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Chapter 0: Introduction 
 

In this chapter,  I would like to introduce my thesis work, especially 

what are its goals and how it is structured, but also to give some reminders 

and look over some topics that will be examined in the following chapters. 

0.1 Abstract 
 

The new applications populating the Future Internet will increasingly 

rely on the exchange of data among groups of devices, dynamically 

established according to their profile and habits (e.g., common interest in 

same software updates and services). This will definitely challenge traditional 

group communication solutions that lack the necessary flexibility in group 

management and do not support effective control policies on involved 

endpoints (i.e., authorized senders and intended receivers). Indeed, today, 

Internet can support the following data delivery schemes: unicast, multicast, 

broadcast, and anycast, according to the way in which the endpoints of the 

information exchanges are identified. However, there are several reasons exist 

discouraging network operators to actually offer all such data delivery 

schemes to end users. As a result, application developers can rely on unicast 

communications only, and more complex group-based data dissemination 

policies are implemented as part of specific applications and services and 

through additional patches to the basic Internet implementation. And yet, 

group-based communications are crucial in several Internet of Things (IoT) 

application scenarios. To address the cited issues, the idea of introducing new 

disruptive network-layer solutions has emerged from recent literature. Among 

them, in the first part of this work, the Sociocast1 is presented, which has 

been theorized as enabler of flexible interactions among groups of devices 

tied by social relationships in the SDN context. 

                                                           
1
 This work led to the publication of two articles: [64]and[65]. 
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While, in order to overcome the problems arising by the centralized 

nature of MQTT, broker bridging (which has been is now supported by most 

MQTT implementations), in the second and last part of this work, an 

optimization technique is proposed. However, broker bridging does not 

address the performance issues occurring when publishers and subscribers are 

connected to different brokers. 

In this work a technique is investigated exploiting  the Social Internet of 

Things (SIoT) concept to decide the most convenient broker for each 

publisher/subscriber. A hybrid technique which integrates experimental 

results obtained in an emulated testbed and analytical derivations will be 

introduced to evaluate the performance of the proposed approach. 

0.2 Original Contributions of this work 
 

My original contributions to the works characterizing this thesis are 

listed below: 

 Study and implementation focused on the integration in the 

SDN environment of Sociocast. 

 Experimentation in SDN  and analysis of different IoT use 

cases and scenarios: smart industry, smart home, WSN 

management, smart mobility. 

 Study and implementation of a clustering algorithm based on 

the model of Karger’s algorithm. 

 Implementation and experimentation, in an emulated smart 

campus scenario, of a technique which uses the above-

mentioned clustering algorithm and the Social Internet of 

Things to enhance MQTT bridging.  

0.3 Organization of this work 
 

In the first chapter the background concepts, needed to fully 

understand the two discussed solutions, are given. Starting from the 

definitions of SDN and SIoT with an in-depth study on IoT and MQTT.   
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In the second chapter, the concept of Sociocast is introduced as a 

solution based on Software Defined Networking (SDN) for its 

implementation at the network layer in Internet of Things. The Sociocast 

performance is studied and compared to methods running at the application 

layer that provide similar features. Experimental results, as well as the used 

tools description are also given.  

In the third chapter, a MQTT bridging optimization technique is 

introduced based on a social clusterization of the network elements 

characterizing the  network topology. The performance of this approach and 

the comparison with a benchmark are also discussed, as a brief description of 

the tools used during the experimentation phase. 

In conclusion, a summary of all the results and considerations regarding 

the Sociocast and the MQTT bridging optimizer, and possible future works 

will be discussed in the last chapter. 
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Chapter 1: Background 
 

This chapter will provide all the definitions and discuss all the 

properties of the subjects necessary to have a full view and a better 

comprehension of the major topics of this work. 

In particular, in the first paragraph 1.1, is discussed in depth the 

Software Defined Networking (SDN) approach, giving a definition, analyzing 

its three states of abstraction and the various open-source SDN controllers 

available today. 

In the second paragraph, 1.2, the Social Internet of Things paradigm 

will be analyzed, starting from a bit of history and fun fact on IoT to better 

understand its natural evolution and escalation up to now days. Moving to the 

need for a social bound between “things” and, especially, how the SIoT 

paradigm works and can enhance the IoT world.   

In conclusion, to better understand the Chapter 3 of this work, the 

MQTT protocol will be discussed in paragraph 1.3. 
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1.1 Software Defined Networking 

 

1.1.1 What is SDN? 

 

The overview of the SDN paradigm will start by answering a simple yet 

fundamental question: “What is a Software Defined Network?” 

Simply, a Software Defined Network is a network which operates as specified 

by means of a software program. 

One possible objection to this answer is that, in the years the boundary 

separating what is software and what is hardware inside network devices has 

been going down in the protocol stack and, in some cases, such boundary is 

even fading away (consider the NetFPGA project, for example [1]). 

According to such a view, which is firmly rooted on an incontrovertible truth, 

SDN would just be a fancy name given to a trend going on for several 

decades. 

This view can be easily refuted by observing that the above mentioned 

trend would allow what can be called a Network of Software-Defined 

Devices.3 
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4  

Figure 1: Programmable networks without (a) and with (b) SDN. 

 

According to such a view a hypothetical network programmer can 

indeed define the behavior of the network through software. However, in 

order to do so, he/she needs to write and deploy a different program for each 

network device as sketched in Figure 1. 

The Software Defined Network idea, instead, implies a totally different 

way of programming the network as depicted in Figure 1b which relies on a 

unique application programming interface (API) for the entire network. This 

is indeed a completely different paradigm which opens the path to a realm of 

new possibilities. 

In the effort of defining a taxonomy, in [2] four conditions are given for 

identifying a software defined network: 

 The control and packet forwarding planes are decoupled thus, 

network devices become simple (packet) forwarding elements; 

 Forwarding decisions are flow-based rather than destination-based. A 

flow is defined by a set of packet field values acting as match (filter) 

criterion; 
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 The control logic is moved to an external entity called SDN 

Controller or Network Operating System (NOS); 

 The network is programmable through software applications running 

on top of the NOS which interacts with network elements. 

While the above requirements give the most comprehensive description 

of the key SDN features to date, they may be all specific of the SDN general 

concept or reflect the characteristics of the current SDN implementations. 

For example, is the flow-based requirement a key feature of the SDN 

paradigm or is it just a heritage of OpenFlow? Therefore, according to the 

philosophy perfectly contained in the Van der Rohe's sentence “less is more", it 

is reported in the following, the broadest definition which can be found in the 

words of Nick McKeown who has played a key role in software defined 

networking development [3]: “A Software Defined Network is a network in which 

the control plane is physically separate from the forwarding plane and a single control plane 

controls several forwarding devices.” 

SDNs have several advantages over traditional networks; in fact, they are [4]: 

 Agile: Abstracting control from forwarding allows the administrators 

to adjust traffic flow dynamically. 

 Centrally managed: Network intelligence is (logically) centralized in 

SDN controllers which have a global view of the network. 

 Programmatically configured: SDN allows network administrator to 

configure, manage, secure, and optimize resources dynamically by 

means of automated SDN programs. 

 Open Standards-based: SDN makes easy the network design and 

operation since instructions are provided by SDN controllers instead 

of specific devices and protocols. 
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1.1.2 SDN Architecture 

 

The actual realization of the SDN concept requires addressing a large 

number of technical issues which boil down to 

 revisiting network architectures which have been considered 

untouchable for a very long times; 

 defining new abstractions of the resources and operations of the 

network as a whole; 

 designing consolidation mechanisms able to control the operations of 

individual network devices in such a way that the desired behavior of 

the network as whole emerges. 

The rest of this paragraph will focus on the architecture implications of 

software defined networking, while in the following sections we will address 

the other two items. 

In Figures 2 and 3 we show the innovation on the architecture 

introduced by SDN at the both the levels of individual network devices and 

the entire network, respectively. 

In the right part of figure 2  it is shown the architecture of traditional 

routers. We can clearly distinguish two subsystems. One contains the 

interface cards whereas the other contains the controller cards. The interface 

cards subsystem is responsible for packet forwarding which is executed 

according to the content of a table called forwarding table. The content of 

such table is copied by the routing table which is contained in the controller 

card subsystem and is calculated by executing the distributed routing 

algorithm denoted as routing control in the figure. The controller card 

subsystem exposes a user interface which can be used by the network 

administrator to manage the network device. Such interfaces offer a limited 

number of options regarding the control of the network behavior. 

Furthermore, it is clear that, while there are common features, the interfaces 

offered by routers produced by different vendors are different and therefore, 

the know-how developed for configuring one of them cannot be used to 

configure the others. 
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In SDN this monolithic architecture is broken into two pieces so that 

forwarding and control functions are clearly (even physically) separate. 

Accordingly, all network devices become just switches whereas the control 

functions are concentrated in appropriate machines running a control 

program. In fact, switching devices treat received packets according to what 

decided by the control program. The interactions between the network 

devices and the control plane happen through an open interface called 

Southbound API. More specifically, according to the OpenFlow naming the 

switches are called OpenFlow Switches whereas the control plane is called 

OpenFlow Controller. The interactions between OpenFlow Switches and 

OpenFlow Controller happen according to OpenFlow protocol. 

In modern SDN solutions the Controller consists of a Network 

Operating System (NOS) that provides several Network applications with 

access to the abstraction of the network resources. The interface between the 

NOS and the network applications is called North-bound interface 

According to such an approach the network layer disappears from the 

intermediate network devices which, instead, execute the physical and link 

layers only, as shown in Figure 3. 

 

Figure 2: Impact of SDN on the architecture of network devices. 
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1.1.3 The three fundamental abstractions of SDN 

 

The SDN paradigm has been developed around the core objective of 

enabling a simple control of a complex system such as a communication 

network [5]. Such philosophical approach has put a the center of the SDN 

design the definition of appropriate abstractions. 

In fact, defining a solution requiring the low level configuration of each 

network device would be impossible in a network with more than a few 

network devices. Quoting the analogy with software programming provided 

in [5], it would be like requiring the programmer of a complex distributed 

software to decide at which memory address to store each variable utilized in 

the software. This is, indeed, what happened with early programming 

language, however, modern languages offer high level abstractions of 

computer resources, e.g., (virtual) memory, network, processing, which can be 

exploited by the programmer without knowledge of the way such resources 

are actually managed by the specific hardware components. 

 

 

Figure 3: Impact of SDN on the network protocol stack. 
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Such approach has the advantage of decoupling the development of 

new programs from the implementation of the functions hidden behind the 

above mentioned abstractions. In fact, they can evolve independently as long 

as the interfaces are maintained, which fosters the astonishing rapid 

progresses characterizing the software arena. 

Therefore, in the SDN development it has been crucial to identify the 

core abstractions around which the rest of the paradigm should be designed. 

The three fundamental abstractions of SDN are 

 The forwarding abstraction, which should encompass any possible 

forwarding behavior while hiding details of the underlying data plane 

operations; 

 The distribute state abstraction, which should consider all 

operations required to collect the state information about data plane 

devices in order to form a global view of the network; 

 The specification abstraction, which should allow a network 

application to express the desired network behaviors without being 

responsible for implementing those behaviors. 

In the following sections of this chapter each of the above abstractions 

will be analyzed, with special reference to their definition in OpenFlow, which 

is the most known SDN solution, to date. 

 

1.1.3.1 Forwarding abstraction 

In OpenFlow forwarding is flow-based: all possible packets are 

partitioned in subsets called flows and each forwarding element, i.e., the 

OpenFlow Switch, treats incoming packets as specified for the flow they 

belong to. 

Accordingly, the forwarding abstraction deals with two questions: 

1. how to classify incoming packets in ows, and 

2. what can be done on the incoming packets. 

Regarding the first issue, we observe that a flow, f, is defined through a 

set of n > 0 rules, r1, r2,…,rn. A packet belongs to flow f if it satisfies all of the 

above n rules. 
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In principle rules may consider any feature of the packet. However, in 

most SDN implementations including OpenFlow, the format considered for 

the packets is compliant with TCP/IP and rules are based on the content of 

the fields of the headers of levels 2-4 of the protocol stack. 

Despite such choice imposes a certain degree of rigidity in the 

definition of the rules, it has two fundamental advantages, though. 

First, it simplifies the design and realization of the hardware of the 

forwarding devices. As a consequence, it has been immediately possible to 

realize SDN forwarding devices capable of operating at line rate [6]. This has 

been crucial in encouraging industry in adopting the SDN approach. 

Second, it makes implementing the switching/routing operations typical 

of TCP/IP extremely easy, as we will see shortly. This has been crucial, 

instead, to encourage network managers in adopting the SDN approach. 

Such rigidity is being relaxed in new OpenFlow versions, yet, it has 

always been a clear OpenFlow design directive to make the transition from 

traditional networks as smooth as possible and thus, we expect that the way 

rules are defined will remain rooted over TCP/IP layering and packet formats 

in the next future. 

There are, however, certain networking environments where flexibility 

is way more important than data rates and compatibility with traditional 

networking solutions. This is the case, for example, of wireless sensor 

networks (WSN). In fact, in WSN data rates are usually low and there are no 

well established protocol stacks to be compliant with. Other features, such as 

the possibility to treat data packets depending on the values they are carrying, 

are more important instead. Accordingly, solutions with more flexible ways of 

defining rules have been proposed for WSN. SDN-WISE is a notable 

example of such category [7]. 

For what concerns the classification of packets in flows, we observe 

that depending on the way in which rules are given, it is possible that a packet 

might satisfies the rules of several flows. If this is the case, it is important to 

define the policy which should be considered to classify the packet. 

