level of heterogeneity and complexity is costly since the pro-
visioning and management of needed hardware are very expensive. In recent
years, simulation techniques have been proven to be a partial solution for inves-
tigating di�erent aspects of complex osmotic systems, e.g., service con�guration
and deployment, resource placement, or management strategies. Cost-e�ective
emulation tools based on controlled service execution further align results with
reality. To evaluate the current state of the art, we de�ne four key criteria:
i) hybrid cloud-edge/fog-IoT Architecture, ii) dynamic infrastructure topology
(modelling of physical networks and virtual topologies), iii) resource provisioning
approach, and iv) real application execution.

8.2.1 Simulation Tools

While simulators cannot execute real applications, their designs are of interest
to ensure that our emulator meets functional expectations on expressible sce-
narios. They simulate hybrid Cloud Computing (CC) and Edge Computing (EC)
based on simpli�ed models. Many EC simulators extend CloudSim [207], such as
iFogSim [208]. It provides an evaluation platform for resource allocation policies.
A limitation of iFogSim is that the location of end devices is static and cannot
be updated; further, it is limited to the Discrete Event Simulators (DES) and has
poor scalability because of the CloudSim characteristics.
Similarly, EdgeCloudSim [209] extends CloudSim. In contrast to iFogSim,

172

Background and Related Work Section 8.2

it is focused on a more dynamic and realistic investigation of service usage
and implements mobility models for mobile devices. MyiFogSim [210] extends
iFogSim to support mobility through the migration of VMs between cloudlets.
IoTSim [211] also extends CloudSim. It emphasises the processing performance
of large IoT applications that process huge amounts of data. As a result, it adds
storage and big data processing layers with map-reduce cloudlets to CloudSim.
EdgeCloudSim and IoTSim both inherit the same scalability and DES limitations
as iFogSim.

Yet Another Fog Simulator (YAFS) [212] is a DES for cloud & fog networks. Its
primary focus is the performance evaluation of placement, scheduling, and rout-
ing strategies. Applications are modelled as a set of modules that run services,
following the concept de�ned by iFogSim. Sphere [213] extends SCORE [214]
and allows creating a cloudlet network based on graphs, generating dynamic
and parallel workloads, and specifying the geographic location, resource density,
and deployment requirements. However, it does not support the nodes’ mobility
and lacks the migration model of a workload.

Simulators such as iFogSim, CloudSim, and YAFS support the dynamism and
on-demand requirements of Fog services/applications via VM elasticity and mi-
gration, federation policies, and computational clustering nodes. EdgeCloudSim
only supports federation and scalability between nodes of the same tier (only
cloud or only fog), which means that it is impossible to achieve a proper orches-
tration along with the cloud to fog continuum.

While the simulation tools simplify the evaluation process, the di�erences be-

Table 8.1: Summary of simulation and emulation tools.

Tool Hybrid Dynamic Resources Execution
CloudSim | | allocation |
iFogSim IoT/fog | alloc+monit |
EdgeCloudSim edge mobility alloc+monit |
myiFogSim fog migration alloc+monit |

IoTSim IoT/-
cloud | allocation |

YAFS fog app allocation+fail |
Sphere edge workloads orchestration |
EmuFog fog | placement containers
Fogbed fog volatility | containers
MockFog fog | allocation VM-based

tween the simpli�ed and real production scenarios are remarkable. Experimental
results can be unfaithful, especially for a highly dynamic osmotic scenario. Net-
work emulation can support repeatable and controllable experiments with real

173

Chapter 8 OsmoticToolkit

applications that solve some simulation problems and improve its experimental
results.

8.2.2 Emulation Tools

EmuFog [215] is an emulation framework for Fog Computing built on top of
MaxiNet [216]. It emulates Fog nodes and makes use of Docker to run applica-
tions. EmuFog is more realistic than simulation tools, implementing a Fog node
placement algorithm based on arbitrary latency costs to the connections between
hosts and switches. It does not support the mobility of clients and fog nodes.
Fogbed [217] extends the Mininet network emulator. In contrast to EmuFog, it
uses Docker containers to run virtual nodes and allows developers to dynam-
ically add, connect, and remove nodes from the topology. This feature allows
investigating real-world Fog infrastructures, where Cloud services are provided
closer to the network edge. It does not support mobility, security, fault tolerance,
scalability, and reliability and does not implement any resource providing model
for the application services. The application used to evaluate the emulator is
not faithful to real-case scenarios and lacks con�gurability and extensibility.
It is strongly-coupled with the virtual node code. EmuFog and Fogbed have
scalability support regarding the communication and topology infrastructure
but lack strategies to deal with applications’ on-demand requirements inside
computational nodes.
Finally, MockFog [218] allows the emulation of a Fog Computing infrastruc-

ture in arbitrary cloud environments. It creates a VM for every node lacking
scalability and being expensive when implementing an infrastructure model
with many nodes. It also has problems when smaller devices are involved, as
they cannot be accurately emulated.

Several optimisation solutions for service deployment have been investigated
concerning the service execution plan and resource provisioning in hybrid
cloud-fog-IoT environments, each of them focusing on di�erent target variables.
In [219], the authors investigate a solution for maximising the number of services
deployed on fog devices by applying heuristics to solve their service placement
problem based on collected response times. The approach proposed by the au-
thors is not realistic as they assume that each service of an application can be
executed independently from work�ow structures with chained output-input
links. In [220], the authors address service provisioning as a Delay and Payment
optimisation problem, which is the trade-o� among energy consumption, delay
performance, and payment cost when deploying services. In [221], the authors
propose a distributed alternating direction method of multipliers to approach
the allocation as a trade-o� between the users’ Quality of Experience (QoE) and
the fog nodes’ power e�ciency.
Table 8.1 summarises the capabilities of related simulation and emulation

approaches regarding the four key criteria mentioned before.

174

Motivations and Requirements Section 8.3

8.3 Motivations and Requirements

Osmotic capabilities are of increasing importance when considering the growing
digitalisation of life. To counter the pandemic in 2020, several national govern-
ments have released software applications with work�ows encompassing mobile
phones, telecom carriers and cloud services. The degree to which processing
logic has been placed on one side depends on political strategies. Due to their
volatility, engineering e�ort can be saved from a technical perspective when
mechanism and policy are properly separated and the placement gains �exibil-
ity. The mechanism then entails a decomposition of the application into either
resource-bound or portable parts, the MELs, that can be implemented as cloud
functions, containers, other MicroService technologies (MS) and associated Mi-
croData (MD) representations. The assignment of MELs to computing resources
can become dynamic at deployment time. It requires osmotic management,
where MELs can move across di�erent infrastructures based on several potential
triggers (e.g., performance, networking, security/privacy, or cost-oriented). The
Software-De�ned Membrane (SDMem) in OC enforces these concepts �ltering
the MELs �ows in the system.

MEL
Pathology

MEL
Database

MEL
Admission

MEL
Discovery

e-Health hospital application

IoT
P3
Data

P3
Data

P3
Data

P3
Data

MicroELements
(MELs)

MEL-P3 =
Priorieties &
Preferences &
 PropertiesRequired

on device
Portable
Fog/Edge

Optional
in the Cloud

Necessarily
in the Cloud

Patient/
bed

sensors

Government
Cloud

Hospital bed/
room Fog Hospital EdgeHospital bed/

patient devices

C3
Data

C3
Data

C3
Data

C3
Data

Device - Fog link Fog - Edge link Edge - Cloud link

Computing
Resources
(RES)

RES-C3 = Cost &
Capabilities &
Constraints

Figure 8.1: Scenario of osmotic e-health application: four MELs connected horizontally
in a work�ow linked to computing resources across devices, fog, edge and cloud.

Let us consider the case of a rural medical lab with limited processing power
and network access. The application deployment needs to prioritise which
MELs can be deployed locally if there are resource contentions and otherwise
needs to optimise within the given degrees of freedom among all the portable
MELs. Hence, the application consists of a mandatory on-site part on health
testing, a portable part on image detection that can run either on-site or in
the Cloud, and an optional part on recommending further tests that run in a
particular Cloud environment. Figure 8.1 explains this scenario. It involves

175

Chapter 8 OsmoticToolkit

descriptors of application requirements, including deployment priorities (P3),
and corresponding hosting capabilities (C3), facilitating deployment dynamics.

In contrast to the streamlined onboarding of software applications in clouds,
the decomposition and description of applications for such dynamic scenarios is
currently a challenging engineering task. To give application engineers the ability
to prepare, using an emulator will save precious time and e�ort and facilitate
resource planning. To overcome the limitations of existing emulation tools, we
require OsmoticToolkit to provide the following technological advances:

1. Combined inherent support for all of the four key criteria outlined in
Table 8.1 by design;

2. Well-de�ned usage procedure with explicit infrastructure and application
modelling, infrastructure instantiation and application pipeline deploy-
ment;

3. Service-oriented integration with APIs/CLIs to �t into automated osmotic
and cloud-native systems.

8.4 OsmoticToolkit Workflow Design

This section highlights OsmoticToolkit’s features and overviews a high-level
design work�ow outlining the emulation abstractions, toolkit core components,
and interactions.

8.4.1 Design Principles

OsmoticToolkit should support four main features:

Hybrid topology OC ecosystems consist of hybrid complex IoT-oriented
computing systems where both resource-constrained edge/fog nodes and cloud-
hosted services in public/private, hybrid or multi-cloud are involved. The gen-
eration of such topologies should be realistic with a high degree of con�dence,
allowing to assign capacities (e.g., CPU, memory) and capabilities (e.g., hosted
services, applications) for each infrastructure component trivially.

Dynamicity In OC, computation is dynamically distributed across nodes based
onQoS requirements and available infrastructure resources. Particularly, services
with short lifecycles are frequently instantiated and o�oaded. It also occurs at
the lowest level of the infrastructure, where edge and IoT nodes may join and
permanently leave the network according to service usage, failures, policies, and
maintenance operations. OsmoticToolkit should provide a holistic approach for
managing the network infrastructure and application.

176

OsmoticToolkit Workflow Design Section 8.4

Resource provisioning and orchestration Applications range from simple
IoT-based sensing to complex data processing inherent to e-health or smart city
systems with di�erent QoS and SLA (e.g., location/latency awareness, security
levels, heterogeneity, interoperability), processing (e.g., batch, real-time), mo-
bility. OsmoticToolkit should consider these aspects during the orchestration
allowing dynamic and �exible resource provisioning and monitoring mecha-
nisms.

Execution OsmoticToolkit should allow the execution of realistic applications
on top of the infrastructure topology. This feature should minimise the e�ort in
preparing applications, avoiding costly changes in stack and tools.

8.4.2 OsmoticToolkit Infrastructure Model

Figure 8.2 illustrates the high-level design work�ow of OsmoticToolkit. In this
scenario, the DevOps Engineer (DOE) is involved in several phases, as explained
in the following.

Phase #1: Infrastructure Modeling An OC ecosystem comprises Infrastruc-
ture Elements (IEs) such as compute nodes, Network Elements (NEs) such as
switches and routers, and Application Elements (AEs) deployed on top of the
infrastructure at di�erent levels. The infrastructure topology is modelled as
directed graph T = (V, E) where V is a set whose elements are called vertices
(e.g., IE), and E is a set of paired vertices, whose elements are called links. Each
IE is characterised by di�erent computing properties (e.g., CPU, memory), while
di�erent network parameters characterise each link and thus NEs (e.g., latency,
bandwidth, packet loss). As exempli�ed in Figure 8.2, if the link between N1
and S1 (N1-S1) has a delay of 3ms, S1-S2 has 5ms, and S2-N2 has 2ms, the
overall delay is 10ms. During this phase, the DOE starts with such a graph
speci�cation before assigning properties to vertices and links using a template
primitive. OsmoticToolkit relies on pre-con�gured container images, e.g., cloud,
fog, edge, and IoT, retrieved as IEs the toolkit’s registry. Thus, each IE in the
emulated network executes independently, increasing the emulation’s realism
and a�ording behaviour similar to that in production infrastructures.

Phase #2: Application Modeling Similar to Infrastructure Modeling, appli-
cations deployed in an osmotic ecosystem are structured as graph P = (V, E),
where V =MELs and E = interconnections. OsmoticToolkit associates the concept
of the pipeline to an application. Namely, the pipeline’s anatomy describes MELs
properties and how they are interconnected. The DOE de�nes independent
pipelines inside the toolkit and interacts with each separately. Each pipeline is
described within a template primitive. For each MEL inside the pipeline, the
DOE can specify di�erent resource requirements, constraints, and scheduling
policies.

177

Chapter 8 OsmoticToolkit

App
Image
App
Image

...

Initializer Middleware

Orchestrator Node

(2) (1)

(4)

(3)

...

...

...

...

...

......

... ...

...

...

...

...

20ms

15ms

25ms

40ms

15ms

5ms5ms

managemanage

Fog
Node

Switch

Cloud
 Image

Fog
Image

Edge
Image

IoT
Image

Orch
Image

Registries

Link

manage

App
Image

Infrastructure
Modeling

Pipeline
Modeling

Pipeline
Deployment

Infrastructure
Instantiation

DevOps Engineer
 (DOE)

manage

Host System

Emulated Environment

Cloud
Colony

2ms3msN1

S1 S2

N2

Edge
MELs

IoT MELs

Instance API

Fog
MEL

Cloud Instance IoT Instance Orchestrator InstanceFog Instance Edge Instance

Orchestrator Node

Figure 8.2:OsmoticToolkit general work�ow: two boxes, one representing the emulated
environment, and one running OsmoticToolkit to create the emulated environment.

Phase #3: Infrastructure Instantiation During this phase, the Initializer
Middleware loads the template primitive containing the infrastructure descrip-
tion and instantiates it by deploying instances, e.g., for the cloud (CI), fog (FI),
edge (EI) and IoT (IoTI), as well as Compute or Managed Nodes (MNs), switches,
and links into an emulated environment. An example of a running environment
with 9 instances is shown in Figure 8.2. The instance abstraction allows the
management of MNs and switches as a single entity. Generally, each instance

178

Emulator Implementation Section 8.5

involves one or more switches and MNs. An instance containing more of those
is called a colony, e.g., Cloud Colony (see Figure 8.2). This colony composes a
new and isolated network slice. It is relevant in mobile networks, where the
limited radio resources are shared among multiple users that experience variable
radio quality conditions over time. To properly control and manage the QoE in
the network slice, the NEs are adapted to the di�erent service requirements, and
the applications adjust the con�guration to the network capabilities over time
dynamically.
Each instance has associated a resource model de�ning the amount of com-

puting resources distributed among its MNs. Each MN in the infrastructure
model is mapped to a running container. The resource model allows the DOE to
apply limitations that impose each instance’s available resources according to a
speci�c scenario.
To e�ciently control and manage this complex osmotic ecosystem, an e�ec-

tive control system becomes essential. The Orchestrator Node (ON) handles
this system. During this phase, the ON is instantiated within an Orchestrator
Instance (OI), and it is the point of entry for DOE via API endpoints and automa-
tion handlers. Thus, it manages the entire infrastructure, deploys pipelines or
o�oads MELs, spawns new nodes, and forwards con�guration details. It also
o�ers its complete functionality via API endpoints so that OsmoticToolkit can
easily be integrated into existing automated testing work�ows.

Phase #4: Pipeline Deployment The application is deployed on the emu-
lated infrastructure through ON’s Instance API endpoint for this phase. The
ON �rstly evaluates the MEL’s prede�ned constraints and scheduling policies
speci�ed by the DOE within the template. This �ltering step allows selecting a
set of nodes obeying the speci�ed restrictions. Next, it evaluates the computa-
tion requirements for each MEL. It generates an optimal execution plan for the
pipeline for describing the MELs contextualisation across the cloud, cloud, fog,
edge and IoT MNs through an optimisation algorithm. Namely, it assigns each
MN satisfying the computation requirements of one or more MELs by minimis-
ing a speci�c cost function. It is assumed that the ON has full control over which
MELs are executed on each instance. Finally, the MELs are instantiated and run
in Docker containers on top of the MNs (i.e., Docker-in-Docker) according to
the previously generated optimal scheduling plan. The DOE interacts with the
pipeline using the orchestrator APIs by controlling the MELs status, performing
updates, tearing down the pipeline, or deploying a new one.

8.5 Emulator Implementation

This section discusses the architectural components, alongwith their interactions
(illustrated in Figure 8.3), and motivates the set of technologies used to imple-

179

Chapter 8 OsmoticToolkit

Fl
ow

 M
on

ito
r

Q
oS

 C
on

tro
lle

r
Fl

ow
 M

on
ito

r
Q

oS
 C

on
tro

lle
r

O
pe

nF
lo

w
 V

irt
ua

l S
w

itc
h

Fl
ow

 M
on

ito
r

Q
oS

 C
on

tro
lle

r

O
pe

nF
lo

w
 V

irt
ua

l S
w

itc
h

Node API

NA RMAMA HMA FMA FCA

Network Agents

Redis

Dockerized MELs

CA

Docker Engine

Infrastructure Agents
...

Virtual Node

Node API

NA RMAMA HMA FMA FCA

Network Agents

Redis

Dockerized MELs

CA

Docker Engine

Infrastructure Agents
...

Virtual Node

x

Osmotic Orchestrator API
Network
Agents

Managed Node API

Management
Agents

Orchestrator Node

Management
Agents

Monitoring
Agents

Network
Agents

Local Redis

Dockerized MELs

Container
Agent

Docker Engine
...

Managed Node

Initializer Middleware

Topology API Instance API Resource API CLI

OsmoticToolkit Core

Docker Mininet OpenFlow
Controller

Containernet

Switch
Flow Collector

Fl
ow

 M
on

ito
r

Q
oS

 C
on

tro
lle

r

O
pe

nF
lo

w
 S

w
itc

h

Shared Redis

Emulated Environment Host System

 LinksInstances

Configs Registries

Monitoring
Agents

Local Redis

Figure 8.3:OsmoticToolkit architecture: Two boxes, emulated environment with virtual
nodes including the respective agents, and host system including the OsmoticToolkit
architecture around OsmoticToolset Core

ment OsmoticToolkit2. The technological choices are constrained by several
non-functional requirements such as �exibility, ease of use, cost-e�ectiveness,
scalability, extensibility.

8.5.1 Core Components and APIs

OsmoticToolkit core The toolkit is based on Containernet [222] that ex-
tends the Mininet emulation framework by adding Docker containers at run-
time as compute instances within the emulated topology. We chose Contain-
ernet/Mininet because they are highly prevalent in the distributed computing
community, open-source, scalable, easily extensible, and �exible. The core o�ers
three convenient APIs.

Topology API This API is based on the Mininet Python API. It interacts with
the core to allow the DOE to generate di�erent topologies straightforwardly.
Virtual switches are implemented leveraging Open vSwitch.

For example, in an osmotic ecosystem, using the concept of instance, a node
with constrained resources attached to a virtual switch can represent a virtual
gateway for IoT. Similarly, a virtual switch that connects a node with su�cient
resources to run applications can be considered a fog or edge node. Each node
comprises at least two interfaces, where one is used to access the control and
management of the nodes and one or more other ports are used for forwarding
the data on emulated topology. These interfaces are virtual Ethernet pair ports
(veth devices) and tunnel ports (TUN/TAP) resulting from Generic Routing
Encapsulation (GRE) or Virtual Extensible Local Area Network (VXLAN) tunnels.

