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Abstract: In this study, an accurate analytic semi-linear elliptic differential model for a circular
membrane MEMS device, which considers the effect of the fringing field on the membrane curvature
recovering, is presented. A novel algebraic condition, related to the membrane electromechanical
properties, able to govern the uniqueness of the solution, is also demonstrated. Numerical results
for the membrane profile, obtained by using the Shooting techniques, the Keller–Box scheme, and
the III/IV Stage Lobatto IIIa formulas, have been carried out, and their performances have been
compared. The convergence conditions, and the possible presence of ghost solutions, have been
evaluated and discussed. Finally, a practical criterion for choosing the membrane material as a
function of the MEMS specific application is presented.

Keywords: membrane MEMS devices; fringing field; semi-linear elliptic problems; numerical
methods for BVPs

1. Introduction

The development of embedded technologies in the last decade has been mainly due to
microdevices, which can manage the connection between the physical layer of a particular
problem and the logic of the machine language [1–6]. In this context, the interest in both
static and dynamic MEMS devices is high [7–9]. In particular, a lot of effort have been
made concerning dynamic investigations into the response of resonant microbeam [10] as
much as micro-resonators [11,12]. This because they provide an excellent approximation
of the human–machine interface in all the cases wherein miniaturized-integrated elec-
tromechanical systems are required [13–21]. Since the first batch device was produced in
1964 [22], the scientific and technological development in the field has strongly influenced
the analysis and synthesis of physical-mathematical models that can describe the extremely
complex underneath MEMS multi-physics [23–29]. However, such theoretical models
hardly provide analytical solutions. Hence, it appears necessary to have conditions that
can ensure both the existence and uniqueness of the solution [23–26,30] to avoid ghost
solutions when the model is solved numerically [30–32]. Since the aforementioned analyti-
cal solutions are unobtainable, suitable numerical procedures have to be selected, and it
becomes imperative to evidence the pros and cons of each method [25,26,30–32]. MEMS is
a rampant technology employed for realizing thermo-elastic systems [1,33–37], and it has a
wide variety of applications ranging from biomedical engineering to microfluidics [38–42].
Moreover, many researchers are actively engaged in the development of important ex-
perimental research works for the development and prototyping of special MEMS such
as, for example, circular graphene membrane MEMS devices [43,44], SiN circular mem-
brane MEMS devices [45,46], and CMOS MEMS-based membrane-bridge devices [47]
particularly useful for industrial applications. Moreover, the scientific community is in-
tensively working on the analysis/synthesis of multi-physical models characterized by
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a high degree of symmetry, because these are more easily achievable from a technolog-
ical point of view [24,30,48–51]. Accordingly, we have focused our attention on a 2D
circular membrane MEMS device, a kind of geometry widely used in many industrial
applications [24,25,48,52]. The membrane deformation is described by its profile, u(r),
r ∈ [0, R] with r being the radial coordinate and R the radius of the device. As it is well
known, for a circular geometry, the physical-mathematical model describing the membrane
curvature assumes the following semilinear elliptic form [1,53]:{

∆u(r) = − λ2

(1−u(r))2

u(r) = 0, u′(0) = 0, 0 < u(r) < d
(1)

where λ2 is a parameter related to the external electrical voltage V and d is the distance
between the parallel disks. (1) is a theoretical model disregarding the fringing field phe-
nomenon [54–58] that occurs when d 6� R [17]. A more precise analytic model, from
which (1) is derived, is the following [59]:{

∆u(r) = − λ2

(1−u(r))2 + λ2F(u(r), u′(r), δ, . . .)

u(−L) = u(L) = 0.
(2)

where F is a suitable function describing the effects close to the MEMS edges, and δ ≥ 0 is
a term that weighs the effects of the fringing field. It is apparent that (1) derives directly
from (2) omitting the additional term F(u(r), u′(r), δ, . . .) under the hypothesis that the
effect due to its presence is negligible. However, this hypothesis turned out to be false
despite using uniform approximation for the electrostatic field E. On the basis of this
premise, we employed the so-called corner-corrected theory, developed in [59], for our
analysis, thus exploiting the “corner-corrected model”; more precisely, following the work
in [59], the term F(u(r), u′(r), δ, . . .) in (2) can be written as

λ2δ|∇u(r)|2. (3)

Now, considering that ∆u(r) in (1) has only the radial component, (1) specializes
as [48] u′′(r) = − 1

r u′(r)− λ2(1+δ|u′(r)|2
(1−u(r))2

u(R) = 0, u′(0) = 0, 0 < u(r) < d
(4)

(It can be noticed that if δ = 0, no fringing field occurs and (4) reduces to (1)). At
this stage, we point out that the term δ|u′(r)|2 becomes appreciable only if the term |u′(r)|
assumes relevant values, a real possibility at the edge of the device in most cases (see
Theorem 1 in [23]). Once the membrane deforms, the electrostatic capacitance of the device,
Cel , varies since the distance between the membrane and the upper disk is not constant.
Moreover, as physically

λ2

(1− u(r))2 ∝ |E|2 (5)

it follows that
λ2

(1− u(r))2 = θ|E|2, θ ∈ R+. (6)

As proved in [48], the field E is locally orthogonal to the straight-line tangent to the
membrane profile itself, so that it is natural to consider |E| ∝ K(r, u(r)) with K(r, u(r))
mean curvature of the membrane [24]:

K(r, u(r)) =
1
2

(
u′′(r) +

1
r

u′(r)
)

. (7)
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Considering both (6) and (7), (4) can be rewritten asu′′(r) = − 1
r u′(r)− 4(1−u(r)−d∗)2

θλ2(1+δ|u′(r)|2)
u(R) = 0, u′(0) = 0, 0 < u(r) < d,

(8)

which is a 2D second-order differential semi-linear elliptic model without explicit nonlin-
earity. The term d∗, the so-called critical security distance, guarantees that the membrane
does not touch the upper disk. Note that the factor θ, by (6), is an important parameter
because it takes into account the electrical properties of the membrane. This last differential
model is exceedingly difficult to solve analytically. Accordingly, we focus our attention on
obtaining conditions that ensure both the existence and uniqueness of its solutions. Before
proceeding with our analysis, we point out how our study is framed in a broader line of
research. The first paper was that in [24] in which a 2D nonlinear second-order differential
model for electrostatic circular membrane MEMS devices (wherein the singularity was
not explicitly evident) was studied, starting from (1), from which the following chain of
proportionality,

λ2/(1− u(r))2 ∝ |E|2 ∝ K2(r, u(r)) (9)

was proved. As the model studied in [24] did not allow to obtain an explicit analytical
solution, the existence was derived through the use of two auxiliary functions satisfying
particular properties. In this way, an algebraic condition on the product θλ2, depending
on both d∗ and V, was provided. However, as far as uniqueness is concerned, it has not
been guaranteed [24]. In [60], stable numerical approaches for recovering the membrane
profile, based on the three-stage Lobatto formulas, have been exploited, thus obtaining the
ranges for operative parameters and the areas of applicability of the device avoiding the
ghost solutions. In contrast, in [25], the equilibrium configurations were analyzed. Finally,
in [48], the model was improved and rewritten. In particular, in this study, the effect of the
fringing field on membrane curvature has been considered. Furthermore, the study into
the stability of the equilibrium configurations, the analysis of the range of possible values
for V, and the study on the device’s optimal control was conducted.

The main results presented in this paper can be summarized as follows:

1. A new algebraic condition governing the uniqueness of the solution for (8), depending
on the electromechanical properties of the membrane material, has been demonstrated.
Unlike the 1D geometry, this new condition cannot guarantee both the existence and
uniqueness of the solution for the model (8).

2. Shooting procedure, Keller-box scheme, and III/IV Stage Lobatto IIIa formulas have
been employed, and their numerical performances, related to the membrane profile
recovering task, when δ varies in the range of its possible values, have been compared.
Furthermore, the values of the parameter θλ2 ensuring the procedures’ convergence
have been determined.

3. Ghost solutions have been investigated for obtaining the values of the factor θλ2 that
ensures the convergence of each considered numerical procedure, avoiding the ghost
solutions’ computation.