In traditional SDN solutions a packet is assigned to a unique flow. If 

this is the case, then a priority scheme should be defined. 
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Other solutions, allow to assign packets to several ows and treat them 

accordingly. More specifically, suppose that a given packet satisfies the rules 

given for flows f1 and f2. If the forwarding operations for packets of the two 

flows are 

 the same, the packet will be forwarded as specified for the two 

flows; 

 different, the packet will be duplicated and one copy will be 

forwarded as given for flow f1 whereas the other copy will 

receive the treatment given for flow f2. 

Returning to the second issue regarding the forwarding operations that 

can be specified for packets in a SDN network. Such operations are usually 

called actions and, for each flow, it is possible to define a pipeline of actions 

which should be applied to the relevant packet. It is obvious that the major 

action is “forward". In this case it is necessary to specify to which element(s) 

the packet should be forwarded to. This is typically done by giving the output 

port through which the packet should be relayed. 

 

 

Figure 4: Forwarding in wired and wireless setting. 

 

Besides enabling the forwarding of a packet through a specific network 

ports, OpenFlow allows to flood the packet through all network ports but the 

ingress port, to send the packet to the controller, or to include the content of 

the packet in the forwarding table. 

Another fundamental operation, besides the obvious “forward" 

discussed above, is “drop", for example, using such operation it possible to 

allow a forwarding element to behave like a firewall.  
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Note that the two above operations do not change the packets. Indeed, 

there are operations that can modify the packet header at layers 2-4 of the 

TCP/IP protocol stack. 

We note that through appropriate combination of rules and actions, it is 

possible to transform a SDN forwarding element in any desired traditional 

networking element. For example, in the Figure 5 we show how to set rules 

and actions in such a way that the forwarding elements behaves like a 

traditional switch, a flow switch, and a firewall.  

 

 

Figure 5: Rules and actions examples in the forwarding abstraction. 

 

The rules given to define a flow and the corresponding actions to be 

executed on the flow packets are usually stored in appropriate tables, called 

flow tables, maintained in the forwarding devices. The entries of the flow 

tables, which also contain some statistical information about the flow load, 

are set by the controller. 

More specifically, incoming packets that the forwarding element cannot 

classify in a flow are forwarded to the Controller which replies by installing 

the corresponding flow entry in the flow table. From that moment all packets 

of the new defined flow are treated by the forwarding device accordingly. 

Before concluding this section, observe that in OpenFlow and early SDN 

solutions flow tables specify stateless forwarding rules. In fact, in such 

approaches all stateful operations are executed by the controllers only. There 

are cases, however, in which such approach requires frequent interactions 
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between the forwarding devices and the controller. Each interactions, 

however, results in increased delay and additional signaling. The above 

problem of the stateless approach has been recognized by several researchers 

and several stateful SDN solutions have been proposed. Early examples are 

OpenState [8] and FAST [9] for infrastructured networks and SDN-WISE [7] 

for infrastructureless networks. 

 

1.1.3.2 Distribute state abstraction 

 

SDN network applications are responsible for setting the policies for 

packet handling throughout the network which is a complex distributed 

systems. The SDN controller is therefore, responsible for collecting 

information regarding the state of the network elements so as to create a 

consistent and comprehensive view of the current network state as well as for 

configuring the behavior of individual network elements in such a way that, 

collectively, they implement the policy decided by the network application. 

The operations required for data collection and network device 

configurations are specified through an appropriate protocol. In the rest of 

this section, we will describe the fundamental features of such protocol in the 

case of OpenFlow. 

As shown in Figure 6a, the OpenFlow protocol consists of four major 

components: message layer, state machine, system interface, and 

configuration [10]. 
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Figure 6: OpenFlow protocol. 

 

 

1.1.3.2.1  Message layer 

The message layer is the core of the protocol as it defines the format for 

all relevant messages. Accordingly, it should support the construction, copy, 

comparison, printing, and manipulation of messages. 

The interested reader can refer to [10] for the specification of the 

structure and the semantic of individual messages, which depends on the 

specific protocol version. 

Here we just observe that all OpenFlow protocol messages begin with 

the same header structure shown in Figure 6b. The version field identifies the 

version of OpenFlow utilized to generate the packet. The length field gives 

where this message will end in the byte stream starting from the first byte of 

the header. Third, the xid, or transaction identifier, is a unique value used to 

match requests to responses. Finally, the type field which indicates what type 

of message and, thus, how to interpret the payload, is version dependent. 

1.1.3.2.2 State machine 

The state machine defines the behavior of the protocol. It is used to 

describe actions such as: negotiation, capability discover, flow control, 

delivery, etc. 

In this perspective, observe that OpenFlow has a very simplified 

machine model. In fact, almost all the messages are asynchronous, and thus 
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states are not necessary. However, some complex operations require a state to 

be maintained. Examples of such operations include connection 

establishment which requires some interaction between the two end points, 

i.e., the OpenFlow Controller and the OpenFlow Switch, and capability 

negotiation that is performed before packets can be exchanged. Again, we 

refer the interest reader to [10]. 

1.1.3.2.3 System interface 

The system interface specifies how a protocol relates with the outside 

world. Usually it determinates mandatory and optional interfaces along with 

their use, such as TLS and TCP as transport channels. 

System interface is the part of OpenFlow protocol that provides service to 

other 

elements in the system, or that depends on and invokes other elements in the 

system. 

In OpenFlow there are the following system interfaces: 

 TCP/TLS interface: TCP/TLS interface connects with protocols in 

the lower level  protocol stack, as indeed TCP and TLS. It provides 

trustworthy stream oriented transmission between switch and 

controller, by transfer any OpenFlow message between them. 

 Switch agent interface: Switch agent interface interacts with the 

system kernel of OpenFlow switches. It forwards messages from the 

controller to the switch's kernel to be processed. It also forward 

switches asynchronous messages to the OpenFlow stack for 

processing and then transmitting them to the controller. 

 Controller application interface: Controller application interface 

combine with controller applications that run on top of the stack. It 

accepts messages from controller application to switch and sends 

them to OpenFlow stack for processing and transmission. It also 

transmits messages sent to the controller application from OpenFlow 

stack. 

 Configuration interface: OpenFlow incorporates some  parameters 

that can to be configured (e.g. controller IP addresses) by system 
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operator either before or all along their use. These parameters are set 

or can be modified through the configuration interface. Hence the 

configuration interface provides as a service to system operator the 

capability configure OpenFlow stack. 

1.1.3.2.4 Configuration 

The OpenFlow protocol is rich in elements and aspects which need  to 

configure or set some initial values, like the default buffer size and the reply 

intervals to  X.509 certificates. 

Two important aspects of the OpenFlow configuration are: 

 Configuration Language, which is created to have an interface to 

easily configure the controller and the switches. This language is 

implemented by using a front-end compiler which validates syntax 

and typing so that the configuration can be checked for validity and 

more advanced configuration features can be implemented.  

The main structures in the language are bindings between stages and 

identifiers, and between the staging of those identifiers. The types in 

the language are predefined, using literals for IPv4, IPv6, integers, 

time, protocols, strings, and OpenFlow protocol versions. These 

literals can be merged  into predefined types, which form stages 

(example of stages are: Realm, Authentication, Authorization, 

Initialization). Each stage describes either a controller’s behavior that 

should be adopted when making or accepting new connections, or the 

connection behavior for a switch.  

 Configuration Utility. The configuration language is backed by a 

utility that checking grammar and typing, and then creates commands 

that can be run to configure the controller or the switches. This utility 

is characterized by four stages: Parsing, which occurs concurrently 

with tokenizing, will evaluate if the input is properly formatted. 

Elaboration checks the whole input matches types defined by the 

language, preventing incorrect input for specific fields. And finally, 

evaluation, in which the input is evaluated and convert into 

commands for  the controller or the switch agent.  
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1.1.3.3 Specification abstraction, from SDNv1 to SDNv2 

Before illustrating the features of the Specification abstraction, we 

observe that this was not included in early mainstream SDN solutions. It was 

only in a second development phase that the need for such a new abstraction 

was recognized. Accordingly, we will start by discussing how SDN would 

work without the specification abstraction and, thus, why it is needed. Then, 

we will provide details about such abstraction. Finally, since SDN controllers 

are responsible for the support of the specification abstraction, we will 

illustrate the main features of the most popular SDN controller platforms 

realized so far. 

1.1.3.3.1 The Network Operating System 

To begin with, the reader must be aware that there are crucial 

differences between a NOS and an “Operating System" (OS) in computer 

science. In fact, for computer science an OS is based on strong fundamental 

principles such as synchronization, mutual exclusion and others. Conversely, 

this is not the case for the networking where we can observe a lot of 

guidelines but only a few fundamental principles. 

Despite the fact that networks were easy at the beginning (just think 

about EtherNet-IP), as time passed by and new control requirements and 

tools (VLAN, middleboxes, deep packet inspection, etc) were added, they 

have grown in complexity. Now, some questions should pop up in the 

reader's mind, like: ”If they are so complex then how do they still work? And 

why nothing has changed in networking so far?". The answer is simple: every 

time a new requirement appears, it is applied by defining a new protocol, a 

new ad hoc mechanism or simply by manually configuring the network. Also 

note that, as IP is used everywhere and it has undergone very few changes 

since its first appearance, this means that any new control requirement should 

be IP compliant (this is the real reason why it's so difficult to change!) and 

should take into account every possible configuration of the network 

elements. This results into adding massive complexity to the control plane. 

SDN tries to hide all this complexity and to extract simplicity due to 

abstractions. 
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As asserted previously, the state distribution abstraction aims at hiding 

state dissemination and collection to the control program thanks to a global 

network view. As such the control program takes the global network view, 

which is a graph of the network, as input and gives a configuration of each 

device in the network as output. 

The NOS is responsible for the creation of the global network view. 

The NOS is a distributed system that runs in servers (controllers) in the 

networks: by using the forwarding abstraction, it communicates with all the 

elements in the network, getting state information from these devices and 

sending control directives that should be implemented. The compound 

between the NOS and the forwarding abstraction is known as the SDNv1. 

 

 

Figure 7: SDNv1 architecture. 

 

The benefits that SDNv1 introduces are the following: 

 There is no need for creating distributed control protocols, we can 

just define a single centralized control function. 

 For the control program a network configuration becomes a simple 

function of the global view:  

Configuration= F(View) 

 which implies that it is easy to write and apply, but also to verify and 

maintain. 
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 NOS handles the state of the network from the dissemination to the 

collection of the states. 

 NOS must achieve eventual consistency with the real network, which 

means that the configuration, function of the view, is eventually 

correct and two clients may have two different views of the network: 

fortunately this happens with a negligible probability. Also, there are 

no consistency requirements for packets and flows and we found a 

strong consistency for the modification of the control function. All 

this makes SDN scale. 

Nevertheless, something is still missing: according to the control 

program requirements, the NOS sends the network configuration, created by 

the global view, to the physical devices in the network. One possible way to 

do so is via OpenFlow. 

With this approach, the control program has to configure each device 

in the network. This happens because the NOS eases the implementation of 

functionalities, but not their specification. There is a need for another 

abstraction: the specification abstraction. 

1.1.3.3.2 The Specification Abstraction 

The specification abstraction gives the control program an abstract 

view of the network, which is a function of the global view created by the 

NOS. The program responsible for the creation of this new view is called 

Network Hypervisor (NHypervisor). A simple example of how the 

NHypervisor works is shown in Figure 8, where all the access to the network 

are taken into account for an access control application. 

Starting from the network abstract view, the control program creates an 

abstract configuration of the network.  

Abstract configuration= F(Network abstract view) 

 This way, the model created has all the details needed to set the control 

program's aims without giving all the information which is necessary to 

implement these goals: this is known as SDNv2, Figure 8. 

To summarize, in SDNv2, whenever the control application wants to 

install a specific behavior in the network elements, it speci_es such behavior 

on the abstract network view; then, the Network Hypervisor maps all the 
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controls from the abstract view to the global view configuration; ultimately, 

the NOS distributes this configuration to the real devices in the network. 

 

 

Figure 8: SDNv2 architecture 

 

1.1.3.3.3 The SDN controllers classification 

In the last few years, several SDN controllers have entered the market, 

and have been used by network programmers and managers with different 

aims and different backgrounds all around the globe.  The aim of this 

paragraph is to classify the most popular Open Source SDN controllers 

available today, like OpenDayLight (ODL) [11], the Open Network 

Operating System 

(ONOS) [12], Ryu [13] and so on, evaluating the advantages and 

disadvantages of each of them and trying to answer such questions as “Why 

should I prefer to use this specific SDN controller rather than another?". 

First of all, it is crucial to understand that each platform has different 

usages based on what it can do and also on the scope of the project and the 

organization behind it. 

A first classification can be done by considering the architectures so to 

divide the SDN controllers in two groups: Single Instance (or Centralised) and 

Distributed. 

In the Centralised solutions, the SDN controllers are easier to maintain 

and grant lower latency between the tightly coupled southbound API, the 

path communication elements (PCE) and the northbound APIs; on the other 

hand, as the SDN network grows bigger, centralised controllers are likely to 
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become a bottleneck. Centralized solutions include platforms such as ONOS 

and ODL. 

By contrast, in the Distributed platforms each function can be scaled 

independently, by decoupling the processing of PCE, Telemetry and 

Southbound interface traffic, in order to avoid congestion and to allow the 

platform to scale more effectively. Additionally, specialised tools to handle 

and analyze big datasets can be used without negatively impacting 

southbound protocol performance. However, this achievement is paid in 

terms of complexity, both in deployment and in maintenance. 

Such solutions includes controllers such as OpenKilda [14] and Faucet 

[15]. 

Ryu is a bit different compared to the other choices: although its core 

set of programs can be considered as a platform, it can be imagined as a 

toolbox in which the SDN controller functionality can be found. 

