

DOCTORAL SCHOOL
UNIVERSITA’ MEDITERRANEA DI REGGIO CALABRIA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE, DELLE INFRASTRUTTURE E

DELL’ENERGIA SOSTENIBILE (DIIES)

PHD IN

INFORMATION ENGINEERING

S.S.D. ING-INF/03

XXXIII CICLO

 ENHANCING GROUP COMMUNICATIONS THROUGH

THE SOCIAL INTERNET OF THINGS

 CANDIDATE

Giuseppe Massimiliano MILOTTA

ADVISORS

Prof. Antonio IERA

Prof. Giacomo MORABITO

 COORDINATOR

Prof. Tommaso ISERNIA

REGGIO CALABRIA, January 2021

Finito di stampare nel mese di Gennaio 2021

Edizione

Quaderno N. 49

Collana Quaderni del Dottorato di Ricerca in

Ingegneria dell’Informazione

Curatore Prof. Tommaso Isernia

ISBN 978-88-99352-45-5

Università degli Studi Mediterranea di Reggio

Calabria

Salita Melissari, Feo di Vito, Reggio Calabria

GIUSEPPE MASSIMILIANO MILOTTA

 ENHANCING GROUP COMMUNICATIONS THROUGH

THE SOCIAL INTERNET OF THINGS

The Teaching Staff of the PhD course in
 INFORMATION ENGINEERING

 consists of:

Tommaso ISERNIA (coordinator)

Pier Luigi ANTONUCCI

 Giuseppe ARANITI

Francesco BUCCAFURRI

Salvatore COCO

Giuseppe COPPOLA

Lorenzo CROCCO

Dominique DALLET

Claudio DE CAPUA

Francesco DELLA CORTE

Aime' LAY EKUAKILLE

Giuliana FAGGIO

Fabio FILIANOTI

Patrizia FRONTERA

Giorgio GRADITI

Voicu GROZA

Sofia GIUFFRE'

Antonio IERA

Gianluca LAX

Giacomo MESSINA

Antonella MOLINARO

Andrea Francesco MORABITO

Giacomo MORABITO

Rosario MORELLO

Domenico ROSACI

Giuseppe RUGGERI

Domenico URSINO

Contents

i

Contents

Contents……………………………………………………………………i
List of Figures ... iii
List of Tables .. v

Chapter 0: Introduction .. 1
0.1 Abstract ... 1
0.2 Original Contributions of this work ... 2
0.3 Organization of this work .. 2

Chapter 1: Background .. 5
1.1 Software Defined Networking .. 6

1.1.1 What is SDN? .. 6
1.1.2 SDN Architecture ... 9
1.1.3 The three fundamental abstractions of SDN 11

1.2 Social Internet of Things ... 27

1.2.1 IoT, through a bit of history to a definition 27
1.2.2 Internet of Things standards .. 28
1.2.3 From “smart” to “social”, an evolutionary leap 29

1.3 Message Queuing Telemetry Transport .. 33

Chapter 2: Sociocast ... 35
2.1 Statement of the problem ... 35

2.1.1 Weaknesses and open issues .. 39
2.1.2 Advantages of a “social-oriented" approach 41

2.2 Sociocast .. 43

2.2.1 Objectives and design principles ... 43
2.2.2 The architectural framework .. 45
2.2.3 Sociocast in action ... 48

2.3 Experimental setup .. 54

2.3.1 Tools description ... 54
2.3.2 Tools usage and reference topology ... 57
2.3.3 Social relationships settings and traffic patterns 58
2.3.4 Benchmark scheme .. 61
2.3.5 Metrics ... 62

2.4 Results analysis ... 63

2.4.1 Signaling packets .. 63
2.4.2 Data packets ... 65

Enhancing Group Communications through the Social Internet of Things

ii

Chapter 3: MQTT Algorithm .. 71
3.1 Statement of the problem .. 71

3.1.1 Weaknesses and open issues ... 72
3.2 Algorithm description .. 73

3.2.1 Objectives and design principles .. 73
3.2.2 Karger’s Algorithm description .. 74
3.2.3 Clustering algorithm in action ... 76

3.3 Experimental setup ... 78

3.3.1 Tools description .. 78
3.3.2 Tools usage and reference topology .. 79
3.3.3 Settings and traffic patterns .. 80
3.3.4 Benchmark scheme .. 82
3.3.5 Metrics .. 83

3.4 Results analysis .. 85

3.4.1 Delay in the physical network ... 85
3.4.2 Average of the delay ... 88

Chapter 4: Conclusions and future works 93

References…..…………………………………………………………...95

Contents

iii

List of Figures

Figure 1: Programmable networks without (a) and with (b) SDN. 7

Figure 2: Impact of SDN on the architecture of network devices. 10

Figure 3: Impact of SDN on the network protocol stack. 11

Figure 4: Forwarding in wired and wireless setting. .. 14

Figure 5: Rules and actions examples in the forwarding abstraction. 15

Figure 6: OpenFlow protocol. .. 17

Figure 7: SDNv1 architecture. .. 21

Figure 8: SDNv2 architecture ... 23

Figure 9: IEEE P2413 IoT architecture. ... 28

Figure 10: Evolution from Res sapiens to Res socialis ... 29

Figure 11: SIoT Three-layer Architecture. .. 31

Figure 12: MQTT interactions .. 34

Figure 13: Sociocast architectural framework ... 45

Figure 14: Examples of Sociocast Tag configuration. ... 50

Figure 15: Reference topology. ... 53

Figure 16: ONOS Architecture. ... 55

Figure 17: Sociocast Vs. Multiple Unicast. Exchanged OF packets for

Sociocast group creation when varying the number of destinations, scenario

A. ... 66

Figure 18: Sociocast Vs. Multiple Unicast. Exchanged OF packets for

Sociocast group creation when varying the number of destinations, scenario

B. ... 67

Figure 19: Sociocast Vs. Multiple Unicast: Exchanged OF packets for

Sociocast group creation when varying the number of destinations, scenario

C. ... 67

Figure 20: Sociocast Vs. M-Unicast OF packets exchanged to create the

sociocast group. ... 68

Figure 21: Sociocast Vs. M-Unicast exchanged data plane packets in the

topology.. 68

Figure 22: Sociocast Vs.M-Unicast exchanged data plane packets when

varying the number of receivers in different scenarios. .. 69

Figure 23: Edge contraction of A and B ... 75

Figure 24: Algorithm in action .. 77

Figure 25: Reference Topology .. 79

Figure 26: Social Network for k = 0,25 and � = 0,5 ... 80

Figure 27: Average of social relationship for k and �... 81

Figure 28: Average of hops for k and � ... 81

Figure 29: Pdf of delay for a distance of 2 hops .. 86

Figure 30: Pdf of delay for a distance of 3 hops .. 86

Figure 31: Pdf of delay for a distance of 3 hops .. 87

Enhancing Group Communications through the Social Internet of Things

iv

Figure 32: Pdf of delay for a distance of 2 hops ... 87

Figure 33: Average delay for a social distance of 1 hop ... 89

Figure 34: Average delay for a social distance of 2 hops ... 89

Figure 35: Average delay for a social distance of 3 hops ... 90

Figure 36: comparison Between the delays in proposed approach and the

benchmark .. 90

Contents

v

List of Tables

Table 1: SDN controllers’ features. .. 26

Table 2: Summary of the main social relationships settings. 60

Table 3: Probabilities of SOR establishment. ... 61

Table 4: Size (in bytes) of the Flow Mod packet for Scenario A. 69

Table 5: Considerated values of K and � ... 82

Table 6: Average Delay and standard deviation for different distances. 88

Enhancing Group Communications through the Social Internet of Things

vi

Introduction

1

Chapter 0: Introduction

In this chapter, I would like to introduce my thesis work, especially

what are its goals and how it is structured, but also to give some reminders

and look over some topics that will be examined in the following chapters.

0.1 Abstract

The new applications populating the Future Internet will increasingly

rely on the exchange of data among groups of devices, dynamically

established according to their profile and habits (e.g., common interest in

same software updates and services). This will definitely challenge traditional

group communication solutions that lack the necessary flexibility in group

management and do not support effective control policies on involved

endpoints (i.e., authorized senders and intended receivers). Indeed, today,

Internet can support the following data delivery schemes: unicast, multicast,

broadcast, and anycast, according to the way in which the endpoints of the

information exchanges are identified. However, there are several reasons exist

discouraging network operators to actually offer all such data delivery

schemes to end users. As a result, application developers can rely on unicast

communications only, and more complex group-based data dissemination

policies are implemented as part of specific applications and services and

through additional patches to the basic Internet implementation. And yet,

group-based communications are crucial in several Internet of Things (IoT)

application scenarios. To address the cited issues, the idea of introducing new

disruptive network-layer solutions has emerged from recent literature. Among

them, in the first part of this work, the Sociocast1 is presented, which has

been theorized as enabler of flexible interactions among groups of devices

tied by social relationships in the SDN context.

1
 This work led to the publication of two articles: [64]and[65].

Enhancing Group Communications through the Social Internet of Things

2

While, in order to overcome the problems arising by the centralized

nature of MQTT, broker bridging (which has been is now supported by most

MQTT implementations), in the second and last part of this work, an

optimization technique is proposed. However, broker bridging does not

address the performance issues occurring when publishers and subscribers are

connected to different brokers.

In this work a technique is investigated exploiting the Social Internet of

Things (SIoT) concept to decide the most convenient broker for each

publisher/subscriber. A hybrid technique which integrates experimental

results obtained in an emulated testbed and analytical derivations will be

introduced to evaluate the performance of the proposed approach.

0.2 Original Contributions of this work

My original contributions to the works characterizing this thesis are

listed below:

 Study and implementation focused on the integration in the

SDN environment of Sociocast.

 Experimentation in SDN and analysis of different IoT use

cases and scenarios: smart industry, smart home, WSN

management, smart mobility.

 Study and implementation of a clustering algorithm based on

the model of Karger’s algorithm.

 Implementation and experimentation, in an emulated smart

campus scenario, of a technique which uses the above-

mentioned clustering algorithm and the Social Internet of

Things to enhance MQTT bridging.

0.3 Organization of this work

In the first chapter the background concepts, needed to fully

understand the two discussed solutions, are given. Starting from the

definitions of SDN and SIoT with an in-depth study on IoT and MQTT.

Introduction

3

In the second chapter, the concept of Sociocast is introduced as a

solution based on Software Defined Networking (SDN) for its

implementation at the network layer in Internet of Things. The Sociocast

performance is studied and compared to methods running at the application

layer that provide similar features. Experimental results, as well as the used

tools description are also given.

In the third chapter, a MQTT bridging optimization technique is

introduced based on a social clusterization of the network elements

characterizing the network topology. The performance of this approach and

the comparison with a benchmark are also discussed, as a brief description of

the tools used during the experimentation phase.

In conclusion, a summary of all the results and considerations regarding

the Sociocast and the MQTT bridging optimizer, and possible future works

will be discussed in the last chapter.

Enhancing Group Communications through the Social Internet of Things

4

Background

5

Chapter 1: Background

This chapter will provide all the definitions and discuss all the

properties of the subjects necessary to have a full view and a better

comprehension of the major topics of this work.

In particular, in the first paragraph 1.1, is discussed in depth the

Software Defined Networking (SDN) approach, giving a definition, analyzing

its three states of abstraction and the various open-source SDN controllers

available today.

In the second paragraph, 1.2, the Social Internet of Things paradigm

will be analyzed, starting from a bit of history and fun fact on IoT to better

understand its natural evolution and escalation up to now days. Moving to the

need for a social bound between “things” and, especially, how the SIoT

paradigm works and can enhance the IoT world.

In conclusion, to better understand the Chapter 3 of this work, the

MQTT protocol will be discussed in paragraph 1.3.

Enhancing Group Communications through the Social Internet of Things

6

1.1 Software Defined Networking

1.1.1 What is SDN?

The overview of the SDN paradigm will start by answering a simple yet

fundamental question: “What is a Software Defined Network?”

Simply, a Software Defined Network is a network which operates as specified

by means of a software program.

One possible objection to this answer is that, in the years the boundary

separating what is software and what is hardware inside network devices has

been going down in the protocol stack and, in some cases, such boundary is

even fading away (consider the NetFPGA project, for example [1]).

According to such a view, which is firmly rooted on an incontrovertible truth,

SDN would just be a fancy name given to a trend going on for several

decades.

This view can be easily refuted by observing that the above mentioned

trend would allow what can be called a Network of Software-Defined

Devices.3

Background

7

4

Figure 1: Programmable networks without (a) and with (b) SDN.

According to such a view a hypothetical network programmer can

indeed define the behavior of the network through software. However, in

order to do so, he/she needs to write and deploy a different program for each

network device as sketched in Figure 1.

The Software Defined Network idea, instead, implies a totally different

way of programming the network as depicted in Figure 1b which relies on a

unique application programming interface (API) for the entire network. This

is indeed a completely different paradigm which opens the path to a realm of

new possibilities.

In the effort of defining a taxonomy, in [2] four conditions are given for

identifying a software defined network:

 The control and packet forwarding planes are decoupled thus,

network devices become simple (packet) forwarding elements;

 Forwarding decisions are flow-based rather than destination-based. A

flow is defined by a set of packet field values acting as match (filter)

criterion;

Enhancing Group Communications through the Social Internet of Things

8

 The control logic is moved to an external entity called SDN

Controller or Network Operating System (NOS);

 The network is programmable through software applications running

on top of the NOS which interacts with network elements.

While the above requirements give the most comprehensive description

of the key SDN features to date, they may be all specific of the SDN general

concept or reflect the characteristics of the current SDN implementations.

For example, is the flow-based requirement a key feature of the SDN

paradigm or is it just a heritage of OpenFlow? Therefore, according to the

philosophy perfectly contained in the Van der Rohe's sentence “less is more", it

is reported in the following, the broadest definition which can be found in the

words of Nick McKeown who has played a key role in software defined

networking development [3]: “A Software Defined Network is a network in which

the control plane is physically separate from the forwarding plane and a single control plane

controls several forwarding devices.”

SDNs have several advantages over traditional networks; in fact, they are [4]:

 Agile: Abstracting control from forwarding allows the administrators

to adjust traffic flow dynamically.

 Centrally managed: Network intelligence is (logically) centralized in

SDN controllers which have a global view of the network.

 Programmatically configured: SDN allows network administrator to

configure, manage, secure, and optimize resources dynamically by

means of automated SDN programs.

 Open Standards-based: SDN makes easy the network design and

operation since instructions are provided by SDN controllers instead

of specific devices and protocols.

Background

9

1.1.2 SDN Architecture

The actual realization of the SDN concept requires addressing a large

number of technical issues which boil down to

 revisiting network architectures which have been considered

untouchable for a very long times;

 defining new abstractions of the resources and operations of the

network as a whole;

 designing consolidation mechanisms able to control the operations of

individual network devices in such a way that the desired behavior of

the network as whole emerges.

The rest of this paragraph will focus on the architecture implications of

software defined networking, while in the following sections we will address

the other two items.

In Figures 2 and 3 we show the innovation on the architecture

introduced by SDN at the both the levels of individual network devices and

the entire network, respectively.

In the right part of figure 2 it is shown the architecture of traditional

routers. We can clearly distinguish two subsystems. One contains the

interface cards whereas the other contains the controller cards. The interface

cards subsystem is responsible for packet forwarding which is executed

according to the content of a table called forwarding table. The content of

such table is copied by the routing table which is contained in the controller

card subsystem and is calculated by executing the distributed routing

algorithm denoted as routing control in the figure. The controller card

subsystem exposes a user interface which can be used by the network

administrator to manage the network device. Such interfaces offer a limited

number of options regarding the control of the network behavior.