4. Finally, the relationship among the numerical convergence criteria, the parameter θλ2,
and the intended use of the device has been highlighted.

The paper is organized as follows. In Section 2, the 2D electrostatic circular-membrane
MEMS device considered in our analysis has been mentioned. Section 3 discusses the
curvature-dependent |E| for modeling the 2D circular membrane MEMS device with the
fringing field. In Sections 4 and 5, we recall well-known results of the existence and
uniqueness for the problem under study. Section 6 suggests a new result concerning
the uniqueness of the solution, which depends on the electromechanical properties of
the material constituting the membrane, whose proof is reported in the Appendix A. In
Section 7, we derive a new condition ensuring both the existence and uniqueness of the
solution. In Section 8, we present and discuss the numerical results conducted in our study
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for recovering the MEMS membrane profile. Finally, in the last section, our conclusions
are given.

2. A Description of the 2D Electrostatic Circular-Membrane MEMS Device
2.1. The Point of View of the Actuator

In the usual 3D Euclidean space, R3, we consider a system of orthonormal Cartesian
axes Oxyz, where the z axis represents the vertical axis (see Figure 1). The device consists
of two parallel circular metal disks with radius R, located at a distance of d from each
other. The lower disk is located on the xy plane, and its center coincides with the origin
of the system Oxyz. The device is subjected to an external electrical voltage V, and the
lower disk is fixed at the potential V = 0. A circular membrane with radius R is anchored
to the edges of the lower disk. It deforms toward the upper disk when a voltage V is
applied. If we denote with r (0 < r ≤ R), the radial coordinate, we have that the membrane
profile, u(r), results to be a function of r. To overcome its mechanical inertia, the applied
voltage V must assume values such that the corresponding value of the electrostatic field E
inside the device can generate an appropriate electrostatic pressure equal to pel = 0.5ε0|E|2
(with ε0, the permittivity of free space). The term pel can be translated into an equivalent
electrostatic force, fel , computable as [1,25,48,61]

fel = 0.5
ε0πR2V2

(d− u(r))2 , (10)

which deflects the membrane, thus achieving a displacement in its center, u0, equal
to R2 pel/4T (where T is the radial mechanical tension of the membrane when it is at
rest) [1,48]. Electrostatically, if the membrane deforms, the field E, which depends on the
distance between the membrane and the upper disk, results to be locally orthogonal to the
tangent line to the membrane at the same point [2]. Moreover, the electrostatic capacitance,
Cel , is variable as the distance between the membrane and the upper disk varies locally.
We can also observe that the greater the |E|, the greater the curvature of the membrane. On
this basis, we have that |E| can be considered locally proportional to the mean curvature
K(r, u(r)) of the membrane [23–25,30].

Figure 1. A 2D electrostatic circular membrane MEMS device whose metal plates (upper and support
ones) are displayed in gray. Between them, a circular membrane, clumped to the edges of the support
plate, deforms towards the upper plate without touching it to avoid unwanted electric discharges.

The device geometry being such that L� d, we have that the effect due to the fringing
field cannot be neglected [48]. Accordingly [1],

λ2 =
ε0V2(2R)2

2d3T
= ρV2 (11)

in which ε0 is the permittivity of the free space.
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Remark 1. λ2, being T-dependent, is a parameter that expresses the mechanical properties of the
membrane. Therefore, θλ2 expresses the electromechanical properties of the membrane.

2.2. The Point of View of the Sensor

In the following, it will be convenient to exploit some similarities with the circular
plate MEMS transducer model subject to mechanical pressure p.

As is known, the study of the deformation of membranes in MEMS devices starts from
considering metal plates subject to mechanical pressure p whose deflections u satisfy [1,62]:

ρhutt − T∆u + D∆2u = 0 (12)

where ρ is the density of the material constituting the deformable plate, and h and T are the
thickness and mechanical tension, respectively. Moreover, indicating the Young’s modulus
with Y and the Poisson ratio with ν, the stiffness coefficient D assumes the following
form [62]:

D =
Yh3

12(1− ν2)
(13)

Furthermore, if the plates are circular, u only depends on r so that in the steady-state
condition results [1,62],

u(r) =
R4

64D

(
1−

( r
R

)2)2
p (14)

However, if r = 0, it follows that u0 = R4 p/64D, and from (14),

u(r) = u0

(
1−

( r
R

)2)2
p (15)

In this case, the device works as a transducer. In fact, p deforms the membrane and
generates u(r) 6= 0 profile (except at the device’s boundaries). Then, Cel becomes [1,62]

Cel(u0) =
∫ R

0

2ε0πr

d
(

1− u(r)
d

)dr, with |u0| � d. (16)

As both h and D are bounded values, u(r) becomes unobtrusive. Therefore, the distance
between the two plates remains almost constant and equal to d. Moreover, exploiting
the Taylor series and the value of Cel at equilibrium, C0 = ε0

πr2

d , for p = 0, (16) can be
written as

Cel(u0) ≈ C0

(
1 +

u0

3d
+

u2
0

5d2

)
(17)

by which it is possible to obtain the electrostatic charge of the membrane, the co-energy of
the system, and the electrostatic force. Finally, it is also possible to obtain

|E(r)| ≈ V

d− u0

(
1−

(
r
R

)2)2 . (18)

Remark 2. The physical quantities involved here clearly depend on d, because the circular plate had
a significantly high value of D; further, u(r) appeared extremely limited so that any dependency on
d− u(r) could be replaced by the dependence on d (which is mathematically more straightforward
and, therefore, easier to manage).

If we consider a membrane instead of the deformable plate, h can be neglected. D
then decreases substantially (see (13)) in the case in which a deformable plate is considered.
Bearing in mind that the smaller the D value, the more flexible the membrane is, it follows
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that u0 becomes higher with an increased risk of the membrane accidentally touching the
upper disk. If the membrane replaces the deformable disk, u(r) takes the form [1]

u(r) = u0

(
1−

( r
R

)2)
(19)

and

u0 =
pR2

4T
(20)

with fel as formulated in (10).

Remark 3. To calculate fel and pel for evaluating the surface of the membrane, πR2 was considered
as if the membrane was at rest. This approximation can be justified because d� R such that the
surface of the deformed membrane is approximately equal to the surface of the membrane at rest.

The parameters p and pel are linked to each other because applying V produces the
field E in the device which, in turn, generates pel , deforming the membrane toward the
upper plates. Moreover, indicating by k1 = R2

4T , from (20), we can write

u0 = k1 p. (21)

We can assume that, in our case, p comes exclusively from pel due to |E| inside
the device. Thus, p depends on pel so that the following chain of equalities have to be
considered valid:

u0 = k1 p = k1k2 pel = kpel . (22)

As we will see below, k plays an important role in formulating the algebraic condition
that governs the existence of the solution for (8) (see, inequality (45)).

Remark 4. When the membrane is at rest, the distance between the membrane and the upper disk
is d. Therefore, Cel along any vertical plane σ whose support is the straight line

r :

{
x = 0
y = 0,

(23)

with fringing field phenomenon, is [54]

(Cel)C =
2ε0R

d

{
1 +

d
2πR

ln
(2πR

d

)}
, (24)

where C represents the curve that arises from the intersection σ and the membrane. Therefore, the
total Cel , (Cel)total can be written as follows:

(Cel)total =
∫ π

0
B(φ)(Cel)Cdφ = (Cel)C

∫ π

0
B(φ)dφ. (25)

where B(φ) is a bounded and continuous electrostatic function based on φ [63]. Therefore,∫ π

0
B(φ)dφ = D < +∞, (26)

so that (25) becomes

(Cel)total = (Cel)CD =
2ε0RD

d

{
1 +

d
2πR

ln
(2πR

d

)}
. (27)
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3. The Mathematical Model

The model (1), with fringing field phenomenon, becomes∆u(r) = − λ2(1+δ|∇u(r)|2)
(1−u(r))2

u(R) = 0, u′(0) = 0, 0 < u(r) < d.
(28)

Moreover, the radial symmetry in it with respect to vertical axes r = 0 allows to write

∆u(r) =
1
r

u′(r) + u′′(r), (29)

and considering ∇u(r) = u′(r), we can write (28) as 1
r u′(r) + u′′(r) = − λ2(1+δ|u′(r)|2)

(1−u(r))2

u(R) = 0, u′(0) = 0, 0 < u(r) < d.
(30)

Furthermore, putting (5) in (30), the (6) holds. Accordingly, (30) becomes{
u′′(r) + 1

r u′(r) = −θ|E|2(1 + δ|u′(r)|2)
u(R) = 0, u′(0) = 0, θ ∈ R+, 0 < u(r) < d.