In the following, the abovementioned NOS solutions are compared in 

the light of some key features: 

 Scalability and Fault Tolerance: As stated above, scalability is a 

crucial characteristic and should be taken into account when 

classifying the SDN platforms. As the size of the network grows, it 

becomes impossible for a single controller to handle the load of 

information coming from every switch in the network; also, the 

probability of having fault in the system increases. For this reason, 

dividing the network into smaller logical islands/clusters decreases the 

need for a single southward looking network to scale. All the 

platforms with a centralized architecture, like ONOS, try to scale in 

this way, including native BGP routing to orchestrate traffic flows 

between the SDN islands. ONOS and ODL are the only ones 

implementing native clustering and being able to maintain a cluster. 

Each of these is supported by a distributed datastore that shares the 

current network state between the islands; also, both of them also 

provide a fault tolerance system with an odd number of SDN 

controllers. In the case of master node failure, a new leader would be 

selected to administrate the network. 
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OpenKilda approaches cluster scalability in a modular way. While 

Floodlight is used as a southbound interface to the switch 

infrastructure, responsibility for PCE and telemetry processing is 

pushed northward into a completely separated Apache Storm based 

cluster. 

Both Ryu and Faucet contain no intrinsic clustering capability and 

require external tools such as Zookeeper to distribute a desired state. 

So OpenKilda, Ryu and Faucet have no inbuilt clustering mechanism, 

and rely on external tools, instead. This simplifies the architecture of 

the controllers and eases them from the overhead of maintaining 

distributed databases for state information. High availability is 

achieved by running multiple, identically con_gured instances, or a 

single instance controlled by an external framework that detects and 

restarts failed nodes. 

 Modularity, Programming Languages, and Interfaces: The 

modularity of each controller is determined by the design focus and 

programming languages. ONOS and ODL have functions that 

connect code modules at the cost of centralising processing to each 

controller. They are both Java-based controllers which use OSGi 

containers for loading bundles at runtime, allowing a very flexible 

approach to adding functionality. Also, since Java is a well-known and 

widely used programming language, the development resources are 

abundant, with good supporting documentation and libraries 

available. Ryu is a Python based controller and provides a well-defined 

API for developers to change the way components are managed and 

configured. Adding functionality to Faucet and OpenKilda is possible 

by modifying the systems that make use of their northbound 

interfaces, such as the Apache Storm cluster: this allows for the added 

flexibility of using different tools and languages depending on the 

problem to overcome. The northbound API too is managed 

differently by these platforms. ONOS and ODL have the largest set 

of northbound interfaces with RESTful APIs and gRPC, making 

them the easiest to integrate. Ryu and OpenKilda offer limited 



Enhancing Group Communications through the Social Internet of Things 

26 

 

RESTful compared to ONOS and ODL, whereas Faucet takes a 

completely different path, relying on configuration files to track the 

system state rather than of API calls. 

In conclusion, all the characteristics and peculiarities of the SDN 

controllers described above are summarized in Table 1. 

 

 

Table 1: SDN controllers’ features. 
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1.2 Social Internet of Things 
 

1.2.1 IoT, through a bit of history to a definition 

 

Nowadays, if we had to give a definition of Internet of Things (IoT), 

probably, first, we would start trying to define what a “thing” is. A “thing” 

can be a person with a wearable, like a smartwatch, or with a heart monitor 

implant, a farm animal with a injectable ID chip  (biochip transponder), a car 

with sensors to alert the driver of other nearby cars or some sort of danger in 

the road, like a pedestrian crossing the street.  

Simply said, a “thing” could be any object that can be assigned with an 

IP address and is able to transfer data over the Internet. 

If we take this definition in a strict way, then we will be very surprised 

to discover that the first IoT devices fitting in it are much older than 

expected. The first one, in the year 1982 at Carnegie-Mellon’s Computer 

Science Department, was a Coca Cola vending machine connected to the 

Internet, allowing some grad students to check the stock and temperature of 

the drinks stored in it. Or, a toaster2, in the early 90’, that was turned on by a 

remote computer.  

We have to wait the last year of  the old millennium to actually hear and 

read the term “Internet of things”. It was the 1999, when Kevin Ashton 

coined and used “Internet of things” in a presentation for Procter & Gamble 

describing a system in which sensors where used to enhance a computer. But 

these are the foundations on which today's concept of Internet of Things, or 

IoT, and its definition are based:  

“A network of items—each embedded with sensors—which are connected to the 

Internet.”[16]. 

                                                           
2
 John Romkey, software engineer, had built one for the  showfloor of Interop 1990 
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The IoT, in conclusion, is an ecosystem of connected smart devices, 

mechanical and digital machines, people and even animals that are provided 

with an unique identifier and the capability to send data over the Internet 

without necessitating any  human-to-human or human-to-computer 

interaction. 

1.2.2 Internet of Things standards  

As foretold from a report of Cisco in 2018, more than 500 billion  

devices are expected to be connected on the web for the year 2030. These 

numbers are estimated considering how the usage of IoT is exponentialy 

increasing, partculary in organizations and in the vast majority of industries to 

operate more efficiently, to better understand customers needs, to improve 

decision-making and overall to increase the value of the business in general. 

For this reason, a branch of the IEEE, the IEEE-SA (IEEE Standards 

Association) which is responsible for defining  the specifications and best 

practices based on nowadays the scientific and technological knowledge, 

determined over 140 standards and projects that are related to the IoT 

concept. One of these projects is the IEEE P2413 [17]. 

The scope of IEEE P2413 is to define and standardize the IoT 

architectural framework, address descriptions of various IoT domains, define 

their abstractions, and identify commonalities between different domains. 

Furthermore, IEEE P2413 is considering the architecture of IoT as three-

layered, as shown in   Figure 9: IEEE P2413 IoT architecture. 

 

 

  Figure 9: IEEE P2413 IoT architecture. 

 

The goals for the IEEE P2413 are the following: 
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 Increasing system compatibility and interoperability to enable cross-

domain interaction and platform unification  

 defining an IoT architecture framework which groups all the various 

IoT application domains. 

 increasig transparency  

 reducing industry fragmentation 

 leveraging the state of the arts.  

 

1.2.3 From “smart” to “social”, an evolutionary leap 

 

Nowadays, we are familiar with devices that thanks to their abilities we 

call “smart objects” and which are considered the fundamental elements of 

the IoT. These objects are just a first small step in an evolutionary path which 

has been characterizing modern communication devices since the advent of 

the IoT in the telecommunications’ world. 

As stated in [18], it is possible to make an analogy with the evolution of 

human beings starting from homo sapiens to homo socialis, passing by homo agens 

and predict a not so far future for smart devices, imagining  a similar 

evolution scheme, from res sapiens to res socialis, as shown in Figure 10: 

Evolution from Res sapiens to Res socialis where are also reported all the main 

features characterizing these categories. 

 

Figure 10: Evolution from Res sapiens to Res socialis 
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The basic idea to the concept of res socialis is that: smart objects, in 

general are associated with the services that they can offer or deliver and that 

a social network of smart object enhances the capability of the object to 

publish services and information, to find  them and to discover new resources 

to better implement them. A smart object just has to navigate the social 

network of friends instead of  using the typical internet discovery tools, and 

all the scalability issues that come with them.  

The advent of this generation of social objects is related to the actual   

creation of a “social networks of smart objects” in analogy with the 

social networks of human beings.  

To do so, the following conditions are needed: 

 Giving a notion of social relationship among objects, and  

 Giving a reference architectural model implementing a social Internet 

of Things based on the codified inter-object relationships,  

In relation to the first issue, the definition of a social behavior 

established between objects has been addressed in [19] where a definition of a 

novel paradigm called Social Internet of Things (SIoT) has been given, in 

addition to all the  relevant social structures occurring between the smart 

objects (nevertheless some of these social structures and social relationships 

will be explained and discussed in the section 2.2). 

Regarding the second issue, giving a reference architecture for the SIoT 

is mandatory to fully comprehend the Sociocast approach which is explained 

in the next chapter. The SIoT architecture is based on the three-layered 

architectural model for IoT presented in   Figure 9: IEEE P2413 

IoT architecture. and it consists of:  

 the sensing layer, devoted to the data acquisition and node 

collaboration in short-range and local networks;  

 the network layer, which is aimed at transferring data across 

different networks;  

 the application layer, where the IoT applications are deployed 

together with the middleware functionalities. 
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Figure 11: SIoT Three-layer Architecture. 

 

Figure 11: SIoT Three-layer Architecture. shows the SIoT three-layered 

architecture, whose fundamental characteristic elements are: the SIoT Server, 

the Gateway, and the Object. 

The SIoT Server encompasses only the Network and the Application 

Layers. Specifically The Application Layer consists of three sublayers:  

 The Base Sublayer wich includes the database, to store and  

manage all the data and the relevant descriptors which record 

the social member profiles and their relationships. Humans’ 

data (e.g. the owner’s data) too are stored and managed inthere. 

In different database are stored the ontologies which are used 

to represent a semantic view of the social activities.  

 The Component Sub-layer, incorporates all the tools 

implementing the core functionality of the SIoT system, such as 

the ID management, which assigns an ID that univocally 

identifies all the possible categories of objects. The profiling 

tool, which configures the information about the objects. While 

the owner control (OC) defines all the activities that can be 

performed by the object, the information that can be shared, as 

well as the type of relationships that can be established. The 

relationship management (RM) allows objects to begin, update, 

and conclude their relationships with other objects. The service 

discovery (SD) finds which objects can provide the required 
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service, whereas the service composition (SC) component 

enables the interaction between objects. In conclusion the 

trustworthiness management (TM) component understands 

how the information provided by the other members shall be 

processed.  

 The third sub-layer, the Interface Sub-layer, is where the third 

part interfaces to objects, humans, and services are gathered. It 

may be mapped onto a single site or in the cloud.  

 

In the Gateway and Objects systems, the combination of layers is not 

determined, instead, but rather it may vary depending on the device 

characteristics.  

In order to explain and consider all  the possible scenarios tree 

examples have been made depending on the grade of “smartness” of the 

object. 

 A dummy Object (e.g., a RFID tag) is equipped with a 

functionality of the lowest layer, is only able to transmit simple 

signals to another element (e.g., the Gateway). The Gateway, in 

this scenario, is equipped with all the functionalities of the three 

layers. 

 In another scenario, a device (e.g., a video camera) is able to 

sense the physical world information and to send the related 

data over an IP network. In this case the object is equipped 

with the functionality of the Network Layer. Consequently, 

there is no need for a Gateway with Application Layer 

functionality. An Application Layer in a server with the gateway 

application layer functionality  would be enough. 

 A smart object (e.g., a smartphone, which has enough 

computational power) may implement the functionality of all 

the three layers so that the Gateway is not needed, but for some 

communication facilities targeted to maintain the Internet 

connectivity of the object.  
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Whatever is the scenario, the Application Layer encompasses the SIoT 

applications, as well as the social agent and the service management agent: 

 The social agent is responsible for the communication with the 

SIoT servers, to update its profile and  friendships, as well as to 

discover and request services from the social network. 

 The service management agent is responsible for the interfaces 

with the humans that can control the behavior of the object 

when communicating within their social network. 

1.3 Message Queuing Telemetry Transport 
 

The Message Queuing Telemetry Transport (MQTT) is a machine-to-

machine (M2M)/Internet of Things (IoT) connectivity protocol, standardized 

by OASIS [20]. 

In Figure (1a) we represent the main interactions between MQTT 

entities. We can distinguish publishers, brokers, and subscribers. The broker, 

obviously, plays a central role as it maps the interest of subscribers for a 

certain topic with the messages published under that topic. A topic is a UTF-

8 string that the broker uses to filter messages for each connected client and it 

consists of one or more topic levels, separated by forward slashes, similarly to 

folders/files in a file system. Therefore, as we show in Figure (1a) after 

establishing a connection with the broker, clients can subscribe to and publish 

under a certain topic, myTopic; forwarding relevant published messages to 

subscribers interested to the topic is, therefore, the broker’s responsibility. In 

Figure (1b), instead we sketch the operations in the case MQTT bridging has 

been activated. More specifically, a client (the Subscriber) can subscribe to a 

certain topic, say myTopic, on Broker 2. If Broker 2 recognizes that such 

topic is handled by another broker, say Broker 1, then it can subscribe to such 

topic on Broker 1. As a result, when a client (the Publisher) publishes a 

message under topic myTopic on the MQTT Broker 1, such message will be 

forwarded to MQTT Broker 2 which, in turn, will forward it to the 

Subscriber. By comparing Figures 1a and 1b, it is clear that in the bridged case 



Enhancing Group Communications through the Social Internet of Things 

34 

 

one extra communication hop is necessary and more messages are exchanged. 

This would result in increased delay and resource consumption. 

 

 

Figure 12: MQTT interactions 
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Chapter 2: Sociocast 
 

2.1 Statement of the problem 

 

The Internet is experiencing a rapid transformation pushed by the 

growing need to overcome its intrinsic limitations and ossification, which 

challenge network practitioners and researchers. The pressing need to come 

to the definition of a new Internet of the future is also motivated by the 

multitude of Internet of Things (IoT) applications that are recently emerging 

in various vertical markets [21]. Such applications are increasingly 

characterized by group-based (i.e., one-to-many, many-to-many) 

communications established among large sets of devices in need for 

simultaneously exchanging data, e.g., in case of sensors' software updates, 

service advertisement, device configurations. 

In human-centric communications, frequent instant messaging occurs 

within communities of users sharing similar interests and people massively 

interact with their friends, and friends of their friends, over social networks. 

Similarly,  groups of IoT devices are likely to interact with each other, 

especially if they are located in the same place (e.g., sensors/actuators in the 

same building), are owned by the same user (e.g., consumer devices and home 

appliances), share similar profiles (e.g., the same brand and type), frequently 

meet each other (e.g., vehicles on a given road segment). 

