
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Novel Fitness Tracker Using Edge Machine
Learning

Massimo Merenda
Department of Information

Engineering, Infrastructures and
Sustainable Energy (DIIES) and

HWA s.r.l.-Spin Off of the
University Mediterranea of Reggio

Calabria
Reggio Calabria, Italy

massimo.merenda@unirc.it

Vincenzo Romeo
Department of Information

Engineering, Infrastructures and
Sustainable Energy (DIIES) of the
University Mediterranea of Reggio

Calabria
Reggio Calabria, Italy

rmovcn96m14h224s@studenti.unirc.it

Miriam Astrologo
Department of Information

Engineering, Infrastructures and
Sustainable Energy (DIIES) of the
University Mediterranea of Reggio

Calabria
Reggio Calabria, Italy

strmrm97e43f112a@studenti.unirc.it

Francesco Giuseppe Della Corte
Department of Information

Engineering, Infrastructures and
Sustainable Energy (DIIES) and

HWA s.r.l.-Spin Off of the
University Mediterranea of Reggio

Calabria
Reggio Calabria, Italy

francesco.dellacorte@unirc.it

Damiano Laurendi
Department of Information

Engineering, Infrastructures and
Sustainable Energy (DIIES) and

HWA s.r.l.-Spin Off of the
University Mediterranea of Reggio

Calabria
Reggio Calabria, Italy

lrndmn96m24h224y@studenti.unirc.it

Abstract—Several characteristics of the human body turn
into postural behavior, recognizable also during sport activities.
The presence of differences between body types could lead to
different behavior of wearable and fitness-devote products. A
new wearable based on machine learning techniques for the
exercise detection and repetitions count is described in this
work. A proper dataset has been obtained in order to offline
train the network. Eventually, the machine learning algorithm
has been implemented inside an edge device for real-time test e
verification.

Keyword--fitness tracker, machine learning, edge machine
learning, embedded system

I. INTRODUCTION
Human Activity Recognition (HAR) is based on motion

sensors analysis to deduce activities/actions performed by
people. In the last period, this research field is constantly
growing; there are many applications that could represent a
significant turning point for wearable devices [1]–[3].
Nowadays many users use fitness-bands while training.
Fitness-band features are able to keep under control sports
performance like distance, training time or burned calories.
There are some solutions to track the training routine,
recognizing exercises and counting number of repetitions.
Some of these are based on computer vision [4], [5] while
others make use of smartphones equipped with inertial sensors
[6]–[8]. In this work, a new solution implemented on a
microcontroller (MCU)-based wearable device is discussed,
exploiting the feasibility of edge machine learning in an IoT
scenario [9].

 This work proposes a Machine Learning (ML) HAR
application for fitness environment exploiting Convolutional
Neural Networks (CNN) [10]; starting from data acquisition,
through edge ML system implementation on low power
MCUs and with reduced form factor. The solution described
below provides a method for automatic detection of body
movement during exercise execution and reps counting, acting

as a gym-fitness tracker. In section II the system overview will
be depicted. In section III the hardware will be described in
detail, while in the section IV the dataset acquisition will be
illustrated. The neural network (NN) is described in section V.
Finally, section VI presents discussion and results.

Fig. 1. Block Diagram of the system used in this work.

II. SYSTEM OVERVIEW
In this work, the system provided aims to self-classify the

exercises performed by users with a Deep Learning (DL)
approach, using the data collected through a wearable device.
The purpose is also to count the number of repetitions and
exercises performed.

The block diagram, shown in Fig. 1, can be logically split
in three parts:

• The first is responsible for data collection, i.e. the
acquisition of raw data through the wearable device’s
sensors during the execution of an activity.

• The unprocessed values are sent as input to the MCU
(block 2), in which the NN is running. It’s

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collecting works, for resale or lists, or reuse
of any copyrighted component of this work in other works
DOI: 10.1109/MELECON48756.2020.9140602

responsible for the final recognition of the exercises
and the reps counting.