(31)

As observed in [24,48], E on the membrane is locally orthogonal to the straight-line tangent
to the membrane’s profile of. Thus, |E| can be considered locally proportional to the mean
curvature K(r, u(r)) of the membrane (see (7)). Of course, the greater the |E|, the greater
the deformation of the membrane. Therefore, we can assume that |E| ∝ K(r, u(r)); based
on this premise, we can write

|E| = µ(r, u(r), λ)K(r, u(r)) (32)

in which µ(r, u(r), λ) represents the function of proportionality denoted as [24,48]

µ(r, u(r), λ) =
λ

(1− u(r)− d∗)
(33)

where µ(r, u(r)) ∈ C0(A), and A = [−R,R]× [0, 1).

Remark 5. Usually, the models closest to the physical reality of MEMS are highly complex and
cannot be faced analytically. It is thus necessary to operate with simplifications in the geometry of
the devices, thereby obtaining simplified models that can be studied analytically. In other words,
the results obtained from studying (8) will hardly agree with the experimental data. However, they
will give an excellent qualitative contribution to the device’s behavior even if it is characterized by a
simplified geometry.

Remark 6. From (6), we can observe that λ2 is directly proportional to |E|2 and therefore to
V2. Then, λ2 is a bounded parameter, because a minimum value of V is required to overcome the
mechanical inertia of the membrane (see below). On the other hand, the value of V cannot increase
indefinitely because the intended use of the device fixes its maximum admissible value. Then, λ2 is
also limited by the intended use of the device.

Analytically, θ has no limitations except that it must be non-zero. However, as we will see below,
the θλ2 product will be subject to specific limitations due to problems related to the convergence
of the numerical procedures used for recovering the membrane profile in the presence/absence of
ghost solutions.

As far as µ(r, u(r), λ) is concerned, no apparent limitations to the values that can be attributed
have appeared.
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Moreover, from (32), considering both (7) and (33), we obtain

|E|2 =
1
4

λ2

(1− u(r)− d∗)2

(
u′′(r) +

1
r

u′(r)
)2

(34)

so that (31) becomesu′′(r) + 1
r u′(r) = − θλ2

4(1−u(r)−d∗)2

(
u′′(r) + 1

r u′(r)
)2

(1 + δ|u′(r)|2)
u(R) = 0, u′(0) = 0, θ ∈ R+, 0 < u(r) < d.

(35)

Additionally, from (35), (8) follows because u′′(r) + 1
r u′(r) 6= 0 (see [23]). It is a special

case of the following general problem:{
u′′(r) + F(r, u(r), u′(r)) = 0
u(b) = B, u′(a) = m,

(36)

where F ∈ C0((a, b]×R×R) and B, m ∈ R. In fact, if

F(r, u(r), u′(r)) =
1
r

u′(r) +
4(1− u(r)− d∗)2

θλ2(1 + δ|u′(r)|2) , (37)

B = m = 0 (38)

and
b = R, a = 0, (39)

Equation (4) is easily achieved. The general formulation (36) is allowed to exploit two
necessary lemmas (see Lemmas 1 and 2 in [24]) for achieving an algebraic inequality that,
if satisfied, ensured the existence of the solution for (8). For the simplicity for reading, we
report this critical result of the existence [48].

4. On the Existence of At Least One Solution

Theorem 1. Let us consider Problem (8). In addition, let us take into account two functions con-
tinuously differentiable twice, u1(r) and u2(r), both defined on [0, R], in order that u1(r) < u2(r).
Furthermore, let us suppose that

u′′1 (r) +
1
r

u′1(r) +
4(1− u1(r)− d∗)2

θλ2(1 + δ|u′1(r)|2)
> 0 (40)

and

u′′2 (r) +
1
r

u′2(r) +
4(1− u2(r)− d∗)2

θλ2(1 + δ|u′2(r)|2)
> 0 (41)

for r ∈ (0, R). If 1
r u′(r) + 4(1−u(r)−d∗)2

θλ2(1+δ|u′(r)|2) is a continuous function (except for r = 0), which
satisfies the Lipschitz condition in U × (−∞,+∞), with

U = {(r, u) : 0 < r < R and u1(r) ≤ u(r) ≤ u2(r)} (42)

and if
u′1(0) ≥ u′2(0) (43)

and
u1(R) = u2(R) = 0 (44)

with

θλ2 >
2d ∗ 2R2

kε0V2
(

1 + δ
(

kε0V2r
d∗2R2

)2) , (45)
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thus, Problem (8) admits at least one solution.

Proof of Theorem 1. See [48].

Remark 7. (45) represents the algebraic condition ensuring the existence of at least one solution
for (8). (45) makes sense if the device is in operation (V 6= 0). If on the plane θλ2 − r, we
represent (45) in the form of an equation, and we obtain a curve of the type shown in Figure 2.
Above the curve is the area of the plane that satisfies (45), while below the curve is the forbidden
area. Further, if we take into account the limitation

0 ≤ δ < 2 (46)

obtained in [64], the trends of θλ2, varying by δ, for 0 ≤ r ≤ R are displayed in Figure 2, which
indicates that as δ increases, the curve subsides, increasing the allowed area while decreasing the
forbidden area. This effect becomes more evident from the axis of symmetry toward the device’s edges
where the fringing effect is most evident.

Then, following Remark 7, Figure 2 could be an indicative criterion for choosing the
material for the membrane once the intended use of the device has been chosen. In other
words, once V is fixed and quantified, the effect due to the fringing field (i.e., δ) and the
allowed area on the θλ2 − r plane is immediately visible, from which it is possible to select
the most suitable range of values of θλ2. Therefore, by (11), T is computable. Fixed δ and
all materials that allow θλ2 below the curve have to be excluded.

Remark 8. Note that the criterion above mentioned is purely theoretical as the differential analytical
model proposed in this work, even if starts from physical considerations found in industrial reality
(curvature of the membrane locally proportional |E|) has not yet had an experimental confirmation
(not even in terms of hardware prototyping). Therefore, in the future, it would be appropriate
to proceed with software simulations of materials more adherent to industrial reality such as
graphene or the highly stressed silicon nitride in order to carry out a hardware prototyping of sure
industry interest.

Figure 2. A graphical representation of (8) when δ changes; the forbidden area is located below each
curve, while the permitted area is highlighted above each curve.

Remark 9. From the work in [65], we can extrapolate the following important result:

H > 6

√
θλ2

2R2(2− δ)(1− d∗)
(47)
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which makes sense if only if δ < 2. Obviously, for δ = 1 no problem is encountered. However,
for δ = 2, it follows that H → +∞. However, to say that H → +∞ means to say that, given
the symmetry of the membrane with respect to the origin of the Cartesian axes, at the boundary of
the lower plate, the membrane adhere to the lateral surface of the device (unwanted harmful effect).
Therefore, the value δ = 2, avoided mathematically, must also be physically avoided.

Remark 10. We note that the term due to the fringing field in the model is

λ2δ|u′(r)|2
(1− u(r))2 = ξ|Efringing field|2, ξ ∈ R (48)

where
λ2

(1− u(r))2 ∝ |E|2 (49)

and the following dimensionless term,
δ|u′(r)|2 (50)

weighs the fringing field phenomenon. Then, the electrostatic force due solely to the fringing
field holds:

[ fel ]fringing field =
0.5ε0πR2λ2δ|u′(r)|2

(1− u(r))2 (51)

considering that |u′(r)|2 < H2 = 1462 [48], we can write:

[ fel ]fringing field <
296174 · 10−12R2λ2δ

d2 . (52)

Moreover, considering condition (11) and subbstituting the usual values for each physical parameter,
we easily achieve

[ fel ]fringing field <
5242279 · 10−24δ

d3Td ∗ 2
(53)

which represents the link between the electrostatic force due to the fringing field and the δ parameter
which weighs the effect due to the fringing field. Finally, we observe that the greater the mechanical
tension of the membrane (term T in the denominator), the lower the effect due to the fringing field
will be.