According to the topology a user has de�ned, a virtual link is responsible for
creating interconnections among two or more nodes. There are two types of
virtual links: i) point-to-point, which connects nodes, and ii) point-to-multipoint,

2 OsmoticToolkit: http://github.com/alinabuzachis/OsmoticToolkit

180

Emulator Implementation Section 8.5

which creates a control and management bus among nodes. These virtual links
can be either Ethernet virtual links or GRE or VXLAN tunnels.

Standard SDN controllers con�gure the switches as part of the Mininet emu-
lation environment, e.g., OpenFlow. Instances can communicate with external
devices on the Internet or act as proxies for cloud applications located in remote
data centres using Network Address Translation (NAT). The DOE can implement
other advanced network protocols and forwarding setups.

Instance API It provides an Infrastructure-as-a-Service (IaaS) endpoint allow-
ing to manage MNs within instances in an adaptable way. The core interacts
with this API to control the instance semantics. The default approach adds one
speci�c Instance API to each type of instance. With this kind of abstraction,
an instance can be managed in di�erent ways, e.g., as a colony with di�erent
resource allocation or placement policies for each MN. The Instance API can be
easily extended, and DOEs can implement their management interfaces on top.

Resource API Osmotic ecosystems are highly heterogeneous, being charac-
terized by the existence of nodes with di�erent computation capabilities. For
instance, while cloud services provide virtually in�nite computation resources to
their clients, fog/edge and IoT o�er limited computation, memory, and storage re-
sources to applications. The Orchestrator Node must consider this heterogeneity
when o�oading, resource allocation, and scheduling decisions are taken. This
API lets the DOE apply resource limits for each instance, such as constrained
CPU and memory, and specify additional parameters such as a pricing model.
OsmoticToolkit allow associating with each kind of instance, a pricing model that
will be explained better in the following. The resource models are instantiated
when containers are allocated or released. By specifying resource models, we
can limit the overall available for each instance so that one instance does not
in�uence others.

OsmoticToolkit supports two kinds of resource models:

1. Prede�ned Resource Model: It assigns prede�ned resources to each in-
stance; in particular, there are 7 �xed models, e.g., m1.small (CPU: 1 and
memory: 512MB), m1.medium (CPU: 1 and memory: 1024MB) and so
on (see Table 8.2 for a complete list of all available prede�ned resource
models). If no resource model is speci�ed, the m1.medium is applied for
all instances by default, while the OI uses m2.medium.

2. Customized Resource Model: Conversely, this model allows de�ning cus-
tom resource limitations for each kind of instance. For cloud-based in-
stances, some real resource limitations and pricing models can be con�g-
ured through a Python-based script that scrapes current container pricing
data from di�erent service providers, e.g., AWS, Azure.

181

Chapter 8 OsmoticToolkit

Table 8.2: Available prede�ned resource models.

Model CPU (cu) Memory (mu) MB

m1.tiny 1 128
m1.small 1 512
m1.medium 1 1024
m2.medium 2 1024
m1.large 4 2048

8.5.2 Command Line Interface

The Command Line Interface (CLI) allows developers to interact with the emu-
lated components to modify con�gurations or run commands.

Initializer Middleware It is implemented as a Python-based script and runs
either on the DOE host system or within the build pipeline. Its primary purpose
is to load the infrastructure topology de�nition template (see Listing 8.1) and
start the emulation. As shown in Listing 8.1, each node is identi�ed by several
properties. In particular, for the CLOUD node c1, is a public cloud; its information
is �lled with the current container pricing data from the AWS provider. For each
link connecting two nodes, there are associated with di�erent parameters such
as latency (unit: ms), bandwidth (unit: GHz), and packet loss (unit: %).

Listing 8.1: Infrastructure Topology de�nition JSON �le.
{

"nodes" : {
"c1" : {

"type" : "CLOUD",
"model" : "public",
"provider" : "AWS",
"size" : "a1.medium",
"memory" : 4,
"vCPU" : 1,
"price-per-hour" : 0.0255

},
"e1" : {

"type" : "EDGE",
"model" : "Raspberry",
"RAM" : 1,
"CPU" : 1.4,
"cost" : 35

}
},
"node_links" : [
{

"source" : "c1",
"target" : "e1",
"BW" : 10,
"latency" : 0,
"packet_loss" : 2

}

182

Emulator Implementation Section 8.5

]
}

Listing 8.2: Pipeline de�nition YAML �le.

ship_provider: dynamic # static
name: p1
ships:

ship1:
ip: x.x.x.x

services:
foo:

image: ubuntu
security_opt: [affinity:service != test]
requires: [test]
labels:

constraint: [node.type == CLOUD, node.model == public, node.provider
== AWS]

priority: high
limits:

memory: 50m
cpu: 1

instances:
foo-1:

ship: ship1
test:

image: mongo
...

8.5.3 Emulated Environment

The ON is the central component serving RESTful API as an MN with additional
responsibilities. The ON extends MaestroNG [223] by implementing dynamic
scheduling, monitoring, service o�oading, and policy management. Speci�cally,
MaestroNG is a simple and easily extensible orchestrator for Docker-based,
multi-host environments that o�er service-level and container-level controls
that rely on declared service dependencies static placement.

As shown in Figure 8.3, the ON in the topmost level exposes an API through
which the DOE interacts with the emulated ecosystem. In the lower levels, there
are several agents, each one dealing with speci�c tasks. We use Celery, a simple,
�exible, and reliable distributed task queue system, to roll up these agents. Celery
is con�gured to use the local Redis database as a message broker. The main
agents instantiated on every MN are described below.

Monitoring Agents One Monitoring Agent (MonAs) is the Resource Mon-
itoring Agent (RMA). It is responsible for collecting utilisation metrics from
the MNs, allowing the ON at every level to be aware of the capabilities of the
MNs present within the topology. RMA has been implemented through a non-
intrusive Python library, e.g., psutil, and resides on each MN. Another MonA
is Healthcheck Monitoring Agent (HMA). It is responsible for maintaining the

183

Chapter 8 OsmoticToolkit

infrastructure’s topology by regularly monitoring the health of the MNs. HMA
resides only on the orchestrator node.

Management Agents Management Agents (MAs) interface with deployment
and control interaction within the infrastructure components. The Node Man-
agement Agent (NMA) is the most crucial component residing on the ON. It is
responsible for handling every interaction with DOE through ON’s APIs. It also
deals with two primary operations, MEL scheduling and o�oading. According
to the pipeline’s deployment requirements set by DOE, the NMA generates a re-
source provisioning plan via an optimisation algorithm for describing the MELs
contextualisation across the MNs. Its implementation is extensible to allow the
DOE to plug other resource provisioning strategies. OsmoticToolkit supports
two provisioning approaches natively: a) static - inherited from MaestroNG and
b) dynamic.

The �rst step necessary to deploy a pipeline composed of several MELs is its
de�nition. We extended the MaestroNG version 2 YAML schema by adding sup-
port for selecting the resource provisioning strategy (e.g., static or dynamic) and
de�ning several constraints, anti-/a�nity scheduling policies and priority-based
mechanisms to enforce the Software-De�ned Membrane concept. Namely, the
a�nity policy speci�es whether the MELs should be collocated on the same node
(a�nity) or if they should be spread onto as many nodes as possible (anti-a�nity).
A generic deployment pipeline with two MELs (foo and test) is illustrated in ??.
Going through ??, the ship_provider �eld allows us to select between static and
dynamic resource provisioning strategy. Using a static provisioning strategy,
the DOE has to know a priori the network topology, e.g., the nodes’ IP addresses.
The IP addresses are necessary to de�ne the shipment ship1 in ship �eld, namely,
the node on which to schedule the MEL. The static approach does not use any
optimization algorithm for resource provisioning; consequently, the nodes can
result in over/underprovisioned.

The name �eld allows us to specify the name of the pipeline. Thus, a unique
name identi�es each pipeline, allowing the deployment of di�erent, even inde-
pendent pipelines within the system. The services �eld allows us to specify the
MELs composing the pipeline. For each MEL, we can specify a name, the image
used for the Docker container and the complete list of parameters that can be
found in the MaestroNG documentation [223].

The security_opt �eld allows us to set a deployment restriction de�ned through
an anti-/a�nity policy. Namely, the a�nity policy speci�es whether the MELs
should be collocated on the same node (a�nity) or if they should be spread onto
as many nodes as possible (anti-a�nity). For instance, in ??, there is implemented
an anti-a�nity policy for the foo MEL. Namely, foo MEL cannot be deployed on
the same node where test MEL has been deployed. There is also supported a
dependency-based mechanism between MELs implemented using the requires
�eld. With this restriction, the test MEL has to be deployed before the foo MEL.

184

Emulator Implementation Section 8.5

By specifying constraints, the DOE implements a �ltering mechanism select-
ing only the nodes able to obey to the following restrictions, such as node.type,
node.model, node.provider.
There is also a priority-based mechanism allowing to de�ne for each MEL

a priority level. In particular, there are implemented three priority levels, e.g.,
high, medium, and low. The high priority is used for MELs that are computation-
intensive and require a signi�cant amount of resources. A MEL with a high
priority is scheduled on a cloud node. The medium priority is assigned for
latency-sensitive MELs; the MEL is scheduled on a fog or edge node according
to the amount of computation resources it requires. Finally, the low priority
allows us to schedule the MELs using the best-e�ort approach. The high priority
MELs are scheduled primarily, then the ones with medium priority and �nally
the latest with low priority on the remaining available nodes. This can ensure
speci�c MELs only run on nodes with certain isolation, security, or regulatory
properties.

Using a static provisioning strategy, the DOE has to know a priori the network
topology, e.g., the IPs of the MNs on which to schedule the MELs. The static
approach does not use any optimisation algorithm for resource provisioning;
consequently, the nodes can result over/underprovisioned. The static provi-
sioning strategy implemented in MaestroNG does not provide any constraint-,
priority- or anti-/a�nity-based scheduling policy.
Each MEL is also characterized by di�erent requirements for computation

resources speci�ed by the limits label. In particular, for each MEL, the DOE can
specify the amount of CPU and memory it requires.
In OsmoticToolkit, dynamic scheduling is treated as an assignment problem.

Several algorithms are used to solve assignment problems, e.g., Kuhn’s Hun-
garian algorithm, heuristic algorithms (e.g., simulated annealing algorithm, ant
colony algorithm, particle swarm algorithm, and genetic algorithms). Heuristic
algorithms are generally used to solve highly complex assignment problems.
However, as it starts the search randomly, it cannot guarantee to reach the
optimization result. Kuhn’s Hungarian algorithm is an analytic algorithm. Be-
cause of its simplicity and ability to �nd the optimal solution without requiring
validation, Kuhn’s Hungarian algorithm is widely used to solve assignment prob-
lems. Because of its simplicity and ability to �nd the optimal solution without
requiring validation, we choose Kuhn’s Hungarian algorithm [224] to solve the
assignment problem for the MELs’ optimal scheduling.

Each assignment problem is associated with a cost matrix. The rows contain
the workers or MNs, and the columns comprise jobs or MELs. The cost function
28 9 used to compute the cost matrix used is given in Equation (8.1) [225] and
is de�ned as the weighted sum of the following �ve parameters: i) number of
containers running on each MN (=2), ii) percentage of memory used (=<4<), iii)
average CPU utilization (=2?D), iv) amount of CPU the MEL requires and �nally

185

Chapter 8 OsmoticToolkit

(02?D) and v) amount of memory the MEL requires (0<4<). Where i varies from
1 to the number of MN N, j varies from 1 to the number of parameters 5. |8 9 is
a weight between 0 and 1, 2><?>=4=C8 is an array containing the values of the
parameters as mentioned above, and 59 (C) represents that these parameters vary
in time. The weights used are |1 = 0.4, |2 = 0.04, and |3 = 0.01 (see [225] for
further details).

⇠ =
#’
8=1

5’
9=1

|8 9 ⇥ 2><?>=4=C8 9 ⇥ 59 (C) (8.1)

Kuhn’s Hungarian algorithm treats the Optimal Assignment Problem (OAP)
as a combinatorial problem to e�ciently solve an = ⇥= task assignment problem
in O(=3) time. It starts with a complete bipartite graph, G = {V, U, E}, where V and
U are the sets of nodes in each partition of the graph, and E is the set of edges.
The cost estimations become edge weights and each node and MEL becomes a
vertex. Starting with an empty matching, Kuhn’s Hungarian algorithm’s basic
strategy is to search for augmenting paths in the equality subgraph repeatedly
(see Algorithm 1).

If an augmenting path is found, the current set of matches is augmented by
�ipping the matched and unmatched edges along this path. Because there is one
more unmatched than a matched edge, this �ipping increases the cardinality of
the matching by one, completing a single stage of the algorithm. If an augment-
ing path is not found, the ; (G) + ; (~) = | (G,~) variables are adjusted to bring
additional edges are added into the equality subgraph by making them admissi-
ble, and the search continues. n such stages of the algorithm are performed to
determine n matches, at which point the algorithm terminates.
It should be noted that the orchestrator has to be also able to recognise sit-

uations when a MEL on edge must be o�oaded on a cloud MN or vice-versa.
The Osmotic Orchestrator Agent (OOA) is a MA that periodically performs
an orchestration by running the Hungarian algorithm to check whether the
actual scheduling plan is optimal. If it is not, a new optimal scheduling plan is
generated. The OOA contacts an NMA’s API to update the new scheduling plan
and perform the necessary MEL’s o�oading.

The o�oading is implemented as live migration to limit the service downtime.
This technique used is based on lazy or post-copy memory migration using
Checkpoint-Restore in Userspace (CRIU). CRIU is a tool that allows such a live
migration of a hierarchy of processes (container) between hosts. As implemented
in CRIU, live migration techniques are used for moving a container instance
from one physical host to another while preserving the running state of the
containerized applications and maintaining open network connections.

186

Emulator Implementation Section 8.5

Algorithm 1: Hungarian algorithm.
Input:

Set nodes, Set requests
Cost Function:

C = |1⇥=2 + |2⇥(=2?D + 02?D) + |3⇥(=<4< + 0<4<)
Cost Matrix:

A valid n⇥n assignment matrix represented as the equivalent
complete

weighted bipartite graph G = (X, Y, E), where |X| = |Y| = n.
Output:

A perfect matching, M.
1 1: Generate an initial labelling l and matching M in ⌧4 .
2 2: If M perfect, terminate algorithm. Otherwise, randomly pick an

exposed
3 vertex u 2 X. Set S = {u}, T = Ø.
4 3: If N(S) = T, update labels:
5 X =<8=G 2(,~2.�) {l(x) + l(y) - w(x,y)}

6 l’(v) =

8>>><
>>>:

l(v) - X if { 2 S
l(v) + X if { 2 T
l(v) otherwise

7 4: If N(S) <, pick y 2 N(S) - T
8 (a) If y exposed, u! y is augmenting path. Augment M and go to step

2.
9 (b) If y matched, say to z, extend Hungarian tree: S = S

–
z, T = T

–
y,

10 and go to step 3.
11 * De�nitions:

• Equality graph ⌧4 = {e(x, y) : l(x) + l(y) = w(x, y)}

• Neighbor N(u) of vertex u 2 X: N(u) = {v : e(u,v) 2 ⌧4 }.

During migration, several resources are transferred over the network, e.g.,
CPU state, memory state, network state, and disk state. Post-copy minimises the
application downtime during live migration.

Contrary to other migration approaches, such as pre-copy, post-copy transfers
all memory pages until after the CPU state has already been moved and resumed
on the destination node. The current post-copy implementation in CRIU starts
with a checkpoint (2A8D 3D<?) with provided � � ;0I~ � ?064B option. Using
this option, the process memory is collected into pipes, and non-lazy pages are
stored into image �les or transferred over to the destination host via page-server
instantiated on-demand on the destination VN via the Migration or O�oading

187

Chapter 8 OsmoticToolkit

Agent. After the checkpoint is completed (at the dump �nish stage), a TCP server
is started to handle page requests from the restore host. Another NMA is the
Osmotic Node Agent (ONA) as the main component of the MNs, exposing the
necessary APIs to communicate with it, e.g., health-check endpoint, resource
monitoring, migration, as previously explained. It is implemented as a Python
Flask service.

Container Agent On every cloud, fog, edge, and IoTMN, the Docker engine is
installed. The Container Agent (CA) is represented by the persistent process that
exposes the Docker API. It is used for communication with the Docker daemon,
allowing it to control the status of containers. The ON contacts remotely the
MNs’ Docker daemon via this API every time it needs to deploy a new MEL.

Network Agents The Network Agents (NAs) collect �ow statistics on each
MN by running �ow monitors for each network interface on nodes and switches.
This data is stored in the Redis local instance for future analysis.

Database Instances Our system involves two Redis DB instances. The local
instances are used to store the con�guration parameters and MN statistics, such
as resource utilisation. The shared Redis instance is for the versioning of the
scheduling plan. It is also used to store the infrastructure topology description.
There are also store the resource utilisation metrics gathered from the RMA.

8.6 Experiments and Evaluation

In this section, we present experiments and evaluations that we undertook
to quantify the e�ciency of OsmoticToolkit in modelling and simulating OC
environments.

8.6.1 Methodology

The evaluation criteria leverage a set of metrics that can be used to evaluate the
proposed emulator’s e�ectiveness in terms of a) responsiveness, b) reactiveness
and c) agility.

Responsiveness Assures that the system continues to have adequate response
times even when the load rises. Generally, a system that strives to handle
many requests with acceptable latency requires more computation resources.
Hence, the system can be over-provisioned to keep system responsiveness. Such
resources are expensive and a system should always optimise the use to be
cost-e�ective. One of the responsiveness properties is SLA preservation. The
guarantees provided by the SLA concern the fact that response times to user
requests should never exceed a certain threshold.

188

Experiments and Evaluation Section 8.6

Reactiveness Indicates the reaction time of an environment composed of
multiple individual applications blending into one unit while staying aware of
each other to produce a work�ow execution.

Agility Indicates the ease of applying changes in the environment. One helpful
metric in this context is the system downtime when there is a dynamic recon-
�guration. It represents the amount of time that the system or a portion of the
system is not working correctly.

(a) POST

(b) GET

Figure 8.4: Hospital application MEL’s average response times (s).

8.6.2 Application Use Case Scenario and Infrastructure Setup

To validate the toolkit’s e�ectiveness, we implemented the microservice-based
rural hospital application illustrated in Figure 8.1. Its work�ow involves each pa-
tient in several steps. The patient is initially examined, with preliminary clinical
trials conducted to identify possible pathologies. The "MEL Pathology" manages
these trials. It updates the patient’s Electronic Medical Record (EMR) with the
collected health data. Then, he passes through admission for recovery. "MEL

189

Chapter 8 OsmoticToolkit

admission" handles this by updating the EMR with the recovery information.
Health data are collected and stored within the EMR for local processing during
the recovery phase through continuous monitoring. In the case of abnormal
values, the EMR is submitted to o�oaded processing.