• Lastly, the results provided by the MCU are sent via
Bluetooth Low Energy (BLE) protocol (block 3) on
a smartphone acting as an application interface layer.

III. HARDWARE
In order to capture data from all directions, a 3-axes

accelerometer and a 3-axes gyroscope are used to create the
dataset for both training and testing phase of the application.
The new paradigm of edge machine learning requires a
balanced use of Random Access Memory (RAM) and Flash
of the MCU, due to the limited resources of the hardware. To
this end, attention shall be devoted to the size of the NN, in
terms of bias, weights and data structures. The SensorTile
module by ST Microelectronics, shown in Fig. 2, is used as
prototype both in dataset creation phase and in testing phase.
This hardware module embeds the ultra-low-power
STM32L476 microcontroller (80MHz clock, 1Mbyte Flash
and 128Kbyte SRAM), a BLE module (with a peak current of
8.2mA at 0dBm) used for data transmission and the used
sensors, namely the system-in-package LSM6DSM with
accelerometer and gyroscope. Other sensors are assembled on
the same board such as environment sensors and microphones,
however they are not used within this application. Finally, the
SensorTile module is powered by a 100 mAh Li-Ion battery.
Ultra-low-power sleep modes for both BLE module and
microcontroller allows low average current consumption,
resulting in longer battery duration.

Fig. 2. SensorTile Hardware on the left. Prototype of the fitness tracker
band and axes direction representation on the right.

IV. DATASET
A new dataset was created for this work using the

hardware explained above. A group of 15 volunteers aged
between 22 and 25 was selected for obtaining the activity
recordings. Each person performed various series of simple
exercises wearing the device around the wrist. Three exercises
were chosen for this application (Squat, Curl, Push-Up), with
the addition of another class named NAE (Not An Exercise),
useful to detect rest and wrong execution of exercise. With
NAE class is also possible to distinguish between an exercise
and rest as well between series or repetitions. Labels are, then:

• Squat: quadriceps and glutes exercise (label 1)

• Curl: biceps exercise (label 2)

• Push-Up: pectoral and triceps exercise (label 3)

• NAE: not an exercise (label 4)

Accelerometer and gyroscopic values were collected with
20 Hz frequency. Subsequently, collected data were analyzed
and processed with a MATLAB custom script to correctly
label each dataset sample. An example of accelerometer data,
related to curl exercise, is plotted in Fig. 5; as can be seen,
repetitions are clearly discernable because inertial data vary
during the execution of the exercise. The NN shall classify the
exercises and, in order to count also repetitions, it was trained
with single repetition. With respect to Fig. 5, the repetition
duration is defined approximately as the time between Ti,n
(instant in which the movement starts) and Tf,n (the instant in
which the movements end). Single repetition duration is
variable depending on the exercise type. For this reason, the
correct definition of the acquisition window is critical. Short
windows may enhance performances of the NN but may lead
to data losses. On the other side, long windows may have
negative impact during classifications and counting
operations. A custom MATLAB script was used to collect
repetition windows (yellow box in figure 5) of the same length
to be able to label each window as a specific exercise
repetition. So, each entry of the dataset is a fixed-length
window of 68 sample for a total of 3.4 seconds
(68/20Hz=3.4s) in which each sample is composed by 3 axes
data acquired by accelerometer and 3 axes data acquired by
gyroscope (6 values for each sample). Data between two
successive windows are labeled as NAE together with other
data acquired while the user is resting. Repetitions of Squat,
for example, can be counted thank to a series of alternated
NAE and Squat recognition of the NN. A total of 700
repetitions for the 3 exercise were collected of which 80% was
used to train the NN and 20% for test.