5. A Well-Known Result of Uniqueness

Theorem 2. If all the hypotheses of Theorem 1 concerning (8) are satisfied, and u1(r) and u2(r)
together satisfy the assigned boundary conditions, then the uniqueness of solution u(r), such that
u1(r) ≤ u(r) ≤ u2(r), is not guaranteed.

Proof of Theorem 2. See [48]

The uniqueness result proved in Theorem 2, although theoretically interesting, has
a defect in that it does not depend on θλ2 (i.e., the electromechanical properties of the
material constituting the membrane). Therefore, in this paper, we present a new algebraic
condition that ensures uniqueness for (8) involving θλ2.

6. A New Condition Ensuring the Uniqueness of the Solution

The following result holds:

Proposition 1. The algebraic condition ensuring the uniqueness of the solution for (8) is
the following:

θλ2 > 4R(1 + R)(1 + δH2) (54)

where H = supr∈(0,R] |u′(r)|.
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Proof. As the proof to obtain (54) is quite extensive, please refer to its reading in the
Appendix A.

Note that supr∈(0,R] |u′(r)| = |u′(±R)|. This result has been proved in [23] and con-
firmed numerically in [30]. On the other hand, due to reasons of symmetry, the points of
Ω characterized by the greatest slope of the membrane profile can only be those located
on ∂Ω.

Remark 11. Inequality (54) is very interesting because it expresses that the uniqueness of the
solution for (8) is ensured if inf{θλ2} depends on both the geometry of the device (i.e., radius R)
and δ by that given algebraic combination. This makes physical sense because the greater the R, the
greater the V that must be applied to overcome the inertia of the membrane (see (11)). Furthermore,
the higher the δ, the higher the V must be overcome this effect and move the membrane.

(45) and (54) represent the algebraic conditions that ensure, respectively, the existence
and uniqueness of the solution for (8). With δ = 0, in [64], it was proved that the condition
of uniqueness weighed more than that of existence. We wonder if this result remains even
in circular 2D geometry. The following section answers this question.

7. A New Algebraic Condition Ensuring Both the Existence and Uniqueness

The following results yield the following.

Proposition 2. Inequality (45) guarantees both the existence and uniqueness of the solution for (8).

Proof. As both (45) and (54) are verified, the following system makes sense:
θλ2 > 2d∗2R2

kε0V2
(

1+δ

(
kε0V2r
d∗2R2

)2) (existence)

θλ2 > 4R(1 + R)(1 + δH2) (uniqueness).
(55)

We observe that

2d ∗ 2R2

kε0V2
(

1 + δ
(

kε0V2r
d∗2R2

)2) > 4R(1 + R)(1 + δH2). (56)

In fact, if absurdly

2d ∗ 2R2

kε0V2
(

1 + δ
(

kε0V2r
d∗2R2

)2) < 4R(1 + R)(1 + δH2), (57)

we would easily obtain

H >

√√√√√√1
δ

 d∗R

2(1 + R)ε0V2
(

1 + δ
(

kε0V2r
d∗2R2

))2 − 1

. (58)

Then, substituting in (58) the plausible values for each parameter, we will get H >
1012, which would contradict the fact that, in circular 2D geometry with fringing field,
H = 146 (see in [48]). Therefore, the existence condition also ensures the uniqueness of the
solution for (8) so that each numerical solution that does not satisfy (45) represents a ghost
solution.

Remark 12. Unlike in 1D geometry with fringing field [64], in 2D circular geometry, the condition
of existence also guarantees uniqueness. On the other hand, as proved in [48], even if uniqueness
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are not guaranteed, equilibrium configurations are obtained dangerously close to the upper disk of
the device, which is fortunately stable.

The model (8), as already specified previously, does not allow for obtaining explicit
solutions. Therefore, to recover the membrane profiles, we resort to suitable numerical
techniques for solving nonlinear BVPs with singularities. The following section presents a
quick overview of the main characteristics of the numerical techniques used in this study.

8. Numerical Results

In this section, we present and discuss the numerical results obtained solving model (8)
for recovering the membrane profile and the performances of the methods used to this
end. More precisely, we have selected the following numerical approaches: the shooting
method, Keller–Box scheme, and II/IV Lobatto IIIa formulas as a collocation procedure. A
detailed discussion of these methods can be found in [32] with the only difference that in
the present work, we used the secant method to obtain the zeros in the nonlinear equation
generated by the shooting procedure. All simulations have been carried out by using the
MATLAB R2019a environment. To facilitate the discussion, the section is divided into
five subsections: the first subsection discusses the criteria for avoiding the computation
of ghost solutions. The second subsection addresses the convergence of the numerical
procedures as a function of the parameter θλ2. In the third subsection, remarks on the
choice of the number of nodes are provided. A comparison of the recovered membrane
profile retrieved by the selected numerical approach is provided in the four subsection. In
the last subsection, we consider the values assumed by the applied voltage V to the device
to overcome the inertia of the membrane, which is useful in practical applications.

8.1. Detection of Ghost Solutions

As mentioned previously, each numerical solution must satisfy (45); otherwise, it must
be considered a ghost solution. Therefore, from (45), we can express

θλ2 >
2d ∗ 2R2

kε0V2
(

1 + δ
(

kε0V2r
d∗2R2

)2) =
2d ∗ 6R6

kε0V2(d ∗ 4R4 + δk2ε2
0V4r2)

, (59)

but, as r < R and d ∗ 4R4 � 1, (59) becomes

θλ2 >
2d ∗ 2R2

kε0V2
(

1 + δ
(

kε0V2r
d∗2R2

)2) =
2d ∗ 6R6

kε0V2(d ∗ 4R4 + δk2ε2
0V4R2)

. (60)

However, d ∗ 4R4 � 1, so (60) becomes

θλ2 >
2d ∗ 6R6

kε0V2(1 + δk2ε2
0V4R2)

(61)

Again, combining (22), (19), and (10), and taking into account that u(r) < d, we easily obtain

k =
2u(r)(d− u(r))2(
1−

(
r
R

)2)
ε0V2

<
2d(d− u(r))2(
1−

(
r
R

)2)
ε0V2

(62)

which substituted into (60), gives us

θλ2 ≥ d ∗ 6R6

V2(1 + 4δd2(d− u(r))4)
. (63)
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Therefore, any numerical procedure used, ∀δ ∈ [0, 2) and under convergence con-
ditions, produces a corresponding membrane profile. Then, we denote by uj,δ(r) the
profile of the membrane obtained by applying the j-th numerical procedure with a given
value of δ. Then, for each numerical procedure j with a given value of δ, the value of
θλ2, starting from which convergence is ensured without ghost solutions, denoted by
((θλ2)conv− no ghost solutions)j,δ, is the following:

((θλ2)conv− no ghost solutions)j,δ =
d ∗ 6R6

V2(1 + 4δd2(d−maxr{maxj{uj,δ(r)}})4)
. (64)

Therefore,
[((θλ2)conv− no ghost solutions)j,δ,+∞) (65)

are the ranges of values ensuring convergence without ghost solutions, ∀j and ∀δ.