All MELs composing the eHealth application are implemented with Java 12
and SpringBoot 5. To discover MELs, we use the REST-based Eureka server. The
patient’s actions are simulated using JMeter and with periodic requests. We
con�gure a test plan with 100 threads (equivalent to 100 patients), a duration of
8 minutes (480 s), and ramping-up over 2 minutes with 3 minutes of hold time.
Hold time con�rms that the system handles the load and its performance stays
stable and does not deteriorate. There is a tunable interarrival time between one
API call and the next one. It is managed by setting up a Gaussian random timer
with a deviation of 500ms, and a constant delay o�set of 1000ms.

The infrastructure topology used to run the MELs consists of 1 CI, 1 FI (con-
nected to CI), 1 EI (connected to FI), and an IoTI (connected to EI). We consider
two resource models: (i) default: all the instances have minimal hardware re-
sources (e.g., 1 CPU and 1024GB of memory), (ii) custom: di�erent user-de�ned
hardware resources characterize each instance, such as cloud (CPU: 1, memory:
4096MB), fog (CPU: 1, memory: 2048MB), edge (CPU: 1.4, memory: 1024MB)
and IoT (CPU: 1, memory: 512MB). The experiments have been conducted on an
OpenStack cluster instance by CloudLab3. The instance has 16GB RAM, 8 VCPU
and 240GB of storage and runs Ubuntu 18.04 LTS.

8.6.3 Results and Findings

Network Parameters Selection We modelled the described scenario with
suitable latency and packet loss values for the links to re�ect as much as possible
a real site for the emulated infrastructure.
To do so, we conducted a series of experiments to measure the latency and

packet loss in three di�erent setups: (i) edge to cloud and (ii) fog to edge, and
(iii) IoT to fog by performing 3000 ping requests.

As a cloud node, we used the OpenStack instance previously listed. As an
edge node, we used a Raspberry Pi 3 with 4 cores @ 1.4 GHz and 1GB RAM with
Raspberry Pi OS Lite connected to a router via Ethernet and, as an IoT device, an
iPhone 7+ with iOS 14.1 connected via WiFi with the same router. As a fog node,
we used a MacBook Pro 3.3 GHz Dual-Core Intel Core i7 with 16GB RAM and
MacOS Catalina 10.15.7 connected via WiFi with the same router. The router,
edge, fog, and IoT devices are physically located in the same room.

First, we ran a ping on the cloud to measure the Round Trip Time (RTT) from
the edge node. We found the average RTT is 67.56ms and 4.0% of packet loss.
Then, we ran a ping on the edge to measure the RTT from the Fog. We found

3 CloudLab: info.cloudlab.zhaw.ch

190

Experiments and Evaluation Section 8.6

the average RTT is 42.189ms and 0.2% of packet loss. Finally, we ran a ping on
the IoT to measure the RTT from the edge. We found an average RTT of 7.57ms
and 0.0% of packet loss. We used the measured average RTTs from the real
experiment and provided that as an input parameter for our model’s emulated
links (see Figure 8.1).

Responsiveness To ensure the SLA preservation, it is helpful to see the MEL’s
average response times when the load is low and use them as a reference for
checking the degraded performance when the load increases. As shown in Fig-
ure 8.4 (a), we note the average response times increase with patients’ number.
The three endpoints have di�erent requests over time; JMeter periodically per-
forms a set of requests to di�erent API endpoints over time. Figure 8.4 (a) shows
that the response time per each API endpoint. In particular, the results obtained
by applying a custom resource model revels lower average response times and
show a more stable trend when the number of patients increases. The average
response times obtained with both con�gurations are acceptable (around 0.125 s
using a default resource model and 0.1 s using a custom resource model when
the maximum number of patients is reached), preserving the SLA. The trend is
even more evident in Figure 8.4 (b).

In conclusion, the slowdowns are not particularly severe, and the responsive-
ness results when both resource models are applied to show that the application
remained responsive throughout all executions.

Figure 8.5: Infrastructure and pipeline instantiation: barcharts comparing bootstrap,
teardown, deploy and undeploy actions across default and custom resource models.

Reactiveness To assess the proposed system’s reactiveness, we evaluated the
work�ow from the infrastructure bootstrap/tear down and pipeline deploy/un-
deploy sides. We collected these results using both resource models default and
custom and dynamic and static resource provisioning approaches. According to
Figure 8.5, we notice the infrastructure bootstrap with a custom resource model

191

Chapter 8 OsmoticToolkit

requires, on average, 22.5 s, while the default one takes on average 24 s. A similar
trend is obtained when the infrastructure is torn down. This is because the nodes
initialised with the custom resource model have a higher amount of resources
assigned and require more time to instantiate them. The same is also applied
when the infrastructure is torn down and all allocated resources are released.

For the pipeline deployment, we used both static and dynamic provisioning
approaches. Figure 8.5 shows the obtained response times when a static resource
provisioning approach has been used. In the case of a dynamic approach, the
response times must be summed up the time the Kuhn’s Hungarian algorithm
takes to provide the scheduling plan. That is, on average, 4.29ms. As we can
see, Kuhn’s Hungarian algorithm’s execution time is almost negligible and does
not impact response times. We notice the opposite trend with respect to the
bootstrap/tear down response times in terms of deploy and undeploy response
times. We notice that deploy/undeploy operations performed on top of the nodes
initialised with the custom resource model require less time respect when the
default resource model is used.

This is because the nodes initialised with the custom resource model are more
powerful in terms of hardware resources than those instantiated with the default
resource model. In this way, all the processes run more �uently are quicker
to initialise components and respond. Similar behaviour is obtained when the
status of the pipeline is checked by calling the corresponding API. The response
times collected for deploying the pipeline do not consider the time necessary
to download the MEL’s images. To download all the images, there are required
almost 50 s on average more. Therefore, the overall response times are acceptable
and in line with what we were expecting.

Agility Evaluation of the system’s agility is done by dynamically performing
a MEL o�oading from a cloud node to an edge node. MEL’s o�oading allows
minimising cost and energy consumption of services to end-users by improving
QoE leveraging the awareness of their location, network, mobility, and context
information. The main objective is to show that the o�oading causes no system
downtime minimising as much as possible the application’s downtime in case of
recon�guration. We performed the MEL’s o�oading when both resource models
were used to initialised the nodes. We therefore used for this evaluation two
MELs of di�erent sizes to understand how the image size impacts the overall
times. In particular, one of 75.3MB and another of 182,41MB.
As explained, o�oading is implemented as live migration consisting mainly

of two phases: (i) checkpoint and (ii) restore. We performed 30 subsequent
executions and gathered the average response, checkpoint/restore and downtime
times. The response time measures the elapsed time between the �rst POST call
on the /o�oad endpoint and the MEL restore phase’s start on the destination
node.
Figure 8.6 show that the average response time is greater when a default

192

Conclusions and Future Directions Section 8.7

resource model is applied. The same behaviour is obtained for the checkpoint/re-
store times. The mean MEL downtime during the o�oading is 0.5 s when the
default model is applied and 0.35mswith the custom one. This fact highlights that
the service has been o�oaded with minimum downtime. This is because, with
the custom model, the nodes are more powerful and perform faster operations.
However, for an image of 75.3MB, the timings are higher than with an image
size of 182.41MB. The image size impacts heavily on the checkpoint/restore
performances. Thus, the o�oading operations can be performed dynamically
and asynchronously while the system is running, introducing zero downtime
for the system and improving the overall agility.

Figure 8.6: MEL o�oading: performance barchart comparing responses, checkpoint
and restore times across default and custom resource models; checkpointing is much
faster than the other operations.

8.7 Conclusions and Future Directions

With this work, we contributed and evaluated OsmoticToolkit, emulating re-
sources and network connections for distributed applications deployment to IoT
devices and fog, edge and cloud resources within the C2T continuum. As the
emulation approximates real deployments and eases their planning, it exceeds
simulation approaches. Moreover, it is the �rst emulator to combine four key
characteristics: hybrid topologies, dynamicity with service o�oading, resource
provisioning/orchestration, and realistic container execution.
Based on the achieved toolkit, we intend to conduct broader studies on in-

tegrating commercial cloud providers and minimising the runtime behaviour

193

Chapter 8 OsmoticToolkit

di�erences between real deployments and emulation by supporting further
cloud-native MELs and SDMems.

194

Part IV

Advanced Resource Scheduling for
Composite Applications accross
Continuums

9 Rule-based Resource
Matchmaker (RBMM)

Where shall my new shiny application run? Hundreds of such questions are asked
by software engineers who have many cloud services at their disposition, but
increasingly also many other hosting options around managed edge devices and fog
spectrums, including for functions and container hosting (FaaS/CaaS). Especially for
composite applications prevalent in this �eld, the combinatorial deployment space
is exploding. We claim that a systematic and automated approach is unavoidable
to scale functional decomposition applications further to fully exploit each hosting
facility. To support engineers while transitioning from cloud-native to continuum-
native, we provide a Rule-based Matchmaker called RBMM that combines several
decision factors typically present in software description formats and applies rules
to them. Using the MaestroNG orchestrator and OsmoticToolkit, we also contribute
to integrating the matchmaker into an actual deployment environment.

9.1 Introduction

Continuum applications are widely considered as the next evolutionary step
of cloud applications [226], by departing from the notion of single or even
multiple clouds and instead incorporating other computing facilities such as
data-generating nodes (mobile devices, IoT sensor nodes) and intermediaries
(edges, fogs) [227].

In such continuums, various deployment patterns can be identi�ed. Figure 9.1
shows four such patterns, out of a lot more that are already used in industrial
applications: pipelining follows the �ow of data mostly for analytics purposes;
multiplexing considers the parallel use of multi-cloud services for increasing
availability or security; o�oading adaptively switches on a cloud on-demand,
and switching optimizes the connection latency by choosing between the inter-
mediary and direct cloud access depending on the situation of each link.
Instead of hardcoding where each part of a composite application runs, it is

possible and indeed desired to automate that process and specify requirements
along with desired patterns programmatically. This requires transferring the
knowledge from humans, who would do the hardcoding, to knowledge bases and
tools that understand the characteristics of application parts, resources along the
continuum, and other decision factors. Based on this knowledge, matchmaking
can be performed to solve the assignment problem and yield suitable deployment
instructions that ful�l all hard constraints and consider soft preferences.

197

Chapter 9 Rule-based Resource Matchmaker (RBMM)

Figure 9.1: Application deployments across continuums.

This chapter de�nes application and resource models, then categorizes the
associated decision factors in the Rule-based Matchmaker (RBMM) model. To
increase automation, we present suitable acquisition techniques for each, com-
plemented by propagation, skipping, deployment and accumulation rules. Sub-
sequently, we present simple matchmaking algorithms to yield suitable deploy-
ment topologies (Section 9.2.1 and Section 9.3). To increase the applicability
of the work, we implement the matchmaking along with a composite applica-
tion deployment scenario (Section 9.4), where the OsmoticToolkit is taken into
consideration as a practical demonstrator before diving into related works and
concluding our work (Section 9.5 and Section 9.6).

9.2 Models, Decision Factors and Rules

9.2.1 Definitions and Models

We de�ne a composite application A to consist of several software artifacts 08
which are loosely coupled and instantiated as application execution units, or
parts, with certain scaling factors, i.e. A = B0 ⇥ 00, B1 ⇥ 01,

A continuum resource collection R consists of independent resources A8 whose
owners or operators can di�er, leading to further di�erences in location and
technical characteristics, including the resource level (infrastructure, platform,
middleware). Both artefacts and resources have certain properties, although
not all of them are guaranteed to be explicitly expressed in machine-readable
descriptions. Sometimes, they are also loosely expressed, for example, a runtime
environment java without the corresponding version number. Therefore, we
assume those deployment factors to contain a measure of uncertainty, i.e., F =
D0 ⇥ 50,D1 ⇥ 51, In component notation, resource factors are o�ered, whereas
artefact factors are required. Some factors only exist for either artefacts or re-

198

Models, Decision Factors and Rules Section 9.2

sources, while others exist for both; this is expressed by the factor scope (A, R or
both).

A deployment plan (assignment) is the projection A ⇠+% 'DB43 ✓ R under a
set of conditions C and a set of preferences P. Conditions must be ful�lled (e.g.,
su�cient memory to run the application, monthly cost not more than a certain
limit) whereas preferences are used to determine the winning resource combi-
nation out of several that ful�l the conditions (e.g., smallest possible latency).
Multiple preferences can be combined by weights, i.e. P = |0 ⇥ ?0,|1 ⇥ ?1,
All conditions and preferences are expressed with application-speci�c rules (R)
referencing arbitrary deployment factors F and applying to any pair (08 , A8).
Our model is limited by not taking data dependencies or work�ows into ac-

count. Speci�cally, we assume that any application part can generate data and
transmit it freely to any other part. We acknowledge this limitation while claim-
ing that even the simpli�ed model advances systematic deployment methodolo-
gies beyond current deployment tool designs for clouds and continuums. On the
other hand, the model is �exible by allowing to skip certain factors so that a sub-
sequent matchmaker or deployment tool can perform further micro-optimization.
Together with the deployment rules and propagation and accumulation rules,
these skipping rules lead to a highly �exible approach that �ts multiple deploy-
ment patterns and topologies.

9.2.2 Decision Factors

Deployment processes are constrained and in�uenced by decision factors inher-
ent to any application part or resource, or even both, as well as to the composite
application as a whole. The precise de�nition of these factors depends on the op-
erational environment and primarily on automating the collection of factors. We
propose the following common categories of hosting-related factors to control
application deployments in continuums:

1. Infrastructure. Application parts are only deployed if their requirements
in terms of low-level computing hardware if ful�lled.

2. Platform. For higher-level deployments, operating systems and language
runtimes and their version and managed back-end services are important.

3. Connectivity. For latency-sensitive or bandwidth-intensive services, the
connectivity to end-users or other resources in the continuum is signi�-
cant.

4. Security. Vulnerabilities and protection levels further in�uence deploy-
ments.

5. Economics. Pricing models, plans and tari�s must match before deploy-
ment is considered valid.

199

Chapter 9 Rule-based Resource Matchmaker (RBMM)

Furthermore, we foresee external context information, such as date, time
and system load, but omit their handling from our current approach. Table 9.1
contains an exemplary set of suitable decision factors. All values are restricted
by a (typed) value space and complemented with physical units for numerical
values. The selection of factors may be extended and customized depending on
the application domain or speci�c infrastructure topologies.

Table 9.1: Subset of Deployment Decision Factors

Scope Name Values (examples)

A, R memory 128 MiB, 2 GiB
A, R runtime python:3, java
A, R latency 5ms
A, R duration 900 s
A, R zone intranet, dmz, internet
A vulnerability backdoor, CVE-477
A consistency true, false
A complexity high, medium, low
A port 9233
R country gb, cn
R trust high, low
R billing monthly, pay-per-use, free
R gpu true, false

9.2.3 Acquisition Techniques

Acquisition of accurate and up-to-date values of decision factors is de�ned as the
automated process of building up the knowledge on both software applications,
ranging from the source code level to packaged artefacts ready for deployment
and computing resources.

So�ware Artefacts

To acquire metrics from composite application units, we rely on the Microservice
Artefact Observatory (MAO) [228] that can perform a static and dynamic as-
sessment on several artefacts, including Docker containers. MAO is a federated
data management system that schedules and orchestrates individual tools that
acquire di�erent software artefacts metrics, creating a more detailed overview
of the artefact’s quality and properties. The result is an aggregated knowledge
base of software artefact information. Data can be contributed or validated by
any member node of the federation.

200

Models, Decision Factors and Rules Section 9.2

Computing Resources

Researchers have proposed automated approaches to scrape key characteristics
of cloud services from provider websites as a means to automate the acquisition
process [229]. Similarly, CloudPick acknowledges the variety in cross-cloud
service selection and contributes a translator component for automatic semantic
enrichment [230]. We point out that certain subjective factors, such as trust in a
resource provider, needs to be modelled manually.

9.2.4 Rules

Rules (R) applying to factors are composed of propagation rules (Rc), skipping
rules (Rf) deployment rules (RX) and accumulation rules (RU). They are applied in
this order: First, propagation rules use invariants to complement missing factors
or change existing factors in application compositions and resource sets. On
this basis, skipping rules temporarily hide factors – marking them to be skipped
during processing – so that they remain intact in the output mapping and serve
as input for further post-processing. Then, matchmaking is performed with
deployment rules, and all successful assignments imply the use of accumulation
rules to adjust post-deployment resource characteristics. In case an assignment is
reverted, for instance, through backtracking, the accumulation rules are executed
in inverse order to roll back forecasted resource modi�cations.

Propagation Rules

By considering a hierarchical application and resource model, it is possible to
specify which factors at lower levels invariably in�uence those at higher levels,
and vice-versa, as well as lower-level siblings (up-, down- and side-propagation).
Although many composition formats adopted in the industry can have multiple
levels, the hierarchy can only support two levels on the application side. However,
resources have sub-resources, for instance, a VM instance o�ering both CPU
and GPU computing access. Through propagation, further e�ciency gains can
be achieved when only modelling some of the factors that have to be modelled
manually or whose automated acquisition consumes much time. For instance, a
software composition a�ected by a security vulnerability in one constituent unit
is considered itself tainted, representing an up-propagation, whereas another
component in the same composition remains una�ected by itself. Speci�cally, the
following propagation rules, including two trivial ones, are useful in continuums
and need to be expressible as a preprocessing step in matchmaking.

1. Replication. All factors inU trivially apply to all other instances of the same
artefact. This applies to all static factors as well as, assuming they share
the same resource, to dynamic runtime-related ones such as maximum

201

Chapter 9 Rule-based Resource Matchmaker (RBMM)

task processing rate. However, in our work, we apply these rules before
deployment and do not consider dynamic factors.

2. Subsumption. The resource needs are trivially de�ned as the conjunction
of all constituent resource needs, including scaling factors (up).

3. Bounding. The upper bound of latency in U is mirrored in A (up).

4. Tainting. Any quality de�ciency or security vulnerability in U is mirrored
in A (up), and any trust level in A is mirrored in the subset of R that shares
the same operator (side).

Skipping Rules

A potential use case of matchmaking is generating a subset of valid deployment
mappings and further post-processing it with another matchmaking or opti-
mization tool that might use di�erent algorithms for achieving increased output
precision. Skipping rules mark attributes such as CPU or memory needs by the
application. The corresponding o�ered capacity by the resources e�ectively
leads to them being skipped during the match-making. Afterwards, they get
reinstated on the resulting mapping. Possible skipping rules are:

1. Context. Skip CPU and memory factors, deferring these technical details
to later, and instead perform matchmaking primarily on contextual factors.

2. Feasibility. Pre-check whether a deployment is technically feasible by
skipping non-technical factors such as trust, country or geolocation.

Deployment Rules

These rules set constraints on where each application part U can be deployed.
We require the deployment rules to express the following scenarios:

1. An application processing sensitive personal information shall not be
deployed in hosting locations whose jurisdiction does not support certain
minimum guarantees on privacy.