Support of interactions among devices raises outstanding challenges for 

network operators. First, IoT applications require the dynamic and flexible 

management of group-based interactions, whose scope is decided according 

to a given topic and to the ties existing between the endpoints involved (e.g., 

co-locality,  similarity of devices, etc.). 

 Second, the communication endpoints should have the power to 

control data exchanges. Indeed, a control of the enabled data receivers is 

strongly desired by the source device, due to the potentially confidential 

nature of the data exchanged.  
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Moreover, the massive presence of group-based communications 

established  by billions of IoT devices, expected to increase even at a higher 

pace in the near future, can cause network congestion and waste device and 

network resources, unless proper countermeasures are taken. 

A solution is required to allow nodes to flexibly specify how to 

prioritize (filter ) the nodes from which they want (or they do not want) to 

receive data, and the network to react accordingly, so as to prevent the threats 

of Denial of Service (DoS) attacks.  

Conventional multicast-based approaches [22], being mainly designed 

to simultaneously transmit data from one or multiple senders to a group of 

(unknown) receivers, fail in natively achieving such objectives and in ensuring 

the required flexibility in group establishment and management. Clumsy 

patches to existing multicast solutions may further complicate their design 

and hinder their (already limited) deployment. 

This is the reason why in [23] authors argue in favor of a novel and 

future-proof comprehensive solution, named Sociocast, encompassing both a 

communication method and a data delivery scheme, going well beyond 

Internet Protocol (IP)-based multicast. Sociocast is theorized as a means for 

identifying, in a flexible manner, the intended endpoints (senders/receivers) 

of data exchange sessions. Groups are dynamically created according to the 

mutual position of endpoints in a social network of devices and the type of 

relationships among them, by means of properly defined filtering rules and 

policies. 

 This work treasures the theoretical analysis in the cited vision paper 

and makes a significant step forward both in terms of practical design and 

experimental evaluation. The possibility of implementing the conceived 

Sociocast primitive as a network-layer solution in IoT domains, wherein 

switches and routers are responsible for the efficient delivery of packets 

issued by IoT devices. In particular, the reference network infrastructure is 

deployed according to the Software-Defined Networking (SDN) technology 

[24]. 
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SDN has been introduced to address a typical issue in traditional IP 

networks, namely, the lack of programmability in network management and 

configuration. Due to its peculiarities, it can play a crucial role to bring the 

social dimension into the group data delivery procedures enforced at the 

network layer. 

The main contributions of Sociocast can be summarized as follows. 

• The design of an architectural framework encompassing all the entities 

and functionalities supporting Sociocast, according to a software-defined 

network approach. 

• The definition of the main procedures for the creation of the Sociocast 

packets, their forwarding and filtering, and the subscription of devices to 

Sociocast groups. 

• The performance assessment through the widely known Mininet network 

emulator [25], when dealing with push-based data dissemination and 

deploying the Sociocast network application into the ONOS SDN 

controller [26]. The impact of different end-point distribution patterns 

and different involved social relationships on the performance is 

evaluated by comparing our proposal to an alternative approach where 

the groups are created at the application layer. Results show that the 

Sociocast approach allows for a reduction of signaling and data packets 

by a factor of 10 and 5, respectively, in the scenario where the number of 

recipients is high and are close each other. 

 A large number of different applications rely on one-to-many and 

many-to-many data traffic exchange ranging from live video streaming, 

audio/video conferencing [27] and multiplayer games [28] to communications 

among groups of servers within data centers [29] and wide-area control in 

smart grids [30]. Multicasting functionality is typically leveraged in such 

contexts, which can be performed either at the network (IP) layer or at the 

application layer [22], [31] and also with the support of SDN [32], [33]. 

IP-based multicasting. Traditional multicast routing and management 

protocols, such as Protocol-Independent Multicast (PIM) [14] and Internet 
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Group Management Protocol (IGMP) [35], effectively establish and maintain 

multicast communication paths between sources and receivers to enable the 

forwarding of packets to a multicast group. Each group is assigned a unique 

class D IP address. A host can send data to a multicast group by using the 

local network multicast capability to transmit the packet. A multicast router, 

upon reception of a packet, looks up its routing table and forwards the packet 

to the appropriate outgoing interface. Group membership is managed at the 

network level through  routers: when a host decides to join/leave a particular 

multicast group, it sends the request to the local multicast router, through 

IGMP [35].  

IP multicast allows data to be distributed in such a way that the least 

amount of replicas of the same packet is placed into the network.   

In its recent version, v3, IGMP allows to specify the set of senders 

from which a node wants to receive packets, in agreement with the Source-

Specific Multicast (SSM) protocol [36]. In other words, the only packets that 

are delivered to a receiver are those originating from a specific source address 

requested by the same receiver. Hence, SSM is particularly well-suited to 

dissemination-style applications with one or more senders whose identities 

are known before the application begins. 

Non-IP multicasting. The design of multicast solutions has also been 

investigated beyond IP. In application-layer solutions, group membership, 

multicast delivery structure construction, and data forwarding are exclusively 

controlled by participating end-hosts, thus, the support of network nodes is 

not needed [31]. 

In the clean-slate future Internet MobilityFirst architecture [37], a 

context aware delivery primitive is proposed, which generalizes multicast to 

groups established on the basis of attribute-based descriptors. The name 

service, in charge of resolution procedures between Global Unique Identifier 

(GUID) and network addresses, maintains a membership set that consisting 

of all GUIDs of devices that subscribed to the multicast group. The sender is 

responsible for   sending data to each of the returned addresses. 
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SDN-based multicasting. SDN can simplify multicast traffic 

engineering thanks to the centralized nature of the network control plane. 

Current multicast solutions employ a shortest-path tree to connect the source 

to the receivers which is built according to local information. Traffic 

engineering is difficult to be supported in a shortest-path tree. By utilizing the 

global view of the SDN controller, in [38] all the possible routes between the 

sources and each host of the multicast group are calculated in advance. In 

contrast with IP multicast, there are no de facto standards for SDN multicast 

routing. Different approaches  targeting different optimization objectives can 

be targeted in a flexible manner and it is unlikely that a given approach is 

going to be dominant. SDN multicast is enabled by writing an application for 

the SDN controller that optimizes the traffic flows to meet the particular 

needs of the end-user [32]. The SDN controller can build the multicast tree to 

meet link constraints (bandwidth consumption) or path constraints (end-to-

end delay) [33]. Hence, it is a valuable solution when Quality of Service (QoS) 

requirements need to be ensured to a multicast flow,  e.g., in case of a multi-

party video-conferencing service [39]. 

2.1.1 Weaknesses and open issues 

The use of the traditional IP multicast is prone to multiple issues: 

• Without the explicit join to the multicast group, a router will not forward 

multicast IP packets destined to end-hosts. This process implies the 

distribution of the consent to join the multicast group among devices,  

increasing the signaling overhead. 

• There is no way for the sender to control who subscribes to a multicast 

group. 

• It prevents the creation of discrimination policies based on the 

destinations of the information within the same multicast group. 

Therefore, when a limitation to the distribution of packets to some 

entities of the same  multicast group is needed, another multicast group 

must be created, with a consequent increase in the number of signaling 

packets in the network. 
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• All routers must be replaced with multicast-enabled routers, which could 

be expensive and hardly viable for the network operator, raising 

interoperability issues. 

The poor flexibility of the IP-based multicast discourages to pursue 

such an approach for the wide variety of sender-initiated dynamic group-

based communications, as demanded by future IoT deployments. 

 On the other hand, application-layer solutions have the drawback of a 

definitely worse performance in terms of end-to-end latency and efficiency 

compared to IP multicast. This is because end-hosts have little or no 

knowledge of the underlying network topology. 

 Thanks to its programmability and global knowledge of the topology, 

SDN can make the creation of the multicast tree more efficient, thus 

improving forwarding procedures. However, to the best of our knowledge, 

the flexibility of SDN has not been investigated to manage dynamic group 

formation. 

These issues have motivated the theorizing of a new communication 

method  and data delivery scheme [23], able to better fit the nature of 

upcoming group-based communications: Sociocast. 

This is introduced as a novel and flexible solution that allows group-

based communications in the IoT enhanced with the notion of social ties. It 

inherits the strengths of IP multicast, in that it lets network nodes disseminate 

packets in an efficient manner: Sociocast packets are assigned an IP address 

to facilitate their forwarding. In addition, the proposal in [23] enables a 

mutual control of the end-points: not only the receiver can filter different 

senders, as in SSM, but also the sender can (implicitly) decide which node 

should belong to the set of intended receivers, by specifying the features (in 

terms of social relationship) of such receivers. The above mentioned 

capabilities are disruptive when compared to conventional IP-based multicast. 

Sociocast relieves the burden of group management from network nodes and 

of explicit join procedures from devices. 
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2.1.2 Advantages of a “social-oriented" approach 

The use of social links to support network functionality is not new in 

the telecommunications landscape.  

Several routing protocols in wireless ad hoc [40], mobile opportunistic 

and delay-tolerant networks [41, 42, 43, 44], have been designed to build upon 

the key concepts of social network analysis, i.e., small world phenomenon [45] 

and centrality. The former one, a.k.a. community, captures the fact that actors 

within a social network are separated from each other by an average number 

of fairly limited hops; while the latter one shows that some nodes in a 

community are the common acquaintances of other nodes.  

In the aforementioned works, the knowledge of social characteristics 

(e.g., node centrality, in-betweenness) is used to make better forwarding 

decisions and to assist the relay selection when delivering data to the intended 

destination(s). 

Many of the studied approaches involved unicast or multicast 

communications [46, 47, 48]. The issue of data broadcasting in a Mobile 

Social Network, where mobile social users physically interact with each other, 

is analyzed in [49].  

The objective of this work is to exploit similar concepts but under a 

different perspective. We do not aim to improve forwarding decisions by 

leveraging social network properties, but rather to better disseminate data at 

the network layer within dynamically created groups of socially connected 

devices. 

The proposal has the potential of a real game changer in the view of the 

creation of the future Internet of Things, by providing superior advantages 

compared to what has been done so far in literature. 

In fact, social bonds not only ensure minimum separation distances 

between actors, which are crucial for an efficient and fast data propagation, 

but may also enable data exchange within trusted groups and the creation of 

groups that include actors belonging to different communities. In Sociocast 

this translates into the possibility of an efficient and flexible group end-points 

discovery, an intrinsic possibility of implementing policies for creating trusted 
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groups of end-points directly at the network level, and the ability to 

effectively and simply deal with the problem of interoperability among 

different IoT platforms. 

Obviously, in order to do this we need to start from a paradigm that 

can provide for the establishment of pseudo-social ties between devices (to 

operate at the network layer). This is already available in solutions of \social 

networks of IoT devices", such as the Social Internet of Things (SIoT) [19] 

for example. 

However, they need to be moved from the application layer, wherein they 

have 

been initially conceived, down to the control plane of the network layer. In so 

doing, group establishment and data exchange among members of such 

groups 

can be managed in a tighter way, with inherent flexibility and efficiency in 

terms of network resource usage. 
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2.2 Sociocast  

2.2.1 Objectives and design principles 

In this Section is described how it’s possible to achieve a real 

implementation of the Sociocast concept by relying on the capabilities of the 

Software Defined Networking paradigm. The resulting solution is an enabler 

for group communications based on social notions at the network layer. 

Social ties among devices. Devices are likely to interact with other 

devices having similar profiles and habits, e.g., those located in the same 

place, owned by the same user, produced in the same company branch.  

Such ties are well captured by the SIoT paradigm in [19], where a few 

basic types of social relationships, defined according to user-defined policies, 

are introduced: co-ownership object relationship (OOR), created between 

devices that belong to the same owner; co-location object relationship 

(CLOR), created between stationary devices located in the same place; 

parental object relationship (POR), created between devices of the same 

model, producer and production batch; co-work object relationship (CWOR), 

created between moving devices that meet each other at the owners' 

workplace; social object relationship (SOR),  created as a consequence of 

frequent interactions between moving devices. The framework is quite 

flexible and other types of relationships can be easily added on a per use-case 

basis. 

Applications requiring data dissemination to a social group of devices 

are, for instance, software updates: a given software patch needs to be safely 

delivered to all the devices or sensors of the same brand, model, batch. For 

this, POR relationships should be exploited. Similarly, some data need to 

reach all other devices belonging to the same owner in case of personal 

bubbles: the OOR  relationship is appropriate in this scenario. Business 

services may be advertised  to all devices that either are currently in the same 

area (CLOR) or often visited  the same place (SOR).  

Targeted data delivery schemes. Sociocast aims to enable: 

• a given sender to disseminate data in a push-like manner to specific 

nodes, which are friends over a social network of devices, according to 

properly defined filters and policies (i.e., the social relationship type); 
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• a node to subscribe to specific social-based topics (i.e., to receive data 

from friends of a given type); 

•  a node to prioritize (and not to receive) data from particular senders, 

e.g.: to enforce QoS; to identify the more suited and trusted 

communication endpoints for security reasons; to save resources. 

Deployment options. To target the aforementioned objectives, the 

envisioned framework has (i) to enable nodes to indicate in an agile manner 

the features of the end-points of data flows (i.e., the set of intended 

recipients and/or the authorized senders) based on the distance in a social 

network of devices, (ii) to properly and dynamically identify them, (iii) to 

forward data packets accordingly. 

A straightforward approach to accomplish the first two features could 

be one that relies on an application-layer solution. For instance, the intended 

set of receivers can be specified by a given sender at a high-level, e.g., 

through meta-data. Then, the resulting request can be sent to a purpose-built 

proxy which is in charge of mapping such data onto IP addresses of the 

receivers, similarly to [37]. Despite the virtue of simplicity, such an approach 

has the drawback of poor performance in terms of efficiency in the usage of 

network resources, since data forwarding to each intended destination is 

performed at the underlying network layer in a myopic manner. 