V. NEURAL NETWORK
Among various architectures, CNN was chosen for its

characteristics. Initially, a Recurrent Neural Network (RNN)
was developed with the same dataset, showing not satisfactory
performances with accuracy around 65%. Like Multi-Layer
Perceptron (MLP), the CNN is a network where the main
operation is convolution [11]. They are often used in Machine
Learning applications with imaging recognition and clustering
[12]. In the current state of the art they are also applied on
HAR problems, e.g. running-walking or sitting-standing
recognition [13]. Thanks to convolution, the CNN can reduce
the input pattern in any layer, trying to keep the information
content intact, with the use of special filters. After sliding the
filter over all the locations, the output layer called Activation
Map is passed through activation function and then for a
pooling layer to reduce problem size. In the last, the actual
classification happens; the output is composed by n positive
value whom sum is equal to 1, with n the number of labels.

For this work, the CNN was chosen for three main reasons.
First one, it doesn’t require data pre-processing to extract
features. Considering the edge machine learning applications,
this is helpful because the introduction of pre-processing
operations on the MCU can increase the complexity and the
needed memory. Nevertheless, the reduction of the
computation burden of the MCU has a positive impact on the
power consumption, as the system is battery powered. The
second benefit is the weight sharing, that bring to the network

less links between layer and a memory saving. Lastly, the
CNN can exploit the concept of invariance, in fact, for the
pattern discrimination purpose, response of the network
remains almost the same despite simple transformations of
input patterns (like small temporal or spatial alterations).

This last benefit makes the application generalizable for
any user. In one repetition’s movement of an exercise there
are 68 samples (each with 6 values). So even if they are
slightly different from data with which the network has been
trained, it is still possible to classify the exercise correctly.

In this project a CNN-1D was used. It has a 3D array input
of [68, 6, 700] size and an array output containing 4 values
corresponding to the probability related for each class
depending on the specific input pattern. This CNN has two
hidden layers, with a kernel size equal to 3. Activation
functions are relu in the first layer and sigmoid in the second.
Filters have both the same dimension. MaxPooling was used
to further reduce dimension and redundancy without altering
information content. Training (80% of dataset entries) and test
remaining 20%) were performed 10 times with a number of
epochs equal to 200 and the accuracy was calculated
evaluating the cross-entropy; when this has reached a value
greater than 95%, the testing phase started, both on desktop
and on target (MCU).

VI. TESTING AND RESULTS
 After generating model, the NN was tested on Keras with
data not present in the input space. For all input patterns (about
50), the CNN gave the right output every time. After this
phase, the challenge was to convert this CNN in C-code
compatible with the MCU firmware. For this reason, a free
software released by STMicroelectronics was used, namely
STM32CubeMX, and his tool STM32CubeAI. This tool can
translate the NN from .h5 saved format to C library,
automatically generating the APIs to use in the firmware. In
this tool, there are three different bundle about code
generation: Validation, System Performance and Application
Template. The first and the second have been used during the
validation and the testing of device using the NN, the last was
selected to write the firmware about this application. This tool
allows a further compression of the NN to reduce the occupied
memory. Subsequently, the CNN was desktop tested with
STM32CubeAI and then it was tested on target, with NN in
run-time on the MCU. In both tests, random and unknown data
input are used, for a total of 70 input. In each of these, the
CNN gives the right output and the confusion matrix is
consistent with the obtained results, having only main
diagonal elements different from 0 as can be seen in Fig. 5.

In this part of the work, application performances have
been analyzed, such as occupied memory from NN (both
RAM and Flash), or inference time needed to produce an
output from the network (which was estimated to be around
80ms). The Table 1 shows the values of RAM and Flash
memory, represented for any configuration of compression. In
this work the selected compression is 8x to obtain more
memory for future developments, as the compression doesn’t
reduce the NN performances.

TABLE I. COMPRESSION AND MEMORY

Compression RAM FLASH

- 16,25 Kbytes 416,34 Kbytes

4x 16,25 Kbytes 117,47 Kbytes

Compression RAM FLASH

8x 16,25 Kbytes 66,53 Kbytes

Fig. 3. Confusion matrix in both testing activities on desktop and on target.