2. An application subject to a vulnerability shall only be deployed into the
demilitarised zone (DMZ), not in the internal network behind the �rewall.

3. Any application part U needs to be deployed into a resource with su�cient
memory. For latency-sensitive applications, the entire application A needs
to �t within one resource.

202

Rule-Based and Weighted Matchmaking Concept Section 9.3

Accumulation Rules

Due to resource sharing and resource utilization in general, each deployment
leads to some changes in factors. We di�erentiate between constant factors
unimpeded by any deployment (e.g., location of a DC) and those changing their
values according to accumulation rules, for instance, available memory being
reduced by any running application. More accurately, we assume that resource
access is either unlimited, shared, or exclusive. A concrete set of rules might
look as follows:

1. The amount of free memory in A is reduced by the memory claimed by U
(shared).

2. The range of free port numbers in A is reduced by any allocated port in U
(shared).

3. A GPU available as sub-resource in A is occupied by any U claiming to
perform GPU computing (exclusive).

The distinction into resource access models in�uences the permissible algo-
rithms. Under the assumption that resources are in�nite (|R| = 1) or largely
available beyond what can be consumed by A, as in most clouds, simple combi-
natorial matchmaking can be performed. Otherwise, a complex assignment and
satis�ability problem needs to be solved. We propose a depth-�rst recursive tree
search for constrained devices where after each candidate assignment, its validity
is determined by successful matchmaking of the remaining subtree, otherwise
rolled back.

9.3 Rule-Based and Weighted Matchmaking Concept

The matchmaking process guarantees that if A’s deployment, including its con-
stituent parts, e.g., microservices, to R, is possible, a valid deployment plan is
returned.

9.3.1 Design and Architecture

RBMM’s matchmaking component operates as a service to be queried by de-
ployment tools after scanning the composition description and artefacts to be
deployed. Figure 9.2 outlines the process of acquiring the factors through auto-
mated scanning (acquirer tools) and manual curation, creating an instance of A
and R models, and submitting them to the matchmaker yield a resource-aware
deployment plan.

203

Chapter 9 Rule-based Resource Matchmaker (RBMM)

Figure 9.2: Matchmaking based on collected factors, rules and constraints.

9.3.2 Matchmaking Algorithms

The goal of the matchmaking process is to achieve an optimal deployment by
creating, rating and ranking all possible assignment combinations of A R.
We brie�y describe an exemplary fast combinatorial algorithm assuming in�nite
resource availability and a more thorough recursive tree search assuming �nite
resources. These algorithms are suitable for simple scenarios but would be
replaced with more capable ones in actual deployment systems.

Combinatorial Algorithm

The iterative combinatorial algorithm attempts to perform a mapping of all
resources on all application parts. For any part, a mapping has been found
and validated according to deployment and accumulation rules. As further
resources are then skipped, the algorithm complexity is approximately O(= ⇥ =

2)
for |A|=|R|=n.

Tree search algorithm

In the recursive tree search, again for each application part, a mapping is at-
tempted. Any successful mapping of 08 applies the accumulation rules, followed
by a recursive invocation of A / 08 , i.e., the set of application parts without the
one already mapped. In case the invocation returns a valid result, it is proven
that all application parts have been mapped successfully. Otherwise, the accu-
mulation is reversed and the next resource is mapped for 08 . The complexity is
approximately O(= ⇥ (=�1)2

2).

204

Implementation Section 9.4

9.4 Implementation

9.4.1 Acquisition Tools

We have implemented and integrated MAO to automatically produce non-
functional property metrics for Docker containers, Docker compositions, server-
less applications packaged as Serverless Application Model (SAM), and various
other formats typically used in cloud and fog software. In contrast, we have not
implemented the automatic acquisition of metrics for resources but acknowledge
the approaches mentioned above’ existence.
For the example of Docker images, there are currently two separate factor

acquirer tools in production and others under development. One collects public
image metadata from Docker Hub, including supported system architectures
and artefact size. The other uses the Clair scanner to scan images, producing
a report on the number and severity of security issues according to Common
Vulnerability and Exposures (CVE) present in the image. These reports are
retrieved from the knowledge base and compiled into a merged tree of image
factors. Listing 9.1 shows a typical MAO output for a single Docker container
retrieved from Docker Hub, determining which resources this image can be
deployed to and what security constraints apply to it. The combined tree format
allows for direct feeding into the matchmaker.

Listing 9.1: Source of application factor acquisition.
{

"image": "docker.io/library/mongo:4.2", "architecture": "amd64",
"features": "",
"variant": null,
"digest": "sha256:93f3dc8491f23d507...",
"os": "linux",
"os_features": "",
"os_version": null,
"size": 164677487,
"CVEs": {

"Medium": 12,
"Low": 25,
"Negligible": 11

}
}

9.4.2 Matchmaker Library

First, we implemented the matchmaking algorithms as a Python library and cou-
pled it with a test tool to synthetically generate applications, resources and rules.
In an experiment with 10’000 application parts and the same number of resources,
i.e. 100 million possible combinations, around 488million factor comparisons
were generated. On a single-core Intel i7 processor with 2.60GHz, using only
deployment and accumulation rules, the iterative combinatorial matchmaking
took 3.3 s.

205

Chapter 9 Rule-based Resource Matchmaker (RBMM)

For a more modest scenario with 200 application parts and resources, i.e.,
40’000 possible combinations and 175’275 factor comparisons, the combinato-
rial matchmaking �nished in less than 0.05 s. For this scenario, the recursive
algorithm implementation became feasible and �nished in 80.1 s

9.4.3 Emulator Integration

To demonstrate the practical usefulness of RBMM, we integrated the resource-
aware deployment of applications to continuums with OsmoticToolkit. Os-
moticToolkit is extensively described in Chapter 8. As OsmoticToolkit has its
matchmaking logic based on cost functions and the Hungarian algorithm [231]
covering a speci�c set of metrics, including CPU and memory, we activate the
skipping rule Context in RBMM to restrict the matchmaking to contextual factors.
OsmoticToolkit allows modelling from-scratch infrastructure topologies and
applications using graph theory. On an abstract level, the infrastructure topology
is modelled as a directed graph T = (V, E), where vertices V is a set of resources,
and E is a set of two-sets (sets with two distinct elements) of vertices, whose
elements are network links between them. Each graph vertex is annotated with
appropriate metadata, including computing properties, while di�erent network
parameters characterize each link (e.g., latency, bandwidth, packet loss). Each
computing resource is emulated leveraging Docker. Similarly, applications de-
ployed in an osmotic ecosystem are structured as a graph P = (V, E), where
vertices are represented by MELs and links (E) by their interconnections for
inter-service communication. Thus, RBMM’s R/A model is directly mapped to
OsmoticToolkit’s T/P model.
OsmoticToolkit extends MaestroNG’s YAML-based schema on a technical

level by adding support for the decisional factors speci�ed in Table 9.1. Os-
moticToolkit associates the concept of a pipeline to an application. Namely,
the pipeline’s anatomy describes MELs properties and how they are intercon-
nected. Listing 9.2 illustrates with a code fragment how MEL’s constraints can
be expressed. The logic is implemented in the osmotic orchestrator that uses a
two-phase optimization approach to �nd the most appropriate deployment plan
resources for an application. An application’s constraints are classi�ed into hard
constraints and soft constraints. Hard constraints refer to must-have require-
ments that persist and are invariant during execution, such as CPU, memory,
or latency; soft constraints refer to desired requirements that can change or be
re-prioritized the cost of consuming resources.

Listing 9.2:MaestroNG YAML format representation of application factors.
ship_provider : dynamic # static
name : p1
ships :
ship1 :
ip : x.x.x.x
services :

206

Related Works Section 9.5

foo :
image : ubuntu
security_opt : [zone==intranet, vulnerability==backdoor, consistency==

true] requires: [test]
labels :
constraint :

runtime : python3
complexity : high
latency : 5ms
duration : 900s

limits :
memory : 50m
cpu : 1

instances :
foo-1 :

ship : ship1

The classi�cation of requirements into hard constraints or soft constraints
depends on the user’s need. For example, network latency can be classi�ed as
soft constraints if an application is not latency-sensitive; however, one could
classify latency as hard constraints if the application’s response time must not
exceed a speci�c threshold limit.
The �rst phase selects a set of resources by ensuring that all application

context-based constraints are satis�ed. This is accomplished by executing the
RBMM. The second phase balances the complexities of cost and resource-based
constraints. This phase involves the Hungarian algorithm. In OsmoticToolkit,
optimal deployment is treated as an assignment problem solved using the Hun-
garian algorithm (see Section 8.5.3 for further details)

9.4.4 Limitations

Although RBMM is among the most user-controllable matchmakers, we sum-
marise the limitations to de�ne future research paths. These are:

• Lack of support for dynamic external context factors and redeployment
calculation when runtime factors change;

• No speci�c consideration of data �ows, network links and microservice
interconnects as �rst-class citizens, which would also help OsmoticToolkit
achieving more accurate emulation;

• Non-optimized recursive algorithm that may limit large deployments with
more than a few hundreds of microservices;

• No integration of the automatic acquisition of resource characteristics.

9.5 Related Works

Matchmaking and mediation have been a traditional research topic in service-
oriented systems design, particularly around semantic web services communities

207

Chapter 9 Rule-based Resource Matchmaker (RBMM)

with two decades of history. Early works used heavy semantic modelling, for
instance, using the Web Service Modelling Ontology, with the advantage of
being able to express al- most arbitrary details while at the same time requir-
ing much e�ort to maintain and extend the descriptions [232]. Early systems
like ConQo enabled matchmaking between service providers and clients [233],
and expressive ontologies like WSMO4IoS modelled cloud providers and their
service characteristics, although failed to account for the application-side prop-
erties [234] and most only worked on single services, not on sets of services.
Ontologies were also proposed in alternative approaches for cloud service com-
position matchmaking [235], but speci�cally tailored for virtual machines rather
than today’s variety beyond cloud platforms and assuming existing knowledge
repositories. The composition objectives were de�ned as compatibility, total
cost, total deployment time or total reliability.

Recent approaches distinguish text-based matchmaking equivalent to full-text
searching [236] and attribute-based matchmaking [237]. However, no match-
maker with factor acquisition speci�cally designed for heterogeneous multi-
target deployment of composite software is known, which is a necessity when
automating the management of future computing continuums.

9.6 Conclusions

RBMM performs versatile rule-based matchmaking between composite applica-
tions and distributed resources. It advances the state of automation for computing
continuums and osmotic processes around IoT, fog, edge and cloud deployments.
The RBMM implementation is publicly available as an open-source library 4.
More challenges have to be resolved to make programmable continuums as
straightforward and as widely accepted as centralized and programmable infras-
tructure o�ered by commercial cloud providers. We point out the open research
questions related to the four current system limitations. Additionally, the appli-
cations themselves will need to gain more awareness of how they are deployed to
adapt and o�er higher resilience by replicating data if the deployment topology
permits, based on an initial matchmaking goal of prioritizing resilience over
other holistic application characteristics.

4 RBMM code: https://github.com/serviceprototypinglab/rbmm

208

10 Conclusions

This chapter recalls the thesis’s context, summarises the contributions and
research results and outlines potential future outlining perspectives and future
research directions.

10.1 Contributions Summary

The emergence of the Internet of Things (IoT) has led to infrastructure develop-
ment that extends beyond centralized data centres from the cloud to the edge, the
so-called Cloud-to-Thing (C2T) continuum. This infrastructure is characterized
by extreme heterogeneity, geographic distribution, and complexity, where the
Key Performance Indicators (KPIs) for the traditional model of Cloud Computing
(CC) may no longer apply in the same way.

To understand the C2T requirements, we face one of the major challenges
of the C2T continuum, which is resource management. In the quest to assist
this, we faced resource management by decoupling user data and applications
management (i) from networking (ii) and security (iii) management. Hence, we
focused on each of those aspects and formulated the RQs covering the whole IoT
application’s lifecycle, i.e., development, deployment, execution, management,
and orchestration.

(i) is addressed by proposing a new type of service model for IoT applications
into the C2T continuum (see Chapter 2). We presented three motivating use-
cases; an IoTaaS for Public Safety and Disaster Response, a smart home scenario
that proposes a smart meter IoTaaS consisting of a Fast Fourier Transform (FFT)-
based microservice, and an IoTaaS Kinect-based gait assessment for Ataxia) as
an application example and show the potential bene�ts of the continuums.

Network management (iii) leveraging SDN and NFV is addressed in Chapter 3,
while security management (iv) leveraging blockchain technologies is faced in
Chapter 4.
We determined a key concern with using computing models to support IoT

applications is managing di�erent physical and virtual infrastructures (e.g., edge
devices, and IoT devices) according to speci�c application and service require-
ments (e.g., latency, data volume, responsivity, and processing delays). However,
these models address speci�c application issues and often coexist or need to co-
operate. The coexistence of these computing paradigms in the same application
scenario can be hard to manage, and it requires additional services to support
interoperability and service management.

209

Chapter 10 Conclusions

In this context, Osmotic Computing (OC) motivated by the lack of a scalable,
interoperable, con�gurable solution for delivering IoT applications in the com-
plex, heterogeneous, and dynamic C2T continuum, addresses issues related to
deployment, networking, and security of microservices, called MicroELements
(MELs), that are composed and interconnected over both cloud/edge and IoT
infrastructures with speci�ed levels of QoS and security constraints.
Nevertheless, the usage of an OC poses new challenges for IoT work�ow

application developers and operations managers as they need the awareness of
resource/device (cloud vs IoT gateway) heterogeneity, virtualization software
heterogeneity (e.g., hypervisor vs container), data analytic programming model
heterogeneity (stream processing vs batch processing), geographic distribution,
and network performance uncertainties. The seamless orchestration and op-
eration of such an infrastructure are challenging due to the involved devices’
heterogeneity and network connectivity. Accordingly, there is no established
solution available yet. In the quest to assist this, we derived the RQs and brought
the following contributions.

Part II investigates how IoT applications into the C2T continuum can bene�t
fromOC. Basic concepts, methodologies, key technologies behind OC ecosystems
are introduced in Chapter 5. There is also presented an e�cient orchestration
approach to redeploy containerized microservices eliminating the application
outage and promptly reacting to failures. A careful analysis highlights the advan-
tages introduced by our solution. Finally, Chapter 7 and Chapter 6 proposed two
use case scenarios illustrating the bene�ts of applying OC in the continuums.
Part III contributes with a novel, cost-e�ective and �exible toolkit, called

OsmoticToolkit, for the from-scratch design of OC ecosystems and real-world
emulation applications. The toolkit o�ers support for hybrid cloud-edge/fog-IoT
architecture, dynamic infrastructure topology (modelling of physical networks
and virtual topologies), resource provisioning approach, real application execu-
tion, well-de�ned usage procedure with explicit infrastructure and application
modelling, infrastructure instantiation and application pipeline deployment and
service-oriented integration with APIs and CLIs to �t into automated osmotic
and cloud-native environments. In contrast to the streamlined onboarding of
software applications in clouds, the decomposition and description of applica-
tions for such dynamic scenarios is currently a challenging engineering task. To
give application engineers the ability to prepare, using an emulator will save
precious engineering time and e�ort and facilitate resource planning.

Part IV contributes to implementing a rule-based matchmaker called RBMM
that combines several decision factors for supporting applications deployment
in the C2T continuum. This chapter de�nes application and resource models,
then categorizes the associated decision factors in the RBMMmodel. To increase
automation, we present suitable acquisition techniques for each, complemented
by propagation, skipping, deployment and accumulation rules. Subsequently, we

210

Future Directions Section 10.2

present simple matchmaking algorithms to yield suitable deployment topologies.
To increase the work’s applicability, we implement the matchmaking and a com-
posite application deployment scenario where the OsmoticToolkit is considered
a practical demonstrator.

10.2 Future Directions

This thesis can be extended in multiple directions. Each chapter outlines its
future directions, of which some are related to or overlapped with others. The
�eld of OC holds many promises for future research, especially for microservice
deployment and orchestration in the C2T continuum. Below we describe the
detailed potentialities of this �eld for future extensions.

The OsmoticToolkit proposed in Chapter 8 might be extended in the following
directions:

• E�cient scheduling algorithms: the scheduling algorithm implemented for
the MELs placement inside the Osmotic Computing ecosystem is based on
Kuhn’s Hungarian algorithm that scheduling as an Optimal Assignment
Problem (OAP) to e�ciently solve an = ⇥ = task assignment problem in
O(=3) time. This complexity renders the procedure unsuitable for complex
applications. To overcome this limitation, a more e�cient algorithm for
application scheduling can be investigated. Also, advanced scheduling
approaches based on genetic algorithms would also be bene�cial to be
investigated.

• Geographical edge/fog nodes placement: the nodes’ placememnt solution
provided in placements does not consider the nodes’ geographical coor-
dinates. When considering the Edge Computing (EC) distributed nature
and the high number of nodes deployed, capital and operational expenses
(CAPEX and OPEX) become critical concerns. Thus, the strategy for the
placement of the edge/fog nodes becomes crucial. By optimizing the edge/-
fog nodes site selection process, the deployment/operation cost savings
can be substantially increased. However, the placement scheme comes to
be challenging due to the numerous trade-o�s involved. At �rst glance,
minimizing the number of edge nodes would reduce global expenditures
but at the cost of a decreased performance or unmet demands (e.g., latency,
reliability). Another challenge is the edge/fog nodes capacity allocation
and site rentals trade-o�. On a site with low location-dependent costs, it is
more e�cient to put as much capacity as possible, but this strategy would
not comply with the service demand distribution. Also, in some cases, it is
preferred to reuse existent Information Technology (IT)-capable locations
to reduce initial deployment expenses, but this could be disadvantageous
in the mid to long-term. If the forecasted demand surge occurs away from

211

such sites, choosing locations closer to the user demands, even if they
do not have IT capabilities, will imply a higher initial CAPEX but lower
overall costs once deployed.

• Cluster federation: with the research presented in this thesis, it is possi-
ble to provide a cluster of compute nodes managed by an organization.
However, there may be a case that one workload requires to be run on the
compute resources shared between two organizations. In such scenarios,
a federation must be implemented between the two organizations and a
customized service model could be provided. It would be valuable to in-
vestigate how such a federation can be created to utilize multiple compute
nodes.

• Dymanic network segmentation management: the proposed tool does not
provide granular control on the network slices management. Through
network segmentation mechanisms, it is possible to minimize an intruder’s
movements across the network and controls user access to speci�c ap-
plications and data. Further investigation in this �eld would allow im-
plementing di�erent Software De�ned Membranes (SDMems), each with
�ne-grained control over security, with policies based upon application
and workload requirements rather than rigid network addressing schemes.

Although OC has gained signi�cant attention over the last few years, it is still
in its infancy. There will be more opportunities for OC research in the following
years before OC becomes mainstream.
To conclude, this thesis investigated how OC can be leveraged to achieve se-

cure and dependable microservices orchestration in the C2T continuum, where
deployment and orchestration strategies depend on IoT applications’ speci�c
requirements and physical/virtual resources availability. This thesis also demon-
strates that computing as a utility can be made available outside large data
centres, which is a promising implication for future clouds to use resources in
the C2T continuum.