Thus, our interest is on a network-layer approach, according to which 

the features of the intended set of receivers of a given data packet (or of a 

sender of unwanted data packets) can be translated into a network-layer IP 

address,  hence treated (forwarded/dropped) by network nodes, accordingly. 

The approach proposed is inspired by the traditional IP-based multicast, with 

which it shares a few aspects, such as the routing of packets with a multicast 

address (a Sociocast address, in our case). However, multicast lacks the 

flexibility necessary to implement the aforementioned critical functionalities 

for the future Internet of billions of devices, while it meets the requirements 

of the end-users and those of the network operators. 

By overstepping the agnosticism about Sociocast traffic at the network 

layer, the following advantages are expected: 
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• data forwarding can occur in an efficient manner, e.g., by reducing the 

number of duplicated packets, and saving bandwidth accordingly; 

• filtering procedures can be enforced in-network, as requested by 

potential data recipients, to limit the massive amount of generated traffic; 

• network operators can benefit from traffic reduction, which is 

particularly crucial for their infrastructures expected to be largely 

overwhelmed in the near future. 

Programmable packet treatment. Recent advancements in 

networking technologies make the deployment of Sociocast at the network 

layer even  more viable. We identify SDN as the key enabler for Sociocast. 

Thanks to its programmability, which reduces the complexity of network 

elements, SDN can inject forwarding/dropping rules and properly manipulate 

headers of packets to make more efficient their forwarding. 

 

Figure 13: Sociocast architectural framework 

Such policies can be defined in a network application, with no need to 

modify the data plane of the underlying network infrastructure. 

 

2.2.2 The architectural framework 

The main entities of the envisioned framework are: the Sociocast 

nodes, the SDN network (encompassing both switches and controller), 

augmented with the notion of Sociocast, and the Sociocast Relationship 
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Service, as shown in Errore. L'origine riferimento non è stata trovata.and 

detailed in the following. 

 The Sociocast nodes The Sociocast nodes are the endpoints of a Sociocast 

communication. They are legacy IoT devices (e.g., smartphones, sensors) 

augmented with the Sociocast Support Layer (ScSL) running on top of the 

transport layer, through which they are enabled to create, send and/or receive 

Sociocast packets. The ScSL exposes the Sociocast Application Programming 

Interfaces (APIs) to the applications that want to use the Sociocast 

communication configuration for data delivery. It is through this layer that 

Sociocast packets are created and received by the end-devices. 

The SDN network The SDN network is composed of three different 

planes, according to the legacy deployment. The data plane encompasses the 

SDN switches, which are SDN-enabled network nodes connected to each 

other and interacting with the SDN controller. Among them, the SDN 

gateways are the ingress/egress nodes of the SDN network. SDN nodes 

interact with the SDN controller through the OpenFlow(OF) southbound 

interface. 

The control plane includes the SDN controller, which oversees the SDN 

nodes, according to specific orchestration policies defined at the application 

plane, and tracks the graph of the network topology in the Network 

Information Base (NIB). According to information in the NIB and policies 

defined by network applications, it injects rules in the so-called flow tables of 

SDN nodes to enable the forwarding of Sociocast packets through OF 

messages [50]. 

The Sociocast Relationship Service The Sociocast Relationship Service (SRS) 

is implemented at the application plane, next to conventional SDN 

applications, and it provides the following main functionalities: 

1. establishing social relationships among nodes. Without loss of 

generality, we inherit concepts and methodologies regarding the 

policies for the establishment of the social links between nodes 

from the well-accepted SIoT paradigm [19]; 

2. keeping track of the established social relationships; 
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3. providing interfaces towards the SDN network and navigating 

the social network so to identify the nodes that belong to the 

set of the potential recipients/authorized senders of a Sociocast 

packet. 

Herein, a major element is the Social Virtual Node (SVN), which 

represents the digital counterpart of a physical device. It stores some meta-

data providing information about the nature of the device and a list of 

friends, which is organized in a table named Friends Table. For each friend in 

the table, the SVN records the type(s) of friendship(s), defined according to 

the SIoT paradigm and the trust level associated with each friend. 

The Social Virtual Node Repository (SVNR) stores all SVNs associated to 

the physical devices in a given area. Indeed, one SVNR is responsible for 

providing the objects in a given area with the described services; more 

SVNRs are then interconnected in a distributed system. The following 

modules are associated to the SVNR. 

 The Relationship Manager (RM) is responsible for the relationships' 

lifecycle management, i.e., detecting, creating, updating and 

deleting relationships3. 

 The Relationship Browser (RB) navigates the Friends Table to find 

potential recipients of a Sociocast packet, according to their 

position in the social network. Policies for the social network 

navigation are discussed in [51]. 

 The Sociocast Handler (SH), whenever queried by the SDN 

controller, provides for the members of a Sociocast group, after 

querying the RB module, through a Representational State 

Transfer (REST) API.  SVNRs, along with relevant 

functionalities (i.e., RM, RB and SH), can be deployed as a peer-

to-peer system, for instance building upon the one described in 

[51]. 

 

 

                                                           
3
 For a detailed description of relationships management, the reader is referred to [51]. 
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The design choice is aimed at providing an implementation of SDN-

based group communications based on a de-facto global IoT resource 

directory, which is distributed and without a single player in control of the 

system. Digital representations of physical IoT devices will run in distributed 

servers and can create autonomously social-like relationships with each 

others. Based on such a distributed resource directory, interactions (both 

point-to-point and point-to-multipoint) between IoT resources belonging to 

different platforms can be straightforwardly enabled. Each SVNR (or group 

of SVNRs) could, in fact, contain the images of the devices belonging to a 

given platform, it can be owned and maintained by the owner of the platform 

(or even the owner of the group of IoT devices), and interacts in a peer-to-

peer fashion with other SVNRs constituting the SRS. 

2.2.3 Sociocast in action 

In the following, are described the main steps for the creation of a 

Sociocast packet. Then, it’s illustrate the Sociocast data delivery, according to 

a push-based dissemination, publish/subscribe procedures to Sociocast 

groups, as well as filtering according to Sociocast rules. 

2.2.3.1  Creating a Sociocast packet 

A Sociocast packet is created whenever a device needs the services 

offered by the Sociocast framework, which are intended to: (i) disseminate 

data in a push-like manner; (ii) indicate the subscription to a Sociocast group; 

(iii) or to filter/prioritize data from particular senders. Whenever a packet is 

created, it has to indicate which one of these three types of services is 

requested. The above are the types of Sociocast services. The above-

mentioned types of Sociocast services are those supported in the current 

implementation, but the set of Sociocast services can be easily extended in the 

future. 

Let us consider a device, say A, which creates a packet with data to be 

sent to a Sociocast group. The application in A makes a request to the ScSL 

via the available APIs, providing the following information: (i) the type of 

requested Sociocast service; (ii) the social relationship (e.g., OOR, CLOR) 

according to which the Sociocast group has to be formed; (iii) the social 
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distance (number of hops over the social network), which represents the 

scope of the Sociocast  group. 

The ScSL reacts to the incoming request by creating an IP packet with 

the following header fields: 

 Source IP address: the IP address of the source device. 

 Destination IP address: a fixed IP address, identified in the following 

as IPSC, assigned to Sociocast that allows SDN gateways to identify 

Sociocast packets. 

 Sociocast Tag: a 2-bytes field that is carried inside the transport-layer 

destination port and is used to uniquely identify the type of social 

relationship and other appropriate filters (e.g., number of hops, 

possible application of Sociocast, etc.). The encoding is as follows:  

  -METADATA: device metadata available for future applications.  

  -RELATIONFILTER: type of relationship (e.g., OOR, SOR, 

CLOR, etc.). 

  -FEATUREGROUP: type of Sociocast services needed by the 

application (e.g., GroupCreation, SourceFiltering, Pub/Sub). 

  -RADIUS: maximum distance, in number of hops, from the source. 

Figure 14: Examples of Sociocast Tag configuration. shows some 

examples of Sociocast Tag configuration. 

Being Sociocast packets identified through conventional layers 3 and 4 

header fields, legacy matching rules can be applied, with no need to resort to 

OF experimenter fields [52]. Such design choices would facilitate the 

deployment of Sociocast, which candidates itself as a short-term solution to 

be exploited by network operators. 

For the sake of simplicity, the encoding described above refers to the 

case the IPv4 is used. Similar considerations hold for IPv6 packets, for which 

matching fields can be handled by OF since version 1.2 [52]. 

For those constrained IoT devices belonging to Low power and Lossy 

Net- works (LLNs), 6LoWPAN (IPv6 over Low-Power Wireless Personal 

Area Networks) header compression methods can be used [53] over the link 

interconnecting the devices to the SDN gateway. For the IPv6 headers, 

compression methods may also affeect source and destination addresses, and 
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they vary according to the fact that the source is communicating with nodes 

either within or outside the WPAN. In the latter case, a 50 percent 

compression ratio can be still achieved by letting the full destination address, 

carrying the Sociocast address, be transmitted. 

TCP header compression for IoT scenarios [54] is still an open issue at 

the standardization level [55], not part of RFC 6282 [53]. The compression 

foresees to avoid sending the port numbers in each packet, which however 

does not affect the Sociocast communications as the port number with the 

Sociocast TAG is reconstructed at the gateway. Indeed, decompression 

occurs at the SDN gateway letting Sociocast packets travel with conventional 

IP header fields in the SDN network. Similar operations are performed at the 

SDN gateways the destinations are attached to, if the latter ones belong to a 

WPAN. 

 

 

Figure 14: Examples of Sociocast Tag configuration. 

2.2.3.2 Push-based data dissemination 

Once the Sociocast packet is created with data to be disseminated, it is 

sent by the source device and treated in the network through the following 

steps. 

 

1. The Sociocast packet reaches the SDN gateway, which the source 

device is connected to. Since, initially, a forwarding rule is not set in 
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the flow table of the SDN gateway, the GoToController rule applies 

for it. Hence, a OF Packet In message is issued to be transmitted to 

the SDN controller. 

2. Upon reading the header of the Sociocast packet4, the SDN controller 

realizes that a Sociocast group must be created (Feature field set to 

GroupCreation). Thus, it issues a request to the SRS, to retrieve the 

set of the devices, which are meant to act as recipients of the 

Sociocast packet. 

3. The SH triggers the browsing of the social network, as specified 

before, and returns to the SDN controller the addresses of the set of 

devices of the Sociocast group. 

4. The SDN controller retrieves from the NIB the SDN nodes in the 

shortest paths towards the intended receivers of the Sociocast group. 

Then, it builds the routing paths by ensuring that SDN nodes 

belonging to the path towards multiple receivers receive a single rule 

and forward the Sociocast packet only once. Hence, it injects 

forwarding rules in the flow table of the involved SDN nodes 

accordingly, by sending OF Flow Mod messages. In particular, the 

SDN gateways which the Sociocast destinations are attached to, will 

be instructed by the SDN controller with a rule that: (i) matches the 

Sociocast-related header fields that identifing the Sociocast 

communication and (ii) foresees to forward the packet to the correct 

physical port after changing the destination Sociocast IP address with 

the IP destination (unicast) address as action. This is to ensure that all 

devices belonging to the Sociocast group correctly receive the 

Sociocast packet. 

Other SDN nodes, instead, are instructed to forward the Sociocast 

packet to the physical correct ports by matching the Sociocast fields 

values.  

                                                           
4
 The entire Sociocast packet is sent by the SDN gateway, hence a Packet Out is transmitted 

by the controller, back to the SDN gateway [52]. 
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Once the Sociocast group is created, subsequent Sociocast packets 

transmitted by the source device may be handled by the SDN gateway with 

no need to contact the SDN controller, but rather the may be forwarded 

according to rules already available in the flow table. According to the legacy 

SDN implementation, a timeout is applied to rules injected by the controller 

into SDN nodes, so as to prevent a rule to stay in the table for too long and 

to unnecessarily occupy space in the flow table [52]. Within our framework, 

such a timeout can be set to reflect the lifetime of and the frequency of 

interactions within the Sociocast group, as well as the mobility patterns of 

nodes. 

2.2.3.3  Publish/subscribe 

Sociocast can be exploited to support publish/subscribe interaction 

model as well. In fact, a device can subscribe to receive packets published by 

devices identified by their position in the social network. For example, 

assume that device B wants to subscribe to receive packets generated by its 

friends of type OOR. If this is the case, it will generate a Sociocast packet 

with the FeatureGroup field set to Pub/Sub and the RelationFilter field 

identifying an OOR. 

Such an information will reach the SDN controller which will perform 

the following operations: 

1. It sends a query to the SH and receives the identities of the devices 

with position in the social network consistent with the request by 

device B. 

2. It adds this information in a pending interest table which tracks all 

subscriptions received by devices. Whenever a device begins to 

disseminate data, the SDN controller will check whether there are 

devices that have subscribed to its updates (e.g., B). 

3. If this is the case, the SDN controller will instruct the SDN nodes in 

the path to B to forward the data packets to it. 
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2.2.3.4 Source filtering 

Sociocast allows a device to select those that are entitled to send 

packets to it, on the basis of their position in the social network. Such feature 

can be used both in a proactive and a reactive way. More specifically, 

 Proactive: a device might decide to receive packets by its friends only,  

for security reasons or to save energy, computational and 

communication resources. 

 Reactive: the computational or communication load for a device may 

become too high, e.g., because of a DoS attack. If this is the case, the 

device might decide to accept packets by a subset of devices, based on 

their  position in the social network. In this way Sociocast can be 

exploited to realize a firewall whose policies change depending on the 

current load. 

 

Figure 15: Reference topology. 

A device, say C, wishing not to receive packets from nodes with certain 

social properties sends a Sociocast packet by specifying in the FeatureGroup 

field SourceFiltering. Once the packet reaches the SDN controller, the latter 

one will query the SH, which will reply with the list of authorized IP 

addresses. 