Fig. 4. Visual representation of the counting reps algorithm. When the NN

recognises an exercise followed by a NAE, the rep count for that
exercise is increased by one.

After checking that MCU’s memory was enough, the
application firmware was conceived. For exercise recognition,
overlapping windows of raw sensor data are provided to a
CNN that predicts the type of exercise for each window. For
repetition counting, MCU analyzes outputs of CNN. During
the execution of the exercise, an example of CNN output is
showed in Fig. 4. The NN recognizes and classifies “NAE”
when the user starts/finishes a single repetition. In this way,
MCU processes this information and identifies how many
times that condition has occurred. After the execution of the
ML algorithm, the output is transmitted via BLE channel on
the smartphone application, under development. Further
details will be provided during the conference.

REFERENCES
[1] Ó. D. Lara and M. A. Labrador, ‘A survey on human activity

recognition using wearable sensors’, IEEE Commun. Surv.
Tutorials, vol. 15, no. 3, pp. 1192–1209, 2013.

[2] M. Merenda, D. Laurendi, D. Iero, D. M. D’Addona, and F. G.
Della Corte, ‘Wireless Sensors for Intraoral Force Monitoring’, in
Lecture Notes in Electrical Engineering, 2020, vol. 627, pp. 267–
273.

[3] M. Merenda, D. Iero, and F. G. D. Corte, ‘Cmos rf transmitters
with on-chip antenna for passive RFID and iot nodes’, Electron.,
vol. 8, no. 12, 2019.

[4] R. Khurana, K. Ahuja, Z. Yu, J. Mankoff, C. Harrison, and M.
Goel, ‘GymCam: Detecting, Recognizing and Tracking
Simultaneous Exercises in Unconstrained Scenes’, in Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 2018, vol. 2, no. 4, pp. 1–17.

[5] O. Levy and L. Wolf, ‘Live repetition counting’, in Proceedings of
the IEEE International Conference on Computer Vision, 2015, vol.
2015 International Conference on Computer Vision, ICCV 2015,
pp. 3020–3028.

[6] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, ‘Activity
recognition using cell phone accelerometers’, in ACM SIGKDD
Explorations Newsletter, 2011, vol. 12, no. 2, pp. 74–82.

[7] D. Morris, T. S. Saponas, A. Guillory, and I. Kelner, ‘RecoFit:
Using a wearable sensor to find, recognize, and count repetitive

exercises’, in Conference on Human Factors in Computing
Systems - Proceedings, 2014, pp. 3225–3234.

[8] C. Seeger, A. Buchmann, and K. Van Laerhoven,
‘MyHealthAssistant: A Phone-based body sensor network that
captures the wearer’s exercises throughout the day’, in
BODYNETS 2011 - 6th International ICST Conference on Body
Area Networks, 2012, pp. 1–7.

[9] M. Merenda, C. Porcaro, and D. Iero, ‘Edge Machine Learning for
AI-enabled IoT devices: a review’, Sensors (Switzerland), 2020.

[10] P. Y. Simard, D. Steinkraus, and J. C. Platt, ‘Best practices for
convolutional neural networks applied to visual document
analysis’, Proc. Int. Conf. Doc. Anal. Recognition, ICDAR, vol.
2003-January, pp. 958–963, 2003.

[11] M. Xin and Y. Wang, ‘Research on image classification model
based on deep convolution neural network’, Eurasip J. Image
Video Process., vol. 2019, no. 1, 2019.

[12] M. Merenda, F. G. Praticò, R. Fedele, R. Carotenuto, and F. G. D.
Corte, ‘A real-time decision platform for the management of
structures and infrastructures’, Electronics (Switzerland), vol. 8,
no. 10. 2019.

[13] M. Panwar et al., ‘CNN based approach for activity recognition
using a wrist-worn accelerometer’, Proc. Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc. EMBS, pp. 2438–2441, 2017.

Fig. 5. Accelerometer data captured while executing Curl Exercise. Highlighted areas refers to the execution of a single repetitions.