8.2. On the Convergence of the Numerical Procedures

As shown in previous works [30–32,60], θλ2 that ensured the convergence of all the
utilized numerical procedures (indicated by min(θλ2)conv) was obtained without consid-
ering the effects of the fringing field. Noticeably, if θλ2 < min(θλ2)conv, all the numerical
procedures did not converge. Conversely, if θλ2 > min(θλ2)conv, all numerical procedures
converged, and, in some cases, ghost solutions took place. Unlike the 1D case [65], wherein
a decrease in the value of θλ2 was highlighted, ensuring convergence as δ increases, what-
ever the numerical procedure used, the circular geometry 2D studied here does not show
the same behavior. Rather, there is an increasing trend of these minimum values but, in
any case, of extremely reduced amplitudes. Looking at the present work in more detail,
starting from (8), we achieved (θλ2)conv exploiting, as in [65], the shooting technique by
ode23 and ode45 (MatLab routines), Keller–Box scheme, and III/IV Stage Lobatto IIIa
formulas by bpv4c and bpv5c (MatLab routines) when δ ∈ [0, 2) increased, according
to (46). Particularly, Tables 1 and 2 highlight, as δ increases, the minimum value of θλ2

ensuring convergence for each numerical procedure such that min(θλ2)conv = 10−3, which
corresponds to the Keller–Box scheme with δ ≥ 1. Then, ∀δ ∈ [0, 2) the ranges of values
relative to θλ2 that do not allow convergence of the numerical procedures are shown in
Tables 3 and 4, which indicates that increasing the effect due to the fringing field increases
the non-convergence intervals. Moreover, for each numerical procedure and ∀δ ∈ [0, 2), the
convergence intervals in the presence of ghost solutions (i.e., the numerical solutions that
do not respect the condition (45)) have been obtained as shown in Tables 5 and 6. Finally,
Tables 7 and 8 show the ranges of possible values for θλ2, which ensure the convergence of
all numerical procedures without ghost solutions (i.e., the numerical solutions obtained
satisfy the condition (45)).

Remark 13. Notably, on increasing the effect due to the fringing field, we observe a shift toward
lower values of the range of possible values for θλ2 that ensures convergence (with/without ghost
solutions). Furthermore, the numerical procedure that determines the minimum value of θλ2

ensuring convergence for each numerical procedure without ghost solution, in our study, turned
out to be the Keller–Box scheme (see Table 7).

Table 1. Ranges of θλ2 ensuring convergence (shooting and Keller–Box procedures).

δ Shooting (ode 23) Shooting (ode 45) Keller–Box

0 (θλ2)conv ∈ [10−14 + ∞) (θλ2)conv ∈ [10−14 + ∞) (θλ2)conv ∈ [10−3 + ∞)
0.5 (θλ2)conv ∈ [10−10 + ∞) (θλ2)conv ∈ [10−10 + ∞) (θλ2)conv ∈ [10−5 + ∞)
1 (θλ2)conv ∈ [10−10 + ∞) (θλ2)conv ∈ [10−9 + ∞) (θλ2)conv ∈ [10−3 + ∞)

1.5 (θλ2)conv ∈ [10−9 + ∞) (θλ2)conv ∈ [10−9 + ∞) (θλ2)conv ∈ [10−3 + ∞)
1.99 (θλ2)conv ∈ [10−8 + ∞) (θλ2)conv ∈ [10−7 + ∞) (θλ2)conv ∈ [10−3 + ∞)
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Table 2. Ranges of θλ2 ensuring convergence (Three-/Four-Stage Lobatto IIIa).

δ Three-Stage Lobatto IIIa (bpv4c) Four-Stage Lobatto IIIa (bpv5c)

0 (θλ2)conv ∈ [10−4 + ∞) (θλ2)conv ∈ [10−6 + ∞)
0.50 (θλ2)conv ∈ [10−5 + ∞) (θλ2)conv ∈ [10−5 + ∞)

1 (θλ2)conv ∈ [10−5 + ∞) (θλ2)conv ∈ [10−5 + ∞)
1.50 (θλ2)conv ∈ [10−5 + ∞) (θλ2)conv ∈ [10−5 + ∞)
1.99 (θλ2)conv ∈ [10−5 + ∞) (θλ2)conv ∈ [10−5 + ∞)

Table 3. Ranges of θλ2 in conditions of non-convergence (shooting and Keller–Box procedures).

δ Shooting (ode 23) Shooting (ode 45) Keller–Box

0 [0, 10−14) [0, 10−14) [0, 10−3)
0.5 [0, 10−10) [0, 10−10) [0, 10−5)
1 [0, 10−10) [0, 10−9) [0, 10−3)

1.5 [0, 10−9) [0, 10−9) [0, 10−3)
1.99 [0, 10−8) [0, 10−7) [0, 10−3)

Table 4. Ranges of θλ2 in conditions of non-convergence (Three-/Four-Stage Lobatto IIIa).

δ Three-Stage Lobatto IIIa (bpv4c) Four-Stage Lobatto IIIa (bpv5c)

0 [0, 10−4) [0, 10−6)
0.50 [0, 10−5) [0, 10−5)

1 [0, 10−5) [0, 10−5)
1.50 [0, 10−5) [0, 10−5)
1.99 [0, 10−5) [0, 10−5)

Table 5. Ranges of θλ2 ensuring convergence with ghost solutions (shooting and
Keller–Box procedures).

δ Shooting (ode 23) Shooting (ode 45) Keller–Box

0 [10−14, 0.639) [10−14, 0.633) [10−3, 0.721)
0.5 [10−10, 0.627) [10−10, 0.625) [10−5, 0.716)
1 [10−10, 0.614) [10−9, 0.618) [10−3, 0.709)

1.5 [10−9, 0.611) [10−9, 0.612) [10−3, 0.703)
1.99 [10−8, 0.599) [10−7, 0.603) [10−3, 0.694)

Table 6. Ranges of θλ2 ensuring convergence with ghost solutions (Three-/Four-Stage Lobatto IIIa).

δ Three-Stage Lobatto IIIa (bpv4c) Four-Stage Lobatto IIIa (bpv5c)

0 [10−4, 0.693) [10−6, 0.698)
0.50 [10−5, 0.686) [10−5, 0.691)

1 [10−5, 0.679) [10−5, 0.684)
1.50 [10−5, 0.672) [10−5, 0.677)
1.99 [10−5, 0.668) [10−5, 0.669)



Sensors 2021, 21, 5237 15 of 27

Table 7. Ranges of θλ2 ensuring convergence without ghost solutions (shooting and Keller–Box
procedures).

δ Shooting (ode 23) Shooting (ode 45) Keller–Box

0 [0.639, +∞) [0.633, +∞) [0.721, +∞)
0.5 [0.627, +∞) [0.625, +∞) [0.716, +∞)
1 [0.614, +∞) [0.618, +∞) [0.709, +∞)

1.5 [0.611, +∞) [0.612, +∞) [0.703, +∞)
1.99 [0.599, +∞) [0.603, +∞) [0.694, +∞)

Table 8. Ranges of θλ2 ensuring convergence without ghost solutions (Three-/Four-Stage
Lobatto IIIa).

δ Three-Stage Lobatto IIIa (bpv4c) Four-Stage Lobatto IIIa (bpv5c)

0 [0.693, +∞) [0.698, +∞)
0.50 [0.686, +∞) [0.691, +∞)

1 [0.679, +∞) [0.684, +∞)
1.50 [0.672, +∞) [0.677, +∞)
1.99 [0.668, +∞) [0.669, +∞)

8.3. A Few Remarks on the Number of Nodes N

AAs far as the Keller–Box and Lobatto procedures (bpv4c and bpv5c, respectively)
are concerned, a number of nodes, N, equal to 40 have been chosen not to deviate much
from the number of nodes selected by ode23 (see Table 9). We observe that the Keller–Box
scheme did not converge to the solution for values of N smaller. Moreover, the performance
of Lobatto formula for values of N smaller did not reach the accuracy set by default,
providing unreliable solutions (for example, deformed triangle-shaped membranes with a
mesh consisting of an excessive number of points). Furthermore, note that the presented
results were obtained by applying numerical methods of different convergence to show the
efficiency and performance of the various numerical approaches in the existing literature.
From a qualitative point of view, the recovered profiles are comparable even though tiny
differences appear due to the different orders of accuracy of the proposed methods.

Table 9. Number of bondes for each numerical technique.