212

10Bibliography

[1] Cisco.White Paper - Internet of things at a glance. Last accessed on 28 Decem-
ber 2020. ���: https://www.cisco.com/c/dam/en_us/solutions/trends/iot/
docs/iot-aag.pdf (see page 1).

[2] Ericsson. Mobility Report - q4, 2018. Tech. rep. Last accessed on 28 De-
cember 2020. ���: https://www.ericsson.com/4932c2/assets/local/mobility-
report/documents/2019/emr-q4-update-2018.pdf (see page 1).

[3] Philbert Shih Jim Davis and Alex Marcham. An Edge Computing Ecosys-
tem Report. Tech. rep. Last accessed on 28 December 2020. ���: https :
//www.stateoftheedge.com/ (see page 1).

[4] M. Satyanarayanan. The Emergence of Edge Computing. Computer 50
(2017), 30–39 (see page 1).

[5] John Fredette, Revital Marom, K Steiner, and Louis Witters. The promise
and peril of hyperconnectivity for organizations and societies. The
global information technology report 2012 (2012), 113–119 (see page 1).

[6] Beniamino Di Martino, Kuan-Ching Li, Laurence T Yang, and Antonio Espos-
ito. Internet of everything: Algorithms, methodologies, technologies
and perspectives. Springer, 2017 (see page 1).

[7] H. F. Atlam, A. Alenezi, A. Alharthi, R. J. Walters, and G. B.Wills. Integration
of Cloud Computing with Internet of Things: Challenges and Open
Issues. In: 2017 IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData).
2017, 670–675. ���: 10.1109/iThings-GreenCom-CPSCom-SmartData.2017.
105 (see page 1).

[8] J. Zhou, Z. Cao, X. Dong, and A. V. Vasilakos. Security and Privacy for
Cloud-Based IoT: Challenges. IEEE Communications Magazine 55:1 (2017),
26–33. ���: 10.1109/MCOM.2017.1600363CM (see page 1).

[9] Mingchen Zhao, Paarijaat Aditya, Ang Chen, Yin Lin, Andreas Haeberlen, Pe-
ter Druschel, Bruce Maggs, Bill Wishon, and Miroslav Ponec. Peer-Assisted
Content Distribution in Akamai Netsession. In: Proceedings of the 2013
Conference on Internet Measurement Conference. IMC ’13. Barcelona, Spain:
Association for Computing Machinery, 2013, 31–42. ����: 9781450319539.
���: 10.1145/2504730.2504752. ���: https://doi.org/10.1145/2504730.2504752
(see page 2).

213

[10] Long Vu, Indranil Gupta, Klara Nahrstedt, and Jin Liang. Understanding
Overlay Characteristics of a Large-Scale Peer-to-Peer IPTV System.
ACM Trans. Multimedia Comput. Commun. Appl. 6:4 (Nov. 2010). ����: 1551-
6857. ���: 10.1145/1865106.1865115. ���: https://doi.org/10.1145/1865106.
1865115 (see page 2).

[11] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog Com-
puting and Its Role in the Internet of Things. In: Proceedings of the
First Edition of the MCC Workshop on Mobile Cloud Computing. MCC ’12.
Helsinki, Finland: Association for Computing Machinery, 2012, 13–16. ����:
9781450315197. ���: 10.1145/2342509.2342513. ���: https://doi.org/10.1145/
2342509.2342513 (see page 2).

[12] OpenFog Consortium. Open fog architecture overview. Tech. rep. Last
accessed on 28 December 2020 (see page 2).

[13] Raka Mahesa. How Cloud, Fog and Mist Computing can work together. Last
accessed on 28 December 2020. ���: https://developer.ibm.com/dwblog/2018/
cloud-fog-mist-edge-computing-iot/ (see page 2).

[14] Massimo Villari, Maria Fazio, Schahram Dustdar, Omer Rana, and Rajiv
Ranjan. Osmotic Computing: A New Paradigm for Edge/Cloud Inte-
gration. IEEE Cloud Computing 3:6 (2016), 76–83. ���: 10.1109/mcc.2016.124.
���: https://doi.org/10.1109/mcc.2016.124 (see pages 3, 157).

[15] Malika Bendechache, Sergej Svorobej, P. Endo, and Theo Lynn. Simulat-
ing Resource Management across the Cloud-to-Thing Continuum: A
Survey and Future Directions. Future Internet 12 (2020), 95 (see page 4).

[16] W. Yu, H. Xu, J. Nguyen, E. Blasch, A. Hematian, and W. Gao. Survey of Pub-
lic Safety Communications: User-Side and Network-Side Solutions
and Future Directions. IEEE Access 6 (2018), 70397–70425 (see page 13).

[17] Marius Portmann. Wireless Mesh Networks for Public Safety and Dis-
aster Recovery Applications (Dec. 2006). ���: 10.1201/9781420013542.ch16
(see page 14).

[18] M. Portmann and A. A. Pirzada. Wireless Mesh Networks for Public
Safety and Crisis Management Applications. IEEE Internet Computing
12:1 (2008), 18–25. ����: 1089-7801. ���: 10.1109/MIC.2008.25 (see page 14).

[19] Q. T. Minh, K. Nguyen, and S. Yamada. DRANs: Resilient Disaster Recov-
ery Access Networks. In: 2013 IEEE 37th Annual Computer Software and
Applications Conference Workshops. 2013, 754–759. ���: 10.1109/COMPSACW.
2013.88 (see page 14).

[20] Minh Quang Tran, Yoshitaka Shibata, Cristian Borcea, and Shigeki Yamada.
On-site con�guration of disaster recovery access networksmade easy.
Ad Hoc Networks 40 (Jan. 2016). ���: 10.1016/j.adhoc.2015.12.008 (see page 14).

[21] A. Yarali, B. Ahsant, and S. Rahman.Wireless Mesh Networking: A Key
Solution for EmergencyRuralApplications. In: 2009 Second International
Conference on Advances in Mesh Networks. 2009, 143–149. ���: 10.1109/MESH.
2009.33 (see pages 14, 15).

214

[22] J. Burchard, D. Chemodanov, J. Gillis, and P. Calyam.Wireless Mesh net-
working Protocol for sustained throughput in edge computing. In:
2017 International Conference on Computing, Networking and Communications
(ICNC). 2017, 958–962. ���: 10.1109/ICCNC.2017.7876263 (see page 14).

[23] Daniel Gutiérrez, S.L. Toral, Federico Barrero, Nik Bessis, and Eleana Asi-
makopoulou. Evaluation of Ad Hoc Networks in Disaster Scenarios. In:
Nov. 2011, 759–764. ���: 10.1109/INCoS.2011.86 (see page 14).

[24] A. Khan, F. Aftab, and Z. Zhang. UAPM: An urgency-aware packet man-
agement for disastermanagement using�ying ad-hocnetworks.China
Communications 16:11 (2019), 167–182 (see page 14).

[25] W. Zhao,W. Xin, X. Zheng, and T. Hara.Comparison StudyOnUAVMove-
ment for Adapting toMultimedia Burst in Post-Disaster Networks. In:
2018 IEEE International Conference on Smart Computing (SMARTCOMP). 2018,
339–343 (see page 15).

[26] J. R. E. Leite, P. S. Martins, and E. L. Ursini.Planning ofAdHoc and IoTNet-
works Under Emergency Mode of Operation. In: 2019 IEEE 10th Annual
Information Technology, Electronics and Mobile Communication Conference
(IEMCON). 2019, 1071–1080 (see page 15).

[27] A. I. Husain and H. Bhardwaj. A Cluster basedWSN for Earthquake and
Tsunami: Detection and Mitigation. In: 2019 6th International Conference
on Computing for Sustainable Global Development (INDIACom). 2019, 847–849
(see page 15).

[28] Noman Islam, Ghazala Sheikh, and Zeeshan Islam. A cognitive radio ad
hocnetwork’s based disastermanagement schemewith e�cient spec-
trum management, collaboration and interoperability. ITB Journal of
Information and Communication Technology 10 (Jan. 2017) (see page 15).

[29] P. K. Dalela, S. Sachdev, and V. Tyagi. LoRaWAN Network Capacity for
Practical Network Planning in India. In: 2019 URSI Asia-Paci�c Radio
Science Conference (AP-RASC). 2019, 1–4 (see page 15).

[30] R. Murugeswari and S. Radhakrishnan. Reliable data delivery for emer-
gency and disaster recovery in wireless mesh network. In: Interna-
tional Conference on Information Communication and Embedded Systems (ICI-
CES2014). 2014, 1–6. ���: 10.1109/ICICES.2014.7033950 (see page 15).

[31] Z. Lu, G. Cao, and T. L. Porta. Networking smartphones for disaster
recovery. In: 2016 IEEE International Conference on Pervasive Computing and
Communications (PerCom). 2016, 1–9 (see page 15).

[32] M. Portmann and A. A. Pirzada. Wireless Mesh Networks for Public
Safety and Crisis Management Applications. IEEE Internet Computing
12:1 (2008), 18–25. ����: 1089-7801. ���: 10.1109/MIC.2008.25 (see page 15).

[33] T. Ngo, H. Nishiyama, N. Kato, Y. Shimizu, K. Mizuno, and T. Kumagai.
On the throughput evaluation of wireless mesh network deployed in
disaster areas. In: 2013 International Conference on Computing, Networking
and Communications (ICNC). 2013, 413–417. ���: 10 . 1109 / ICCNC . 2013 .
6504119 (see page 15).

215

[34] G. Iapichino, C. Bonnet, O. del Rio Herrero, C. Baudoin, and I. Buret. A
mobile ad-hoc satellite and wireless Mesh networking approach for
Public Safety communications. In: 2008 10th International Workshop on
Signal Processing for Space Communications. 2008, 1–6. ���: 10.1109/SPSC.
2008.4686695 (see page 15).

[35] Q. T. Minh, K. Nguyen, C. Borcea, and S. Yamada.On-the-�y establishment
of multihop wireless access networks for disaster recovery. IEEE Com-
munications Magazine 52:10 (2014), 60–66. ����: 0163-6804. ���: 10.1109/
MCOM.2014.6917403 (see page 15).

[36] Golden hour (medicine). [Online];Accessed: 2018-03-28.���: http://en.wikipedia.
org/wiki/Golden_hour_(medicine) (see page 16).

[37] M. Villari, G. Tricomi, A. Celesti, and M. Fazio. Orchestration for the de-
ployment of distributed applications with geographical constraints
in cloud federation. Lecture Notes of the Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering, LNICST 189 (2018),
177–187 (see page 16).

[38] E. M. Royer and. A review of current routing protocols for ad hoc mo-
bile wireless networks. IEEE Personal Communications 6:2 (1999), 46–55.
����: 1070-9916. ���: 10.1109/98.760423 (see page 18).

[39] L. Carnevale, A. Galletta, M. Fazio, A. Celesti, and M. Villari. Designing a
FIWARE Cloud Solution for Making Your Travel Smoother: The FLI-
WARE Experience. In: 2018 IEEE 4th International Conference on Collabora-
tion and Internet Computing (CIC). 2018, 392–398. ���: 10.1109/CIC.2018.00059
(see page 19).

[40] Zhenyu Yang, Chandrakanth Chereddi, and Haiyun Luo. Bandwidth mea-
surement inwirelessmeshnetworks.Course Project Report, URL: http://www.
crhc. uiuc. edu/ cchered2/pubs. html (checked 2005-05-23) (2007) (see page 24).

[41] K. Roy, V.K. Banninthaya, S.M. Prabhu, A. Koomar, D. Karnataki, and G.
Shankar. Smart IoT basedEnergyMetering System forMicrogridswith
Load Management Algorithm. In: 2018, 252–256 (see page 32).

[42] A. Berouine, F. Lachhab, Y. Nait Malek, M. Bakhouya, and R. Ouladsine.
A smart metering platform using big data and IoT technologies. In:
vol. 2018-January. 2018, 1–6 (see page 32).

[43] L. Vangelista. Frequency Shift Chirp Modulation: The LoRa Modula-
tion. IEEE Signal Processing Letters 24:12 (2017), 1818–1821. ����: 1070-9908.
���: 10.1109/LSP.2017.2762960 (see page 32).

[44] M. Pennacchioni, M.-G. Di Benedette, T. Pecorella, C. Carlini, and P. Obino.
NB-IoT system deployment for smart metering: Evaluation of cov-
erage and capacity performances. In: vol. 2017-January. 2017, 1–6 (see
page 32).

[45] R. Ramakrishnan and L. Gaur. Smart electricity distribution in residen-
tial areas: Internet of Things (IoT) based advanced metering infras-
tructure and cloud analytics. In: 2016, 46–51 (see page 32).

216

[46] R. Bhilare and S. Mali. IoT based smart home with real time E-metering
using E-controller. In: 2016 (see page 32).

[47] Qi-Lin Mao and Ming-Yue Zhai. A new grid frequency estimation algo-
rithm based on the fractional FFT for IoT nodes time stamps. Cluster
Computing (2018). ����: 1573-7543. ���: 10.1007/s10586-017-1653-2. ���:
https://doi.org/10.1007/s10586-017-1653-2 (see page 32).

[48] Y. Lu and T. J. Kazmierski. An ultra-low-power variable-accuracy bit-
serial FFT butter�y processing element for IoT sensors. In: 2016 IEEE
Asia Paci�c Conference on Circuits and Systems (APCCAS). 2016, 13–16. ���:
10.1109/APCCAS.2016.7803883 (see page 32).

[49] D.-H. Lee and I.-Y. Lee.Dynamic group authentication andkey exchange
scheme based on threshold secret sharing for IoT smart metering en-
vironments. Sensors (Switzerland) 18:10 (2018) (see page 32).

[50] M. Cebe and K. Akkaya. E�cient certi�cate revocation management
schemes for IoT-based advanced metering infrastructures in smart
cities. Ad Hoc Networks (2018) (see page 32).

[51] S. Tonyali, K. Akkaya, N. Saputro, A.S. Uluagac, and M. Nojoumian. Privacy-
preserving protocols for secure and reliable data aggregation in IoT-
enabled Smart Metering systems. Future Generation Computer Systems 78
(2018), 547–557 (see page 32).

[52] Students are Mining Bitcoin in University Dorms, Campuses are Alert. https:
/ / www. newsbtc . com / 2018 / 08 / 12 / students - are - mining - bitcoin - in -
university-dorms-campuses-are-alert/. [Online]; Accessed: 2019-03-28 (see
page 39).

[53] Rick Brandsma, Tjitske F Lawerman, Marieke J Kuiper, Roelineke J Lunsing,
Huibert Burger, and Deborah A Sival. Reliability and discriminant valid-
ity of ataxia rating scales in early onset ataxia. Developmental Medicine
and Child Neurology 59:4 (2017), 427–432. ���: https://doi.org/10.1111/dmcn.
13291. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/dmcn.13291.
���: https://onlinelibrary.wiley.com/doi/abs/10.1111/dmcn.13291 (see
page 45).

[54] David R. Lynch, Ashley McCormick, Kimberly Schadt, and Elizabeth Kichula.
Pediatric Ataxia: Focus on Chronic Disorders. Seminars in Pediatric Neu-
rology 25 (2018). Pediatric Movement Disorders Movements, 54 –64. ����:
1071-9091. ���: https : / /doi .org/10 .1016/ j . spen .2018 .01 .001. ���: http :
/ /www. sciencedirect . com / science / article / pii / S1071909118300019 (see
page 45).

[55] Enrico Bertini, Ginevra Zanni, and Eugen Boltshauser. “Chapter 6 - Non-
progressive congenital ataxias.” In: The Cerebellum: Disorders and Treatment.
Ed. by Mario Manto and Thierry A.G.M. Huisman. Vol. 155. Handbook of
Clinical Neurology. Elsevier, 2018, 91 –103. ���: https://doi.org/10.1016/B978-
0-444-64189-2.00006-8. ���: http://www.sciencedirect.com/science/article/
pii/B9780444641892000068 (see page 45).

217

[56] Matthis Synofzik and Andrea H. Németh. “Chapter 5 - Recessive ataxias.” In:
The Cerebellum: Disorders and Treatment. Ed. by Mario Manto and Thierry
A.G.M. Huisman. Vol. 155. Handbook of Clinical Neurology. Elsevier, 2018,
73 –89. ���: https://doi.org/10.1016/B978-0-444-64189-2.00005-6. ���:
http://www.sciencedirect.com/science/article/pii/B9780444641892000056
(see page 45).

[57] Piero Pavone, Andrea Pratico, Vito Pavone, Riccardo Lubrano, Ra�aele Fal-
saperla, Renata Rizzo, and Martino Ruggieri. Ataxia in children: Early
recognition and clinical evaluation. Italian Journal of Pediatrics 43 (Jan.
2017). ���: 10.1186/s13052-016-0325-9 (see page 45).

[58] Tommaso Schirinzi, Andrea Sancesario, Enrico Bertini, Enrico Castelli, and
Gessica Vasco. Speech and Language Disorders in Friedreich Ataxia:
Highlights on Phenomenology, Assessment, and Therapy. The Cere-
bellum 19 (Feb. 2020). ���: 10.1007/s12311-019-01084-8 (see page 45).

[59] Tommaso Schirinzi, Martina Favetta, Alberto Romano, Andrea Sancesario, Su-
sanna Summa, Silvia Minosse, Zanni Ginevra, Enrico Castelli, Enrico Bertini,
Maurizio Petrarca, and Gessica Vasco. One-year outcome of coenzyme
Q10 supplementation in ADCK3 ataxia (ARCA2). Cerebellum and Atax-
ias 6 (Dec. 2019). ���: 10.1186/s40673-019-0109-2 (see page 45).

[60] Martin B. Delatycki and Sanjay I. Bidichandani. Friedreich ataxia- patho-
genesis and implications for therapies.Neurobiology of Disease 132 (2019),
104606. ����: 0969-9961. ���: https://doi.org/10.1016/j.nbd.2019.104606. ���:
http://www.sciencedirect.com/science/article/pii/S0969996119302815 (see
page 45).

[61] Alberto Benussi, Alvaro Pascual-Leone, and Barbara Borroni. Non-Invasive
Cerebellar Stimulation inNeurodegenerativeAtaxia: ALiteratureRe-
view. International Journal of Molecular Sciences 21 (Mar. 2020), 1948. ���:
10.3390/ijms21061948 (see page 45).

[62] T. Schmitz-Hübsch, S. Tezenas du Montcel, L. Baliko, J. Berciano, S. Boesch,
C. Depondt, P. Giunti, C. Globas, J. Infante, J. S. Kang, B. Kremer, C. Mar-
iotti, B. Melegh, M. Pandolfo, M. Rakowicz, P. Ribai, R. Rola, L. Schöls, S.
Szymanski, B. P. van de Warrenburg, A. Dürr, and T. Klockgether. Scale
for the assessment and rating of ataxia. Neurology 66:11 (2006), 1717–
1720. ����: 0028-3878. ���: 10 .1212/01.wnl .0000219042.60538.92. eprint:
https://n.neurology.org/content/66/11/1717.full.pdf. ���: https://n.neurology.
org/content/66/11/1717 (see page 45).