Furthermore, it is clear that, while there are common features, the interfaces

offered by routers produced by different vendors are different and therefore,

the know-how developed for configuring one of them cannot be used to

configure the others.

Enhancing Group Communications through the Social Internet of Things

10

In SDN this monolithic architecture is broken into two pieces so that

forwarding and control functions are clearly (even physically) separate.

Accordingly, all network devices become just switches whereas the control

functions are concentrated in appropriate machines running a control

program. In fact, switching devices treat received packets according to what

decided by the control program. The interactions between the network

devices and the control plane happen through an open interface called

Southbound API. More specifically, according to the OpenFlow naming the

switches are called OpenFlow Switches whereas the control plane is called

OpenFlow Controller. The interactions between OpenFlow Switches and

OpenFlow Controller happen according to OpenFlow protocol.

In modern SDN solutions the Controller consists of a Network

Operating System (NOS) that provides several Network applications with

access to the abstraction of the network resources. The interface between the

NOS and the network applications is called North-bound interface

According to such an approach the network layer disappears from the

intermediate network devices which, instead, execute the physical and link

layers only, as shown in Figure 3.

Figure 2: Impact of SDN on the architecture of network devices.

Background

11

1.1.3 The three fundamental abstractions of SDN

The SDN paradigm has been developed around the core objective of

enabling a simple control of a complex system such as a communication

network [5]. Such philosophical approach has put a the center of the SDN

design the definition of appropriate abstractions.

In fact, defining a solution requiring the low level configuration of each

network device would be impossible in a network with more than a few

network devices. Quoting the analogy with software programming provided

in [5], it would be like requiring the programmer of a complex distributed

software to decide at which memory address to store each variable utilized in

the software. This is, indeed, what happened with early programming

language, however, modern languages offer high level abstractions of

computer resources, e.g., (virtual) memory, network, processing, which can be

exploited by the programmer without knowledge of the way such resources

are actually managed by the specific hardware components.

Figure 3: Impact of SDN on the network protocol stack.

Enhancing Group Communications through the Social Internet of Things

12

Such approach has the advantage of decoupling the development of

new programs from the implementation of the functions hidden behind the

above mentioned abstractions. In fact, they can evolve independently as long

as the interfaces are maintained, which fosters the astonishing rapid

progresses characterizing the software arena.

Therefore, in the SDN development it has been crucial to identify the

core abstractions around which the rest of the paradigm should be designed.

The three fundamental abstractions of SDN are

 The forwarding abstraction, which should encompass any possible

forwarding behavior while hiding details of the underlying data plane

operations;

 The distribute state abstraction, which should consider all

operations required to collect the state information about data plane

devices in order to form a global view of the network;

 The specification abstraction, which should allow a network

application to express the desired network behaviors without being

responsible for implementing those behaviors.

In the following sections of this chapter each of the above abstractions

will be analyzed, with special reference to their definition in OpenFlow, which

is the most known SDN solution, to date.

1.1.3.1 Forwarding abstraction

In OpenFlow forwarding is flow-based: all possible packets are

partitioned in subsets called flows and each forwarding element, i.e., the

OpenFlow Switch, treats incoming packets as specified for the flow they

belong to.

Accordingly, the forwarding abstraction deals with two questions:

1. how to classify incoming packets in ows, and

2. what can be done on the incoming packets.

Regarding the first issue, we observe that a flow, f, is defined through a

set of n > 0 rules, r1, r2,…,rn. A packet belongs to flow f if it satisfies all of the

above n rules.

Background

13

In principle rules may consider any feature of the packet. However, in

most SDN implementations including OpenFlow, the format considered for

the packets is compliant with TCP/IP and rules are based on the content of

the fields of the headers of levels 2-4 of the protocol stack.

Despite such choice imposes a certain degree of rigidity in the

definition of the rules, it has two fundamental advantages, though.

First, it simplifies the design and realization of the hardware of the

forwarding devices. As a consequence, it has been immediately possible to

realize SDN forwarding devices capable of operating at line rate [6]. This has

been crucial in encouraging industry in adopting the SDN approach.

Second, it makes implementing the switching/routing operations typical

of TCP/IP extremely easy, as we will see shortly. This has been crucial,

instead, to encourage network managers in adopting the SDN approach.

Such rigidity is being relaxed in new OpenFlow versions, yet, it has

always been a clear OpenFlow design directive to make the transition from

traditional networks as smooth as possible and thus, we expect that the way

rules are defined will remain rooted over TCP/IP layering and packet formats

in the next future.

There are, however, certain networking environments where flexibility

is way more important than data rates and compatibility with traditional

networking solutions. This is the case, for example, of wireless sensor

networks (WSN). In fact, in WSN data rates are usually low and there are no

well established protocol stacks to be compliant with. Other features, such as

the possibility to treat data packets depending on the values they are carrying,

are more important instead. Accordingly, solutions with more flexible ways of

defining rules have been proposed for WSN. SDN-WISE is a notable

example of such category [7].

For what concerns the classification of packets in flows, we observe

that depending on the way in which rules are given, it is possible that a packet

might satisfies the rules of several flows. If this is the case, it is important to

define the policy which should be considered to classify the packet.

In traditional SDN solutions a packet is assigned to a unique flow. If

this is the case, then a priority scheme should be defined.

Enhancing Group Communications through the Social Internet of Things

14

Other solutions, allow to assign packets to several ows and treat them

accordingly. More specifically, suppose that a given packet satisfies the rules

given for flows f1 and f2. If the forwarding operations for packets of the two

flows are

 the same, the packet will be forwarded as specified for the two

flows;

 different, the packet will be duplicated and one copy will be

forwarded as given for flow f1 whereas the other copy will

receive the treatment given for flow f2.

Returning to the second issue regarding the forwarding operations that

can be specified for packets in a SDN network. Such operations are usually

called actions and, for each flow, it is possible to define a pipeline of actions

which should be applied to the relevant packet. It is obvious that the major

action is “forward". In this case it is necessary to specify to which element(s)

the packet should be forwarded to. This is typically done by giving the output

port through which the packet should be relayed.

Figure 4: Forwarding in wired and wireless setting.

Besides enabling the forwarding of a packet through a specific network

ports, OpenFlow allows to flood the packet through all network ports but the

ingress port, to send the packet to the controller, or to include the content of

the packet in the forwarding table.

Another fundamental operation, besides the obvious “forward"

discussed above, is “drop", for example, using such operation it possible to

allow a forwarding element to behave like a firewall.

Background

15

Note that the two above operations do not change the packets. Indeed,

there are operations that can modify the packet header at layers 2-4 of the

TCP/IP protocol stack.

We note that through appropriate combination of rules and actions, it is

possible to transform a SDN forwarding element in any desired traditional

networking element. For example, in the Figure 5 we show how to set rules

and actions in such a way that the forwarding elements behaves like a

traditional switch, a flow switch, and a firewall.

Figure 5: Rules and actions examples in the forwarding abstraction.

The rules given to define a flow and the corresponding actions to be

executed on the flow packets are usually stored in appropriate tables, called

flow tables, maintained in the forwarding devices. The entries of the flow

tables, which also contain some statistical information about the flow load,

are set by the controller.

More specifically, incoming packets that the forwarding element cannot

classify in a flow are forwarded to the Controller which replies by installing

the corresponding flow entry in the flow table. From that moment all packets

of the new defined flow are treated by the forwarding device accordingly.

Before concluding this section, observe that in OpenFlow and early SDN

solutions flow tables specify stateless forwarding rules. In fact, in such

approaches all stateful operations are executed by the controllers only. There

are cases, however, in which such approach requires frequent interactions

Enhancing Group Communications through the Social Internet of Things

16

between the forwarding devices and the controller. Each interactions,

however, results in increased delay and additional signaling. The above

problem of the stateless approach has been recognized by several researchers

and several stateful SDN solutions have been proposed. Early examples are

OpenState [8] and FAST [9] for infrastructured networks and SDN-WISE [7]

for infrastructureless networks.

1.1.3.2 Distribute state abstraction

SDN network applications are responsible for setting the policies for

packet handling throughout the network which is a complex distributed

systems. The SDN controller is therefore, responsible for collecting

information regarding the state of the network elements so as to create a

consistent and comprehensive view of the current network state as well as for

configuring the behavior of individual network elements in such a way that,

collectively, they implement the policy decided by the network application.

The operations required for data collection and network device

configurations are specified through an appropriate protocol. In the rest of

this section, we will describe the fundamental features of such protocol in the

case of OpenFlow.

As shown in Figure 6a, the OpenFlow protocol consists of four major

components: message layer, state machine, system interface, and

configuration [10].

Background

17

Figure 6: OpenFlow protocol.

1.1.3.2.1 Message layer

The message layer is the core of the protocol as it defines the format for

all relevant messages. Accordingly, it should support the construction, copy,

comparison, printing, and manipulation of messages.

The interested reader can refer to [10] for the specification of the

structure and the semantic of individual messages, which depends on the

specific protocol version.

Here we just observe that all OpenFlow protocol messages begin with

the same header structure shown in Figure 6b. The version field identifies the

version of OpenFlow utilized to generate the packet. The length field gives

where this message will end in the byte stream starting from the first byte of

the header. Third, the xid, or transaction identifier, is a unique value used to

match requests to responses. Finally, the type field which indicates what type

of message and, thus, how to interpret the payload, is version dependent.

1.1.3.2.2 State machine

The state machine defines the behavior of the protocol. It is used to

describe actions such as: negotiation, capability discover, flow control,

delivery, etc.

In this perspective, observe that OpenFlow has a very simplified

machine model. In fact, almost all the messages are asynchronous, and thus

Enhancing Group Communications through the Social Internet of Things

18

states are not necessary. However, some complex operations require a state to

be maintained. Examples of such operations include connection

establishment which requires some interaction between the two end points,

i.e., the OpenFlow Controller and the OpenFlow Switch, and capability

negotiation that is performed before packets can be exchanged. Again, we

refer the interest reader to [10].

1.1.3.2.3 System interface

The system interface specifies how a protocol relates with the outside

world. Usually it determinates mandatory and optional interfaces along with

their use, such as TLS and TCP as transport channels.

System interface is the part of OpenFlow protocol that provides service to

other

elements in the system, or that depends on and invokes other elements in the

system.

In OpenFlow there are the following system interfaces:

 TCP/TLS interface: TCP/TLS interface connects with protocols in

the lower level protocol stack, as indeed TCP and TLS. It provides

trustworthy stream oriented transmission between switch and

controller, by transfer any OpenFlow message between them.

 Switch agent interface: Switch agent interface interacts with the

system kernel of OpenFlow switches. It forwards messages from the

controller to the switch's kernel to be processed. It also forward

switches asynchronous messages to the OpenFlow stack for

processing and then transmitting them to the controller.

 Controller application interface: Controller application interface

combine with controller applications that run on top of the stack. It

accepts messages from controller application to switch and sends

them to OpenFlow stack for processing and transmission. It also

transmits messages sent to the controller application from OpenFlow

stack.

 Configuration interface: OpenFlow incorporates some parameters

that can to be configured (e.g. controller IP addresses) by system

Background

19

operator either before or all along their use. These parameters are set

or can be modified through the configuration interface. Hence the

configuration interface provides as a service to system operator the

capability configure OpenFlow stack.

1.1.3.2.4 Configuration

The OpenFlow protocol is rich in elements and aspects which need to

configure or set some initial values, like the default buffer size and the reply

intervals to X.509 certificates.

Two important aspects of the OpenFlow configuration are:

 Configuration Language, which is created to have an interface to

easily configure the controller and the switches. This language is

implemented by using a front-end compiler which validates syntax

and typing so that the configuration can be checked for validity and

more advanced configuration features can be implemented.

The main structures in the language are bindings between stages and

identifiers, and between the staging of those identifiers. The types in

the language are predefined, using literals for IPv4, IPv6, integers,

time, protocols, strings, and OpenFlow protocol versions. These

literals can be merged into predefined types, which form stages

(example of stages are: Realm, Authentication, Authorization,

Initialization). Each stage describes either a controller’s behavior that

should be adopted when making or accepting new connections, or the

connection behavior for a switch.

 Configuration Utility. The configuration language is backed by a

utility that checking grammar and typing, and then creates commands

that can be run to configure the controller or the switches. This utility

is characterized by four stages: Parsing, which occurs concurrently

with tokenizing, will evaluate if the input is properly formatted.

Elaboration checks the whole input matches types defined by the

language, preventing incorrect input for specific fields. And finally,

evaluation, in which the input is evaluated and convert into

commands for the controller or the switch agent.

Enhancing Group Communications through the Social Internet of Things

20

1.1.3.3 Specification abstraction, from SDNv1 to SDNv2

Before illustrating the features of the Specification abstraction, we

observe that this was not included in early mainstream SDN solutions. It was

only in a second development phase that the need for such a new abstraction

was recognized. Accordingly, we will start by discussing how SDN would

work without the specification abstraction and, thus, why it is needed. Then,

we will provide details about such abstraction. Finally, since SDN controllers

are responsible for the support of the specification abstraction, we will

illustrate the main features of the most popular SDN controller platforms

realized so far.

1.1.3.3.1 The Network Operating System

To begin with, the reader must be aware that there are crucial

differences between a NOS and an “Operating System" (OS) in computer

science. In fact, for computer science an OS is based on strong fundamental

principles such as synchronization, mutual exclusion and others. Conversely,

this is not the case for the networking where we can observe a lot of

guidelines but only a few fundamental principles.

Despite the fact that networks were easy at the beginning (just think

about EtherNet-IP), as time passed by and new control requirements and

tools (VLAN, middleboxes, deep packet inspection, etc) were added, they

have grown in complexity. Now, some questions should pop up in the

reader's mind, like: ”If they are so complex then how do they still work? And

why nothing has changed in networking so far?". The answer is simple: every

time a new requirement appears, it is applied by defining a new protocol, a

new ad hoc mechanism or simply by manually configuring the network. Also

note that, as IP is used everywhere and it has undergone very few changes

since its first appearance, this means that any new control requirement should

be IP compliant (this is the real reason why it's so difficult to change!) and

should take into account every possible configuration of the network

elements. This results into adding massive complexity to the control plane.

SDN tries to hide all this complexity and to extract simplicity due to

abstractions.

Background

21

As asserted previously, the state distribution abstraction aims at hiding

state dissemination and collection to the control program thanks to a global

network view. As such the control program takes the global network view,

which is a graph of the network, as input and gives a configuration of each

device in the network as output.

The NOS is responsible for the creation of the global network view.

The NOS is a distributed system that runs in servers (controllers) in the

networks: by using the forwarding abstraction, it communicates with all the

elements in the network, getting state information from these devices and

sending control directives that should be implemented. The compound

between the NOS and the forwarding abstraction is known as the SDNv1.

Figure 7: SDNv1 architecture.

The benefits that SDNv1 introduces are the following:

 There is no need for creating distributed control protocols, we can

just define a single centralized control function.

 For the control program a network configuration becomes a simple

function of the global view:

Configuration= F(View)

 which implies that it is easy to write and apply, but also to verify and

maintain.

Enhancing Group Communications through the Social Internet of Things

22

 NOS handles the state of the network from the dissemination to the

collection of the states.

 NOS must achieve eventual consistency with the real network, which

means that the configuration, function of the view, is eventually

correct and two clients may have two different views of the network:

fortunately this happens with a negligible probability. Also, there are

no consistency requirements for packets and flows and we found a

strong consistency for the modification of the control function. All

this makes SDN scale.

Nevertheless, something is still missing: according to the control

program requirements, the NOS sends the network configuration, created by

the global view, to the physical devices in the network. One possible way to

do so is via OpenFlow.

With this approach, the control program has to configure each device

in the network. This happens because the NOS eases the implementation of

functionalities, but not their specification. There is a need for another

abstraction: the specification abstraction.