δ
Shooting Shooting Keller-Box Three-Stage Four-Stage
(ode 23) (ode 45) Lobatto IIIa (bpv4c) Lobatto IIIa (bpv5c)

0 11 40 40 40 40
0.5 11 40 40 40 40
1 64 40 40 40 40

1.5 63 125 40 40 40
1.99 58 101 40 40 40

Remark 14. (65) is more general than the range of values shown in the previous tables because it
is formulated ∀δ ∈ [0, 2), while in the tables, the ranges shown refer to certain values of δ.

8.4. The Recovering of the Membrane Profile: Performance of Numerical Procedures

By applying the numerical procedures to (8) to recover the profile of the membrane,
interesting results were obtained, as shown in Figures 3–7. Particularly, Figure 3 depicts
u(r) achieved by each numerical procedure when δ = 0 with its corresponding value of θλ2

as shown in Tables 1 and 2. Similarly, in the other figures, for δ = 0.5, 1, 1.5, 1.99, we observe
that, by ode23 with δ = 0 and θλ2 = 1, a displacement of the membrane is appreciated
with a maximum value of about 0.4 at r = 0, while for θλ2 < 1, the solution remains
almost constant (equal to 1) as if the whole membrane is moved up by an amount equal to
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1. Finally, if θλ2 ≥ 10−15, the solution assumes values that are too high. Situations with
completely similar results are obtained with ode45. However, note that a good recovering
of the membrane is achieved with bpv4c when θλ2 = 10−5 and δ = 0; with bpv4c when
θλ2 = 10−6 and δ = 1; and with bpv5c when θλ2 = 10−7 and δ = 0.

Figure 3. Recovering of u(r) for δ = 0 and θλ2 as reported in Tables 1 and 2.

Figure 4. Recovering of u(r) for δ = 0.5 and θλ2 as reported in Tables 1 and 2.

Figure 5. Recovering of u(r) for δ = 1 and θλ2 as reported in Tables 1 and 2.
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Figure 6. Recovering of u(r) for δ = 1.5 and θλ2 as reported in Tables 1 and 2.

Figure 7. Recovering of u(r) for δ = 1.99 and θλ2 as reported in Tables 1 and 2.

Remark 15. As we will see below, the simulations performed by the numerical procedure did not
show the recovering of the membrane profile in a regime of small displacements as proved in 1D
geometry [65]. This allows us to highlight that the studied device could not be intended for biomedical
applications (such as in drug delivery systems) wherein small displacements of the membrane are
required. We also observe that the numerical methods used in this work are the most suitable for
solving elliptic semi-linear differential problems with ordinary derivatives with singularities 1

r .
Among them, in terms of performance, the Keller–Box scheme method stands out, which pays a
higher computational cost in the face of better performance. Therefore, Keller–Box method, even if
it provides the best performance, could give problems in all those real-time applications where an
extremely reduced membrane recovering time is required. Fortunately, such real-time applications
are not numerous, so Keller–Box method is still attractive for many engineering applications.

8.5. inf{V} to Overcome the Inertia of the Membrane with Fringing Field

As specified previously, if (45) is not satisfied, the numerical solution represents a
ghost solution. Therefore, from (45), considering that r < R, we obtain

θε0V2

d3T
>

d ∗ 2

kε0V2
(

1 + δ
(

kε0V2r
d∗2R2

)2) > (66)

>
2d ∗ 4R2

kε0V2(d ∗ 2 + δk2ε2
0V2)

>
2d ∗ 4R2

kV2(d ∗ 2 + δk2V2)
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using which and exploiting (11), we achieve

V > 4

√
d3d ∗ 4T

θε0k(d ∗ 2 + δk2V2)︸ ︷︷ ︸
inf{V}

. (67)

Remark 16. (67), without fringing field (δ = 0), is the same inequality obtained in [25] necessary
to overcome the inertia of the membrane without fringing field. Conversely, when the fringing
field phenomenon occurs, in circular 2D geometry and 1D geometry [65], the effect because of it
appears in the denominator. In both kinds of geometry, the more intense the fringing field effect,
the lower the V is to move the membrane because the lines of force of E near the edges of the device
are noticeably curved outward, facilitating the deformation of the membrane. Thus, the movement
of the membrane requires smaller values of V. This phenomenon is of great help in all those cases
wherein the membrane MEMS device is a part of an electronic device for applications that, usually,
are subject to reduced values of V. In these cases, the effects of the fringing field help move the
membrane more easily, overcoming its inertia.

8.6. Properties of the Material Constituting the Membrane & Intended Use of the Device in
Non-Convergence Conditions

We preliminarily observe that |E|2 ∝ λ2(1+δ|u′(x)|2
(1−u(x))2 such that

θ|E|2 =
λ2(1 + δ|u′(x)|2)

(1− u(x))2 . (68)

Moreover, considering (11), (68) becomes

θ|E|2 =
4ε2

0V4R4(1 + δ|u′(x)|2)
d6T2(1− u(r))2 (69)

from which, multiplying both sides by λ2 and considering again (11), we obtain

θλ2 =
4ε2

0V4R4(1 + δ|u′(r)|2)
d6T2(1− u(r))2|E|2 . (70)

Furthermore, as
|E|2 < sup{|E|2} (71)

it follows that
1
|E|2 >

1
sup{|E|2} (72)

As
1− u(r) < 1 (73)

it follows that
1

(1− u(r))2 > 1. (74)

Therefore, taking into account both (72) and (74), (70) becomes

θλ2 >
4ε2

0V4R4(1 + δ|u′(r)|2)
d6T2 sup{|E|2} . (75)

If the non-convergence conditions of each numerical procedure occur, it follows that

θλ2 < min
j,δ
{((θλ2)conv)j,δ}, (76)



Sensors 2021, 21, 5237 19 of 27

where minj,δ{((θλ2)conv)j,δ} represents the minimum value of θλ2 that ensures the conver-
gence of all numerical procedures used for any value of δ ∈ [0, 2). Therefore, (75) can be
written as follows:

min
j,δ
{((θλ2)conv)j,δ > θλ2 >

4ε2
0V4R4(1 + δ|u′(r)|2)

d6T2 sup{|E|2} , (77)

so that

T >

√
4ε2

0V4R4(1 + δ|u′(r)|2)
d6 minj,δ{((θλ2)conv)j,δ sup{|E|2} . (78)

Therefore, if we choose the intended use of the device, V is fixed so that, from (67), the
effect due to the fringing field is not arbitrary. Furthermore, sup{|E|2} inside the device
also has a specific value. It follows that, in the conditions of non-convergence, all materials
whose mechanical tension T satisfies the (78) must be avoided. Conversely, if the device
has been chosen a priori (i.e., if the material constituting the membrane has been chosen a
priori), then T is fixed, and, in the conditions of non-convergence, the intended uses of the
device (i.e., the pairs {V, sup{|E|2}) satisfying

V4

sup{|E|2} <
minj,δ{((θλ2)conv)j,δ}d6T2

4ε2
0R4(1 + δ|u′(r)|2)

(79)

are not allowed.

Remark 17. (78), without fringing field effects (δ = 0), is the condition (73) achieved in [65]. This
is because the membrane in circular geometry 2D, under symmetry conditions, can be considered
as generated by the rotation of a 1D curveC, lying on the vertical plane xz, and rotating around
the vertical axis z, making a complete rotation. Therefore, the electromechanical behavior of the
membrane is the same on any vertical plane whose support is the rotation axis z. Similarly, (79),
without fringing field, becomes the condition (74) in [65]. However, we note that, in 2D circular
geometry, unlike 1D geometry, the effects due to the fringing field is manifested not only by the
presence of minj,δ{((θλ2)conv)j,δ} (as manifested in [65]), but also by the presence of δ|u′(r)|2.