[63] Marco Germanotta, Gessica Vasco, Maurizio Petrarca, Stefano Rossi, Sacha
Carniel, Enrico Bertini, Paolo Cappa, and Enrico Castelli. Robotic and clin-
ical evaluation of upper limb motor performance in patients with
Friedreich’s Ataxia: An observational study. Journal of neuroengineering
and rehabilitation 12 (Apr. 2015), 41. ���: 10.1186/s12984-015-0032-6 (see
page 45).

218

[64] Tjitske F Lawerman, Rick Brandsma, Huibert Burger, Johannes G M Burg-
erhof, Deborah A Sival, and the Childhood Ataxia and Cerebellar Group of
the European Pediatric Neurology Society. Age-related reference values
for the pediatric Scale for Assessment and Rating of Ataxia: a multi-
centre study. Developmental Medicine & Child Neurology 59:10 (2017), 1077–
1082. ���: https://doi.org/10.1111/dmcn.13507. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1111/dmcn.13507. ���: https://onlinelibrary.wiley.com/
doi/abs/10.1111/dmcn.13507 (see page 45).

[65] Rick Brandsma, Anne H Spits, Marieke J Kuiper, Roelinka J Lunsing, Huibert
Burger, Hubertus P Kremer, Deborah A Sival, and The Childhood Ataxia and
Cerebellar Group. Ataxia rating scales are age-dependent in healthy
children. Developmental Medicine & Child Neurology 56:6 (2014), 556–563.
���: https://doi.org/10.1111/dmcn.12369. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1111/dmcn.12369. ���: https://onlinelibrary.wiley.com/doi/
abs/10.1111/dmcn.12369 (see page 45).

[66] Karen Otte, Bastian Kayser, Sebastian Mansow-Model, Julius Verrel, Friede-
mann Paul, Alexander U. Brandt, and Tanja Schmitz-Hübsch. Accuracy and
Reliability of the Kinect Version 2 for Clinical Measurement of Mo-
tor Function. PLOS ONE 11:11 (Nov. 2016), 1–17. ���: 10.1371/journal.pone.
0166532. ���: https://doi.org/10.1371/journal.pone.0166532 (see page 45).

[67] Lazzaro Di Biase, Susanna Summa, Jacopo Tosi, Fabrizio Ta�oni, Massimo
Marano, Angelo Cascio Rizzo, Fabrizio Vecchio, Domenico Formica, Vincenzo
Di Lazzaro, Giovanni Di Pino, and Mario Tombini. Quantitative Analysis
of Bradykinesia and Rigidity in Parkinson’s Disease. Frontiers in Neu-
rology 9 (Mar. 2018), 121. ���: 10.3389/fneur.2018.00121 (see page 45).

[68] Susanna Summa, Angelo Basteris, Enrico Betti, and Vittorio Sanguineti.
Adaptive training with full-body movements to reduce bradykinesia
in personswith Parkinson’s disease: A pilot study. Journal of NeuroEngi-
neering and Rehabilitation 12 (Dec. 2015), 16. ���: 10.1186/s12984-015-0009-5
(see page 45).

[69] Lazzaro di Biase, Susanna Summa, Jacopo Tosi, Fabrizio Ta�oni, Massimo
Marano, Angelo Cascio Rizzo, Fabrizio Vecchio, Domenico Formica, Vincenzo
Di Lazzaro, Giovanni Di Pino, and Mario Tombini. Quantitative Analysis
of Bradykinesia and Rigidity in Parkinson’s Disease. Frontiers in Neu-
rology 9 (2018), 121. ����: 1664-2295. ���: 10.3389/fneur.2018.00121. ���:
https://www.frontiersin.org/article/10.3389/fneur.2018.00121 (see page 45).

[70] J. Tosi, S. Summa, F. Ta�oni, L. d. Biase, M. Marano, A. C. Rizzo, M. Tombini,
E. Schena, D. Formica, and G. D. Pino. Feature Extraction in Sit-to-Stand
Task Using M-IMU Sensors and Evaluatiton in Parkinson’s Disease.
In: 2018 IEEE International Symposium on Medical Measurements and Applica-
tions (MeMeA). 2018, 1–6. ���: 10.1109/MeMeA.2018.8438737 (see page 45).

[71] Bruno Bonnechère, Bart Jansen, Inès Haack, Lubos Omelina, Veronique Feipel,
Serge Van Sint Jan, and Massimo Pandolfo. Automated functional up-
per limb evaluation of patients with Friedreich ataxia using serious

219

games rehabilitation exercises. Journal of NeuroEngineering and Rehabili-
tation 15 (Oct. 2018). ���: 10.1186/s12984-018-0430-7 (see page 45).

[72] Bekkers EMJ Van den Bergh V Ginis P Rochester L Hausdor� JM Mirelman A
Dockx K and A Nieuwboer. Virtual reality for rehabilitation in Parkin-
son’s disease. Cochrane Database of Systematic Reviews: 12 (2016). ����:
1465-1858. ���: 10.1002/14651858.CD010760.pub2. ���: https://doi.org//10.
1002/14651858.CD010760.pub2 (see pages 45, 58).

[73] Jamie Taylor and Kevin Curran, 183–192. In: Jan. 2015. ���: 10.4018/978-1-
4666-9522-1.ch009 (see page 45).

[74] H. Tran, P. N. Pathirana, M. Horne, L. Power, and D. Szmulewicz. Auto-
mated Finger Chase (ballistic tracking) in the Assessment of Cere-
bellar Ataxia. In: 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC). 2018, 3521–3524. ���:
10.1109/EMBC.2018.8513036 (see page 45).

[75] Anuschka Grobelny, Janina R. Behrens, Sebastian Mertens, Karen Otte, Sebas-
tian Mansow-Model, Theresa Krüger, Elona Gusho, Judith Bellmann-Strobl,
Friedemann Paul, Alexander U. Brandt, and Tanja Schmitz-Hübsch. Max-
imum walking speed in multiple sclerosis assessed with visual per-
ceptive computing. PLOS ONE 12:12 (Dec. 2017), 1–13. ���: 10.1371/journal.
pone.0189281. ���: https : / /doi .org/10 .1371/ journal .pone.0189281 (see
page 45).

[76] Susanna Summa, Tommaso Schirinzi, Giuseppe Massimo Bernava, Alberto
Romano, Martina Favetta, Enza Maria Valente, Enrico Bertini, Enrico Castelli,
Maurizio Petrarca, Giovanni Pioggia, and Gessica Vasco. Development of
SaraHome: Anovel, well-accepted, technology-based assessment tool
for patients with ataxia. Computer Methods and Programs in Biomedicine
188 (2020), 105257. ����: 0169-2607. ���: https://doi.org/10.1016/j.cmpb.
2019 . 105257. ���: http : / /www. sciencedirect . com / science / article / pii /
S0169260719315408 (see pages 45, 57).

[77] Ellen Buckley, Claudia Mazza, and Alisdair McNeill. A systematic review
of the gait characteristics associated with Cerebellar Ataxia. Gait and
Posture 60 (2018), 154 –163. ����: 0966-6362. ���: https://doi.org/10.1016/j.
gaitpost.2017.11.024. ���: http://www.sciencedirect.com/science/article/pii/
S0966636217310238 (see page 46).

[78] Gessica Vasco, SimoneGazzellini, Maurizio Petrarca,Maria Luisa Lispi, Alessan-
dra Pisano, Marco Zazza, Gessica Della Bella, Enrico Castelli, and Enrico
Bertini. Functional and Gait Assessment in Children and Adolescents
A�ected by Friedreich’s Ataxia: A One-Year Longitudinal Study. PLOS
ONE 11:9 (Sept. 2016), 1–13. ���: 10.1371/journal.pone.0162463. ���: https:
//doi.org/10.1371/journal.pone.0162463 (see pages 46, 57).

[79] Winfried Ilg, Zo�a Fleszar, Cornelia Schatton, Holger Hengel, Florian Har-
muth, Peter Bauer, Dagmar Timmann, Martin Giese, Ludger Schols, and
Matthis Synofzik. Individual changes in preclinical spinocerebellar ataxia
identi�ed via increased motor complexity. Movement Disorders 31:12
(2016), 1891–1900. ���: https://doi.org/10.1002/mds.26835. eprint: https:

220

/ / onlinelibrary.wiley. com / doi / pdf / 10 . 1002 /mds . 26835. ���: https : / /
onlinelibrary.wiley.com/doi/abs/10.1002/mds.26835 (see page 46).

[80] Lynn Rochester, Brook Galna, Sue Lord, Dadirayi Mhiripiri, Gail Eglon, and
Patrick F. Chinnery. Gait impairment precedes clinical symptoms in
spinocerebellar ataxia type 6. Movement Disorders 29:2 (2014), 252–255.
���: https://doi.org/10.1002/mds.25706. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/mds.25706. ���: https://onlinelibrary.wiley.com/doi/
abs/10.1002/mds.25706 (see page 46).

[81] B. Munoz, Y. J. Castano-Pino, J. David Arango Paredes, and A. Navarro. Au-
tomated Gait Analysis using a Kinect Camera and Wavelets. In: 2018
IEEE 20th International Conference on e-Health Networking, Applications and
Services (Healthcom). 2018, 1–5. ���: 10.1109/HealthCom.2018.8531161 (see
pages 46, 56).

[82] A.Nandy and P. Chakraborty. A new paradigm of human gait analysis
with Kinect. In: 2015 Eighth International Conference on Contemporary Com-
puting (IC3). 2015, 443–448. ���: 10.1109/IC3.2015.7346722 (see pages 46,
56).

[83] Ana Patricia Rocha, Hugo Miguel Pereira Choupina, Maria do Carmo Vilas-
Boas, Jose Maria Fernandes, and Joao Paulo Silva Cunha. System for au-
tomatic gait analysis based on a single RGB-D camera. PLOS ONE 13:8
(Aug. 2018), 1–24. ���: 10.1371/journal.pone.0201728. ���: https://doi.org/10.
1371/journal.pone.0201728 (see pages 46, 56).

[84] Yunru Ma, Kumar Mithraratne, Nichola Wilson, Xiangbin Wang, Ye Ma,
and Yanxin Zhang. The Validity and Reliability of a Kinect v2-Based
Gait Analysis System for Childrenwith Cerebral Palsy. Sensors 19 (Apr.
2019). ���: 10.3390/s19071660 (see pages 46, 56).

[85] Ross A Clark, Stephanie Vernon, Benjamin F Mentiplay, Kimberly J Miller,
Jennifer L McGinley, Yong Hao Pua, Kade Paterson, and Kelly J Bower. In-
strumenting gait assessment using the Kinect in people living with
stroke: reliability and association with balance tests. Journal of neuro-
engineering and rehabilitation 12 (2015), 15. ����: 1743-0003. ���: 10.1186/
s12984-015-0006-8. ���: https://europepmc.org/articles/PMC4333881 (see
pages 46, 47, 56).

[86] J.A. Zeni, J.G. Richards, and J.S. Higginson. Two simple methods for deter-
mining gait events during treadmill and overground walking using
kinematic data. Gait and Posture 27:4 (2008), 710 –714. ����: 0966-6362. ���:
https://doi.org/10.1016/j.gaitpost.2007.07.007. ���: http://www.sciencedirect.
com/science/article/pii/S0966636207001804 (see pages 46, 56).

[87] Björn Müller, Winfried Ilg, Martin Giese, and Nicolas Ludolph.Validation of
enhanced kinect sensor based motion capturing for gait assessment.
PLOS ONE 12 (Apr. 2017). ���: 10.1371/journal.pone.0175813 (see pages 46,
56).

221

[88] Mohammad Ali Mansournia, Rachel Waters, Maryam Nazemipour, Martin
Bland, and Douglas G. Altman. Bland-Altman methods for comparing
methods of measurement and response to criticisms. Global Epidemi-
ology 3 (2021), 100045. ����: 2590-1133. ���: https : / / doi . org /10 . 1016 / j .
gloepi.2020.100045. ���: http://www.sciencedirect.com/science/article/pii/
S2590113320300298 (see page 51).

[89] Jan S. Krouwer. Why Bland–Altman plots should use X, not (Y+X)/2
when X is a reference method. Statistics in Medicine 27:5 (2008), 778–780.
���: https://doi.org/10.1002/sim.3086. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/sim.3086. ���: https://onlinelibrary.wiley.com/doi/abs/10.
1002/sim.3086 (see page 51).

[90] J. Bland and D. Altman. Measuring agreement in method comparison
studies. StatisticalMethods inMedical Research 8 (1999), 135 –160 (see page 51).

[91] Arie Ben-David. Comparison of classi�cation accuracy using Cohen’s
Weighted Kappa. Expert Systems with Applications 34:2 (2008), 825 –832.
����: 0957-4174. ���: https : / /doi .org/10 .1016/ j .eswa.2006 .10 .022. ���:
http://www.sciencedirect.com/science/article/pii/S0957417406003435 (see
page 51).

[92] Richard O Duda, Peter E Hart, et al. Pattern classi�cation. John Wiley and
Sons, 2006 (see page 51).

[93] A Note on Distance-Weighted k-Nearest Neighbor Rules. IEEE Trans-
actions on Systems, Man, and Cybernetics 8:4 (1978), 311–313. ���: 10.1109/
TSMC.1978.4309958 (see page 51).

[94] Ron Kohavi. A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection. In: Morgan Kaufmann, 1995, 1137–1143
(see page 52).

[95] A. Salarian, H. Russmann, F. J. G. Vingerhoets, C. Dehollain, Y. Blanc, P.
R. Burkhard, and K. Aminian. Gait assessment in Parkinson’s disease:
toward an ambulatory system for long-term monitoring. IEEE Trans-
actions on Biomedical Engineering 51:8 (2004), 1434–1443. ���: 10.1109/TBME.
2004.827933 (see page 55).

[96] Fay Horak, Laurie King, and Martina Mancini. Role of Body-Worn Move-
ment Monitor Technology for Balance and Gait Rehabilitation. Phys-
ical Therapy 95:3 (Mar. 2015), 461–470. ����: 0031-9023. ���: 10.2522/ptj .
20140253. eprint: https : / /academic .oup.com/ptj /article - pdf /95/3/461/
31636529/ptj0461.pdf. ���: https://doi.org/10.2522/ptj.20140253 (see page 55).

[97] John Ludbrook. SPECIAL ARTICLE COMPARINGMETHODS OFMEA-
SUREMENT. Clinical and Experimental Pharmacology and Physiology 24:2
(1997), 193–203. ���: https://doi.org/10.1111/j.1440-1681.1997.tb01807.x.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1440-1681.1997.
tb01807.x. ���: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1440-
1681.1997.tb01807.x (see page 56).

222

[98] Benjamin F. Mentiplay, Luke G. Perraton, Kelly J. Bower, Yong-Hao Pua,
Rebekah McGaw, Sophie Heywood, and Ross A. Clark. Gait assessment
using the Microsoft Xbox One Kinect: Concurrent validity and inter-
day reliability of spatiotemporal and kinematic variables. Journal of
Biomechanics 48:10 (2015), 2166 –2170. ����: 0021-9290. ���: https://doi.org/
10.1016/j.jbiomech.2015.05.021. ���: http://www.sciencedirect.com/science/
article/pii/S0021929015002985 (see page 56).

[99] Masanobu Iwai, Soichiro Koyama, Shigeo Tanabe, Shohei Osawa, Kazuya
Takeda, Ikuo Motoya, Hiroaki Sakurai, Yoshikiyo Kanada, and Nobutoshi
Kawamura. The validity of spatiotemporal gait analysis using dual
laser range sensors: a cross-sectional study. Archives of physiotherapy
9:1 (2019), 1–8 (see page 57).

[100] Matilde Bertoli, Andrea Cereatti, Diana Trojaniello, Laura Avanzino, Elisa
Pelosin, Silvia Din, Lynn Rochester, Pieter Ginis, Esther Bekkers, AnatMirelman,
Je�rey Hausdor�, and Ugo Della Croce. Estimation of spatio-temporal
parameters of gait frommagneto-inertial measurement units: Multi-
center validation among Parkinson, mildly cognitively impaired and
healthy older adults. BioMedical Engineering OnLine 17 (May 2018). ���:
10.1186/s12938-018-0488-2 (see page 57).

[101] Felipe García-Pinillos, Pedro Á Latorre-Román, Víctor M Soto-Hermoso, Juan
A Párraga-Montilla, Antonio Pantoja-Vallejo, Rodrigo Ramírez-Campillo, and
Luis E Roche-Seruendo.Agreement between the spatiotemporal gait pa-
rameters from two di�erent wearable devices and high-speed video
analysis. PloS one 14:9 (2019), e0222872 (see page 57).

[102] M. Sojer, G. Ebersbach, J. Wissel, J. Müller, and W. Poewe. Comparative
analysis of gait in Parkinson’s disease, cerebellar ataxia and subcorti-
cal arteriosclerotic encephalopathy. Gait and Posture 10:1 (1999), 67 –68.
����: 0966-6362. ���: https://doi.org/10.1016/S0966-6362(99)90419-8. ���:
http://www.sciencedirect.com/science/article/pii/S0966636299904198 (see
page 57).

[103] Maja Milošević, Mihovil Logar, and Biljana Djordjević. Mineralogical anal-
ysis of a clay body from Zlakusa, Serbia, used in the manufacture of
traditional pottery – CORRIGENDUM. Clay Minerals (2020), 1–1. ���:
10.1180/clm.2020.31 (see page 58).

[104] What Edge Computing Means for Infrastructure and Operations Leaders,
2017. https://www.gartner.com/smarterwithgartner/what-edge-computing-
means-for-infrastructure-and-operations-leaders/ (see page 59).

[105] E. Ahmed, P. Chatzimisios, B.B. Gupta, Y. Jararweh, and H. Song. Recent
advances in fog and mobile edge computing. Transactions on Emerging
Telecommunications Technologies 29:4 (2018). ���: 10 . 1002 / ett . 3307 (see
page 60).

[106] W. Kellerer, P. Kalmbach, A. Blenk, A. Basta, M. Reisslein, and S. Schmid.
Adaptable and Data-Driven Softwarized Networks: Review, Opportu-
nities, and Challenges. Proceedings of the IEEE 107:4 (2019), 711–731. ����:
1558-2256. ���: 10.1109/JPROC.2019.2895553 (see page 61).

223

[107] M. He, A. M. Alba, A. Basta, A. Blenk, and W. Kellerer. Flexibility in
Softwarized Networks: Classi�cations and Research Challenges. IEEE
Communications Surveys Tutorials 21:3 (2019), 2600–2636. ����: 2373-745X.
���: 10.1109/COMST.2019.2892806 (see page 61).

[108] S.-M. Zhang and A.K. Sangaiah. Reliable design for virtual network re-
quests with location constraints in edge-of-things computing. Eurasip
Journal on Wireless Communications and Networking 2018:1 (2018). ���: 10.
1186/s13638-018-1075-8 (see page 61).

[109] S. Aditya, K. Subratie, and R. J. Figueiredo. PerSoNet: Software-De�ned
Overlay Virtual Networks Spanning Personal Devices Across Social
Network Users. In: 2018 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). 2018, 171–180. ���: 10.1109/CloudCom2018.
2018.00043 (see page 61).