1.1.3.3.2 The Specification Abstraction

The specification abstraction gives the control program an abstract

view of the network, which is a function of the global view created by the

NOS. The program responsible for the creation of this new view is called

Network Hypervisor (NHypervisor). A simple example of how the

NHypervisor works is shown in Figure 8, where all the access to the network

are taken into account for an access control application.

Starting from the network abstract view, the control program creates an

abstract configuration of the network.

Abstract configuration= F(Network abstract view)

 This way, the model created has all the details needed to set the control

program's aims without giving all the information which is necessary to

implement these goals: this is known as SDNv2, Figure 8.

To summarize, in SDNv2, whenever the control application wants to

install a specific behavior in the network elements, it speci_es such behavior

on the abstract network view; then, the Network Hypervisor maps all the

Background

23

controls from the abstract view to the global view configuration; ultimately,

the NOS distributes this configuration to the real devices in the network.

Figure 8: SDNv2 architecture

1.1.3.3.3 The SDN controllers classification

In the last few years, several SDN controllers have entered the market,

and have been used by network programmers and managers with different

aims and different backgrounds all around the globe. The aim of this

paragraph is to classify the most popular Open Source SDN controllers

available today, like OpenDayLight (ODL) [11], the Open Network

Operating System

(ONOS) [12], Ryu [13] and so on, evaluating the advantages and

disadvantages of each of them and trying to answer such questions as “Why

should I prefer to use this specific SDN controller rather than another?".

First of all, it is crucial to understand that each platform has different

usages based on what it can do and also on the scope of the project and the

organization behind it.

A first classification can be done by considering the architectures so to

divide the SDN controllers in two groups: Single Instance (or Centralised) and

Distributed.

In the Centralised solutions, the SDN controllers are easier to maintain

and grant lower latency between the tightly coupled southbound API, the

path communication elements (PCE) and the northbound APIs; on the other

hand, as the SDN network grows bigger, centralised controllers are likely to

Enhancing Group Communications through the Social Internet of Things

24

become a bottleneck. Centralized solutions include platforms such as ONOS

and ODL.

By contrast, in the Distributed platforms each function can be scaled

independently, by decoupling the processing of PCE, Telemetry and

Southbound interface traffic, in order to avoid congestion and to allow the

platform to scale more effectively. Additionally, specialised tools to handle

and analyze big datasets can be used without negatively impacting

southbound protocol performance. However, this achievement is paid in

terms of complexity, both in deployment and in maintenance.

Such solutions includes controllers such as OpenKilda [14] and Faucet

[15].

Ryu is a bit different compared to the other choices: although its core

set of programs can be considered as a platform, it can be imagined as a

toolbox in which the SDN controller functionality can be found.

In the following, the abovementioned NOS solutions are compared in

the light of some key features:

 Scalability and Fault Tolerance: As stated above, scalability is a

crucial characteristic and should be taken into account when

classifying the SDN platforms. As the size of the network grows, it

becomes impossible for a single controller to handle the load of

information coming from every switch in the network; also, the

probability of having fault in the system increases. For this reason,

dividing the network into smaller logical islands/clusters decreases the

need for a single southward looking network to scale. All the

platforms with a centralized architecture, like ONOS, try to scale in

this way, including native BGP routing to orchestrate traffic flows

between the SDN islands. ONOS and ODL are the only ones

implementing native clustering and being able to maintain a cluster.

Each of these is supported by a distributed datastore that shares the

current network state between the islands; also, both of them also

provide a fault tolerance system with an odd number of SDN

controllers. In the case of master node failure, a new leader would be

selected to administrate the network.

Background

25

OpenKilda approaches cluster scalability in a modular way. While

Floodlight is used as a southbound interface to the switch

infrastructure, responsibility for PCE and telemetry processing is

pushed northward into a completely separated Apache Storm based

cluster.

Both Ryu and Faucet contain no intrinsic clustering capability and

require external tools such as Zookeeper to distribute a desired state.

So OpenKilda, Ryu and Faucet have no inbuilt clustering mechanism,

and rely on external tools, instead. This simplifies the architecture of

the controllers and eases them from the overhead of maintaining

distributed databases for state information. High availability is

achieved by running multiple, identically con_gured instances, or a

single instance controlled by an external framework that detects and

restarts failed nodes.

 Modularity, Programming Languages, and Interfaces: The

modularity of each controller is determined by the design focus and

programming languages. ONOS and ODL have functions that

connect code modules at the cost of centralising processing to each

controller. They are both Java-based controllers which use OSGi

containers for loading bundles at runtime, allowing a very flexible

approach to adding functionality. Also, since Java is a well-known and

widely used programming language, the development resources are

abundant, with good supporting documentation and libraries

available. Ryu is a Python based controller and provides a well-defined

API for developers to change the way components are managed and

configured. Adding functionality to Faucet and OpenKilda is possible

by modifying the systems that make use of their northbound

interfaces, such as the Apache Storm cluster: this allows for the added

flexibility of using different tools and languages depending on the

problem to overcome. The northbound API too is managed

differently by these platforms. ONOS and ODL have the largest set

of northbound interfaces with RESTful APIs and gRPC, making

them the easiest to integrate. Ryu and OpenKilda offer limited

Enhancing Group Communications through the Social Internet of Things

26

RESTful compared to ONOS and ODL, whereas Faucet takes a

completely different path, relying on configuration files to track the

system state rather than of API calls.

In conclusion, all the characteristics and peculiarities of the SDN

controllers described above are summarized in Table 1.

Table 1: SDN controllers’ features.

Background

27

1.2 Social Internet of Things

1.2.1 IoT, through a bit of history to a definition

Nowadays, if we had to give a definition of Internet of Things (IoT),

probably, first, we would start trying to define what a “thing” is. A “thing”

can be a person with a wearable, like a smartwatch, or with a heart monitor

implant, a farm animal with a injectable ID chip (biochip transponder), a car

with sensors to alert the driver of other nearby cars or some sort of danger in

the road, like a pedestrian crossing the street.

Simply said, a “thing” could be any object that can be assigned with an

IP address and is able to transfer data over the Internet.

If we take this definition in a strict way, then we will be very surprised

to discover that the first IoT devices fitting in it are much older than

expected. The first one, in the year 1982 at Carnegie-Mellon’s Computer

Science Department, was a Coca Cola vending machine connected to the

Internet, allowing some grad students to check the stock and temperature of

the drinks stored in it. Or, a toaster2, in the early 90’, that was turned on by a

remote computer.

We have to wait the last year of the old millennium to actually hear and

read the term “Internet of things”. It was the 1999, when Kevin Ashton

coined and used “Internet of things” in a presentation for Procter & Gamble

describing a system in which sensors where used to enhance a computer. But

these are the foundations on which today's concept of Internet of Things, or

IoT, and its definition are based:

“A network of items—each embedded with sensors—which are connected to the

Internet.”[16].

2
 John Romkey, software engineer, had built one for the showfloor of Interop 1990

Enhancing Group Communications through the Social Internet of Things

28

The IoT, in conclusion, is an ecosystem of connected smart devices,

mechanical and digital machines, people and even animals that are provided

with an unique identifier and the capability to send data over the Internet

without necessitating any human-to-human or human-to-computer

interaction.

1.2.2 Internet of Things standards

As foretold from a report of Cisco in 2018, more than 500 billion

devices are expected to be connected on the web for the year 2030. These

numbers are estimated considering how the usage of IoT is exponentialy

increasing, partculary in organizations and in the vast majority of industries to

operate more efficiently, to better understand customers needs, to improve

decision-making and overall to increase the value of the business in general.

For this reason, a branch of the IEEE, the IEEE-SA (IEEE Standards

Association) which is responsible for defining the specifications and best

practices based on nowadays the scientific and technological knowledge,

determined over 140 standards and projects that are related to the IoT

concept. One of these projects is the IEEE P2413 [17].

The scope of IEEE P2413 is to define and standardize the IoT

architectural framework, address descriptions of various IoT domains, define

their abstractions, and identify commonalities between different domains.

Furthermore, IEEE P2413 is considering the architecture of IoT as three-

layered, as shown in Figure 9: IEEE P2413 IoT architecture.

 Figure 9: IEEE P2413 IoT architecture.

The goals for the IEEE P2413 are the following:

Background

29

 Increasing system compatibility and interoperability to enable cross-

domain interaction and platform unification

 defining an IoT architecture framework which groups all the various

IoT application domains.

 increasig transparency

 reducing industry fragmentation

 leveraging the state of the arts.

1.2.3 From “smart” to “social”, an evolutionary leap

Nowadays, we are familiar with devices that thanks to their abilities we

call “smart objects” and which are considered the fundamental elements of

the IoT. These objects are just a first small step in an evolutionary path which

has been characterizing modern communication devices since the advent of

the IoT in the telecommunications’ world.

As stated in [18], it is possible to make an analogy with the evolution of

human beings starting from homo sapiens to homo socialis, passing by homo agens

and predict a not so far future for smart devices, imagining a similar

evolution scheme, from res sapiens to res socialis, as shown in Figure 10:

Evolution from Res sapiens to Res socialis where are also reported all the main

features characterizing these categories.

Figure 10: Evolution from Res sapiens to Res socialis

Enhancing Group Communications through the Social Internet of Things

30

The basic idea to the concept of res socialis is that: smart objects, in

general are associated with the services that they can offer or deliver and that

a social network of smart object enhances the capability of the object to

publish services and information, to find them and to discover new resources

to better implement them. A smart object just has to navigate the social

network of friends instead of using the typical internet discovery tools, and

all the scalability issues that come with them.

The advent of this generation of social objects is related to the actual

creation of a “social networks of smart objects” in analogy with the

social networks of human beings.

To do so, the following conditions are needed:

 Giving a notion of social relationship among objects, and

 Giving a reference architectural model implementing a social Internet

of Things based on the codified inter-object relationships,

In relation to the first issue, the definition of a social behavior

established between objects has been addressed in [19] where a definition of a

novel paradigm called Social Internet of Things (SIoT) has been given, in

addition to all the relevant social structures occurring between the smart

objects (nevertheless some of these social structures and social relationships

will be explained and discussed in the section 2.2).

Regarding the second issue, giving a reference architecture for the SIoT

is mandatory to fully comprehend the Sociocast approach which is explained

in the next chapter. The SIoT architecture is based on the three-layered

architectural model for IoT presented in Figure 9: IEEE P2413

IoT architecture. and it consists of:

 the sensing layer, devoted to the data acquisition and node

collaboration in short-range and local networks;

 the network layer, which is aimed at transferring data across

different networks;

 the application layer, where the IoT applications are deployed

together with the middleware functionalities.

Background

31

Figure 11: SIoT Three-layer Architecture.

Figure 11: SIoT Three-layer Architecture. shows the SIoT three-layered

architecture, whose fundamental characteristic elements are: the SIoT Server,

the Gateway, and the Object.

The SIoT Server encompasses only the Network and the Application

Layers. Specifically The Application Layer consists of three sublayers:

 The Base Sublayer wich includes the database, to store and

manage all the data and the relevant descriptors which record

the social member profiles and their relationships. Humans’

data (e.g. the owner’s data) too are stored and managed inthere.

In different database are stored the ontologies which are used

to represent a semantic view of the social activities.

 The Component Sub-layer, incorporates all the tools

implementing the core functionality of the SIoT system, such as

the ID management, which assigns an ID that univocally

identifies all the possible categories of objects. The profiling

tool, which configures the information about the objects. While

the owner control (OC) defines all the activities that can be

performed by the object, the information that can be shared, as

well as the type of relationships that can be established. The

relationship management (RM) allows objects to begin, update,

and conclude their relationships with other objects. The service

discovery (SD) finds which objects can provide the required

Enhancing Group Communications through the Social Internet of Things

32

service, whereas the service composition (SC) component

enables the interaction between objects. In conclusion the

trustworthiness management (TM) component understands

how the information provided by the other members shall be

processed.

 The third sub-layer, the Interface Sub-layer, is where the third

part interfaces to objects, humans, and services are gathered. It

may be mapped onto a single site or in the cloud.

In the Gateway and Objects systems, the combination of layers is not

determined, instead, but rather it may vary depending on the device

characteristics.

In order to explain and consider all the possible scenarios tree

examples have been made depending on the grade of “smartness” of the

object.

 A dummy Object (e.g., a RFID tag) is equipped with a

functionality of the lowest layer, is only able to transmit simple

signals to another element (e.g., the Gateway). The Gateway, in

this scenario, is equipped with all the functionalities of the three

layers.

 In another scenario, a device (e.g., a video camera) is able to

sense the physical world information and to send the related

data over an IP network. In this case the object is equipped

with the functionality of the Network Layer. Consequently,

there is no need for a Gateway with Application Layer

functionality. An Application Layer in a server with the gateway

application layer functionality would be enough.

 A smart object (e.g., a smartphone, which has enough

computational power) may implement the functionality of all

the three layers so that the Gateway is not needed, but for some

communication facilities targeted to maintain the Internet

connectivity of the object.

Background

33

Whatever is the scenario, the Application Layer encompasses the SIoT

applications, as well as the social agent and the service management agent:

 The social agent is responsible for the communication with the

SIoT servers, to update its profile and friendships, as well as to

discover and request services from the social network.

 The service management agent is responsible for the interfaces

with the humans that can control the behavior of the object

when communicating within their social network.

1.3 Message Queuing Telemetry Transport

The Message Queuing Telemetry Transport (MQTT) is a machine-to-

machine (M2M)/Internet of Things (IoT) connectivity protocol, standardized

by OASIS [20].

In Figure (1a) we represent the main interactions between MQTT

entities. We can distinguish publishers, brokers, and subscribers. The broker,

obviously, plays a central role as it maps the interest of subscribers for a

certain topic with the messages published under that topic. A topic is a UTF-

8 string that the broker uses to filter messages for each connected client and it

consists of one or more topic levels, separated by forward slashes, similarly to

folders/files in a file system. Therefore, as we show in Figure (1a) after

establishing a connection with the broker, clients can subscribe to and publish

under a certain topic, myTopic; forwarding relevant published messages to

subscribers interested to the topic is, therefore, the broker’s responsibility. In

Figure (1b), instead we sketch the operations in the case MQTT bridging has

been activated. More specifically, a client (the Subscriber) can subscribe to a

certain topic, say myTopic, on Broker 2. If Broker 2 recognizes that such

topic is handled by another broker, say Broker 1, then it can subscribe to such

topic on Broker 1. As a result, when a client (the Publisher) publishes a

message under topic myTopic on the MQTT Broker 1, such message will be

forwarded to MQTT Broker 2 which, in turn, will forward it to the

Subscriber. By comparing Figures 1a and 1b, it is clear that in the bridged case

Enhancing Group Communications through the Social Internet of Things

34

one extra communication hop is necessary and more messages are exchanged.

This would result in increased delay and resource consumption.

Figure 12: MQTT interactions

Sociocast

35

Chapter 2: Sociocast

2.1 Statement of the problem

The Internet is experiencing a rapid transformation pushed by the

growing need to overcome its intrinsic limitations and ossification, which

challenge network practitioners and researchers. The pressing need to come

to the definition of a new Internet of the future is also motivated by the

multitude of Internet of Things (IoT) applications that are recently emerging

in various vertical markets [21]. Such applications are increasingly

characterized by group-based (i.e., one-to-many, many-to-many)

communications established among large sets of devices in need for

simultaneously exchanging data, e.g., in case of sensors' software updates,

service advertisement, device configurations.

In human-centric communications, frequent instant messaging occurs

within communities of users sharing similar interests and people massively

interact with their friends, and friends of their friends, over social networks.