Accordingly, the SDN controller will insert entries in the flow table of the 

SDN gateway which C is attached to, whit the aim of specifying, on the one 
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hand, the forwarding rule for packets destined to it sent from authorized 

senders and, on the other, the dropping rule for those which are not allowed. 

 

2.3 Experimental setup 

 

In this paragraph it’s described the environment for the performance 

evaluation. More specifically, Section 2.3.1, and 2.3.2 described the tools 

utilized for the performance evaluation and the reference topology, while in 

Section 2.3.3 are discussed the scenarios. 

The benchmark utilized for comparison purposes is presented in 

Section 2.3.4, whereas the considered performance metrics are identified in 

Section 2.3.5. 

2.3.1 Tools description 

The SDN controller  ONOS [26] and the network emulator Mininet 

[25] are the main tools used for the performance evaluation. Both of them 

need to be described in more details to better understand how the 

experimental playground has been created. 

2.3.1.1 ONOS 

At the beginning of SDN, there was only a SDN controller, NOX [58], 

but since then, the number of SDN controllers has grown significantly. 

Indeed, as stated in Chapter 1, whitin this plethora of SDN controllers some 

are proprietary, while many more are open-source and implemented in 

different programming languages. 

In particular the SDN controller ONOS, which is a Java-based 

controllers,  uses  OSGi containers for loading bundles at runtime, allowing a 

very flexible approach to adding functionality and also, since Java is a well-

known and widely used programming language, the development resources 

are abundant, with good supporting documentation and libraries available. 

As Figure 16 shows, in the ONOS controller architecture can be found three 

different layers: 

 Northbound APIs and protocols. An exclusive characterization of ONOS 

is the intent framework, which allows a control application to request 
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a high-level service without having to know the implementation 

details. State information is provided to control applications across 

the northbound API, either synchronously, via query, or 

asynchronously, via listener callbacks. 

 Distributed core. The state of the whole SDN network (links, hosts, and 

devices state) is maintained in the distributed core. ONOS is deployed 

as a service on a set of interconnected servers. The ONOS core 

provides the mechanisms for service duplication and coordination 

among different instances, providing the applications, in the upper 

layer, and the network devices, in the downer layer, with the 

abstraction of logically centralized core services. 

 Southbound APIs and protocols. The southbound layer hides the diversity 

of the network, allowing the distributed core to be both device and 

protocol agnostic.  

 

Figure 16: ONOS Architecture. 

 



Enhancing Group Communications through the Social Internet of Things 

56 

 

2.3.1.2 Mininet 

2.3.1.2.1 What is Mininet? 

“Mininet is a network emulator which creates a network of virtual hosts, switches, 

controllers, and links. Mininet hosts run standard Linux network software, and its 

switches support OpenFlow for highly flexible custom routing and Software-Defined 

Networking." This definition is taken from Mininet official webpage [56], and 

highlights that Mininet is a very powerful tool when working with SDN; 

indeed, it provides a simple network testbed for developing OpenFlow 

applications.  

The emulated hosts in Mininet behave just like they were “real", which 

means that it's possible to either run any program installed in the undergoing 

Linux Operating System or a specific code for an application or, again, for 

example, to login with SSH.  

This concept is extended to all the network elements: not just hosts, but 

also switches, links and controllers. They are “real", even though they are 

created with software, instead of being an hardware part. This allows for the 

emulation of networks that are a copy of real ones and vice versa, for the 

creation of a Mininet network to test a future real one and use the same code 

and applications for both of them. Mininet works via Linux command line 

and Python API. 

 

2.3.1.2.2 How Mininet Works 

Mininet uses some Linux features, such as process abstraction, which 

allows for the virtualization of the computing resources and makes the system 

look like a set of "containers". Each container has a fixed share of the 

processing power and a virtual link that helps the creation of links with 

realistic speed and delay. Using this process based virtualization, Mininet is 

able to run many hosts and switches (up to 4096 on a single kernel!). Let's 

now analyze each emulated network element: 

 Emulated Hosts: A host emulated in Mininet is a group of 

user-level processes moved into the network namespace, a 

virtualization feature that provides individual processes with 

separate network interfaces, routing tables, and ARP tables.  
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 Emulated Links: The data rate of each link is guaranteed by 

the Linux Traffic Control which, through a series of schedulers, 

allows you to create traffic flows with the specified 

characteristics. Note that each emulated host has its own virtual 

Ethernet interfaces and each pair of virtual Ethernet behaves 

like a cable connecting the two interfaces. 

 Emulated Switches: Mininet uses Open vSwitch in kernel 

mode to move packets between interfaces. 

 

 

2.3.2 Tools usage and reference topology 

The focus of the performance evaluation is to assess Sociocast in the 

case of push-based data dissemination towards a group of devices. 

To this purpose, we built an emulation playground. In particular, the 

Mininet network emulator [25] has been used, which allows fast prototyping 

and experimental evaluation of OF-enabled networked systems. The 

experimental setting consists in the network topology depicted in Figure 15: 

Reference topology.. A full-mesh interconnects the core SDN nodes, which 

are the roots of a three-layers fat-tree topology. Up to 21 devices are attached 

to each SDN gateway (not all the devices are shown in the Figure). ONOS 

has been considered as a reference SDN controller in the context of this 

work, due to its scalability properties and its highly modular architecture [26]. 

The ONOS controller interacts with an external SRS, which establishes 

social  relationships among emulated devices, and manages them. 

The ONOS controller and the Mininet network emulator are both 

running on the same virtual machine, while the SRS runs in a different one. 

Both these 

virtual machines are located in a physical server with an Intel Xeon(R) CPU 

E5-2630C v3 1.80 GHz x32 processor and 377,8 GiB of memory. 
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2.3.3 Social relationships settings and traffic patterns 

The performance of the proposed solution has been evaluated with a 

set of representative IoT test configurations properly designed to take into 

account 

different numbers and distributions of nodes in the emulated topology, 

different physical distances between sources and destinations, and different 

types of service. This is aimed at making the obtained results as generalizable 

as possible and having a clear idea of the potential and limits of Sociocast in 

multiple scenarios. Each of the test configurations has been mapped onto a 

use case characterized by the exploitation of a particular type of social 

relationship between the devices involved. In this way, helpful guidelines can 

be provided about the suitability of the proposed solution in the context of 

different application scenarios and, at the same time, of the effectiveness of 

communications based on each of the possible social-like relationships 

established among IoT devices. Details are given in the following. Table 2: 

Summary of the main social relationships settings. also summarizes the major 

features characterizing each scenario, which are: the types of social 

relationship invRel.) (shortened as Rel.), the number of destinations 

(shortened as DSTs) for each communication, their distance from the source 

(shortened as SRC), and their position with reference to the considered 

network topology. 

2.3.3.1 Scenario A: Smart industrial plant. 

Group communication needs: an industrial plant is equipped with several 

connected devices (sensors and actuators) and one of these (randomly 

selected) belonging to the emulated topology issues a Sociocast packet 

destined to all the 

devices connected to the same gateway. The group can be created, for 

instance, for the dissemination of alarms, for group configuration and 

reconfiguration, for functional testing. 

Involved relationship type: CLOR. 

End-point distribution profile: all endpoints clustered in the same area. 
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2.3.3.2 Scenario B: Smart home monitoring. 

Group communication needs: a randomly selected device in the emulated 

topology, resembling a smartphone of a user currently at office, acts as a 

sender and issues a Sociocast packet to create a group of recipients made up 

of all the smart devices connected to the (same) home gateway, which is 

different from the one the user's smartphone is attached to. The group can be 

created, for instance, to notify devices to configure a warm welcome for the 

user. 

Involved relationship type: OOR (ownership). 

End-point distribution profile: sender in a location and all destinations 

clustered in a different (potentially) remote location. 

2.3.3.3 Scenario C: Wireless Sensor Network (WSN) management. 

Group communication needs: a randomly selected device in the emulated 

topology acts as a sender and issues a Sociocast group creation destined to all 

the devices of the same brand, uniformly distributed in the topology to 

disseminate a new configuration for the device, a software update, or a new 

driver version. 

Involved relationship type: POR (parental). 

End-point distribution profile: uniform distribution of end-points. 

2.3.3.4 Scenario D: Smart mobility. 

Group communication needs: we assume mobile devices (e.g., smartphones, 

laptops) carried by people moving in a smart city/smart campus and 

interacting with other devices met either in the neighborhood or close 

offices/classrooms. The type of the data exchanged within the group 

includes: information related to mobility applications, tourist information, 

data for the implementation of any Intelligent Transportation Systems 

application. 

Involved relationship type: SOR. 

End-point distribution profile: variable location of end-points in the group. 

As to the creation of the relationships, these have been set in 

deterministic way except for the SOR. In particular, different groups of 

devices linked with POR and OOR relationships are created so as to have 

from 5 to 20 recipients for each simulated communication. However, the 
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CLOR relationship has been created among devices that are connected to the 

same gateway as the co-location has to be assured. As to the SOR 

relationships used in Scenario D, these are established among devices in the 

emulated topology according to their physical distance and follow a simple 

probabilistic model. The principle adopted is such that the closer the devices, 

the higher the probability that the two devices have establish a SOR 

relationship. Accordingly, devices attached to the same SDN gateway (i.e., an 

Access Point) have the highest probability to establish it. These devices are 

characterized by sharing the same path to reach the root node (s1 in Figure 

15: Reference topology.), which is made up of 4 SDN nodes. We base on this 

number to define the notation to denote the relevant probability to create a 

SOR among them: psoc,4. Following the same principle, devices sharing three, 

two, or one SDN nodes in the path to reach s1, establish a relationship with 

probability psoc,3, psoc,2, and psoc,1, respectively. The higher j the higher the 

probability psoc,j, with j ϵ {1,2,3,4}. The setting of psoc,j, used in the performed 

simulations is reported in Table 3: Probabilities of SOR establishment.; 

different configurations have been considered to evaluate the impact of 

different numbers of friends and their distribution in the considered topology. 

 

Table 2: Summary of the main social relationships settings. 
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Table 3: Probabilities of SOR establishment. 

 

2.3.4 Benchmark scheme 

The performance has been compared against an application-layer 

solution, which we refer to as multiple unicast (labeled in the plots as M-

Unicast). Note that also for this benchmark scheme, we are focusing on the 

push-based data dissemination scenario. The choice of this benchmark is 

meant to quantitatively estimate the benefits of the Sociocast proposal against 

an application-layer solution. In the latter one, the network layer is agnostic 

about the communicating group, but it offers the same features in terms of 

sender initiated and dynamic Sociocast group creation, hence ensuring a fair 

comparison. Specifically, the source node contacts a proxy in charge of 

interacting with a SIoT-like platform to get the set of intended destinations 

belonging to the Sociocast group. The latter one is described through 

attributes/meta-data defined at the application layer, similarly to the 

information encoded in the tags in Sociocast packets. After retrieving the list, 

the proxy forwards it to the source node which sends the packet to the 

destinations through multiple unicast exchanges. In other words, the 

controller sets up distinct routing paths for each destination and some links 

can be shared by multiple paths towards destinations belonging to the same 

group. Without losing generality, we assume that the proxy is attached to the 

root node of the topology (i.e., s1 in Figure 15: Reference topology.). 
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2.3.5  Metrics 

The following metrics have been considered to evaluate the 

performance of the compared schemes in the creation of a Sociocast group 

and data exchange among its members: 

 the number of OF signaling packets exchanged between SDN nodes and 

controller to build routing paths towards the intended Sociocast 

destinations. The metric only refers to the control packets exchanged 

to process incoming requests from sociocast nodes at the SDN 

gateway, namely Packet In, Packet Out and Flow Mod. The 

background (periodic) signaling exchanged between the controller and 

the SDN nodes is not considered; 

 the number of data packets exchanged into the network to reach all the 

intended destinations of the communicating group, once it has been 

creaated; the metric considers the number of transmitted packets per-

link and they are represented by either Sociocast or M-Unicast 

packets. 

For the benchmark scheme, the request packets issued by the source 

towards the proxy as well as the signaling messages required to instruct the 

relevant SDN nodes towards it are also considered.  

The above metrics have been measured through the well-known 

Wireshark network protocol analyzer5. 

Comparison experiments have been conducted when varying the 

number of destinations (or relevant probability settings) and are averaged 

over 20 runs. 

  

                                                           
5
 Please notice that the analysis of the signaling incurred for the creation of social 

relationships among devices is outside the scope of this work and is peculiar of the conceived 

SIoT implementation. We remand to [57] for more details. 
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2.4 Results analysis 
In this paragraph are shown the performance results. More 

specifically, in Section 2.4.1 it’s discussed Sociocast in terms of generated 

signaling packets; whereas Section 2.4.2 focuses on data packets. 

2.4.1 Signaling packets 

The first set of results aims at analyzing the control plane signaling 

footprint  incurred by the proposal and the benchmark scheme. Figure 17: 

Sociocast Vs. Multiple Unicast. Exchanged OF packets for Sociocast group 

creation when varying the number of destinations, scenario A. Figure 18: 

Sociocast Vs. Multiple Unicast. Exchanged OF packets for Sociocast group 

creation when varying the number of destinations, scenario B. and Figure 19: 

Sociocast Vs. Multiple Unicast: Exchanged OF packets for Sociocast group 

creation when varying the number of destinations, scenario C. report the 

number of exchanged OF packets when varying the number of destinations 

of the Sociocast group under for the scenarios A-C, whereas the results for 

scenario D are shown in Figure 20:  Sociocast Vs. M-Unicast OF packets 

exchanged to create the sociocast group. It can be clearly observed that for 

the M-Unicast approach the metric significantly increases with the number of 

destinations, in all the considered scenarios. Such a trend is due to the fact 

that the end-to-end communication path towards each single destination 

needs to be discovered with the support of the SDN controller. In other 

words, an SDN node receives a number of M-Unicast packets to forward 

equal to the number of destinations it allows to reach. For each of them, it 

contacts the controller by generating a Packet In message and waits for the 

corresponding Packet Out and Flow Mod with instructions about the 

forwarding behavior.  