[110] R. Muñoz, R. Vilalta, N. Yoshikane, R. Casellas, R. Martínez, T. Tsuritani, and
I. Morita. Integration of IoT, Transport SDN, and Edge/Cloud Comput-
ing for Dynamic Distribution of IoT Analytics and E�cient Use of
Network Resources. Journal of Lightwave Technology 36:7 (2018), 1420–
1428. ���: 10.1109/JLT.2018.2800660 (see page 61).

[111] R. Onet, R. Burian, C. Campeanu, I. Ivanciu, D. Zinca, and V. Dobrota. Auto-
maticDeployment of aNetworkOverlay in an Intelligent Transporta-
tion System: Docker and Open Baton Approach. In: 2019 18th RoEduNet
Conference: Networking in Education and Research (RoEduNet). 2019, 1–6. ���:
10.1109/ROEDUNET.2019.8909588 (see page 61).

[112] C. Huang, M. Chiang, D. Dao, W. Su, S. Xu, and H. Zhou. V2V Data Of-
�oading for Cellular Network based on the Software De�ned Net-
work (SDN) inside Mobile Edge Computing (MEC) Architecture. IEEE
Access (2018). ���: 10.1109/ACCESS.2018.2820679 (see page 61).

[113] K. Wang, H. Yin, W. Quan, and G. Min. Enabling Collaborative Edge Com-
puting for Software De�ned Vehicular Networks. IEEE Network (2018).
���: 10.1109/MNET.2018.1700364 (see page 61).

[114] J. Nakazato, Y. Tao, G. K. Tran, and K. Sakaguchi. Revenue Model with
Multi-Access Edge Computing for Cellular Network Architecture. In:
2019 Eleventh International Conference on Ubiquitous and Future Networks
(ICUFN). 2019, 21–26. ���: 10.1109/ICUFN.2019.8805914 (see page 61).

[115] M. Chen and Y. Hao. Task O�loading for Mobile Edge Computing in
Software De�ned Ultra-dense Network. IEEE Journal on Selected Areas in
Communications (2018). ���: 10.1109/JSAC.2018.2815360 (see page 61).

[116] K. Kaur, S. Garg, G.S. Aujla, N. Kumar, J.J.P.C. Rodrigues, and M. Guizani.
Edge Computing in the Industrial Internet of Things Environment:
Software-De�ned-Networks-Based Edge-Cloud Interplay. IEEE Com-
munications Magazine 56:2 (2018), 44–51. ���: 10.1109/MCOM.2018.1700622
(see page 61).

224

[117] H. Guo and J. Liu. Collaborative Computation O�loading for Multi-
Access Edge Computing over Fiber-Wireless Networks. IEEE Transac-
tions on Vehicular Technology (2018). ���: 10.1109/TVT.2018.2790421 (see
page 62).

[118] M. Liu, Y. Mao, S. Leng, and S. Mao. Full-Duplex Aided User Virtualiza-
tion for Mobile Edge Computing in 5G Networks. IEEE Access 6 (2017),
2996–3007 (see page 62).

[119] Y. He, F. Richard Yu, N. Zhao, V.C.M. Leung, and H. Yin. Software-De�ned
NetworkswithMobile EdgeComputing andCaching for Smart Cities:
A Big Data Deep Reinforcement Learning Approach. IEEE Communica-
tions Magazine 55:12 (2017), 31–37. ���: 10.1109/MCOM.2017.1700246 (see
page 62).

[120] Y. Zhou, F.R. Yu, J. Chen, and Y. Kuo. Virtual resource allocation for
information-centric heterogeneous networks with mobile edge com-
puting. In: 2017 IEEE Conference on Computer CommunicationsWorkshops, IN-
FOCOM WKSHPS 2017. 2017, 235–240. ���: 10.1109/INFCOMW.2017.8116382
(see page 62).

[121] A. Celesti, D. Mulfari, M. Fazio, M. Villari, and A. Pulia�to. Exploring Con-
tainer Virtualization in IoT Clouds. In: 2016 IEEE International Conference
on Smart Computing (SMARTCOMP). 2016, 1–6. ���: 10.1109/SMARTCOMP.
2016.7501691 (see pages 63, 133).

[122] Kubernetes. Kubernetes. 2017. ���: https://kubernetes.io/ (visited on 2017)
(see page 66).

[123] Kubernetes. Viewing Pods and Nodes. 2017. ���: https://kubernetes.io/docs/
tutorials/kubernetes-basics/explore-intro/ (see page 66).

[124] Kubernetes. Cluster Networking. 2017. ���: https : / / kubernetes . io / docs /
concepts/cluster-administration/networking/ (see page 68).

[125] Top 6Digital Transformation Trends In The Automotive Industry. [Online];Accessed:
2018-07-28. ���: http://www.forbes.com/sites/danielnewman/2017/07/25/top-
6-digital-transformation-trends-in-automotive/#a2b64754e1e3 (see page 81).

[126] 220.76 Billion Smart TransportationMarket by Solution Type, Service, and Region
- Global Forecast to 2021 - Research andMarkets. https://markets.businessinsider.com/news/stocks/220-
76-billion-smart-transportation-market-by-solution-type-service-and-region-
global-forecast-to-2021-research-and-markets-1001991360 (see page 81).

[127] Ali Hassan Sodhro, Zongwei Luo, Arun Kumar Sangaiah, and SungWook Baik.
Mobile edge computing based QoS optimization in medical health-
care applications. International Journal of Information Management 45
(2019), 308 –318. ����: 0268-4012 (see page 82).

[128] Antonio Celesti, Maria Fazio, Antonino Galletta, Lorenzo Carnevale, Jiafu
Wan, and Massimo Villari. An approach for the secure management of
hybrid cloud–edge environments. Future Generation Computer Systems
90 (2019), 1 –19. ����: 0167-739X (see page 82).

225

[129] A. Broggi, P. Cerri, S. Debattisti, M. C. Laghi, P. Medici, D. Molinari, M.
Panciroli, and A. Prioletti.PROUD#x2014;Public RoadUrbanDriverless-
Car Test. IEEE Transactions on Intelligent Transportation Systems 16:6 (2015),
3508–3519. ����: 1524-9050. ���: 10.1109/TITS.2015.2477556 (see page 82).

[130] Intersection Car Accidents: Statistics, Causes and Possible Solutions. [Online];Accessed:
2018-07-28. ���: http : / / zaneslaw. com/ intersection - car - accidents/ (see
page 82).

[131] K. N. Bui and J. J. Jung. ACO-Based Dynamic Decision Making for Con-
nected Vehicles in IoT System. IEEE Transactions on Industrial Informatics
15:10 (2019), 5648–5655. ���: 10.1109/TII.2019.2906886 (see page 83).

[132] A. Celesti, A. Galletta, L. Carnevale, M. Fazio, A. Ĺay Ekuakille, and M. Villari.
An IoT Cloud System for Tra�c Monitoring and Vehicular Accidents
Prevention Based on Mobile Sensor Data Processing. IEEE Sensors Jour-
nal 18:12 (2018), 4795–4802. ����: 1530-437X. ���: 10.1109/JSEN.2017.2777786
(see page 84).

[133] S. Tsurumi and T. Fujii. Reliable vehicle-to-vehicle communication us-
ing spectrum environmentmap. In: 2018 International Conference on Infor-
mation Networking (ICOIN). 2018, 310–315. ���: 10.1109/ICOIN.2018.8343131
(see page 84).

[134] H. Rashid, M. J. F. Ashra�, M. Azizi, and M. R. Heydarinezhad. Intelligent
tra�c light control based on clustering using Vehicular Ad-hoc Net-
works. In: 2015 7th Conference on Information and Knowledge Technology
(IKT). 2015, 1–6. ���: 10.1109/IKT.2015.7288801 (see page 84).

[135] M. M. Abdelhameed, M. Abdelaziz, S. Hammad, and O. M. Shehata.AHybrid
Fuzzy-Genetic Controller for a multi-agent intersection control sys-
tem. In: 2014 International Conference on Engineering and Technology (ICET).
2014, 1–6. ���: 10.1109/ICEngTechnol.2014.7016755 (see page 84).

[136] Khac-Hoai NamBui, Jason J. Jung, andDavid Camacho.ConsensualNegotiation-
Based Decision Making for Connected Appliances in Smart Home
Management Systems. In: Sensors. 2018 (see page 84).

[137] M. M. Abdelhameed, M. Abdelaziz, S. Hammad, and O. M. Shehata. Develop-
ment and evaluation of a multi-agent autonomous vehicles intersec-
tion control system. In: 2014 International Conference on Engineering and
Technology (ICET). 2014, 1–6. ���: 10.1109/ICEngTechnol.2014.7016754 (see
page 84).

[138] A. Buzachis, A. Celesti, A. Galletta, M. Fazio, andM. Villari.ASecure andDe-
pendable Multi-Agent Autonomous Intersection Management (MA-
AIM) System Leveraging Blockchain Facilities. In: 2018 IEEE/ACM In-
ternational Conference on Utility and Cloud Computing Companion (UCC
Companion). 2018, 226–231. ���: 10.1109/UCC-Companion.2018.00060 (see
pages 84, 105).

[139] C. Wuthishuwong and A. Traechtler. Vehicle to infrastructure based safe
trajectory planning for Autonomous Intersection Management. In:
2013 13th International Conference on ITS Telecommunications (ITST). 2013,
175–180. ���: 10.1109/ITST.2013.6685541 (see page 84).

226

[140] K. N. Bui and J. J. Jung. ACO-Based Dynamic Decision Making for Con-
nected Vehicles in IoT System. IEEE Transactions on Industrial Informatics
15:10 (2019), 5648–5655. ����: 1941-0050. ���: 10.1109/TII.2019.2906886 (see
page 84).

[141] J. Petit and S. E. Shladover. Potential Cyberattacks on Automated Ve-
hicles. IEEE Transactions on Intelligent Transportation Systems 16:2 (2015),
546–556. ����: 1524-9050. ���: 10.1109/TITS.2014.2342271 (see page 85).

[142] M. Singh and S. Kim. Crypto trust point (cTp) for secure data shar-
ing among intelligent vehicles. In: 2018 International Conference on Elec-
tronics, Information, and Communication (ICEIC). 2018, 1–4. ���: 10.23919/
ELINFOCOM.2018.8330663 (see page 85).

[143] M. G. M. Mehedi Hasan, A. Datta, and M. A. Rahman. Poster Abstract:
Chained of Things: A Secure and Dependable Design of Autonomous
Vehicle Services. In: 2018 IEEE/ACMThird International Conference on Internet-
of-Things Design and Implementation (IoTDI). 2018, 298–299. ���: 10.1109/
IoTDI.2018.00048 (see page 85).

[144] Y. Yuan and F. Wang. Towards blockchain-based intelligent transporta-
tion systems. In: 2016 IEEE 19th International Conference on Intelligent Trans-
portation Systems (ITSC). 2016, 2663–2668. ���: 10.1109/ITSC.2016.7795984
(see page 85).

[145] Satoshi Nakamoto.Bitcoin: A Peer-to-Peer Electronic Cash System (Mar.
2009) (see page 87).

[146] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M.
Virza. Zerocash: Decentralized Anonymous Payments from Bitcoin.
In: 2014 IEEE Symposium on Security and Privacy. 2014, 459–474. ���: 10.1109/
SP.2014.36 (see page 87).

[147] Daniel Davis Wood. ETHEREUM: A SECURE DECENTRALISED GEN-
ERALISED TRANSACTION LEDGER. In: 2014 (see page 87).

[148] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Q. Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti,
Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed Cocco, and Jason
Yellick.Hyperledger fabric: a distributed operating system for permis-
sioned blockchains. ArXiv abs/1801.10228 (2018) (see page 88).

[149] Richard Brown, James Carlyle, Ian Grigg, and Mike Hearn. Corda: An Intro-
duction. Sept. 2016. ���: 10.13140/RG.2.2.30487.37284 (see page 88).

[150] Christian Cachin and Marko Vukolic. Blockchain Consensus Protocols
in the Wild. ArXiv abs/1707.01873 (2017) (see page 89).

[151] Kurt Dresner and Peter Stone. A Multiagent Approach to Autonomous
Intersection Management. J. Artif. Intell. Res. (JAIR) 31 (Jan. 2008), 591–
656. ���: 10.1613/jair.2502 (see page 91).

227

[152] Charles Neu, RegioMichelin, Avelino Zorzo, and Roben Lunardi.Distributed
Access Control on IoT Ledger-based Architecture. In: Apr. 2018. ���:
10.1109/NOMS.2018.8406154 (see page 96).

[153] L. Li, J. Liu, L. Cheng, S. Qiu, W. Wang, X. Zhang, and Z. Zhang. Credit-
Coin: A Privacy-Preserving Blockchain-Based Incentive Announce-
ment Network for Communications of Smart Vehicles. IEEE Transac-
tions on Intelligent Transportation Systems 19:7 (2018), 2204–2220. ����: 1524-
9050. ���: 10.1109/TITS.2017.2777990 (see page 96).

[154] Pradip Kumar Sharma, Seo Yeon Moon, and Jong Hyuk Park. Block-VN:
A Distributed Blockchain Based Vehicular Network Architecture in
Smart City. JIPS 13 (2017), 184–195 (see page 96).

[155] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and
Kian-Lee Tan. BLOCKBENCH: A Framework for Analyzing Private
Blockchains. In: May 2017, 1085–1100. ���: 10.1145/3035918.3064033 (see
page 96).

[156] Carly Daley, Tammy Toscos, and Michael Mirro. Data Integration and
Interoperability for Patient-Centered Remote Monitoring of Cardio-
vascular Implantable Electronic Devices. Bioengineering 6:1 (2019), 25
(see page 113).

[157] Julia Adler-Milstein. Moving Past the EHR Interoperability Blame Game. [ac-
cessed February 28, 2019]. 2017. ���: http://www.grandviewresearch.com/
press-release/global-e-health-market (see page 113).

[158] A. Celesti, M. Fazio, A. Romano, and M. Villari. A hospital cloud-based
archival information system for the e�cientmanagement ofHL7 big
data. In: 2016, 406–411 (see page 113).

[159] PR Newswire. Survey: Patients See 18.7 Di�erent Doctors on Average. [accessed
February 28, 2019]. 2010. ���: "http://www.prnewswire.com/news-releases/
surveypatients-see-187-di�erent-doctors-on-average-92171874.html" (see
page 114).

[160] Paola Mosconi, Silvia Radrezza, Emanuele Lettieri, and Eugenio Santoro.
Use of Health Apps andWearable Devices: Survey Among Italian As-
sociations for Patient Advocacy. JMIR Mhealth Uhealth 7:1 (2019) (see
page 114).

[161] Ariel Ekblaw, Asaph Azaria, John D. Halamka, and Andrew Lippman.ACase
Study for Blockchain in Healthcare: “ MedRec ” prototype for elec-
tronic health records and medical research data. In: 2016 (see page 114).

[162] Xiao Yue, Huiju Wang, Dawei Jin, Mingqiang Li, and Wei Jiang. Healthcare
Data Gateways: Found Healthcare Intelligence on Blockchain with
Novel Privacy Risk Control. In: vol. 40. Oct. 2016, 218. ���: 10.1007/s10916-
016-0574-6 (see page 114).

[163] Paul Beninger and Michael A. Ibara. Pharmacovigilance and Biomedical
Informatics: A Model for Future Development. In: vol. 38. Nov. 2016.
���: 10.1016/j.clinthera.2016.11.006 (see page 114).

228

[164] G. Zyskind, O. Nathan, and A. ’. Pentland. Decentralizing Privacy: Using
Blockchain to Protect Personal Data. In: 2015 IEEE Security and Privacy
Workshops. 2015, 180–184. ���: 10.1109/SPW.2015.27 (see page 114).

[165] Tomas Mikula and Rune Hylsberg Jacobsen. Identity and Access Man-
agement with Blockchain in Electronic Healthcare Records. 2018 21st
Euromicro Conference on Digital System Design (DSD) (2018), 699–706 (see
page 114).

[166] Xiaoshuai Zhang and Stefan Poslad. Blockchain Support for Flexible
Queries with Granular Access Control to Electronic Medical Records
(EMR). In: Aug. 2018. ���: 10.1109/ICC.2018.8422883 (see page 114).

[167] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. MedRec:
Using Blockchain for Medical Data Access and Permission Manage-
ment. In: Aug. 2016, 25–30. ���: 10.1109/OBD.2016.11 (see pages 114, 119).

[168] Edward Y. Chang, Shih-Wei Liao, Chun-Ting Liu, Wei-Chen Lin, Pin-Wei
Liao, Wei-Kang Fu, Chung-Huan Mei, and Emily J. Chang. DeepLinQ: Dis-
tributedMulti-Layer Ledgers for Privacy-Preserving Data Sharing. In:
Dec. 2018, 173–178. ���: 10.1109/AIVR.2018.00037 (see page 119).

[169] Massimo Villari, Maria Fazio, Schahram Dustdar, Omer Rana, and Rajiv
Ranjan. Osmotic Computing: A New Paradigm for Edge/Cloud Inte-
gration. IEEE Cloud Computing 3:6 (2016), 76–83. ���: 10.1109/mcc.2016.124.
���: https://doi.org/10.1109/mcc.2016.124 (see pages 128, 129).

[170] MassimoVillari, Antonio Celesti, andMaria Fazio. “Towards Osmotic Comput-
ing: Looking at Basic Principles and Technologies.” In: Advances in Intelligent
Systems and Computing. Springer International Publishing, 2017, 906–915.
���: 10.1007/978-3-319-61566-0_86. ���: https://doi.org/10.1007/978-3-319-
61566-0_86 (see page 128).

[171] S. K. Datta and C. Bonnet. Next-Generation, Data Centric and End-to-
End IoTArchitecture Based onMicroservices. In: 2018 IEEE International
Conference on Consumer Electronics - Asia (ICCE-Asia). 2018, 206–212. ���:
10.1109/ICCE-ASIA.2018.8552135 (see page 128).

[172] M. Gamal, R. Rizk, H. Mahdi, and B. E. Elnaghi.Osmotic Bio-Inspired Load
Balancing Algorithm in Cloud Computing. IEEE Access 7 (2019), 42735–
42744. ���: 10.1109/ACCESS.2019.2907615 (see page 130).

[173] Y. A. Younis, K. Kifayat, and M. Merabti. A novel evaluation criteria to
cloud based access control models. In: 2015 11th International Conference
on Innovations in Information Technology (IIT). 2015, 68–73. ���: 10.1109/
INNOVATIONS.2015.7381517 (see page 133).

[174] Z. B. Yahya, F. B. Ktata, and K. Ghedira.Multi-organizational Access Con-
trol Model Based on Mobile Agents for Cloud Computing. In: 2016
IEEE/WIC/ACM International Conference on Web Intelligence (WI). 2016, 656–
659. ���: 10.1109/WI.2016.0116 (see page 133).