Similarly, groups of IoT devices are likely to interact with each other,

especially if they are located in the same place (e.g., sensors/actuators in the

same building), are owned by the same user (e.g., consumer devices and home

appliances), share similar profiles (e.g., the same brand and type), frequently

meet each other (e.g., vehicles on a given road segment).

Support of interactions among devices raises outstanding challenges for

network operators. First, IoT applications require the dynamic and flexible

management of group-based interactions, whose scope is decided according

to a given topic and to the ties existing between the endpoints involved (e.g.,

co-locality, similarity of devices, etc.).

 Second, the communication endpoints should have the power to

control data exchanges. Indeed, a control of the enabled data receivers is

strongly desired by the source device, due to the potentially confidential

nature of the data exchanged.

Enhancing Group Communications through the Social Internet of Things

36

Moreover, the massive presence of group-based communications

established by billions of IoT devices, expected to increase even at a higher

pace in the near future, can cause network congestion and waste device and

network resources, unless proper countermeasures are taken.

A solution is required to allow nodes to flexibly specify how to

prioritize (filter) the nodes from which they want (or they do not want) to

receive data, and the network to react accordingly, so as to prevent the threats

of Denial of Service (DoS) attacks.

Conventional multicast-based approaches [22], being mainly designed

to simultaneously transmit data from one or multiple senders to a group of

(unknown) receivers, fail in natively achieving such objectives and in ensuring

the required flexibility in group establishment and management. Clumsy

patches to existing multicast solutions may further complicate their design

and hinder their (already limited) deployment.

This is the reason why in [23] authors argue in favor of a novel and

future-proof comprehensive solution, named Sociocast, encompassing both a

communication method and a data delivery scheme, going well beyond

Internet Protocol (IP)-based multicast. Sociocast is theorized as a means for

identifying, in a flexible manner, the intended endpoints (senders/receivers)

of data exchange sessions. Groups are dynamically created according to the

mutual position of endpoints in a social network of devices and the type of

relationships among them, by means of properly defined filtering rules and

policies.

 This work treasures the theoretical analysis in the cited vision paper

and makes a significant step forward both in terms of practical design and

experimental evaluation. The possibility of implementing the conceived

Sociocast primitive as a network-layer solution in IoT domains, wherein

switches and routers are responsible for the efficient delivery of packets

issued by IoT devices. In particular, the reference network infrastructure is

deployed according to the Software-Defined Networking (SDN) technology

[24].

Sociocast

37

SDN has been introduced to address a typical issue in traditional IP

networks, namely, the lack of programmability in network management and

configuration. Due to its peculiarities, it can play a crucial role to bring the

social dimension into the group data delivery procedures enforced at the

network layer.

The main contributions of Sociocast can be summarized as follows.

• The design of an architectural framework encompassing all the entities

and functionalities supporting Sociocast, according to a software-defined

network approach.

• The definition of the main procedures for the creation of the Sociocast

packets, their forwarding and filtering, and the subscription of devices to

Sociocast groups.

• The performance assessment through the widely known Mininet network

emulator [25], when dealing with push-based data dissemination and

deploying the Sociocast network application into the ONOS SDN

controller [26]. The impact of different end-point distribution patterns

and different involved social relationships on the performance is

evaluated by comparing our proposal to an alternative approach where

the groups are created at the application layer. Results show that the

Sociocast approach allows for a reduction of signaling and data packets

by a factor of 10 and 5, respectively, in the scenario where the number of

recipients is high and are close each other.

 A large number of different applications rely on one-to-many and

many-to-many data traffic exchange ranging from live video streaming,

audio/video conferencing [27] and multiplayer games [28] to communications

among groups of servers within data centers [29] and wide-area control in

smart grids [30]. Multicasting functionality is typically leveraged in such

contexts, which can be performed either at the network (IP) layer or at the

application layer [22], [31] and also with the support of SDN [32], [33].

IP-based multicasting. Traditional multicast routing and management

protocols, such as Protocol-Independent Multicast (PIM) [14] and Internet

Enhancing Group Communications through the Social Internet of Things

38

Group Management Protocol (IGMP) [35], effectively establish and maintain

multicast communication paths between sources and receivers to enable the

forwarding of packets to a multicast group. Each group is assigned a unique

class D IP address. A host can send data to a multicast group by using the

local network multicast capability to transmit the packet. A multicast router,

upon reception of a packet, looks up its routing table and forwards the packet

to the appropriate outgoing interface. Group membership is managed at the

network level through routers: when a host decides to join/leave a particular

multicast group, it sends the request to the local multicast router, through

IGMP [35].

IP multicast allows data to be distributed in such a way that the least

amount of replicas of the same packet is placed into the network.

In its recent version, v3, IGMP allows to specify the set of senders

from which a node wants to receive packets, in agreement with the Source-

Specific Multicast (SSM) protocol [36]. In other words, the only packets that

are delivered to a receiver are those originating from a specific source address

requested by the same receiver. Hence, SSM is particularly well-suited to

dissemination-style applications with one or more senders whose identities

are known before the application begins.

Non-IP multicasting. The design of multicast solutions has also been

investigated beyond IP. In application-layer solutions, group membership,

multicast delivery structure construction, and data forwarding are exclusively

controlled by participating end-hosts, thus, the support of network nodes is

not needed [31].

In the clean-slate future Internet MobilityFirst architecture [37], a

context aware delivery primitive is proposed, which generalizes multicast to

groups established on the basis of attribute-based descriptors. The name

service, in charge of resolution procedures between Global Unique Identifier

(GUID) and network addresses, maintains a membership set that consisting

of all GUIDs of devices that subscribed to the multicast group. The sender is

responsible for sending data to each of the returned addresses.

Sociocast

39

SDN-based multicasting. SDN can simplify multicast traffic

engineering thanks to the centralized nature of the network control plane.

Current multicast solutions employ a shortest-path tree to connect the source

to the receivers which is built according to local information. Traffic

engineering is difficult to be supported in a shortest-path tree. By utilizing the

global view of the SDN controller, in [38] all the possible routes between the

sources and each host of the multicast group are calculated in advance. In

contrast with IP multicast, there are no de facto standards for SDN multicast

routing. Different approaches targeting different optimization objectives can

be targeted in a flexible manner and it is unlikely that a given approach is

going to be dominant. SDN multicast is enabled by writing an application for

the SDN controller that optimizes the traffic flows to meet the particular

needs of the end-user [32]. The SDN controller can build the multicast tree to

meet link constraints (bandwidth consumption) or path constraints (end-to-

end delay) [33]. Hence, it is a valuable solution when Quality of Service (QoS)

requirements need to be ensured to a multicast flow, e.g., in case of a multi-

party video-conferencing service [39].

2.1.1 Weaknesses and open issues

The use of the traditional IP multicast is prone to multiple issues:

• Without the explicit join to the multicast group, a router will not forward

multicast IP packets destined to end-hosts. This process implies the

distribution of the consent to join the multicast group among devices,

increasing the signaling overhead.

• There is no way for the sender to control who subscribes to a multicast

group.

• It prevents the creation of discrimination policies based on the

destinations of the information within the same multicast group.

Therefore, when a limitation to the distribution of packets to some

entities of the same multicast group is needed, another multicast group

must be created, with a consequent increase in the number of signaling

packets in the network.

Enhancing Group Communications through the Social Internet of Things

40

• All routers must be replaced with multicast-enabled routers, which could

be expensive and hardly viable for the network operator, raising

interoperability issues.

The poor flexibility of the IP-based multicast discourages to pursue

such an approach for the wide variety of sender-initiated dynamic group-

based communications, as demanded by future IoT deployments.

 On the other hand, application-layer solutions have the drawback of a

definitely worse performance in terms of end-to-end latency and efficiency

compared to IP multicast. This is because end-hosts have little or no

knowledge of the underlying network topology.

 Thanks to its programmability and global knowledge of the topology,

SDN can make the creation of the multicast tree more efficient, thus

improving forwarding procedures. However, to the best of our knowledge,

the flexibility of SDN has not been investigated to manage dynamic group

formation.

These issues have motivated the theorizing of a new communication

method and data delivery scheme [23], able to better fit the nature of

upcoming group-based communications: Sociocast.

This is introduced as a novel and flexible solution that allows group-

based communications in the IoT enhanced with the notion of social ties. It

inherits the strengths of IP multicast, in that it lets network nodes disseminate

packets in an efficient manner: Sociocast packets are assigned an IP address

to facilitate their forwarding. In addition, the proposal in [23] enables a

mutual control of the end-points: not only the receiver can filter different

senders, as in SSM, but also the sender can (implicitly) decide which node

should belong to the set of intended receivers, by specifying the features (in

terms of social relationship) of such receivers. The above mentioned

capabilities are disruptive when compared to conventional IP-based multicast.

Sociocast relieves the burden of group management from network nodes and

of explicit join procedures from devices.

Sociocast

41

2.1.2 Advantages of a “social-oriented" approach

The use of social links to support network functionality is not new in

the telecommunications landscape.

Several routing protocols in wireless ad hoc [40], mobile opportunistic

and delay-tolerant networks [41, 42, 43, 44], have been designed to build upon

the key concepts of social network analysis, i.e., small world phenomenon [45]

and centrality. The former one, a.k.a. community, captures the fact that actors

within a social network are separated from each other by an average number

of fairly limited hops; while the latter one shows that some nodes in a

community are the common acquaintances of other nodes.

In the aforementioned works, the knowledge of social characteristics

(e.g., node centrality, in-betweenness) is used to make better forwarding

decisions and to assist the relay selection when delivering data to the intended

destination(s).

Many of the studied approaches involved unicast or multicast

communications [46, 47, 48]. The issue of data broadcasting in a Mobile

Social Network, where mobile social users physically interact with each other,

is analyzed in [49].

The objective of this work is to exploit similar concepts but under a

different perspective. We do not aim to improve forwarding decisions by

leveraging social network properties, but rather to better disseminate data at

the network layer within dynamically created groups of socially connected

devices.

The proposal has the potential of a real game changer in the view of the

creation of the future Internet of Things, by providing superior advantages

compared to what has been done so far in literature.

In fact, social bonds not only ensure minimum separation distances

between actors, which are crucial for an efficient and fast data propagation,

but may also enable data exchange within trusted groups and the creation of

groups that include actors belonging to different communities. In Sociocast

this translates into the possibility of an efficient and flexible group end-points

discovery, an intrinsic possibility of implementing policies for creating trusted

Enhancing Group Communications through the Social Internet of Things

42

groups of end-points directly at the network level, and the ability to

effectively and simply deal with the problem of interoperability among

different IoT platforms.

Obviously, in order to do this we need to start from a paradigm that

can provide for the establishment of pseudo-social ties between devices (to

operate at the network layer). This is already available in solutions of \social

networks of IoT devices", such as the Social Internet of Things (SIoT) [19]

for example.

However, they need to be moved from the application layer, wherein they

have

been initially conceived, down to the control plane of the network layer. In so

doing, group establishment and data exchange among members of such

groups

can be managed in a tighter way, with inherent flexibility and efficiency in

terms of network resource usage.

Sociocast

43

2.2 Sociocast

2.2.1 Objectives and design principles

In this Section is described how it’s possible to achieve a real

implementation of the Sociocast concept by relying on the capabilities of the

Software Defined Networking paradigm. The resulting solution is an enabler

for group communications based on social notions at the network layer.

Social ties among devices. Devices are likely to interact with other

devices having similar profiles and habits, e.g., those located in the same

place, owned by the same user, produced in the same company branch.

Such ties are well captured by the SIoT paradigm in [19], where a few

basic types of social relationships, defined according to user-defined policies,

are introduced: co-ownership object relationship (OOR), created between

devices that belong to the same owner; co-location object relationship

(CLOR), created between stationary devices located in the same place;

parental object relationship (POR), created between devices of the same

model, producer and production batch; co-work object relationship (CWOR),

created between moving devices that meet each other at the owners'

workplace; social object relationship (SOR), created as a consequence of

frequent interactions between moving devices. The framework is quite

flexible and other types of relationships can be easily added on a per use-case

basis.

Applications requiring data dissemination to a social group of devices

are, for instance, software updates: a given software patch needs to be safely

delivered to all the devices or sensors of the same brand, model, batch. For

this, POR relationships should be exploited. Similarly, some data need to

reach all other devices belonging to the same owner in case of personal

bubbles: the OOR relationship is appropriate in this scenario. Business

services may be advertised to all devices that either are currently in the same

area (CLOR) or often visited the same place (SOR).

Targeted data delivery schemes. Sociocast aims to enable:

• a given sender to disseminate data in a push-like manner to specific

nodes, which are friends over a social network of devices, according to

properly defined filters and policies (i.e., the social relationship type);

Enhancing Group Communications through the Social Internet of Things

44

• a node to subscribe to specific social-based topics (i.e., to receive data

from friends of a given type);

• a node to prioritize (and not to receive) data from particular senders,

e.g.: to enforce QoS; to identify the more suited and trusted

communication endpoints for security reasons; to save resources.

Deployment options. To target the aforementioned objectives, the

envisioned framework has (i) to enable nodes to indicate in an agile manner

the features of the end-points of data flows (i.e., the set of intended

recipients and/or the authorized senders) based on the distance in a social

network of devices, (ii) to properly and dynamically identify them, (iii) to

forward data packets accordingly.

A straightforward approach to accomplish the first two features could

be one that relies on an application-layer solution. For instance, the intended

set of receivers can be specified by a given sender at a high-level, e.g.,

through meta-data. Then, the resulting request can be sent to a purpose-built

proxy which is in charge of mapping such data onto IP addresses of the

receivers, similarly to [37]. Despite the virtue of simplicity, such an approach

has the drawback of poor performance in terms of efficiency in the usage of

network resources, since data forwarding to each intended destination is

performed at the underlying network layer in a myopic manner.

Thus, our interest is on a network-layer approach, according to which

the features of the intended set of receivers of a given data packet (or of a

sender of unwanted data packets) can be translated into a network-layer IP

address, hence treated (forwarded/dropped) by network nodes, accordingly.

The approach proposed is inspired by the traditional IP-based multicast, with

which it shares a few aspects, such as the routing of packets with a multicast

address (a Sociocast address, in our case). However, multicast lacks the

flexibility necessary to implement the aforementioned critical functionalities

for the future Internet of billions of devices, while it meets the requirements

of the end-users and those of the network operators.

By overstepping the agnosticism about Sociocast traffic at the network

layer, the following advantages are expected:

Sociocast

45

• data forwarding can occur in an efficient manner, e.g., by reducing the

number of duplicated packets, and saving bandwidth accordingly;

• filtering procedures can be enforced in-network, as requested by

potential data recipients, to limit the massive amount of generated traffic;

• network operators can benefit from traffic reduction, which is

particularly crucial for their infrastructures expected to be largely

overwhelmed in the near future.

Programmable packet treatment. Recent advancements in

networking technologies make the deployment of Sociocast at the network

layer even more viable. We identify SDN as the key enabler for Sociocast.

Thanks to its programmability, which reduces the complexity of network

elements, SDN can inject forwarding/dropping rules and properly manipulate

headers of packets to make more efficient their forwarding.

Figure 13: Sociocast architectural framework

Such policies can be defined in a network application, with no need to

modify the data plane of the underlying network infrastructure.

2.2.2 The architectural framework

The main entities of the envisioned framework are: the Sociocast

nodes, the SDN network (encompassing both switches and controller),

augmented with the notion of Sociocast, and the Sociocast Relationship

Enhancing Group Communications through the Social Internet of Things

46

Service, as shown in Errore. L'origine riferimento non è stata trovata.and

detailed in the following.

 The Sociocast nodes The Sociocast nodes are the endpoints of a Sociocast

communication. They are legacy IoT devices (e.g., smartphones, sensors)

augmented with the Sociocast Support Layer (ScSL) running on top of the

transport layer, through which they are enabled to create, send and/or receive

Sociocast packets. The ScSL exposes the Sociocast Application Programming

Interfaces (APIs) to the applications that want to use the Sociocast

communication configuration for data delivery. It is through this layer that

Sociocast packets are created and received by the end-devices.