For a given number of destinations, the highest number of OF packets 

are exchanged in case of Scenario C. In the latter one, indeed, the destinations 

are spread over the topology and the routing path towards them may involve 

several SDN nodes (and gateways). Scenario B follows with a lower number 

of exchanged OF packets. In Scenario A, instead, only a single SDN gateway 

is in charge of Sociocast packet forwarding. It is the only SDN node 

transmitting and receiving OF packets. 
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In the Sociocast solution, the controller is in charge of building routing 

paths towards them so to avoid the forwarding of the same Sociocast packet 

over the same link.  

Hence, unlike the benchmark scheme, in our proposal, those SDN 

nodes which belong to the paths towards different destinations receive only a 

single Sociocast packet to forward and a single Flow Mod from the controller. 

The gain of Sociocast w.r.t. M-Unicast in terms of exchanged OF packets gets 

more remarkable as the number of destinations increases. For instance, in 

Scenario C, it passes from a factor of around 6 for five destinations to a 

factor of more than 14 for twenty destinations. 

It is worth observing that, in Sociocast, a single Flow Mod message may  

convey multiple rules to be injected into an SDN node. In particular, Table 4: 

Size (in bytes) of the Flow Mod packet for Scenario A. reports, for Scenario 

A, the size of the Flow Mod message, as measured at the SDN gateway, 

which the source and the destinations are both attached to. For the Sociocast 

proposal, the size reasonably increases with the number of destinations to 

accommodate the action rule for each of them. The rule specifies the physical 

output port as well as the change of the IP address from 

Sociocast to unicast. For M-Unicast, each Flow Mod carries a single rule, 

since its injection is issued per each M-Unicast packet traversing an SDN 

node. The size increases of less than a factor of 3 for the Sociocast approach 

compared 

to M-Unicast, in the case of twenty destinations.  

Despite the larger size of Flow Mod packets, it can be easily inferred 

that, overall, the OF signaling footprint of the proposal, in terms of number 

of ex-changed bytes, is significantly lower than M-Unicast. Also, the proposal 

better scales with the size of the Sociocast group. 

Similarly to the benchmark scheme, the proposal experiences the largest 

signaling in Scenario C, wherein multiple SDN nodes, involved in forwarding 

Sociocast packets to destinations, spread over the topology, need to be 

instructed. 

Similar considerations hold for Scenario D, Figure 20:  Sociocast Vs. 

M-Unicast OF packets exchanged to create the sociocast group. Also in such 
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a case, the proposed Sociocast solution is less sensitive to the simulation 

settings (i.e., size of Sociocast group and its configuration in terms of 

proximity of destinations w.r.t. the source) than the benchmark. 

2.4.2 Data packets 

Results in Figure 22:  Sociocast Vs.M-Unicast exchanged data plane 

packets when varying the number of receivers in different scenarios. shed 

further light into the efficiency of the compared schemes in delivering the 

data packets. Similarly to the OF signaling, also the number of exchanged 

Sociocast packets increases with the number of destinations; the highest 

values are experienced for Scenario C and the lowest ones in Scenario A. 

As a general remark, it can be observed that the proposal is less 

sensitive to  increases in the number of destinations when compared to the 

benchmark. This happens because the controller builds the routing paths to 

avoid that packets are redundantly transmitted over a given link shared by 

more destinations.  

This is not the case for the M-Unicast solution where forwarding 

decisions are separately taken for each data packet, according to the address 

of the intended destination. 

When referring to Scenario A, the M-Unicast approach always sends 

twice as many data packets as the proposal. This is an obvious consequence 

of the fact that, after receiving the destinations list, for the M-Unicast 

approach there are two packets, for each destination, traveling into the 

topology. One packet  travels from the source to the SDN gateway, and the 

other one from the SDN gateway to the corresponding destination. This does 

not apply for the Sociocast approach, where there is only the data packet 

from the SDN gateway to each destination.  

Improvements get larger for other scenarios.  

In Scenario B, more SDN nodes are involved in the routing path, despite the 

fact that all the destinations are connected to the same SDN gateway. Hence, 

more data packets travel into the network, especially for the M-Unicast 

solution. Such a trend is more remarkable in Scenario C, due to the larger 

spread of destinations over the topology. A similar trend is observed for 

Scenario D in Figure 21: Sociocast Vs. M-Unicast exchanged data plane 
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packets in the topology. Note that in Figure 20:  Sociocast Vs. M-Unicast OF 

packets exchanged to create the sociocast group and Figure 21: Sociocast Vs. 

M-Unicast exchanged data plane packets in the topology. the different 

simulation runs (from 1 to 7) correspond to the different Sim-IDs of Table 3: 

Probabilities of SOR establishment.. 

 

Not surprisingly, improvements of Sociocast w.r.t. M-Unicast are 

greater in Scenario B compared to Scenario C. Indeed, in Scenario B the path 

towards all intended destinations is the same from the source to the SDN 

gateway. Hence, in Sociocast, the SDN controller judiciously issues rules that 

prevent from forwarding duplicated packets over the same links. 

 

Figure 17: Sociocast Vs. Multiple Unicast. Exchanged OF packets for Sociocast group 
creation when varying the number of destinations, scenario A. 
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Figure 18: Sociocast Vs. Multiple Unicast. Exchanged OF packets for Sociocast group 
creation when varying the number of destinations, scenario B. 

 

 

Figure 19: Sociocast Vs. Multiple Unicast: Exchanged OF packets for Sociocast group 
creation when varying the number of destinations, scenario C. 
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Figure 20:  Sociocast Vs. M-Unicast OF packets exchanged to create the sociocast group. 

 

 

 

Figure 21: Sociocast Vs. M-Unicast exchanged data plane packets in the topology. 
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Figure 22:  Sociocast Vs.M-Unicast exchanged data plane packets when varying the number 
of receivers in different scenarios. 

 

 

Table 4: Size (in bytes) of the Flow Mod packet for Scenario A. 

 

Benefits of the Sococast are definitely large when big groups of 

destination devices are clustered together, as witnessed by results referring to 

Scenario B: the OF signaling is reduced by a factor higher than 10 and the 

number of exchanged data packets shrinks by more than a factor of 5 (for 

twenty destinations). The lower gains for Sociocast packets w.r.t. OF signaling 

are due to the fact that Sociocast also resorts to multiple unicasts forwarding 

in the last hop from the SDN gateway towards the intended destinations, to 

ensure successful reception at the application layer. It can be further easily 

inferred (although not shown in results) that improvements get even larger as 
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the distance between the source and the set of destinations increases. Overall, 

the proposal is especially suited for push-based data dissemination to large 

Sociocast groups highly clustered and far from the source, which well 

resembles the case of multiple devices of a smart home (e.g., appliances) to be 

remotely configured by the user's smartphone. 

In the other cases, the gains are also significant and always higher than a 

factor of 2. The achieved encouraging results motivate us to further explore 

this fertile research area which has large room for improvements. The 

effectiveness 

of the proposal in handling other Sociocast features, like source filtering and 

publish/subscribe, needs to be practically explored. 

 

 

 

  



MQTT Algorithm 
 

71 

 

Chapter 3: MQTT Algorithm 
 

3.1 Statement of the problem 
 

The Message Queuing Telemetry Transport (MQTT) is a standard 

publish-subscribe protocol for the transport of messages between devices. 

MQTT is efficient for low-bandwidth and unreliable networks, furthermore, 

thanks to its simplicity, it can be executed by devices with low capabilities in 

terms of computing, communication, and energy resources. As a 

consequence, MQTT has become one of the most popular protocols for the 

Internet of Things (IoT). 

In MQTT, the broker plays a central role. A subscriber can inform the 

MQTT broker about its interest in a given topic. The broker is responsible 

for forwarding the messages received by the publishers under such topic to all 

interested subscribers. 

MQTT has several interesting features that make it a suitable solution 

for the interactions with smart objects in the IoT: 

 its execution is not demanding for what concerns computing and 

communication resources; 

 there are several open source implementations for a wide range of 

computing platforms; 

 it can support a large range of interaction modes spanning from thing-

to-server and thing-to-thing; 

  its interaction patterns are simple to use and is supported by most 

programming languages this makes application development 

extremely easy. 
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3.1.1 Weaknesses and open issues 

 

MQTT has a major problem that prevents it from becoming a unifying 

solution for the IoT. In fact, MQTT is basically a centralized approach: 

publishers and subscribers should interact with the same broker in order to 

interact with each others. 

There are two types of consequences of such centralization. 

1. The broker might become a bottleneck as the processing of 

subscription requests and publish messages overcome its computing 

and communication capabilities.  

2. Interactions between clients connected to different brokers becomes 

difficult if not impossible. 

To address such problems, some MQTT implementations (such as 

Mosquitto), which will be discussed in the next paragraph, enable broker 

bridging. In other terms, they allow a MQTT broker to subscribe to certain 

topics which are under the responsibility of other brokers. Accordingly, it is 

possible to build a network of brokers and research efforts have been devoted 

to the optimization of such network, e.g., [59]. 

In principle, by fully exploiting bridging two MQTT clients can interact 

independently of the brokers they are connected to. However, it is obvious 

that interactions between clients connected to different brokers result in low 

performance. In fact, delays will be longer because there is a further 

communication hop at the overlay layer for a published message to reach 

interested subscribers. Furthermore, messages that are forwarded from one 

broker to others in order to deliver the message to all interested subscribers 

consume communication resources which would be left available for other 

uses if all the clients involved were connected to the same broker. 

In this context, the objective of this chapter is to introduce a technique 

which exploits the Social Internet of Things (SIoT) concept [19], so as to 

determine how to choose the most convenient broker for each MQTT client. 

Indeed, the proposed approach creates clusters of clients depending on their 

position in the SIoT social graph and takes advantage of the evidence that 

most interactions are local in social networks. 
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3.2 Algorithm description 
 

This section describes how it’s possible to achieve  the clusters creation 

on the basis of on the clients position in the social graph.  In details, first we 

describe the design principles used for the correct clusterization of the social 

network; then in paragraph 3.2.2 is described the algorithm used to create the 

clusters. Finally, in the last paragraph is reported an actual example of how 

the algorithm works.   

3.2.1 Objectives and design principles 

It is important to specify what are the mandatory requirements and 

design principles of the clusters that we want to create. In details, the 

specifications requested are the following:  

 Number of clusters. Since, in the reference topology, we are 

considering two MQTT brokers bridged together, we just need 

two clusters, one cluster per broker. 

 Size of the cluster. We want to avoid congestion and bottle 

necks: our clusters should, therefore, be as balanced as possible, 

in terms of the number of elements composing them. Hence, 

there is a need to avoid scenarios, where given N elements 

composing the social graph, N-1 elements characterize a cluster 

while the other one is alone in the second cluster. The best 

possible situation occurs when the clusters contain the same 

amount of elements. 

 Properties of the clients. Two elements pertaining to the same 

cluster should have a social relationship that bound them 

together. Such condition translates in a more frequent exchange 

of messages than that involving elements untied by a social 

bound. 

 Clustering of the social network. Since our aim is to optimize 

the bridging between the two MQTT brokers, we, indeed, want 

to reduce the interactions and the message exchanged between 

them. Therefore, we want that the number of social 



Enhancing Group Communications through the Social Internet of Things 

74 

 

relationships between clients belonging to different clusters is a 

as low as possible. In a nutshell, we want to partition the social 

graph whit a minimum cut, which separates the two clusters. 

Considering all these design principles, makes the choice of which 

client should go into which cluster an NP hard problem.  

Several solutions have been proposed, or are well known in the 

literature, to solve this kind of problems, in particular, one the most used in 

the scenario of dividing a graph with a minimum cut, is the Karger’s 

algorithm [60].  

 

 

3.2.2  Karger’s Algorithm description 

The Karger's algorithm is adopted to estimate a minimum cut of a 

connected graph, and, as we will discuss later, to do so it adopts, as part of its 

logic, a degree of randomness, and for this reason it is a randomized 

algorithm. 

The main concept on which the algorithm is founded is the “edge 

contraction”. In graph theory, an edge contraction occurs  when given two 

nodes A and B connected with one or more edges, all these edges are 

removed and the two nodes are merged together, like shown in Figure 23: 

Edge contraction of A and B. This operation reduces the total number of 

nodes in the graph by one. All the other edges connecting the nodes A and B 

with the rest of the graph are "reattached" to the merged node, effectively 

producing a multi-graph. 
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Figure 23: Edge contraction of A and B 

 

In general, the Karger's algorithm use this concept to iteratively 

contracts randomly chosen edges until in the graph remain only two nodes; 

which represent a cut in the original graph. By repeating this basic algorithm a 

sufficient number of times, a minimum cut can be found which represent a 

optimal solution for the problem.  

 

3.2.2.1 A modified version of Karger’s algorithm for the social graph 

 

Applying the Karger’s algorithm in a social graph, especially in our 

scenario,  is not as straightforward and simple as someone could imagine. 

This is so because of two main reasons: 

1. Since the aim of the algorithm is to find the minimum cut, 

several solutions found at the end of a cycle, are the one that 

divides the graph in two parts one of which contains a single 

element. Unfortunately, these kind of solution are against the 

design principles according to which we want to create our 

clusters.  

2. Since it is a randomize, the algorithm,  can spent a lot of time 

and resources to find a solution which is suitable for our 

scenario and respecting our constraints. 
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To solve these issues, a modified version of the karger’s algorithm is 

proposed. In order  to emphasize the characteristics that we need, we have to 

give different weights to the edges of the social graph before the contraction, 

in this way we are trading a part of the randomness in the algorithm in 

exchange for better performances and a fasten way to find balanced clusters.  