8.7. Properties of the Material Constituting the Membrane & Intended Use of the Device in the
Presence of Ghost Solutions

Indicating by minj,δ{((θλ2)conv)j,δ}limit the value of θλ2, in convergence conditions,
below which ghost solutions occur, (69) with ghost solutions satisfies the following chain
of inequalities:

min
j,δ
{((θλ2)conv)j,δ} <

4ε0R4V4(1 + δ|u′(r)|2)
d6T2 sup{|E|2} < min

j,δ
{((θλ2)conv)j,δ}limit (80)

so that

d6T2 minj,δ{((θλ2)conv)j,δ}
4ε0R4(1 + δ|u′(r)|2) <

V4

sup{|E|2} <
d6T2 minj,δ{((θλ2)conv)j,δ}limit

4ε0R4(1 + δ|u′(r)|2) . (81)

Therefore, once the intended use of the device is chosen (i.e., once V satisfies (67) is fixed so
that sup{|E|2} is also fixed ), T that characterizes the material constituting the membrane
must necessarily satisfy the chain of inequalities (81). Conversely, from (80), comes the
following chain of inequalities:

d6 minj,δ{((θλ2)conv)j,δ} sup{|E|2}
4ε0RL4V4(1 + δ|u′(r)|2) <

1
T2 <

d6 minj,δ{((θλ2)conv)j,δ}limit sup{|E|2}
4ε0R4V4(1 + δ|u′(r)|2) . (82)
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Furthermore, in this case, once T has been set (i.e., once the membrane material has been
selected), the operating parameters {V, sup{|E|2}} must be selected so that it is the (67)
that the (82) conditions are both satisfied.

Remark 18. The range of θλ2 that shows ghost solutions represents an electrostatic problem of
great interest. In fact, the profiles recovered numerically are not able to satisfy the analytical model,
thus requiring this range to be as small as possible. Therefore, from (81), we achieve

(min
j,δ
{((θλ2)conv)j,δ} −min

j,δ
{((θλ2)conv)j,δ}limit) < (83)

<
V4

sup{|E|2}
1

T2
4ε0R4(1 + δ|u′(r)|2)

d6 .

(83) has a specific physical meaning. Once the device’s geometry is fixed (i.e., both R and d are fixed),
the higher the T, the lower the θλ2 that risk manifesting ghost will be solutions. In other words, the
stiffer the membranes, the lower the risk of obtaining ghost solutions. Again, the higher the effects
due to the fringing field, the greater the risk of obtaining ghost solutions. Finally, high values of the
ratio V4

sup{|E|2} produces an increase in the area dedicated to ghost solutions by allocating the devices
only to applications wherein reduced values of V are required to reduce the risk of ghost solutions.

8.8. Properties of the Material Constituting the Membrane and Intended Use of the Device in
Absence of Ghost Solutions

If T and {V, sup{|E|2}} (such that V satisfies (67)) satisfy

4ε0R4V4(1 + δ|u′(r)|2)
d6T2 sup{|E|2} > min

j,δ
{((θλ2)conv)j,δ}limit (84)

the device works in convergence condition without ghost solutions. Therefore, fixed
{V, sup{|E|2}}, T must satisfy

1
T2 >

d6 minj,δ{((θλ2)conv)j,δ}limit sup{|E|2}
4ε0R4V4(1 + δ|u′(r)|2) . (85)

Conversely, once T is fixed, {V, sup{|E|2}} must be chosen in such a way that (85)
is satisfied.

Remark 19. (84) represents an interesting limitation for the range of values of θλ2. In fact, once
the geometry of the device has been fixed, the membranes that are characterized by high mechanical
stresses severely limit the presence of ghost solutions, allocating the device for all those applications
with low electrical potential values.

9. Conclusions

In this work, the membrane profile u(r) of an MEMS device with 2D circular geometry
subject to an external electrical V applied between the disks has been numerically recovered.
In the analytical model, we have considered that the electric field E, caused by the potential
V, is locally orthogonal to the membrane’s tangent plane at the same point in a way that
the principle according to which |E| results locally proportional to the membrane mean
curvature, K(r, u(r)), turns out to be valid. In addition, for taking into account the effects
due to the fringing field according to Pelesko and Driscoll’s theory, an addendum term
has been joined in the considered analytical model. The term is weighted by a parameter
depending on the square of the first derivative membrane profile amplitude. It takes
into account the deformation of the lines of force of the field E near the edges of the
device. Furthermore, an algebraic condition ensuring the uniqueness of the solution,
which depends on the electromechanical properties of the membrane material, has also
been demonstrated. Although the founded condition results to be less incisive than
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the condition of existence well known in the literature on these devices, it also ensures
the solution’s uniqueness. The membrane profile has been recovered through several
numerical procedures; we used the shooting method, the Keller–Box method, and the
Lobatto IIIa stage III/IV formulas, comparing their performances. For this particular
MEMS geometry, the links among (i) the electromechanical properties of the material
constituting the membrane and (ii) the operational electrical parameters in conditions of
convergence and non-convergence in the presence/absence of ghost solutions have been
obtained. Furthermore, the ranges of the θλ2 parameter, which ensures the convergence
in the presence/absence of ghost solutions, have been obtained. Based on these results,
a possible criterion for choosing the material constituting the membrane starting from V
and vice versa in all device operating conditions has been provided. To conclude, we point
out that the numerical results carried out in our study showed the clear superiority of the
Keller–Box method compared with the other numerical techniques considered. However,
because of its higher computational effort, the Keller–Box method could be less attractive
for real-time applications.

Note that the numerical recovering in our work is a means to recognize any ghost
solutions and understand the link between the properties of the material constituting
the membrane and the intended use of the device in the different operating conditions.
Therefore, a FEM analysis of the proposed analytical model is required (and developed in
the near future) because it would allow us to obtain software formulations implementable
in hardware for any prototyping of industrial use. However, in this work, we relied on the
aforementioned numerical techniques because they currently represent the gold standard
for this type of analytical models. Finally, it is worth nothing that concerning the material
of the disks, in this work, we have considered metal plates. This arises from the fact that
the analytical model here proposed derives from a well-known MEMS model with parallel
metal plates proposed by D. Cassani et al. and cited in [23]. However, in the next future, it
is our interest to propose analytical models closer to industrial reality, so the metal making
up the disks should be replaced by more suitable materials (such as polysilicon).
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Abbreviations
The following abbreviations are used in this manuscript:

Ω bounded circular smooth domain
d distance between the two parallel disks
r radial coordinate
R radius of the device
u(r) profile of the membrane
V external electrical voltage
T radial mechanical tension of the membrane at rest
λ2 parameter depending on V and T
δ parameter that weighs the fringing field effect
E electrostatic field
|E| amplitude of the electrostatic field
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K(r, u(r)) mean curvature
d∗ critical security distance
θ factor of proportionality
ε0 permittivity of the free space
fel electrostatic force
pel electrostatic pressure
p mechanical pressure
u0 displacement in the center of the membrane
Cel electrostatic capacitance
ρ density
h thickness
Y Young modulus
ν Poisson ratio
D stiffness coefficient
µ(r, u(r), λ) function of proportionality
u1(r),
u2(r)

auxiliary functions

k constant of proportionality between p and pel
H supr∈(0,1] |u′(r)|
FEM Finite Element Method
tol tolerance for Brent procedure
TOL tolerance for Keller–Box Scheme
RK Runge–Kutta Methods
G(r, s) Green function

Appendix A. Proof of Proposition 1

We preliminarly observe that model (8), exploiting a suitable Green’s function G(r, s),
can be rewritten in its equivalent integral formulation [66–68]:

u(r) =
∫ R

−R
G(r, s)F(r, u(r), u′(r))ds (A1)

and considering (37), (A1) becomes:

u(r) =
∫ R

−R
G(r, s)

[u′(r)
r

+
4(1− u(r)− d∗)2

θλ2(1 + δ|u′(r)|2)

]
ds. (A2)

As known, G(r, s), in our problem, assumes the following form [66]:

G(r, s) =
(s + R)(R− r)

2R
(A3)

if −R ≤ s ≤ r and

G(r, s) =
(R− s)(r + R)

2R
(A4)

when r < s ≤ R. In addition:

Gr(r, s) = − (s + R)
2R

(A5)

if −R ≤ s < r and

Gr(r, s) =
(R− s)

2R
(A6)

when r < s ≤ R. Furthermore, it is easy to prove that [66]:

0 ≤ G(r, s) ≤ R
2
∀r, s ∈ −R, R] (A7)

and
Gr(r, s) ≤ 1

2
. (A8)
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By contradiction, we assume that u1(r) and u2(r) are tho different solutions for (8), in order
that u1(r) = T(u1(r)) and u2(r) = T(u2(r)). Thus,

u1(r) = T(u1(r)) =
∫ R

−R
G(r, s)

[u′1(r)
r

+
4(1− u1(r)− d∗)2

θλ2(1 + δ|u′1(r)|2)

]
ds (A9)

and

u2(r) = T(u2(r)) =
∫ R

−R
G(r, s)

[u′2(r)
r

+
4(1− u2(r)− d∗)2

θλ2(1 + δ|u′2(r)|2)

]
ds, (A10)

from which

u′1(r) = T(u1(r)) =
∫ R

−R
Gr(r, s)

[u′1(r)
r

+
4(1− u1(r)− d∗)2

θλ2(1 + δ|u′1(r)|2)

]
ds (A11)

and

u′2(r) = T(u2(r)) =
∫ R

−R
Gr(r, s)

[u′2(r)
r

+
4(1− u2(r)− d∗)2

θλ2(1 + δ|u′2(r)|2)

]
ds. (A12)

Therefore, taking into account also both (A7) and (A8), we can write:

||u1(r)− u2(r)||C1([−R,R]) = (A13)

= sup
r∈[−R,R]

|u1(r)− u2(r)|+ sup
r∈[−R,R]

|u′1(r)− u′2(r)| =

= sup
r∈[−R,R]

∣∣∣ ∫ R

−R
G(r, s)

[u′1(r)
r

+
4(1− u1(r)− d∗)2

θλ2(1 + δ|u′1(r)|2)

]
ds−

−
∫ R

−R
G(r, s)

[u′2(r)
r

+
4(1− u2(r)− d∗)2

θλ2(1 + δ|u′2(r)|2)

]
ds
∣∣∣+

+ sup
r∈[−R,R]

∣∣∣ ∫ R

−R
Gr(r, s)

[u′1(r)
r

+
4(1− u1(r)− d∗)2

θλ2(1 + δ|u′1(r)|2)

]
ds−

−
∫ R

−R
Gr(r, s)

[u′2(r)
r

+
4(1− u2(r)− d∗)2

θλ2(1 + δ|u′2(r)|2)

]
ds
∣∣∣ =

= sup
r∈[−R,R]

∣∣∣ ∫ R

−R
G(r, s)

{u′1(r)
r

+
4(1− u1(r)− d∗)2

θλ2(1 + δ|u′1(r)|2)
−

−u′2(r)
r

+
4(1− u2(r)− d∗)2

θλ2(1 + δ|u′2(r)|2)

}
ds
∣∣∣+

+ sup
r∈[−R,R]

∣∣∣ ∫ R

−R
Gr(r, s)

{u′1(r)
r

+
4(1− u1(r)− d∗)2

θλ2(1 + δ|u′1(r)|2)
−

−u′2(r)
r

+
4(1− u2(r)− d∗)2

θλ2(1 + δ|u′2(r)|2)

}
ds
∣∣∣ ≤

≤ sup
r∈[−R,R]

∫ R

−R
|G(r, s)|

∣∣∣u′1(r)
r

+
4(1− u1(r)− d∗)2

θλ2(1 + δ|u′1(r)|2)
−

−u′2(r)
r

+
4(1− u2(r)− d∗)2

θλ2(1 + δ|u′2(r)|2)

∣∣∣ds+

+ sup
r∈[−R,R]

∫ R

−R
|Gr(r, s)|

∣∣∣u′1(r)
r

+
4(1− u1(r)− d∗)2

θλ2(1 + δ|u′1(r)|2)
−

−u′2(r)
r

+
4(1− u2(r)− d∗)2

θλ2(1 + δ|u′2(r)|2)

∣∣∣ds ≤
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≤ R
2

sup
r∈[−R,R]

∫ R

−R

∣∣∣u′1(r)
r
− u′2(r)

r
+

+
4

θλ2

[ (1− u1(r)− d∗)2

(1 + δ|u′1(r)|2)
− (1− u2(r)− d∗)2

(1 + δ|u′2(r)|2)

]∣∣∣ds+

+
1
2

sup
r∈[−R,R]

∫ R

−R

∣∣∣u′1(r)
r
− u′2(r)

r
+

+
4

θλ2

[ (1− u1(r)− d∗)2

(1 + δ|u′1(r)|2)
− (1− u2(r)− d∗)2

(1 + δ|u′2(r)|2)

]∣∣∣ds =

=
(R

2
+

1
2

)
sup

r∈[−R,R]

∫ R

−R

∣∣∣u′1(r)
r
− u′2(r)

r
+

+
4

θλ2

[ (1− u1(r)− d∗)2

(1 + δ|u′1(r)|2)
− (1− u2(r)− d∗)2

(1 + δ|u′2(r)|2)

]∣∣∣ds.

We note that

1
1 + δ|u′(r)|2 =

1 + δ|u′(r)|2 − δ|u′(r)|2
1 + δ|u′(r)|2 ≤ (A14)

≤ 1 + δ|u′(r)|2 − δ|u′(r)|2 ≤ 1 + δ|u′(r)|2,

therefore, (A13), taking into account (A14), becomes

||u1(r)− u2(r)||C1([−R,R]) ≤ (A15)

≤
(R

2
+

1
2

)
sup

r∈[−R,R]

{ ∫ R

−R

1
r
|u′1(r)− u′2(r)|ds+

+
4

θλ2

∫ R

−R
(1− u1(r)− d∗)2(1 + δH2)2ds+

4
θλ2

∫ R

−R
(1− u2(r)− d∗)2(1 + δH2)ds

}
ds ≤

≤
(R

2
+

1
2

)
sup

r∈[−R,R]

{ ∫ R

−R

1
r
|u′1(r)− u′2(r)|ds+

+
4

θλ2 (1 + δH2)2
∫ R

−R
[(1− u1(r))2 + (1− u2(r))2]ds

}
=

=
(R

2
+

1
2

)
sup

r∈[−R,R]

{2R
r
|u′1(r)− u′2(r)|+

+
8R
θλ2 (1 + δH2)[(1− u1(r))2 + (1− u2(r))2]ds

}
=

=
(R

2
+

1
2

)2R
r

sup
r∈[−R,R]

|u′1(r)− u′2(r)|+

+
(R

2
+

1
2

) 8R
θλ2 (1 + δH2) sup

r∈[−R,R]
[(1− u1(r))2 + (1− u2(r))2] ≤

≤ 2(R + 1)R sup
r∈[−R,R]

|u′2(r)− u′1(r)|+

+
4R(R + 1)(1 + δH2)

θλ2 sup
r∈[−R,R]

|u2(r)− u1(r)|.

From (A15), to achieve a contradiction, it is necessary to write{
2(R + 1)R < 1
4R(R+1)(1+δH2)

θλ2 < 1.
(A16)



Sensors 2021, 21, 5237 25 of 27

From (A16) we observe that

4R(R + 1)(1 + δH2)

θλ2 > 2(R + 1)R. (A17)

In fact, if absurdly
4R(R + 1)(1 + δH2)

θλ2 < 2(R + 1)R (A18)

we easily would obtain

H <

√( θλ2

2
− 1
)1

δ
(A19)

which results an absurd condition because in absence of fringing field (i.e., δ = 0), it follow
that H → +∞. In other words, without fringing field the membrane profiles numerically
recovered are symmetric with respect the axis r = 0 (see [32]) putting in evidence that
max{|u′(r)|} corresponds to r = ±R. Moreover [48],

max{|u′(r)|} < sup{|u′(r)|} = H = 146. (A20)

Therefore, on x = ±R, there is no risk of dangerous adhesion between the membrane and
the vertical walls of the device that could generate unwanted electrostatic effects. This
phenomenon could occur if |u′(±R)| → +∞. From which, it follows that the algebraic
condition of uniqueness for the solution for (8) is

θλ2 > 4(R + 1)R(1 + δH2) (A21)

(i.e., the algebraic inequality (54)).
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