The SDN network The SDN network is composed of three different

planes, according to the legacy deployment. The data plane encompasses the

SDN switches, which are SDN-enabled network nodes connected to each

other and interacting with the SDN controller. Among them, the SDN

gateways are the ingress/egress nodes of the SDN network. SDN nodes

interact with the SDN controller through the OpenFlow(OF) southbound

interface.

The control plane includes the SDN controller, which oversees the SDN

nodes, according to specific orchestration policies defined at the application

plane, and tracks the graph of the network topology in the Network

Information Base (NIB). According to information in the NIB and policies

defined by network applications, it injects rules in the so-called flow tables of

SDN nodes to enable the forwarding of Sociocast packets through OF

messages [50].

The Sociocast Relationship Service The Sociocast Relationship Service (SRS)

is implemented at the application plane, next to conventional SDN

applications, and it provides the following main functionalities:

1. establishing social relationships among nodes. Without loss of

generality, we inherit concepts and methodologies regarding the

policies for the establishment of the social links between nodes

from the well-accepted SIoT paradigm [19];

2. keeping track of the established social relationships;

Sociocast

47

3. providing interfaces towards the SDN network and navigating

the social network so to identify the nodes that belong to the

set of the potential recipients/authorized senders of a Sociocast

packet.

Herein, a major element is the Social Virtual Node (SVN), which

represents the digital counterpart of a physical device. It stores some meta-

data providing information about the nature of the device and a list of

friends, which is organized in a table named Friends Table. For each friend in

the table, the SVN records the type(s) of friendship(s), defined according to

the SIoT paradigm and the trust level associated with each friend.

The Social Virtual Node Repository (SVNR) stores all SVNs associated to

the physical devices in a given area. Indeed, one SVNR is responsible for

providing the objects in a given area with the described services; more

SVNRs are then interconnected in a distributed system. The following

modules are associated to the SVNR.

 The Relationship Manager (RM) is responsible for the relationships'

lifecycle management, i.e., detecting, creating, updating and

deleting relationships3.

 The Relationship Browser (RB) navigates the Friends Table to find

potential recipients of a Sociocast packet, according to their

position in the social network. Policies for the social network

navigation are discussed in [51].

 The Sociocast Handler (SH), whenever queried by the SDN

controller, provides for the members of a Sociocast group, after

querying the RB module, through a Representational State

Transfer (REST) API. SVNRs, along with relevant

functionalities (i.e., RM, RB and SH), can be deployed as a peer-

to-peer system, for instance building upon the one described in

[51].

3
 For a detailed description of relationships management, the reader is referred to [51].

Enhancing Group Communications through the Social Internet of Things

48

The design choice is aimed at providing an implementation of SDN-

based group communications based on a de-facto global IoT resource

directory, which is distributed and without a single player in control of the

system. Digital representations of physical IoT devices will run in distributed

servers and can create autonomously social-like relationships with each

others. Based on such a distributed resource directory, interactions (both

point-to-point and point-to-multipoint) between IoT resources belonging to

different platforms can be straightforwardly enabled. Each SVNR (or group

of SVNRs) could, in fact, contain the images of the devices belonging to a

given platform, it can be owned and maintained by the owner of the platform

(or even the owner of the group of IoT devices), and interacts in a peer-to-

peer fashion with other SVNRs constituting the SRS.

2.2.3 Sociocast in action

In the following, are described the main steps for the creation of a

Sociocast packet. Then, it’s illustrate the Sociocast data delivery, according to

a push-based dissemination, publish/subscribe procedures to Sociocast

groups, as well as filtering according to Sociocast rules.

2.2.3.1 Creating a Sociocast packet

A Sociocast packet is created whenever a device needs the services

offered by the Sociocast framework, which are intended to: (i) disseminate

data in a push-like manner; (ii) indicate the subscription to a Sociocast group;

(iii) or to filter/prioritize data from particular senders. Whenever a packet is

created, it has to indicate which one of these three types of services is

requested. The above are the types of Sociocast services. The above-

mentioned types of Sociocast services are those supported in the current

implementation, but the set of Sociocast services can be easily extended in the

future.

Let us consider a device, say A, which creates a packet with data to be

sent to a Sociocast group. The application in A makes a request to the ScSL

via the available APIs, providing the following information: (i) the type of

requested Sociocast service; (ii) the social relationship (e.g., OOR, CLOR)

according to which the Sociocast group has to be formed; (iii) the social

Sociocast

49

distance (number of hops over the social network), which represents the

scope of the Sociocast group.

The ScSL reacts to the incoming request by creating an IP packet with

the following header fields:

 Source IP address: the IP address of the source device.

 Destination IP address: a fixed IP address, identified in the following

as IPSC, assigned to Sociocast that allows SDN gateways to identify

Sociocast packets.

 Sociocast Tag: a 2-bytes field that is carried inside the transport-layer

destination port and is used to uniquely identify the type of social

relationship and other appropriate filters (e.g., number of hops,

possible application of Sociocast, etc.). The encoding is as follows:

 -METADATA: device metadata available for future applications.

 -RELATIONFILTER: type of relationship (e.g., OOR, SOR,

CLOR, etc.).

 -FEATUREGROUP: type of Sociocast services needed by the

application (e.g., GroupCreation, SourceFiltering, Pub/Sub).

 -RADIUS: maximum distance, in number of hops, from the source.

Figure 14: Examples of Sociocast Tag configuration. shows some

examples of Sociocast Tag configuration.

Being Sociocast packets identified through conventional layers 3 and 4

header fields, legacy matching rules can be applied, with no need to resort to

OF experimenter fields [52]. Such design choices would facilitate the

deployment of Sociocast, which candidates itself as a short-term solution to

be exploited by network operators.

For the sake of simplicity, the encoding described above refers to the

case the IPv4 is used. Similar considerations hold for IPv6 packets, for which

matching fields can be handled by OF since version 1.2 [52].

For those constrained IoT devices belonging to Low power and Lossy

Net- works (LLNs), 6LoWPAN (IPv6 over Low-Power Wireless Personal

Area Networks) header compression methods can be used [53] over the link

interconnecting the devices to the SDN gateway. For the IPv6 headers,

compression methods may also affeect source and destination addresses, and

Enhancing Group Communications through the Social Internet of Things

50

they vary according to the fact that the source is communicating with nodes

either within or outside the WPAN. In the latter case, a 50 percent

compression ratio can be still achieved by letting the full destination address,

carrying the Sociocast address, be transmitted.

TCP header compression for IoT scenarios [54] is still an open issue at

the standardization level [55], not part of RFC 6282 [53]. The compression

foresees to avoid sending the port numbers in each packet, which however

does not affect the Sociocast communications as the port number with the

Sociocast TAG is reconstructed at the gateway. Indeed, decompression

occurs at the SDN gateway letting Sociocast packets travel with conventional

IP header fields in the SDN network. Similar operations are performed at the

SDN gateways the destinations are attached to, if the latter ones belong to a

WPAN.

Figure 14: Examples of Sociocast Tag configuration.

2.2.3.2 Push-based data dissemination

Once the Sociocast packet is created with data to be disseminated, it is

sent by the source device and treated in the network through the following

steps.

1. The Sociocast packet reaches the SDN gateway, which the source

device is connected to. Since, initially, a forwarding rule is not set in

Sociocast

51

the flow table of the SDN gateway, the GoToController rule applies

for it. Hence, a OF Packet In message is issued to be transmitted to

the SDN controller.

2. Upon reading the header of the Sociocast packet4, the SDN controller

realizes that a Sociocast group must be created (Feature field set to

GroupCreation). Thus, it issues a request to the SRS, to retrieve the

set of the devices, which are meant to act as recipients of the

Sociocast packet.

3. The SH triggers the browsing of the social network, as specified

before, and returns to the SDN controller the addresses of the set of

devices of the Sociocast group.

4. The SDN controller retrieves from the NIB the SDN nodes in the

shortest paths towards the intended receivers of the Sociocast group.

Then, it builds the routing paths by ensuring that SDN nodes

belonging to the path towards multiple receivers receive a single rule

and forward the Sociocast packet only once. Hence, it injects

forwarding rules in the flow table of the involved SDN nodes

accordingly, by sending OF Flow Mod messages. In particular, the

SDN gateways which the Sociocast destinations are attached to, will

be instructed by the SDN controller with a rule that: (i) matches the

Sociocast-related header fields that identifing the Sociocast

communication and (ii) foresees to forward the packet to the correct

physical port after changing the destination Sociocast IP address with

the IP destination (unicast) address as action. This is to ensure that all

devices belonging to the Sociocast group correctly receive the

Sociocast packet.

Other SDN nodes, instead, are instructed to forward the Sociocast

packet to the physical correct ports by matching the Sociocast fields

values.

4
 The entire Sociocast packet is sent by the SDN gateway, hence a Packet Out is transmitted

by the controller, back to the SDN gateway [52].

Enhancing Group Communications through the Social Internet of Things

52

Once the Sociocast group is created, subsequent Sociocast packets

transmitted by the source device may be handled by the SDN gateway with

no need to contact the SDN controller, but rather the may be forwarded

according to rules already available in the flow table. According to the legacy

SDN implementation, a timeout is applied to rules injected by the controller

into SDN nodes, so as to prevent a rule to stay in the table for too long and

to unnecessarily occupy space in the flow table [52]. Within our framework,

such a timeout can be set to reflect the lifetime of and the frequency of

interactions within the Sociocast group, as well as the mobility patterns of

nodes.

2.2.3.3 Publish/subscribe

Sociocast can be exploited to support publish/subscribe interaction

model as well. In fact, a device can subscribe to receive packets published by

devices identified by their position in the social network. For example,

assume that device B wants to subscribe to receive packets generated by its

friends of type OOR. If this is the case, it will generate a Sociocast packet

with the FeatureGroup field set to Pub/Sub and the RelationFilter field

identifying an OOR.

Such an information will reach the SDN controller which will perform

the following operations:

1. It sends a query to the SH and receives the identities of the devices

with position in the social network consistent with the request by

device B.

2. It adds this information in a pending interest table which tracks all

subscriptions received by devices. Whenever a device begins to

disseminate data, the SDN controller will check whether there are

devices that have subscribed to its updates (e.g., B).

3. If this is the case, the SDN controller will instruct the SDN nodes in

the path to B to forward the data packets to it.

Sociocast

53

2.2.3.4 Source filtering

Sociocast allows a device to select those that are entitled to send

packets to it, on the basis of their position in the social network. Such feature

can be used both in a proactive and a reactive way. More specifically,

 Proactive: a device might decide to receive packets by its friends only,

for security reasons or to save energy, computational and

communication resources.

 Reactive: the computational or communication load for a device may

become too high, e.g., because of a DoS attack. If this is the case, the

device might decide to accept packets by a subset of devices, based on

their position in the social network. In this way Sociocast can be

exploited to realize a firewall whose policies change depending on the

current load.

Figure 15: Reference topology.

A device, say C, wishing not to receive packets from nodes with certain

social properties sends a Sociocast packet by specifying in the FeatureGroup

field SourceFiltering. Once the packet reaches the SDN controller, the latter

one will query the SH, which will reply with the list of authorized IP

addresses.

Accordingly, the SDN controller will insert entries in the flow table of the

SDN gateway which C is attached to, whit the aim of specifying, on the one

Enhancing Group Communications through the Social Internet of Things

54

hand, the forwarding rule for packets destined to it sent from authorized

senders and, on the other, the dropping rule for those which are not allowed.

2.3 Experimental setup

In this paragraph it’s described the environment for the performance

evaluation. More specifically, Section 2.3.1, and 2.3.2 described the tools

utilized for the performance evaluation and the reference topology, while in

Section 2.3.3 are discussed the scenarios.

The benchmark utilized for comparison purposes is presented in

Section 2.3.4, whereas the considered performance metrics are identified in

Section 2.3.5.

2.3.1 Tools description

The SDN controller ONOS [26] and the network emulator Mininet

[25] are the main tools used for the performance evaluation. Both of them

need to be described in more details to better understand how the

experimental playground has been created.

2.3.1.1 ONOS

At the beginning of SDN, there was only a SDN controller, NOX [58],

but since then, the number of SDN controllers has grown significantly.

Indeed, as stated in Chapter 1, whitin this plethora of SDN controllers some

are proprietary, while many more are open-source and implemented in

different programming languages.

In particular the SDN controller ONOS, which is a Java-based

controllers, uses OSGi containers for loading bundles at runtime, allowing a

very flexible approach to adding functionality and also, since Java is a well-

known and widely used programming language, the development resources

are abundant, with good supporting documentation and libraries available.

As Figure 16 shows, in the ONOS controller architecture can be found three

different layers:

 Northbound APIs and protocols. An exclusive characterization of ONOS

is the intent framework, which allows a control application to request

Sociocast

55

a high-level service without having to know the implementation

details. State information is provided to control applications across

the northbound API, either synchronously, via query, or

asynchronously, via listener callbacks.

 Distributed core. The state of the whole SDN network (links, hosts, and

devices state) is maintained in the distributed core. ONOS is deployed

as a service on a set of interconnected servers. The ONOS core

provides the mechanisms for service duplication and coordination

among different instances, providing the applications, in the upper

layer, and the network devices, in the downer layer, with the

abstraction of logically centralized core services.

 Southbound APIs and protocols. The southbound layer hides the diversity

of the network, allowing the distributed core to be both device and

protocol agnostic.

Figure 16: ONOS Architecture.

Enhancing Group Communications through the Social Internet of Things

56

2.3.1.2 Mininet

2.3.1.2.1 What is Mininet?

“Mininet is a network emulator which creates a network of virtual hosts, switches,

controllers, and links. Mininet hosts run standard Linux network software, and its

switches support OpenFlow for highly flexible custom routing and Software-Defined

Networking." This definition is taken from Mininet official webpage [56], and

highlights that Mininet is a very powerful tool when working with SDN;

indeed, it provides a simple network testbed for developing OpenFlow

applications.

The emulated hosts in Mininet behave just like they were “real", which

means that it's possible to either run any program installed in the undergoing

Linux Operating System or a specific code for an application or, again, for

example, to login with SSH.

This concept is extended to all the network elements: not just hosts, but

also switches, links and controllers. They are “real", even though they are

created with software, instead of being an hardware part. This allows for the

emulation of networks that are a copy of real ones and vice versa, for the

creation of a Mininet network to test a future real one and use the same code

and applications for both of them. Mininet works via Linux command line

and Python API.

2.3.1.2.2 How Mininet Works

Mininet uses some Linux features, such as process abstraction, which

allows for the virtualization of the computing resources and makes the system

look like a set of "containers". Each container has a fixed share of the

processing power and a virtual link that helps the creation of links with

realistic speed and delay. Using this process based virtualization, Mininet is

able to run many hosts and switches (up to 4096 on a single kernel!). Let's

now analyze each emulated network element:

 Emulated Hosts: A host emulated in Mininet is a group of

user-level processes moved into the network namespace, a

virtualization feature that provides individual processes with

separate network interfaces, routing tables, and ARP tables.

Sociocast

57

 Emulated Links: The data rate of each link is guaranteed by

the Linux Traffic Control which, through a series of schedulers,

allows you to create traffic flows with the specified

characteristics. Note that each emulated host has its own virtual

Ethernet interfaces and each pair of virtual Ethernet behaves

like a cable connecting the two interfaces.

 Emulated Switches: Mininet uses Open vSwitch in kernel

mode to move packets between interfaces.

2.3.2 Tools usage and reference topology

The focus of the performance evaluation is to assess Sociocast in the

case of push-based data dissemination towards a group of devices.