The weights (which have been given to the edges before choosing 

which one to contract) are representative of  the number of nodes in the edge 

and the number of nodes in all the edge in the social network, this implies 

that some nodes may be taken into account multiple time if they appear in 

different edges. In detail the weights are created by the law: 

W = 
������ 	
 �	�� �� ��� ���

������ 	
 �	�� �� ���� ��� ���� 

After assigning a weight to each edge, the edge with the lowest one is 

selected for the contraction. If more edges have the same weight, one among 

these edges is chosen at random. 

 

3.2.3 Clustering  algorithm in action 

 

After taking in account how the algorithm works and what the 

requirement needed for creating the clusters that we want, are, it is time to 

describe step by step how the algorithm works when applied to a small social 

graph (for the sake of simplicity), for example the one shown Figure 23: Edge 

contraction of A and B. 

1. In the very first step, all the edges of the network are assigned 

with a weight, which, indeed, is the same since all the edges 

have only two nodes in this early stage. For this reason 

subsequently, all the edges have the same probability to be 

chosen for the contraction. 

2. One edge at random is selected randomly (e.g., the edge AB), a 

new social topology is created from its contraction, Figure 23: 
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Edge contraction of A and B; at this point new weights are 

created and assigned to the edges of the new topology. 

3. Based on the new given weights, the edge with the lowest one is 

selected for the new contraction. Since n our scenario the two 

edges CE and DE have the same weight, one at random is 

selected and contract, for example the edge DE. 

4.  This procedure of edges selection based on their weight and 

edges contraction is repeated, as shown in Figure 24, until only 

two nodes remain, this two nodes represent each a cluster 

containing the contracted nodes; cluster 1 with elements [A, B, 

F] and cluster 2 with [C, D, E].  

5. The found solution is an optimal one and for this reason the 

algorithm explained above is repeated several times, starting 

obviously from the same social topology. Then all the possible 

solutions are compared and the one that respect  the best our 

constrains is chosen. 

 

Figure 24: Algorithm in action 

  



Enhancing Group Communications through the Social Internet of Things 

78 

 

3.3 Experimental setup 
 

In this section we describe the environment for the performance 

evaluation. More specifically, in Section 3.3.1 we describe the tools utilized for 

the performance evaluation, in Section 3.3.2 we discuss  the proposed 

scenario (smart campus), whereas the algorithm settings and the traffic 

patterns involved are treated in Section 3.3.3. While the benchmark utilized 

for comparison purposes is presented in Section 3.3.4, Section 3.3.5. 

concludes by identifying the performance metrics considered. 

3.3.1 Tools description 

 

The network emulator Mininet [25] and Mosquitto [61] the MQTT 

message broker, are the main tools used for the performance evaluation. 

Mininet has been already introduced in Section 2.3.1.2. for this reason in the 

following will be discussed only Mosquitto. 

 

3.3.1.1 Mosquitto 

Eclipse Mosquitto is an open source (EPL/EDL licensed) message 

broker that implements the MQTT protocol versions 5.0, 3.1.1 and 3.1. 

Mosquitto is lightweight and suitable for use on all devices from low power 

single board computers to full servers moreover it is highly portable and 

available for a wide range of platforms.  The Mosquitto project also provides 

a C library for implementing MQTT clients, as well as the very popular 

mosquitto_pub and mosquitto_sub command line MQTT clients. 

Mosquitto is part of the Eclipse Foundation [62], and an iot.eclipse.org 

project [63]. 
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3.3.2 Tools usage and reference topology 

The focus of the performance evaluation is to assess the improvements 

brought by the modified version of the Karger’s algorithm in the case of an 

MQTT publish/subscribe data dissemination towards a group of devices 

bond together by social relationships. To this purpose, we built an emulation 

playground. In particular, the Mininet network emulator [25] was used to 

recreate a small campus network topology, as depicted in Figure 25. A full-

mesh interconnects the network nodes, which are the roots of a three-layers 

fat-tree topology. Up to 5 devices are attached to each gateway (not all the 

devices are shown in the Figure).  

The open-source Eclipse Mosquitto broker [61] was chosen as the 

reference MQTT message broker in the context of this work, due to its 

lightweight, compatibility with almost every device and easy installation. The 

two bridged  MQTT brokers run in two different virtual machine, both of 

them located in two different personal computers DELL inspirion 17 5000 

series (8Gb Ram Intel Core i5-6200U). While the Mininet topology runs in a 

third virtual machine in an personal computer ASUS X52J (8Gb Ram, Intel 

Core i5 M460). These three virtual machine are connected to the same 

802.11ax wireless network. 

 

Figure 25: Reference Topology 
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3.3.3 Settings and traffic patterns 

 

The performance of the proposed solution was evaluated with a 

representative IoT test configuration, a small smart campus scenario. This 

scenario is properly designed to take into account different numbers and 

distributions of nodes in the emulated topology and also different physical 

distances between sources and destinations. This is aimed at making the 

obtained results as generalizable as possible. The test configuration was 

mapped onto a use case characterized by the exploitation of a particular type 

of social relationship between the devices involved, the CLOR relationship. 

This particular social relationship empathies the physical distance between the 

devices, more specifically, the nearer the devices in the topology, the higher 

the probability of being friends. The probability that i and j have established a 

social-like relationship with each other, indeed,  follows the law: 

���� ������ �� =  � !"# 

Where Dp is the physical distance between i and j in terms of hops, 

while k and  $ are positive real numbers which characterizes the structure of 

the social network. Notice that as k and  $ varying different possible social 

graphs can be obtained from the same physical topology for example Figure 

26 shows a social graph created from k = 0,25 and  $ = 0,5.  

 

Figure 26: Social Network for k = 0,25 and  � = 0,5 



 

 

 

A st

terms of 

between d

shown in 

 

 study was conducted to determinate the social g

 the average of social hops and the mean o

n devices, as the parameters k and  $ vary. The re

in the figures below. 

Figure 27: Average of social relationship for k 

Figure 28: Average of hops for k and � 
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Of all the possible combinations of k and $, we focused our later study 

in the couples which give a moderate amount of social relationships while 

avoiding extreme scenarios. The considered values are reported in Table 5. 

For each considered couple of k and  $, three different social networks 

were created and investigated. 

In conclusion, in order to take in account and study different data 

patterns, the probability, whit which a generic node i publishes something on 

which the generic node j has a subscription, is given by: 

���� &'( �� = )�"*+ 

Where x is the social distance between i and j in terms of hops in the 

social graph, while ) and  , are positive real numbers which characterizes the 

density of the data pattern.  

  In this way, helpful guidelines can be provided on the suitability of the 

proposed solution in the context of different data dissemination patterns. 

 

 

$ 0.4 0.6 0.8 

k 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 

Table 5: Considerated values of K and � 

 

3.3.4 Benchmark scheme 

 

The performance of the proposed approach was compared against a 

solution where the devices casually chose the MQTT broker to interact with. 

Generally speaking, a device connects to a specified MQTT broker, yet, since 

our scenario is representative of a small campus is possible to assume that the 

two brokers are placed in the same server room. For this reason the random 

approach is a good compromise to obtain similar clusters in comparison to 

the MQTT optimizer algorithm and to quantitatively estimate the benefits of 

the proposed solution. 
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Also we kept track of all the traffic pattern generated in our solution 

and the same schemes are applied in the benchmark, ensuring a fair 

comparison. 

3.3.5 Metrics 

  

Before introducing the metrics that have been considered to evaluate 

the performance, it’s mandatory to define the random variable taken into 

account in the proposed approach. 

Considering the generic subscriber node i, in the reference topology, we 

define the following random variables:  

 Di  represents the delay encountered by a message which should 

be received by i. 

 Si which is equal to 1 if the message is generated by a publisher 

which is managed by the same MQTT broker of i while it is 

equal to 0 otherwise.  

 Xi represents the distance in the social network between the 

publisher and i. 

 Yi represents the distance in the physical network between the 

publisher and i. 

The performance metrics which have been evaluated experimentally are 

the following: 

 E{D}, the average of the delay Di , is defined as: 

-� � = . . -� |0 = 1, 2 = 3� · �� �0 = 1|2 = 3� · �� �2 = 3�
5

+67

7

68
 

Where, �� �2 = 3� follows the law: 

���2 = 3� =  )�"*+ 

 

 

-� |0 = 1, 2 = 3�   and     �� �0 = 1|2 = 3� have been evaluated 

experimentally. 

 Additionally, -� |0 = 1, 2 = 3� can be related to Y  
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-� |0 = 1, 2 = 3� =

= . -� |0 = 1, 2 = 3, < = =� · ��� < = =|0 = 1, 2 = 3�
>��+

>6?
 

Where -� |0 = 1, 2 = 3, < = =� too was evaluated experimentally 

and is equal to -� |0 = 1, < = =� and applying the Bayes’s law we 

evaluate   ��� < = =|0 = 1, 2 = 3� 

��� < = =|0 = 1, 2 = 3� = ��� < = =|2 = 3�
= ��� 2 = 3|< = =� · Pr �< = =�

Pr �2 = 3�  

 

��� 2 = 3� = . ��� 2 = 3|< = =� · Pr �< = =�
>��+

>6>���
 

 The last performance metric evaluated is the probability on 

which publisher and subscriber are served by the same MQTT 

broker: 

��� 0 = 1� = . ��� 0 = 1|2 = 3� · Pr �2 = 3�
5

+67
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3.4 Results analysis 
 

This paragraph shows the performance results based on the 

experimental estimated metrics. More specifically, in Section 3.4.1 it’s 

discussed the MQTT optimizer in terms of delay in the physical network and 

probability on which publisher and subscriber are served by the same MQTT 

broker; whereas Section 3.4.2 focuses on the average of the delay compared 

to the benchmark. 

3.4.1 Delay in the physical network 

The first step of the experimental campaign was to estimate the delay 

inside the physical network, on the basis of different physical distances 

(expressed in terms of number of hops) and if the publisher and the 

subscriber were served by the same MQTT broker.  

After choosing at random a publisher, for each of the possible cases 

were sent and tracked 2000 packets, for a total of 20000 packets sent. 

The results of this campaign are shown from Figure 29 to Figure 32, 

were the probability distribution functions for each case are reported. 
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Figure 29: Pdf of delay for a distance of 2 hops 

 

Figure 30: Pdf of delay for a distance of 3 hops 
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Figure 31: Pdf of delay for a distance of 3 hops 

 

 

Figure 32: Pdf of delay for a distance of 2 hops 
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Other interesting parameters like the average and the standard deviation 

were estimated for all the dataset and the 95th percentile. All these are 

reported in following table.  

 

Physical 
Distance 

Average Standard Deviation 

Same 
Broker 

Different  
Broker 

Same 
  Broker 

Different  
Broker 

100% 95% 100% 95% 100% 95% 100% 95% 

2 hops 50.89 48.72 57.67 54.58 615.73 141.50 2366.86 227.64 

3 hops 47.67 45.73 57.49 54.41 516.72 133.77 2518.71 227.41 

4 hops 51.04 48.83 57.63 54.53 681.17 144.86 2223.90 230.40 

5 hops 51.06 48.94 57.93 54.73 623.12 143.24 2520.48 241.20 

 

Table 6:  Average Delay and standard deviation  for different distances. 

 

3.4.2 Average of the delay 

 

The second part of the experimentation focuses on the study of the 

delay in the social network based on the results obtained in the physical 

network. In particular, starting from the values in Table 5, a total of 27 

different social networks were created and were used to test the optimization 

algorithm. After the creation of the clusters, for each of social network a data 

pattern, based on the social relationships between the nodes,  was created 

using the probability mentioned in section 3.3.3: 

���� &'( �� =  )�"*+ 
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Figure 33: Average delay for a social distance of 1 hop 

 

 

Figure 34: Average delay for a social distance of 2 hops 
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Figure 35: Average d
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Benefits of the proposed approach are evident, due to the smaller 

average delay when compared to the benchmark and decrease as , increases. 
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Chapter 4: Conclusions and future works 
 

In this work, first, is proposed and analyzed the behavior of an 

architectural framework encompassing all the entities, functionalities, and 

procedures that support a fresh new network-layer group dissemination 

method, i.e., Sociocast, by leveraging a software-defined network approach. 

Results achieved through an emulation testbed show the better 

scalability of the proposal in terms of OF signaling and data packet 

redundancy in comparison to an application-layer benchmark scheme, under 

different representative IoT scenarios. 

Improvements are achieved by leveraging a purpose-built network 

application in the controller, which would be in charge of identifying the set 

of Sociocast destinations by interacting with an external SIoT platform 

(feature implemented at the application layer by the benchmark scheme) and 

responsible for smartly building routing paths towards multiple receivers so as 

to avoid packet duplication over links. SDN allows to manage the 

implementation of such functionalities at the control plane in a flexible and 

programmable manner, with no changes in the forwarding elements, hence 

making the devised framework practically viable at a low implementation cost. 

As a further challenge, IoT devices belonging to Sociocast groups may 

move long distance between different access points. As consequence, tracking 

their positions at the virtual counterparts (SVN and SVNR), as well as 

managing the forwarding rules associated with them in the SDN nodes, 

become very difficult and entail proper workarounds which will be a subject 

matter of future investigations. 

In conclusion, a technique to enhance the MQTT bridging with a social 

partition of the network elements was proposed and analyzed. Starting from 

the creation of a social network, based on CLOR type social relationship, 

rolling up to the clusterization of the network elements, thanks to a modified 

version of the Karger’s algorithm. 

Results achieved through an emulation testbed, representing a smart 

campus scenario, show better performances in terms of average delay when 

compared to a benchmark scheme without social ties between the elements.  
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