229

[175] Y. Demchenko, C. Ngo, C. de Laat, and C. Lee. Federated Access Control in
Heterogeneous Intercloud Environment: Basic Models and Architec-
ture Patterns. In: 2014 IEEE International Conference on Cloud Engineering.
2014, 439–445. ���: 10.1109/IC2E.2014.84 (see page 134).

[176] Agento. ���: https://github.com/lcarnevale/agento (see page 138).

[177] M. Fazio, A. Celesti, F.G. Marquez, A. Glikson, and M. Villari. Exploiting
the FIWARE cloud platform to develop a remote patient monitoring
system. In: vol. 2016-February. cited By 16. 2016, 264–270. ���: 10.1109/ISCC.
2015.7405526. ���: https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84961967567&doi=10.1109%2fISCC.2015.7405526&partnerID=40&md5=
90d1713b21a2c2e4e1fb8f49c022255e (see page 145).

[178] Unlocking the potential of the Internet of Things. Available: https : / /www.
mckinsey.com/business- functions/digital-mckinsey/our- insights/. [On-
line];Accessed: 2018-09-17 (see page 146).

[179] Internet of Things (IoT) Healthcare Market is Expected to Reach 136.8 Billion
Worldwide, by 2021. Available: http://www.marketwatch.com/press-release/.
[Online];Accessed: 2018-09-17 (see page 146).

[180] E. Rachkidi, E. H. Cherkaoui, M. Ait-idir, N. Agoulmine, N. C. Taher, M. Santos,
and S. Fernandes. Towards E�cient Automatic Scaling and Adaptive
Cost-Optimized eHealth Services in Cloud. In: 2015 IEEE Global Commu-
nications Conference (GLOBECOM). 2015, 1–6. ���: 10.1109/GLOCOM.2015.
7417751 (see page 146).

[181] A. Buzachis, A. Galletta, L. Carnevale, A. Celesti, M. Fazio, and M. Villari. To-
wards Osmotic Computing: Analyzing Overlay Network Solutions to
Optimize the Deployment of Container-Based Microservices in Fog,
Edge and IoT Environments. In: 2018 IEEE 2nd International Conference on
Fog and Edge Computing (ICFEC). 2018, 1–10. ���: 10.1109/CFEC.2018.8358729
(see pages 146, 150).

[182] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan.Osmotic Computing:
A New Paradigm for Edge/Cloud Integration. IEEE Cloud Computing 3:6
(2016), 76–83. ����: 2325-6095. ���: 10.1109/MCC.2016.124 (see page 146).

[183] Alina Buzachis, Giuseppe Massimo Bernava, Mario Busà, Giovanni Piog-
gia, and Massimo Villari. Towards Osmotic Computing: Future Prospect
for the Health Information Technology (HIT) Systems of ISASI-CNR
(ME). In: IEEE ISCC 2018 Workshops - 3rd IEEE Workshop on ICT Solutions for
Health (ISCC 2018 Workshops - ICTS4eHealth 2018). Natal, Brazil, June 2018
(see page 147).

[184] I. Ben Ida, A. Jemai, and A. Loukil. A survey on security of IoT in the
context of eHealth and clouds. In: 2016 11th International Design Test
Symposium (IDT). 2016, 25–30. ���: 10.1109/IDT.2016.7843009 (see page 147).

[185] R. Boussada, M. E. Elhdhili, and L. A. Saidane. Privacy Preserving Solution
for Internet of Things with Application to eHealth. In: 2017 IEEE/ACS
14th International Conference on Computer Systems and Applications (AICCSA).
2017, 384–391. ���: 10.1109/AICCSA.2017.75 (see page 147).

230

[186] H. Ahmed, A. Alsadoon, P. W. C. Prasad, N. Costadopoulos, L. S. Hoe, and
A. Elchoemi. Next generation cyber security solution for an eHealth
organization. In: 2017 5th International Conference on Information and Com-
munication Technology (ICoIC7). 2017, 1–5. ���: 10.1109/ICoICT.2017.8074723
(see page 147).

[187] F. Firouzi, B. Farahani, M. Ibrahim, and K. Chakrabarty. From EDA to
IoT eHealth: Promise, Challenges, and Solutions. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2018), 1–1. ����:
0278-0070. ���: 10.1109/TCAD.2018.2801227 (see page 147).

[188] Pavlos Kosmides, Konstantinos Demestichas, Evgenia Adamopoulou, Nikos
Koutsouris, Yannis Oikonomidis, and Vanessa De Luca. InLife: Combining
Real Life with Serious Games using IoT (Aug. 2018) (see page 147).

[189] Tiago Martins, Vítor Carvalho, and Filomena Soares.A serious game for re-
habilitation of neurological disabilities: Premilinary study (Apr. 2015)
(see page 147).

[190] Alana Da Gama, Pascal Fallavollita, Veronica Teichrieb, and Nassir Navab.
Motor Rehabilitation Using Kinect: A Systematic Review. 4 (Feb. 2015),
150206061432001 (see page 147).

[191] V. Fernandez-Cervantes, E. Stroulia, C. Castillo, L. Oliva, and F. Gonzalez.
Serious rehabilitation games with Kinect. In: 2015 IEEE Games Entertain-
ment Media Conference (GEM). 2015, 1–1. ���: 10.1109/GEM.2015.7377254
(see page 147).

[192] A. Ballas, T. Santad, K. Sookhanaphibarn, and W. Choensawat. Game-based
system for learning labanotation using Microsoft Kinect. In: 2017 IEEE
6th Global Conference on Consumer Electronics (GCCE). 2017, 1–3. ���: 10.
1109/GCCE.2017.8229481 (see page 148).

[193] D. Ferreira, R. Oliveira, and O. Postolache. Physical rehabilitation based
on kinect serious games. In: 2017 Eleventh International Conference on
Sensing Technology (ICST). 2017, 1–6. ���: 10.1109/ICSensT.2017.8304512 (see
page 148).

[194] A. Celesti, F. Tusa, M. Villari, and A. Pulia�to. How the Dataweb can
support cloud federation: Service representation and secure data ex-
change. In: cited By 16. 2012, 73–79. ���: 10.1109/NCCA.2012.26. ���: https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-84875618191&doi=10.
1109%2fNCCA.2012.26&partnerID=40&md5=5e911776c5eb6dbc87a404a9f0a52caa
(see page 148).

[195] James Burke, MD. J. McNeill, Darryl Charles, Philip Morrow, J H. Crosbie, and
Suzanne Mcdonough.Optimising engagement for stroke rehabilitation
using serious games. 25 (Dec. 2009), 1085–1099 (see page 150).

[196] J. W. Burke, M. D. J. McNeill, D. K. Charles, P. J. Morrow, J. H. Crosbie, and S.
M. McDonough.Augmented Reality Games for Upper-Limb Stroke Re-
habilitation. In: 2010 Second International Conference on Games and Virtual
Worlds for Serious Applications. 2010, 75–78. ���: 10.1109/VS-GAMES.2010.21
(see page 150).

231

[197] Lorenzo Carnevale, Antonio Celesti, Antonino Galletta, Schahram Dustdar,
and Massimo Villari. Osmotic Computing as a Distributed Multi-Agent
system: the Body Area Network Scenario. Internet of Things 5 (Mar. 2019).
���: 10.1016/j.iot.2019.01.001 (see pages 152, 159).

[198] M. Nardelli, S. Nastic, S. Dustdar, M. Villari, and R. Ranjan. Osmotic Flow:
Osmotic Computing + IoT Work�ow. IEEE Cloud Computing 4:2 (2017),
68–75. ����: 2325-6095. ���: 10.1109/MCC.2017.22 (see page 158).

[199] Thomas Rausch, SchahramDustdar, and R Ranjan.OsmoticMessage-Oriented
Middleware for the Internet of Things. IEEE Cloud Computing 5 (Mar.
2018), 17–25. ���: 10.1109/MCC.2018.022171663 (see page 158).

[200] Vishal Sharma, Ilsun You, Ravinder Kumar, and Pankoo Kim. Computa-
tional O�loading for E�cient Trust Management in Pervasive On-
line Social Networks Using Osmotic Computing. IEEE Access PP (Mar.
2017), 1–1. ���: 10.1109/ACCESS.2017.2683159 (see page 159).

[201] A. Buzachis, A. Galletta, L. Carnevale, A. Celesti, M. Fazio, and M. Villari. To-
wards Osmotic Computing: Analyzing Overlay Network Solutions to
Optimize the Deployment of Container-Based Microservices in Fog,
Edge and IoT Environments. In: 2018 IEEE 2nd International Conference on
Fog and Edge Computing (ICFEC). 2018, 1–10. ���: 10.1109/CFEC.2018.8358729
(see page 159).

[202] M. Villari, M. Fazio, S. Dustdar, O. Rana, L. Chen, and R. Ranjan. Software
De�ned Membrane: Policy-Driven Edge and Internet of Things Secu-
rity. IEEE Cloud Computing 4:4 (2017), 92–99. ����: 2325-6095. ���: 10.1109/
MCC.2017.3791014 (see page 159).

[203] V. Sharma, K. Srinivasan, D. N. K. Jayakody, O. Rana, and R. Kumar. Man-
aging Service-Heterogeneity using Osmotic Computing. ArXiv e-prints
(Apr. 2017). arXiv: 1704.04213 [cs.DC] (see page 160).

[204] Geo�rey Fox, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski.
Status of Serverless Computing and Function-as-a-Service(FaaS) in
Industry and Research. In: Aug. 2017. ���: 10.13140/RG.2.2.15007.87206
(see page 160).

[205] Serverless ormicroservices - which is better?, https://www.quora.com/Serverless-
or-microservices-which-is-better (see page 160).

[206] The IoT in 2030: 24 billion connected things generating $1.5 trillion. Last accessed
27 July 2020. ���: https://iotbusinessnews.com/2020/05/20/03177-the-iot-in-
2030-24-billion-connected-things-generating-1-5-trillion/ (see page 171).

[207] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose,
and Rajkumar Buyya. CloudSim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource provi-
sioning algorithms. Software: Practice and Exp. 41:1 (2011), 23–50. ���: 10.
1002/spe.995. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.995.
���: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.995 (see page 172).

232

[208] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar Buyya.
iFogSim: A toolkit for modeling and simulation of resource manage-
ment techniques in the Internet of Things, Edge and Fog computing
environments. Software: Practice and Experience 47:9 (2017), 1275–1296. ���:
10.1002/spe.2509. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
spe.2509. ���: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2509 (see
page 172).

[209] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. EdgeCloudSim: An en-
vironment for performance evaluation of edge computing systems.
Trans. Emerging Telecommunications Tech. 29:11 (2018), e3493. ���: 10.1002/
ett.3493. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.3493. ���:
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3493 (see page 172).

[210] Márcio Lopes and Wilson et al. Higashino. MyiFogSim: A Simulator for
Virtual Machine Migration in Fog Computing. In: Dec. 2017, 47–52. ���:
10.1145/3147234.3148101 (see page 173).

[211] Xuezhi Zeng, Saurabh Kumar Garg, Peter Strazdins, Prem Prakash Jayara-
man, Dimitrios Georgakopoulos, and Rajiv Ranjan. IOTSim: A simulator
for analysing IoT applications. Journal of Systems Architecture 72 (2017).
Design Automation for Embedded Ubiquitous Computing Systems, 93 –107.
����: 1383-7621. ���: https://doi.org/10.1016/j .sysarc.2016.06.008. ���:
http://www.sciencedirect.com/science/article/pii/S1383762116300662 (see
page 173).

[212] I. Lera, C. Guerrero, and C. Juiz. YAFS: A Simulator for IoT Scenarios in
Fog Computing. IEEE Access 7 (2019), 91745–91758 (see page 173).

[213] Damián Fernández-Cerero, Alejandro Fernández-Montes, F. Javier Ortega,
Agnieszka Jakóbik, and Adrian Widlak. Sphere: Simulator of edge infras-
tructures for the optimization of performance and resources energy
consumption. Simulation Modelling Practice and Theory 101 (2020). Model-
ing and Simulation of Fog Computing, 101966. ����: 1569-190X. ���: https:
//doi.org/10.1016/j.simpat.2019.101966. ���: http://www.sciencedirect.com/
science/article/pii/S1569190X19300991 (see page 173).

[214] Damián Fernández-Cerero, Alejandro Fernández-Montes, Agnieszka Jakóbik,
Joanna Kołodziej, and Miguel Toro. SCORE: Simulator for cloud opti-
mization of resources and energy consumption. Simulation Modelling
Practice and Theory 82 (2018), 160 –173. ����: 1569-190X. ���: https://doi.org/
10.1016/j.simpat.2018.01.004. ���: http://www.sciencedirect.com/science/
article/pii/S1569190X18300030 (see page 173).

[215] R. Mayer, L. Graser, H. Gupta, E. Saurez, and U. Ramachandran. EmuFog:
Extensible and scalable emulation of large-scale fog computing in-
frastructures. In: 2017 IEEE Fog World Congr. 2017, 1–6. ���: 10.1109/FWC.
2017.8368525 (see page 174).

[216] Philip Wette, M Dräxler, Arne Schwabe, F Wallaschek, M Zahraee, and H
Karl. MaxiNet: Distributed emulation of software-de�ned networks.
In: June 2014, 1–9. ���: 10.1109/IFIPNetworking.2014.6857078 (see page 174).

233

[217] A. Coutinho, F. Greve, C. Prazeres, and J. Cardoso. Fogbed:ARapid-Prototyping
Emulation Environment for Fog Computing. In: 2018 IEEE International
Conference on Communications (ICC). 2018, 1–7. ���: 10 . 1109 / ICC .2018 .
8423003 (see page 174).

[218] JonathanHasenburg, Martin Grambow, and Elias et al. Grünewald.MockFog:
Emulating Fog Computing Infrastructure in the Cloud. In: June 2019.
���: 10.1109/ICFC.2019.00026 (see page 174).

[219] Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and
Philipp Leitner. Optimized IoT service placement in the fog. Service Ori-
ented Computing and Applications 11 (2017), 427–443 (see page 174).

[220] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi. Multiobjective Opti-
mization for Computation O�loading in Fog Computing. IEEE Internet
of Things Journal 5:1 (2018), 283–294. ����: 2327-4662. ���: 10.1109/JIOT.2017.
2780236 (see page 174).

[221] Y. Xiao and M. Krunz. QoE and power e�ciency tradeo� for fog com-
puting networks with fog node cooperation. In: IEEE INFOCOM 2017 -
IEEE Conference on Computer Communications. 2017, 1–9 (see page 174).

[222] M. Peuster, H. Karl, and S. van Rossem. MeDICINE: Rapid prototyping
of production-ready network services inmulti-PoP environments. In:
2016 IEEE Conference on Network Function Virtualization and Software De�ned
Networks (NFV-SDN). 2016, 148–153. ���: 10.1109/NFV-SDN.2016.7919490
(see page 180).

[223] MaestroNG. Last accessed 24 July 2020. ���: http://maestro-ng.readthedocs.io
(see pages 183, 184).

[224] H.W. Kuhn.TheHungarianmethod for the assignment problem.Naval
Research Logistics 2 (1955), 83–97 (see page 185).

[225] G. Rakshith, M. V. Rahul, G. S. Sanjay, B. V. Natesha, and G. Ram Mohana
Reddy.Resource Provisioning Framework for IoT Applications in Fog
Computing Environment. In: 2018 IEEE Intl. Conf. Advanced Networks and
Telecommunications Systems (ANTS). 2018, 1–6 (see pages 185, 186).

[226] Daniel Balouek-Thomert, Eduard Gibert Renart, Ali Reza Zamani, Anthony
Simonet, and Manish Parashar. Towards a computing continuum: En-
abling edge-to-cloud integration for data-driven work�ows. The Inter-
national Journal of High Performance Computing Applications 33 (Nov. 2019),
1159–1174. ���: 10.1177/1094342019877383 (see page 197).

[227] Nicolas Seydoux, K. Drira, N. Hernandez, and T. Monteil. EDR: A generic
approach for the distribution of rule-based reasoning in a Cloud-Fog
continuum. Semantic Web 11 (2020), 623–654 (see page 197).

[228] P. Gkikopoulos. Data Distribution and Exploitation in a Global Mi-
croservice Artefact Observatory. In: 2019 IEEE World Congress on Services
(SERVICES). Vol. 2642-939X. 2019, 319–322. ���: 10.1109/SERVICES.2019.
00089 (see page 200).

234

[229] Jesús García-Galán, Pablo Trinidad, Omer F. Rana, and Antonio Ruiz-Cortés.
Automated con�guration support for infrastructuremigration to the
cloud. Future Generation Computer Systems 55 (2016), 200 –212. ����: 0167-
739X. ���: https://doi.org/10.1016/j.future.2015.03.006. ���: http://www.
sciencedirect.com/science/article/pii/S0167739X15000618 (see page 201).

[230] Amir Dastjerdi, Saurabh Garg, Omer Rana, and Rajkumar Buyya.CloudPick:
A framework for QoS-aware and ontology-based service deployment
across clouds. Software: Practice and Experience 45 (Sept. 2014). ���: 10.1002/
spe.2288 (see page 201).

[231] H.W. Kuhn.TheHungarianmethod for the assignment problem.Naval
Research Logistics Quarterly 2:1-2 (1955), 83–97. ���: https://doi.org/10.1002/
nav.3800020109. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
nav.3800020109. ���: https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.
3800020109 (see page 206).

[232] Tomas Vitvar, Maciej Zaremba, Matthew Moran, and Adrian Mocan, 31–49.
In: Semantic Web Services Challenge: Results from the First Year. Ed. by Charles
Petrie, Tiziana Margaria, Holger Lausen, and Michal Zaremba. Boston, MA:
Springer US, 2009. ����: 978-0-387-72496-6. ���: 10.1007/978-0-387-72496-6_3.
���: https://doi.org/10.1007/978-0-387-72496-6_3 (see page 208).

[233] Iris Braun, A. Strunk, Gergana Stoyanova, and B. Buder.ConQo–AContext-
And QoS-Aware Service Discovery. In: 2008 (see page 208).

[234] Josef Spillner and A. Schill. A Versatile and Scalable Everything-as-a-
Service Registry and Discovery. In: CLOSER. 2013 (see page 208).

[235] A. V. Dastjerdi and R. Buyya. Compatibility-Aware Cloud Service Com-
position under Fuzzy Preferences of Users. IEEE Transactions on Cloud
Computing 2:1 (2014), 1–13. ���: 10.1109/TCC.2014.2300855 (see page 208).

[236] Yezheng Liu, Tingting Zhu, Yuanchun Jiang, and Xiao Liu. Service match-
making for Internet of Things based on probabilistic topic model. Fu-
ture Generation Computer Systems 94 (2019), 272 –281. ����: 0167-739X. ���:
https://doi.org/10.1016/j.future.2018.11.040. ���: http://www.sciencedirect.
com/science/article/pii/S0167739X18320788 (see page 208).

[237] Sukhpal Singh Gill and Inderveer Chana.QoS-AwareAutonomicResource
Management in Cloud Computing: A Systematic Review. ACM Com-
puting Surveys 48 (Dec. 2015), 1–46. ���: 10.1145/2843889 (see page 208).

235