To this purpose, we built an emulation playground. In particular, the

Mininet network emulator [25] has been used, which allows fast prototyping

and experimental evaluation of OF-enabled networked systems. The

experimental setting consists in the network topology depicted in Figure 15:

Reference topology.. A full-mesh interconnects the core SDN nodes, which

are the roots of a three-layers fat-tree topology. Up to 21 devices are attached

to each SDN gateway (not all the devices are shown in the Figure). ONOS

has been considered as a reference SDN controller in the context of this

work, due to its scalability properties and its highly modular architecture [26].

The ONOS controller interacts with an external SRS, which establishes

social relationships among emulated devices, and manages them.

The ONOS controller and the Mininet network emulator are both

running on the same virtual machine, while the SRS runs in a different one.

Both these

virtual machines are located in a physical server with an Intel Xeon(R) CPU

E5-2630C v3 1.80 GHz x32 processor and 377,8 GiB of memory.

Enhancing Group Communications through the Social Internet of Things

58

2.3.3 Social relationships settings and traffic patterns

The performance of the proposed solution has been evaluated with a

set of representative IoT test configurations properly designed to take into

account

different numbers and distributions of nodes in the emulated topology,

different physical distances between sources and destinations, and different

types of service. This is aimed at making the obtained results as generalizable

as possible and having a clear idea of the potential and limits of Sociocast in

multiple scenarios. Each of the test configurations has been mapped onto a

use case characterized by the exploitation of a particular type of social

relationship between the devices involved. In this way, helpful guidelines can

be provided about the suitability of the proposed solution in the context of

different application scenarios and, at the same time, of the effectiveness of

communications based on each of the possible social-like relationships

established among IoT devices. Details are given in the following. Table 2:

Summary of the main social relationships settings. also summarizes the major

features characterizing each scenario, which are: the types of social

relationship invRel.) (shortened as Rel.), the number of destinations

(shortened as DSTs) for each communication, their distance from the source

(shortened as SRC), and their position with reference to the considered

network topology.

2.3.3.1 Scenario A: Smart industrial plant.

Group communication needs: an industrial plant is equipped with several

connected devices (sensors and actuators) and one of these (randomly

selected) belonging to the emulated topology issues a Sociocast packet

destined to all the

devices connected to the same gateway. The group can be created, for

instance, for the dissemination of alarms, for group configuration and

reconfiguration, for functional testing.

Involved relationship type: CLOR.

End-point distribution profile: all endpoints clustered in the same area.

Sociocast

59

2.3.3.2 Scenario B: Smart home monitoring.

Group communication needs: a randomly selected device in the emulated

topology, resembling a smartphone of a user currently at office, acts as a

sender and issues a Sociocast packet to create a group of recipients made up

of all the smart devices connected to the (same) home gateway, which is

different from the one the user's smartphone is attached to. The group can be

created, for instance, to notify devices to configure a warm welcome for the

user.

Involved relationship type: OOR (ownership).

End-point distribution profile: sender in a location and all destinations

clustered in a different (potentially) remote location.

2.3.3.3 Scenario C: Wireless Sensor Network (WSN) management.

Group communication needs: a randomly selected device in the emulated

topology acts as a sender and issues a Sociocast group creation destined to all

the devices of the same brand, uniformly distributed in the topology to

disseminate a new configuration for the device, a software update, or a new

driver version.

Involved relationship type: POR (parental).

End-point distribution profile: uniform distribution of end-points.

2.3.3.4 Scenario D: Smart mobility.

Group communication needs: we assume mobile devices (e.g., smartphones,

laptops) carried by people moving in a smart city/smart campus and

interacting with other devices met either in the neighborhood or close

offices/classrooms. The type of the data exchanged within the group

includes: information related to mobility applications, tourist information,

data for the implementation of any Intelligent Transportation Systems

application.

Involved relationship type: SOR.

End-point distribution profile: variable location of end-points in the group.

As to the creation of the relationships, these have been set in

deterministic way except for the SOR. In particular, different groups of

devices linked with POR and OOR relationships are created so as to have

from 5 to 20 recipients for each simulated communication. However, the

Enhancing Group Communications through the Social Internet of Things

60

CLOR relationship has been created among devices that are connected to the

same gateway as the co-location has to be assured. As to the SOR

relationships used in Scenario D, these are established among devices in the

emulated topology according to their physical distance and follow a simple

probabilistic model. The principle adopted is such that the closer the devices,

the higher the probability that the two devices have establish a SOR

relationship. Accordingly, devices attached to the same SDN gateway (i.e., an

Access Point) have the highest probability to establish it. These devices are

characterized by sharing the same path to reach the root node (s1 in Figure

15: Reference topology.), which is made up of 4 SDN nodes. We base on this

number to define the notation to denote the relevant probability to create a

SOR among them: psoc,4. Following the same principle, devices sharing three,

two, or one SDN nodes in the path to reach s1, establish a relationship with

probability psoc,3, psoc,2, and psoc,1, respectively. The higher j the higher the

probability psoc,j, with j ϵ {1,2,3,4}. The setting of psoc,j, used in the performed

simulations is reported in Table 3: Probabilities of SOR establishment.;

different configurations have been considered to evaluate the impact of

different numbers of friends and their distribution in the considered topology.

Table 2: Summary of the main social relationships settings.

Sociocast

61

Table 3: Probabilities of SOR establishment.

2.3.4 Benchmark scheme

The performance has been compared against an application-layer

solution, which we refer to as multiple unicast (labeled in the plots as M-

Unicast). Note that also for this benchmark scheme, we are focusing on the

push-based data dissemination scenario. The choice of this benchmark is

meant to quantitatively estimate the benefits of the Sociocast proposal against

an application-layer solution. In the latter one, the network layer is agnostic

about the communicating group, but it offers the same features in terms of

sender initiated and dynamic Sociocast group creation, hence ensuring a fair

comparison. Specifically, the source node contacts a proxy in charge of

interacting with a SIoT-like platform to get the set of intended destinations

belonging to the Sociocast group. The latter one is described through

attributes/meta-data defined at the application layer, similarly to the

information encoded in the tags in Sociocast packets. After retrieving the list,

the proxy forwards it to the source node which sends the packet to the

destinations through multiple unicast exchanges. In other words, the

controller sets up distinct routing paths for each destination and some links

can be shared by multiple paths towards destinations belonging to the same

group. Without losing generality, we assume that the proxy is attached to the

root node of the topology (i.e., s1 in Figure 15: Reference topology.).

Enhancing Group Communications through the Social Internet of Things

62

2.3.5 Metrics

The following metrics have been considered to evaluate the

performance of the compared schemes in the creation of a Sociocast group

and data exchange among its members:

 the number of OF signaling packets exchanged between SDN nodes and

controller to build routing paths towards the intended Sociocast

destinations. The metric only refers to the control packets exchanged

to process incoming requests from sociocast nodes at the SDN

gateway, namely Packet In, Packet Out and Flow Mod. The

background (periodic) signaling exchanged between the controller and

the SDN nodes is not considered;

 the number of data packets exchanged into the network to reach all the

intended destinations of the communicating group, once it has been

creaated; the metric considers the number of transmitted packets per-

link and they are represented by either Sociocast or M-Unicast

packets.

For the benchmark scheme, the request packets issued by the source

towards the proxy as well as the signaling messages required to instruct the

relevant SDN nodes towards it are also considered.

The above metrics have been measured through the well-known

Wireshark network protocol analyzer5.

Comparison experiments have been conducted when varying the

number of destinations (or relevant probability settings) and are averaged

over 20 runs.

5
 Please notice that the analysis of the signaling incurred for the creation of social

relationships among devices is outside the scope of this work and is peculiar of the conceived

SIoT implementation. We remand to [57] for more details.

Sociocast

63

2.4 Results analysis
In this paragraph are shown the performance results. More

specifically, in Section 2.4.1 it’s discussed Sociocast in terms of generated

signaling packets; whereas Section 2.4.2 focuses on data packets.

2.4.1 Signaling packets

The first set of results aims at analyzing the control plane signaling

footprint incurred by the proposal and the benchmark scheme. Figure 17:

Sociocast Vs. Multiple Unicast. Exchanged OF packets for Sociocast group

creation when varying the number of destinations, scenario A. Figure 18:

Sociocast Vs. Multiple Unicast. Exchanged OF packets for Sociocast group

creation when varying the number of destinations, scenario B. and Figure 19:

Sociocast Vs. Multiple Unicast: Exchanged OF packets for Sociocast group

creation when varying the number of destinations, scenario C. report the

number of exchanged OF packets when varying the number of destinations

of the Sociocast group under for the scenarios A-C, whereas the results for

scenario D are shown in Figure 20: Sociocast Vs. M-Unicast OF packets

exchanged to create the sociocast group. It can be clearly observed that for

the M-Unicast approach the metric significantly increases with the number of

destinations, in all the considered scenarios. Such a trend is due to the fact

that the end-to-end communication path towards each single destination

needs to be discovered with the support of the SDN controller. In other

words, an SDN node receives a number of M-Unicast packets to forward

equal to the number of destinations it allows to reach. For each of them, it

contacts the controller by generating a Packet In message and waits for the

corresponding Packet Out and Flow Mod with instructions about the

forwarding behavior.

For a given number of destinations, the highest number of OF packets

are exchanged in case of Scenario C. In the latter one, indeed, the destinations

are spread over the topology and the routing path towards them may involve

several SDN nodes (and gateways). Scenario B follows with a lower number

of exchanged OF packets. In Scenario A, instead, only a single SDN gateway

is in charge of Sociocast packet forwarding. It is the only SDN node

transmitting and receiving OF packets.

Enhancing Group Communications through the Social Internet of Things

64

In the Sociocast solution, the controller is in charge of building routing

paths towards them so to avoid the forwarding of the same Sociocast packet

over the same link.

Hence, unlike the benchmark scheme, in our proposal, those SDN

nodes which belong to the paths towards different destinations receive only a

single Sociocast packet to forward and a single Flow Mod from the controller.

The gain of Sociocast w.r.t. M-Unicast in terms of exchanged OF packets gets

more remarkable as the number of destinations increases. For instance, in

Scenario C, it passes from a factor of around 6 for five destinations to a

factor of more than 14 for twenty destinations.

It is worth observing that, in Sociocast, a single Flow Mod message may

convey multiple rules to be injected into an SDN node. In particular, Table 4:

Size (in bytes) of the Flow Mod packet for Scenario A. reports, for Scenario

A, the size of the Flow Mod message, as measured at the SDN gateway,

which the source and the destinations are both attached to. For the Sociocast

proposal, the size reasonably increases with the number of destinations to

accommodate the action rule for each of them. The rule specifies the physical

output port as well as the change of the IP address from

Sociocast to unicast. For M-Unicast, each Flow Mod carries a single rule,

since its injection is issued per each M-Unicast packet traversing an SDN

node. The size increases of less than a factor of 3 for the Sociocast approach

compared

to M-Unicast, in the case of twenty destinations.

Despite the larger size of Flow Mod packets, it can be easily inferred

that, overall, the OF signaling footprint of the proposal, in terms of number

of ex-changed bytes, is significantly lower than M-Unicast. Also, the proposal

better scales with the size of the Sociocast group.

Similarly to the benchmark scheme, the proposal experiences the largest

signaling in Scenario C, wherein multiple SDN nodes, involved in forwarding

Sociocast packets to destinations, spread over the topology, need to be

instructed.

Similar considerations hold for Scenario D, Figure 20: Sociocast Vs.

M-Unicast OF packets exchanged to create the sociocast group. Also in such

Sociocast

65

a case, the proposed Sociocast solution is less sensitive to the simulation

settings (i.e., size of Sociocast group and its configuration in terms of

proximity of destinations w.r.t. the source) than the benchmark.

2.4.2 Data packets

Results in Figure 22: Sociocast Vs.M-Unicast exchanged data plane

packets when varying the number of receivers in different scenarios. shed

further light into the efficiency of the compared schemes in delivering the

data packets. Similarly to the OF signaling, also the number of exchanged

Sociocast packets increases with the number of destinations; the highest

values are experienced for Scenario C and the lowest ones in Scenario A.

As a general remark, it can be observed that the proposal is less

sensitive to increases in the number of destinations when compared to the

benchmark. This happens because the controller builds the routing paths to

avoid that packets are redundantly transmitted over a given link shared by

more destinations.

This is not the case for the M-Unicast solution where forwarding

decisions are separately taken for each data packet, according to the address

of the intended destination.

When referring to Scenario A, the M-Unicast approach always sends

twice as many data packets as the proposal. This is an obvious consequence

of the fact that, after receiving the destinations list, for the M-Unicast

approach there are two packets, for each destination, traveling into the

topology. One packet travels from the source to the SDN gateway, and the

other one from the SDN gateway to the corresponding destination. This does

not apply for the Sociocast approach, where there is only the data packet

from the SDN gateway to each destination.

Improvements get larger for other scenarios.

In Scenario B, more SDN nodes are involved in the routing path, despite the

fact that all the destinations are connected to the same SDN gateway. Hence,

more data packets travel into the network, especially for the M-Unicast

solution. Such a trend is more remarkable in Scenario C, due to the larger

spread of destinations over the topology. A similar trend is observed for

Scenario D in Figure 21: Sociocast Vs. M-Unicast exchanged data plane

Enhancing Group Communications through the Social Internet of Things

66

packets in the topology. Note that in Figure 20: Sociocast Vs. M-Unicast OF

packets exchanged to create the sociocast group and Figure 21: Sociocast Vs.

M-Unicast exchanged data plane packets in the topology. the different

simulation runs (from 1 to 7) correspond to the different Sim-IDs of Table 3:

Probabilities of SOR establishment..

Not surprisingly, improvements of Sociocast w.r.t. M-Unicast are

greater in Scenario B compared to Scenario C. Indeed, in Scenario B the path

towards all intended destinations is the same from the source to the SDN

gateway. Hence, in Sociocast, the SDN controller judiciously issues rules that

prevent from forwarding duplicated packets over the same links.

Figure 17: Sociocast Vs. Multiple Unicast. Exchanged OF packets for Sociocast group
creation when varying the number of destinations, scenario A.

Sociocast

67

Figure 18: Sociocast Vs. Multiple Unicast. Exchanged OF packets for Sociocast group
creation when varying the number of destinations, scenario B.

Figure 19: Sociocast Vs. Multiple Unicast: Exchanged OF packets for Sociocast group
creation when varying the number of destinations, scenario C.

Enhancing Group Communications through the Social Internet of Things

68

Figure 20: Sociocast Vs. M-Unicast OF packets exchanged to create the sociocast group.

Figure 21: Sociocast Vs. M-Unicast exchanged data plane packets in the topology.

Sociocast

69

Figure 22: Sociocast Vs.M-Unicast exchanged data plane packets when varying the number
of receivers in different scenarios.

Table 4: Size (in bytes) of the Flow Mod packet for Scenario A.

Benefits of the Sococast are definitely large when big groups of

destination devices are clustered together, as witnessed by results referring to

Scenario B: the OF signaling is reduced by a factor higher than 10 and the

number of exchanged data packets shrinks by more than a factor of 5 (for

twenty destinations). The lower gains for Sociocast packets w.r.t. OF signaling

are due to the fact that Sociocast also resorts to multiple unicasts forwarding

in the last hop from the SDN gateway towards the intended destinations, to

ensure successful reception at the application layer. It can be further easily

inferred (although not shown in results) that improvements get even larger as

Enhancing Group Communications through the Social Internet of Things

70

the distance between the source and the set of destinations increases. Overall,

the proposal is especially suited for push-based data dissemination to large

Sociocast groups highly clustered and far from the source, which well

resembles the case of multiple devices of a smart home (e.g., appliances) to be

remotely configured by the user's smartphone.

In the other cases, the gains are also significant and always higher than a

factor of 2. The achieved encouraging results motivate us to further explore

this fertile research area which has large room for improvements. The

effectiveness

of the proposal in handling other Sociocast features, like source filtering and

publish/subscribe, needs to be practically explored.

MQTT Algorithm

71

Chapter 3: MQTT Algorithm

3.1 Statement of the problem

The Message Queuing Telemetry Transport (MQTT) is a standard

publish-subscribe protocol for the transport of messages between devices.

MQTT is efficient for low-bandwidth and unreliable networks, furthermore,

thanks to its simplicity, it can be executed by devices with low capabilities in

terms of computing, communication, and energy resources. As a

consequence, MQTT has become one of the most popular protocols for the

Internet of Things (IoT).

In MQTT, the broker plays a central role. A subscriber can inform the

MQTT broker about its interest in a given topic. The broker is responsible

for forwarding the messages received by the publishers under such topic to all

interested subscribers.

MQTT has several interesting features that make it a suitable solution

for the interactions with smart objects in the IoT:

 its execution is not demanding for what concerns computing and

communication resources;

 there are several open source implementations for a wide range of

computing platforms;

 it can support a large range of interaction modes spanning from thing-

to-server and thing-to-thing;

 its interaction patterns are simple to use and is supported by most

programming languages this makes application development

extremely easy.

Enhancing Group Communications through the Social Internet of Things

72

3.1.1 Weaknesses and open issues

MQTT has a major problem that prevents it from becoming a unifying

solution for the IoT. In fact, MQTT is basically a centralized approach:

publishers and subscribers should interact with the same broker in order to

interact with each others.

There are two types of consequences of such centralization.

1. The broker might become a bottleneck as the processing of

subscription requests and publish messages overcome its computing

and communication capabilities.

2. Interactions between clients connected to different brokers becomes

difficult if not impossible.

To address such problems, some MQTT implementations (such as

Mosquitto), which will be discussed in the next paragraph, enable broker

bridging. In other terms, they allow a MQTT broker to subscribe to certain

topics which are under the responsibility of other brokers. Accordingly, it is

possible to build a network of brokers and research efforts have been devoted

to the optimization of such network, e.g., [59].

In principle, by fully exploiting bridging two MQTT clients can interact

independently of the brokers they are connected to. However, it is obvious

that interactions between clients connected to different brokers result in low

performance. In fact, delays will be longer because there is a further

communication hop at the overlay layer for a published message to reach

interested subscribers. Furthermore, messages that are forwarded from one

broker to others in order to deliver the message to all interested subscribers

consume communication resources which would be left available for other

uses if all the clients involved were connected to the same broker.

In this context, the objective of this chapter is to introduce a technique

which exploits the Social Internet of Things (SIoT) concept [19], so as to

determine how to choose the most convenient broker for each MQTT client.

Indeed, the proposed approach creates clusters of clients depending on their

position in the SIoT social graph and takes advantage of the evidence that

most interactions are local in social networks.

MQTT Algorithm

73

3.2 Algorithm description

This section describes how it’s possible to achieve the clusters creation

on the basis of on the clients position in the social graph. In details, first we

describe the design principles used for the correct clusterization of the social

network; then in paragraph 3.2.2 is described the algorithm used to create the

clusters. Finally, in the last paragraph is reported an actual example of how

the algorithm works.

3.2.1 Objectives and design principles

It is important to specify what are the mandatory requirements and

design principles of the clusters that we want to create. In details, the

specifications requested are the following:

 Number of clusters. Since, in the reference topology, we are

considering two MQTT brokers bridged together, we just need

two clusters, one cluster per broker.

 Size of the cluster. We want to avoid congestion and bottle

necks: our clusters should, therefore, be as balanced as possible,

in terms of the number of elements composing them. Hence,

there is a need to avoid scenarios, where given N elements

composing the social graph, N-1 elements characterize a cluster

while the other one is alone in the second cluster. The best

possible situation occurs when the clusters contain the same

amount of elements.

 Properties of the clients. Two elements pertaining to the same

cluster should have a social relationship that bound them

together. Such condition translates in a more frequent exchange

of messages than that involving elements untied by a social

bound.

 Clustering of the social network. Since our aim is to optimize

the bridging between the two MQTT brokers, we, indeed, want

to reduce the interactions and the message exchanged between

them. Therefore, we want that the number of social

Enhancing Group Communications through the Social Internet of Things

74

relationships between clients belonging to different clusters is a

as low as possible. In a nutshell, we want to partition the social

graph whit a minimum cut, which separates the two clusters.

Considering all these design principles, makes the choice of which

client should go into which cluster an NP hard problem.

Several solutions have been proposed, or are well known in the

literature, to solve this kind of problems, in particular, one the most used in

the scenario of dividing a graph with a minimum cut, is the Karger’s

algorithm [60].

3.2.2 Karger’s Algorithm description

The Karger's algorithm is adopted to estimate a minimum cut of a

connected graph, and, as we will discuss later, to do so it adopts, as part of its

logic, a degree of randomness, and for this reason it is a randomized

algorithm.

The main concept on which the algorithm is founded is the “edge

contraction”. In graph theory, an edge contraction occurs when given two

nodes A and B connected with one or more edges, all these edges are

removed and the two nodes are merged together, like shown in Figure 23:

Edge contraction of A and B. This operation reduces the total number of

nodes in the graph by one. All the other edges connecting the nodes A and B

with the rest of the graph are "reattached" to the merged node, effectively

producing a multi-graph.

MQTT Algorithm

75

Figure 23: Edge contraction of A and B

In general, the Karger's algorithm use this concept to iteratively

contracts randomly chosen edges until in the graph remain only two nodes;

which represent a cut in the original graph. By repeating this basic algorithm a

sufficient number of times, a minimum cut can be found which represent a

optimal solution for the problem.

3.2.2.1 A modified version of Karger’s algorithm for the social graph

Applying the Karger’s algorithm in a social graph, especially in our

scenario, is not as straightforward and simple as someone could imagine.

This is so because of two main reasons:

1. Since the aim of the algorithm is to find the minimum cut,

several solutions found at the end of a cycle, are the one that

divides the graph in two parts one of which contains a single

element. Unfortunately, these kind of solution are against the

design principles according to which we want to create our

clusters.

2. Since it is a randomize, the algorithm, can spent a lot of time

and resources to find a solution which is suitable for our

scenario and respecting our constraints.

Enhancing Group Communications through the Social Internet of Things

76

To solve these issues, a modified version of the karger’s algorithm is

proposed. In order to emphasize the characteristics that we need, we have to

give different weights to the edges of the social graph before the contraction,

in this way we are trading a part of the randomness in the algorithm in

exchange for better performances and a fasten way to find balanced clusters.

The weights (which have been given to the edges before choosing

which one to contract) are representative of the number of nodes in the edge

and the number of nodes in all the edge in the social network, this implies

that some nodes may be taken into account multiple time if they appear in

different edges. In detail the weights are created by the law:

W =
������ 	
 �	�� �� ��� ���

������ 	
 �	�� �� ���� ��� ����

After assigning a weight to each edge, the edge with the lowest one is

selected for the contraction. If more edges have the same weight, one among

these edges is chosen at random.

3.2.3 Clustering algorithm in action

After taking in account how the algorithm works and what the

requirement needed for creating the clusters that we want, are, it is time to

describe step by step how the algorithm works when applied to a small social

graph (for the sake of simplicity), for example the one shown Figure 23: Edge

contraction of A and B.

1. In the very first step, all the edges of the network are assigned

with a weight, which, indeed, is the same since all the edges

have only two nodes in this early stage. For this reason

subsequently, all the edges have the same probability to be

chosen for the contraction.

2. One edge at random is selected randomly (e.g., the edge AB), a

new social topology is created from its contraction, Figure 23:

MQTT Algorithm

77

Edge contraction of A and B; at this point new weights are

created and assigned to the edges of the new topology.

3. Based on the new given weights, the edge with the lowest one is

selected for the new contraction. Since n our scenario the two

edges CE and DE have the same weight, one at random is

selected and contract, for example the edge DE.

4. This procedure of edges selection based on their weight and

edges contraction is repeated, as shown in Figure 24, until only

two nodes remain, this two nodes represent each a cluster

containing the contracted nodes; cluster 1 with elements [A, B,

F] and cluster 2 with [C, D, E].

5. The found solution is an optimal one and for this reason the

algorithm explained above is repeated several times, starting

obviously from the same social topology. Then all the possible

solutions are compared and the one that respect the best our

constrains is chosen.

Figure 24: Algorithm in action

Enhancing Group Communications through the Social Internet of Things

78

3.3 Experimental setup

In this section we describe the environment for the performance

evaluation. More specifically, in Section 3.3.1 we describe the tools utilized for

the performance evaluation, in Section 3.3.2 we discuss the proposed

scenario (smart campus), whereas the algorithm settings and the traffic

patterns involved are treated in Section 3.3.3. While the benchmark utilized

for comparison purposes is presented in Section 3.3.4, Section 3.3.5.

concludes by identifying the performance metrics considered.

3.3.1 Tools description

The network emulator Mininet [25] and Mosquitto [61] the MQTT

message broker, are the main tools used for the performance evaluation.

Mininet has been already introduced in Section 2.3.1.2. for this reason in the

following will be discussed only Mosquitto.

3.3.1.1 Mosquitto

Eclipse Mosquitto is an open source (EPL/EDL licensed) message

broker that implements the MQTT protocol versions 5.0, 3.1.1 and 3.1.

Mosquitto is lightweight and suitable for use on all devices from low power

single board computers to full servers moreover it is highly portable and

available for a wide range of platforms. The Mosquitto project also provides

a C library for implementing MQTT clients, as well as the very popular

mosquitto_pub and mosquitto_sub command line MQTT clients.

Mosquitto is part of the Eclipse Foundation [62], and an iot.eclipse.org

project [63].

MQTT Algorithm

79

3.3.2 Tools usage and reference topology

The focus of the performance evaluation is to assess the improvements

brought by the modified version of the Karger’s algorithm in the case of an

MQTT publish/subscribe data dissemination towards a group of devices

bond together by social relationships. To this purpose, we built an emulation

playground. In particular, the Mininet network emulator [25] was used to

recreate a small campus network topology, as depicted in Figure 25. A full-

mesh interconnects the network nodes, which are the roots of a three-layers

fat-tree topology. Up to 5 devices are attached to each gateway (not all the

devices are shown in the Figure).

The open-source Eclipse Mosquitto broker [61] was chosen as the

reference MQTT message broker in the context of this work, due to its

lightweight, compatibility with almost every device and easy installation. The

two bridged MQTT brokers run in two different virtual machine, both of

them located in two different personal computers DELL inspirion 17 5000

series (8Gb Ram Intel Core i5-6200U). While the Mininet topology runs in a

third virtual machine in an personal computer ASUS X52J (8Gb Ram, Intel

Core i5 M460). These three virtual machine are connected to the same

802.11ax wireless network.

Figure 25: Reference Topology

Enhancing Group Communications through the Social Internet of Things

80

3.3.3 Settings and traffic patterns

The performance of the proposed solution was evaluated with a

representative IoT test configuration, a small smart campus scenario. This

scenario is properly designed to take into account different numbers and

distributions of nodes in the emulated topology and also different physical

distances between sources and destinations. This is aimed at making the

obtained results as generalizable as possible. The test configuration was

mapped onto a use case characterized by the exploitation of a particular type

of social relationship between the devices involved, the CLOR relationship.

This particular social relationship empathies the physical distance between the

devices, more specifically, the nearer the devices in the topology, the higher

the probability of being friends. The probability that i and j have established a

social-like relationship with each other, indeed, follows the law:

���� ������ �� = � !"#

Where Dp is the physical distance between i and j in terms of hops,

while k and $ are positive real numbers which characterizes the structure of

the social network. Notice that as k and $ varying different possible social

graphs can be obtained from the same physical topology for example Figure

26 shows a social graph created from k = 0,25 and $ = 0,5.

Figure 26: Social Network for k = 0,25 and � = 0,5

A st

terms of

between d

shown in

 study was conducted to determinate the social g

 the average of social hops and the mean o

n devices, as the parameters k and $ vary. The re

in the figures below.

Figure 27: Average of social relationship for k

Figure 28: Average of hops for k and �

MQTT Algorithm

81

al graphs peculiarities, in

 of social relationships

 results of this study are

 and �

Enhancing Group Communications through the Social Internet of Things

82

Of all the possible combinations of k and $, we focused our later study

in the couples which give a moderate amount of social relationships while

avoiding extreme scenarios. The considered values are reported in Table 5.

For each considered couple of k and $, three different social networks

were created and investigated.

In conclusion, in order to take in account and study different data

patterns, the probability, whit which a generic node i publishes something on

which the generic node j has a subscription, is given by:

���� &'(�� =)�"*+

Where x is the social distance between i and j in terms of hops in the

social graph, while) and , are positive real numbers which characterizes the

density of the data pattern.

 In this way, helpful guidelines can be provided on the suitability of the

proposed solution in the context of different data dissemination patterns.

$ 0.4 0.6 0.8

k 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

Table 5: Considerated values of K and �

3.3.4 Benchmark scheme

The performance of the proposed approach was compared against a

solution where the devices casually chose the MQTT broker to interact with.

Generally speaking, a device connects to a specified MQTT broker, yet, since

our scenario is representative of a small campus is possible to assume that the

two brokers are placed in the same server room. For this reason the random

approach is a good compromise to obtain similar clusters in comparison to

the MQTT optimizer algorithm and to quantitatively estimate the benefits of

the proposed solution.

MQTT Algorithm

83

Also we kept track of all the traffic pattern generated in our solution

and the same schemes are applied in the benchmark, ensuring a fair

comparison.

3.3.5 Metrics

Before introducing the metrics that have been considered to evaluate

the performance, it’s mandatory to define the random variable taken into

account in the proposed approach.

Considering the generic subscriber node i, in the reference topology, we

define the following random variables:

 Di represents the delay encountered by a message which should

be received by i.

 Si which is equal to 1 if the message is generated by a publisher

which is managed by the same MQTT broker of i while it is

equal to 0 otherwise.

 Xi represents the distance in the social network between the

publisher and i.

 Yi represents the distance in the physical network between the

publisher and i.

The performance metrics which have been evaluated experimentally are

the following:

 E{D}, the average of the delay Di , is defined as:

-� � = . . -� |0 = 1, 2 = 3� · �� �0 = 1|2 = 3� · �� �2 = 3�
5

+67

7

68

Where, �� �2 = 3� follows the law:

���2 = 3� =)�"*+

-� |0 = 1, 2 = 3� and �� �0 = 1|2 = 3� have been evaluated

experimentally.

 Additionally, -� |0 = 1, 2 = 3� can be related to Y

Enhancing Group Communications through the Social Internet of Things

84

-� |0 = 1, 2 = 3� =

= . -� |0 = 1, 2 = 3, < = =� · ��� < = =|0 = 1, 2 = 3�
>��+

>6?

Where -� |0 = 1, 2 = 3, < = =� too was evaluated experimentally

and is equal to -� |0 = 1, < = =� and applying the Bayes’s law we

evaluate ��� < = =|0 = 1, 2 = 3�

��� < = =|0 = 1, 2 = 3� = ��� < = =|2 = 3�
= ��� 2 = 3|< = =� · Pr �< = =�

Pr �2 = 3�

��� 2 = 3� = . ��� 2 = 3|< = =� · Pr �< = =�
>��+

>6>���

 The last performance metric evaluated is the probability on

which publisher and subscriber are served by the same MQTT

broker:

��� 0 = 1� = . ��� 0 = 1|2 = 3� · Pr �2 = 3�
5

+67

MQTT Algorithm

85

3.4 Results analysis

This paragraph shows the performance results based on the

experimental estimated metrics. More specifically, in Section 3.4.1 it’s

discussed the MQTT optimizer in terms of delay in the physical network and

probability on which publisher and subscriber are served by the same MQTT

broker; whereas Section 3.4.2 focuses on the average of the delay compared

to the benchmark.

3.4.1 Delay in the physical network

The first step of the experimental campaign was to estimate the delay

inside the physical network, on the basis of different physical distances

(expressed in terms of number of hops) and if the publisher and the

subscriber were served by the same MQTT broker.

After choosing at random a publisher, for each of the possible cases

were sent and tracked 2000 packets, for a total of 20000 packets sent.

The results of this campaign are shown from Figure 29 to Figure 32,

were the probability distribution functions for each case are reported.

Enhancing Group Communications through the Social Internet of Things

86

Figure 29: Pdf of delay for a distance of 2 hops

Figure 30: Pdf of delay for a distance of 3 hops

MQTT Algorithm

87

Figure 31: Pdf of delay for a distance of 3 hops

Figure 32: Pdf of delay for a distance of 2 hops

Enhancing Group Communications through the Social Internet of Things

88

Other interesting parameters like the average and the standard deviation

were estimated for all the dataset and the 95th percentile. All these are

reported in following table.

Physical
Distance

Average Standard Deviation

Same
Broker

Different
Broker

Same
 Broker

Different
Broker

100% 95% 100% 95% 100% 95% 100% 95%

2 hops 50.89 48.72 57.67 54.58 615.73 141.50 2366.86 227.64

3 hops 47.67 45.73 57.49 54.41 516.72 133.77 2518.71 227.41

4 hops 51.04 48.83 57.63 54.53 681.17 144.86 2223.90 230.40

5 hops 51.06 48.94 57.93 54.73 623.12 143.24 2520.48 241.20

Table 6: Average Delay and standard deviation for different distances.

3.4.2 Average of the delay

The second part of the experimentation focuses on the study of the

delay in the social network based on the results obtained in the physical

network. In particular, starting from the values in Table 5, a total of 27

different social networks were created and were used to test the optimization

algorithm. After the creation of the clusters, for each of social network a data

pattern, based on the social relationships between the nodes, was created

using the probability mentioned in section 3.3.3:

���� &'(�� =)�"*+

MQTT Algorithm

89

Figure 33: Average delay for a social distance of 1 hop

Figure 34: Average delay for a social distance of 2 hops

Enhancing Group Communications thr

90

Figure 35: Average d

Due to these results we ar

-� � as described in section 3.3.5

, from 0,1 to 3 are shown in Figu

Figure 36: comparison Between th

 through the Social Internet of Things

e delay for a social distance of 3 hops

 are now able to estimate the average of delay

.3.5. The results of the average of delay varying

igure 36.

 the delays in proposed approach and the benchmark

MQTT Algorithm

91

Benefits of the proposed approach are evident, due to the smaller

average delay when compared to the benchmark and decrease as , increases.

Enhancing Group Communications through the Social Internet of Things

92

Conclusions and future works

93

Chapter 4: Conclusions and future works

In this work, first, is proposed and analyzed the behavior of an

architectural framework encompassing all the entities, functionalities, and

procedures that support a fresh new network-layer group dissemination

method, i.e., Sociocast, by leveraging a software-defined network approach.

Results achieved through an emulation testbed show the better

scalability of the proposal in terms of OF signaling and data packet

redundancy in comparison to an application-layer benchmark scheme, under

different representative IoT scenarios.

Improvements are achieved by leveraging a purpose-built network

application in the controller, which would be in charge of identifying the set

of Sociocast destinations by interacting with an external SIoT platform

(feature implemented at the application layer by the benchmark scheme) and

responsible for smartly building routing paths towards multiple receivers so as

to avoid packet duplication over links. SDN allows to manage the

implementation of such functionalities at the control plane in a flexible and

programmable manner, with no changes in the forwarding elements, hence

making the devised framework practically viable at a low implementation cost.

As a further challenge, IoT devices belonging to Sociocast groups may

move long distance between different access points. As consequence, tracking

their positions at the virtual counterparts (SVN and SVNR), as well as

managing the forwarding rules associated with them in the SDN nodes,

become very difficult and entail proper workarounds which will be a subject

matter of future investigations.

In conclusion, a technique to enhance the MQTT bridging with a social

partition of the network elements was proposed and analyzed. Starting from

the creation of a social network, based on CLOR type social relationship,

rolling up to the clusterization of the network elements, thanks to a modified

version of the Karger’s algorithm.

Results achieved through an emulation testbed, representing a smart

campus scenario, show better performances in terms of average delay when

compared to a benchmark scheme without social ties between the elements.

Enhancing Group Communications through the Social Internet of Things

94

References

95

References

[1] John W. Lockwood, Nick McKeown, Greg Watson, Glen Gibb, Paul

Hartke, Jad-Naous, Ramanan Raghuraman, and Jianying Luo.An Open

Platform for Gigabit-rateNetwork Switching and Routing. MSE 2007, San

Diego, June 2007.

[2] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S.

Azodolmolky,and S. Uhlig. Software Defined Networking: A Comprehensive

Survey.Proceedingsof IEEE., 103(1), January 2015.

[3] Nick McKeown.SDN and Streamlining the Plumbing.Keynote speech at

COMSNET2014, January 2014.

[4] https://www.opennetworking.org/sdn-definition/

[5] Scott Shenker.The future of networking and the past of protocols.

Keynote speechat Open Networking Summit 2011, October 2011.

[6] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N.

McKeown. Im-plementing an OpenFlow switch on the NetFPGA

platform.Proceedings of the 4thACM/IEEE Symposium on Architectures

for Networking and Communications Sys-tems., June 2008.

[7] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo.SDN-WISE: Design,

proto-typing and experimentation of a stateful SDN solution for WIreless

NEtworks. InProc. of IEEE Infocom 2015, Hong Kong, April 2015.

[8] G. Bianchi, M. Bonola, A. Capone, and C. Cascone.OpenState:

programmingplatform-independent stateful openflow applications inside the

switch. ACM SIG-COMM Computer Communication Review, April 2014.

[9] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan. Flow- level

statetransition as a new switch primitive for SDN.In Proc. of ACM HotSDN,

August2014.

[10] http://flowgrammable.org/sdn/openflow/.

Enhancing Group Communications through the Social Internet of Things

96

[11] https://www.opendaylight.org.

[12] https://www.opennetworking.org/onos/.

[13] https://github.com/faucetsdn/ryu.

[14] https://www.open-kilda.org/.

[15] https://faucet.nz/.

[16] IEEE, “Internet of Things,” 2014.

[17] http://standards.ieee.org/innovate/iot/

[18] L. Atzori, A. Iera, G. Morabito. “From ‘smart objec’t to ‘social object’:

the next evolutionary step of the Internet of things ” IEEE Cmmunications

Magazine- Jan 2014.

 [19] L. Atzori, A. Iera, G. Morabito, M. Nitti. “The Social Internet of Things

(SIoT) – When social networks meet the Internet of Things: Concept,

architecture and network characterization” Computer Networks · November

2012- 56 (16) (2012)3594-3608

[20] MQTT Version 5.0, OASIS Std., March 2019.

[21] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, In

ternet of things: A survey on enabling technologies, protocols, and

applications, IEEE Communications Surveys & Tutorials 17 (4) (2015) 2347-

2376.

 [22] C. Diot, B. N. Levine, B. Lyles, H. Kassem, D. Balensiefen, Deployment

issues for the IP multicast service and architecture, IEEE network 14

(1)(2000) 78-88.

 [23] L. Atzori, A. Iera, G. Morabito, Sociocast: A new network primitive for

IoT, IEEE Communications Magazine 57 (6) (2019) 62-67.

References

97

 [24] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol

molky, S. Uhlig, Software-de_ned networking: A comprehensive survey,

Proceedings of the IEEE 103 (1) (2015) 14-76.

[25] B. Lantz, B. Heller, N. McKeown, A network in a laptop: rapid

prototyping for software-defined networks, in: Proc. of the 9th ACM

SIGCOMM Workshop on Hot Topics in Networks, ACM, 2010, p. 19.

[26] ON.LAB, Introducing ONOS - a SDN network operating system for

service providers (2014).

[27] S.-H. Shen, E_cient SVC multicast streaming for video conferencing with

SDN control, IEEE Transactions on Network and Service Management.

 [28] B. Knutsson, H. Lu, W. Xu, B. Hopkins, Peer-to-peer support for

massively multiplayer games, in: IEEE INFOCOM 2004, Vol. 1, IEEE, 2004.

[29] X. S. Sun, Y. Xia, S. Dzinamarira, X. S. Huang, D.Wu, T. E. Ng,

Republic: Data multicast meets hybrid rack-level interconnections in data

center, in: 2018 IEEE 26th International Conference on Network Protocols

(ICNP), IEEE, 2018, pp. 77-87.

[30] X. Li, Y.-C. Tian, G. Ledwich, Y. Mishra, X. Han, C. Zhou, Constrained

optimization of multicast routing for wide area control of smart grid, IEEE

Transactions on Smart Grid.

[31] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, N. D. Georganas, A

survey of application-layer multicast protocols, IEEE Communications

Surveys and Tutorials 9 (1-4) (2007) 58-74.

[32] S. Islam, N. Muslim, J. W. Atwood, A survey on multicasting in software-

defined networking, IEEE Communications Surveys & Tutorials 20 (1)

(2017) 355-387.

Enhancing Group Communications through the Social Internet of Things

98

[33] Z.lSaeed, I. Ahmad, I. Hussain, Multicasting in software defined

networks: A comprehensive survey, Journal of Network and Computer

Applications 104 (2018) 61-77.

 [34] A. Adams, J. Nicholas, W. Siadak, RFC 3973, protocol independent

multicast-dense mode (PIM-DM): Protocol specification (revised), Tech. rep.

(2005).

 [35] B. Cain, S. Deering, I. Kouvelas, B. Fenner, A. Thyagarajan, RFC 3376,

Internet Group Management Protocol, version 3, Tech. rep. (August 2006).

[36] H. Holbrook, B. Cain, RFC 4607, Source-Speci_c Multicast for IP, Tech.

rep. (August 2006).

[37] A. Venkataramani, et al., MobilityFirst: a mobility-centric and trustworthy

internet architecture, ACM SIGCOMM Computer Communication Review

44 (3) (2014) 74-80.

[38] C. A. Marcondes, T. P. Santos, A. P. Godoy, C. C. Viel, C. A. Teixeira,

Castow: Clean-slate multicast approach using in-advance path processing in

programmable networks, in: 2012 IEEE Symposium on Computers and

Communications (ISCC), IEEE, 2012, pp. 000094-000101.

 [39] M. Zhao, B. Jia, M. Wu, H. Yu, Y. Xu, Software defined network-

enabled multicast for multi-party video conferencing systems, in: 2014 IEEE

International Conference on Communications (ICC), IEEE, 2014, pp. 1729-

1735.

 [40] D. Katsaros, N. Dimokas, L. Tassiulas, Social network analysis concepts

in the design of wireless ad hoc network protocols, IEEE network 24 (6)

(2010) 23-29.

References

99

 [41] Y. Zhu, B. Xu, X. Shi, Y. Wang, A survey of social-based routing in

delay tolerant networks: Positive and negative social effects, IEEE

Communications Surveys & Tutorials 15 (1) (2012) 387-401.

[42] K. W. et al., Exploiting small world properties for message forwarding in

delay tolerant networks, IEEE Transactions on Computers 64 (10) (2015)

2809-2818.

[43] K. Wei, X. Liang, K. Xu, A survey of social-aware routing protocols in

delay tolerant networks: applications, taxonomy and design-related issues,

IEEE Communications Surveys & Tutorials 16 (1) (2013) 556-578.

[44] M. Xiao, J. Wu, L. Huang, Community-aware opportunistic routing in

mobile social networks, IEEE Transactions on Computers 63 (7) (2013)

1682-1695.

[45] D. J. Watts, Networks, dynamics, and the small-world phenomenon,

American Journal of sociology 105 (2) (1999) 493-527.

 [46] W. Gao, Q. Li, B. Zhao, G. Cao, Multicasting in delay tolerant networks:

a social network perspective, in: Proceedings of ACM MobiHoc, ACM, 2009,

pp. 299-308.

[47] W. Gao, Q. Li, B. Zhao, G. Cao, Social-aware multicast in disruption-

tolerant networks, IEEE/ACM Transactions on Networking (TON) 20 (5)

(2012) 1553-1566.

 [48] X. Hu, T. H. Chu, V. C. Leung, E. C.-H. Ngai, P. Kruchten, H. C. Chan,

A survey on mobile social networks: Applications, platforms, system archi-

tectures, and future research directions, IEEE Communications Surveys &

Tutorials 17 (3) (2015) 1557-1581.

Enhancing Group Communications through the Social Internet of Things

100

 [49] J. Fan, J. Chen, Y. Du, W. Gao, J. Wu, Y. Sun, Geocommunity-based

broadcasting for data dissemination in mobile social networks, IEEE

Transactions on Parallel and Distributed Systems 24 (4) (2013) 734-743.

 [50] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, J. Turner, OpenFlow: enabling innovation in campus

networks, ACM SIGCOMM Computer Communication Review 38 (2) (2008)

69-74.

[51] L. Atzori, C. Campolo, B. Da, R. Girau, A. Iera, G. Morabito, S.

Quattropani, Enhancing identifier/locator splitting through social internet of

things, IEEE Internet of Things Journal 6 (2) (2018) 2974-2985.

[52] OpenFlow switch specification - version 1.3.1 Open Networking

Foundation (ONF) (September 2012).

[53] J. Hui, P. Thubert, Compression format for IPv6 datagrams over ieee

802.15.4-based networks, RFC 6282 (September 2011).

[54] A. Ayadi, D. Ros, L. Toutain, TCP header compression for 6LoWPAN,

Internet Draft (draft-aayadi-olowpan-tcphc-00), work in progress.

[55] C. Gomez, A. Arcia-Moret, J. Crowcroft, TCP in the Internet of Things:

from ostracism to prominence, IEEE Internet Computing 22 (1) (2018) 29-

41.

[56] L. Atzori, C. Campolo, B. Da, R. Girau, A. Iera, G. Morabito, S.

Quattropani, Smart devices in the social loops: Criteria and algorithms for the

creation of the of the social links, Future Generation Computer Systems 97

(2019) 327-339.

[57] http://mininet.org/overview/

References

101

[58] N Gude, T Koponen, J. Pettit, B. Pfaff, M. Casado, N McKeown, S,

Shenker. “NOX: Towards an Operating System for Networks” Computer-

Communication Networks 2008.

[59] E. Longo, A. Redondi, M. Cesana, A. Arcia-Moret, and P. Manzoni.

(2019, Oct.) Mqtt-st: a spanning tree protocol for distributed mqtt brokers.

Available: https://arxiv.org/abs/1911.07622

[60] Karger, David "Global Min-cuts in RNC and Other Ramifications of a Simple

Mincut Algorithm". Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms

(1993).

[61] http://mosquitto.org/

[62] https://www.eclipse.org/

[63] https://iot.eclipse.org/

[64] L. Atzori, C. Campolo, A. Iera, G. M. Milotta, G. Morabito, S.

Quattropani “Sociocast: Design, Implementation and Experimentation of a New

Communication Method for the Internet of Things” 2019 IEEE 5th World Forum on

Internet of Things (WF-IoT)

[65] L. Atzori, C. Campolo, A. Iera, G. M. Milotta, G. Morabito, S.

Quattropani: “SDN-based Sociocast Group Communications in the Internet of Things”

ITU J-FET 2020

