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Abstract—Several characteristics of the human body turn 
into postural behavior, recognizable also during sport activities. 
The presence of differences between body types could lead to 
different behavior of wearable and fitness-devote products. A 
new wearable based on machine learning techniques for the 
exercise detection and repetitions count is described in this 
work. A proper dataset has been obtained in order to offline 
train the network. Eventually, the machine learning algorithm 
has been implemented inside an edge device for real-time test e 
verification. 

Keyword--fitness tracker, machine learning, edge machine 
learning, embedded system  

I. INTRODUCTION 
Human Activity Recognition (HAR) is based on motion 

sensors analysis to deduce activities/actions performed by 
people. In the last period, this research field is constantly 
growing; there are many applications that could represent a 
significant turning point for wearable devices [1]–[3]. 
Nowadays many users use fitness-bands while training. 
Fitness-band features are able to keep under control sports 
performance like distance, training time or burned calories. 
There are some solutions to track the training routine, 
recognizing exercises and counting number of repetitions. 
Some of these are based on computer vision [4], [5] while 
others make use of smartphones equipped with inertial sensors 
[6]–[8]. In this work, a new solution implemented on a 
microcontroller (MCU)-based wearable device is discussed, 
exploiting the feasibility of edge machine learning in an IoT 
scenario [9].  

 This work proposes a Machine Learning (ML) HAR 
application for fitness environment exploiting Convolutional 
Neural Networks (CNN) [10]; starting from data acquisition, 
through edge ML system implementation on low power 
MCUs and with reduced form factor. The solution described 
below provides a method for automatic detection of body 
movement during exercise execution and reps counting, acting 

as a gym-fitness tracker. In section II the system overview will 
be depicted. In section III the hardware will be described in 
detail, while in the section IV the dataset acquisition will be 
illustrated. The neural network (NN) is described in section V. 
Finally, section VI presents discussion and results. 

Fig. 1. Block Diagram of the system used in this work. 

II. SYSTEM OVERVIEW 
In this work, the system provided aims to self-classify the 

exercises performed by users with a Deep Learning (DL) 
approach, using the data collected through a wearable device. 
The purpose is also to count the number of repetitions and 
exercises performed.  

The block diagram, shown in Fig. 1, can be logically split 
in three parts: 

• The first is responsible for data collection, i.e. the 
acquisition of raw data through the wearable device’s 
sensors during the execution of an activity. 

• The unprocessed values are sent as input to the MCU 
(block 2), in which the NN is running. It’s 
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responsible for the final recognition of the exercises 
and the reps counting. 

• Lastly, the results provided by the MCU are sent via 
Bluetooth Low Energy (BLE) protocol (block 3) on 
a smartphone acting as an application interface layer. 

III. HARDWARE 
In order to capture data from all directions, a 3-axes 

accelerometer and a 3-axes gyroscope are used to create the 
dataset for both training and testing phase of the application. 
The new paradigm of edge machine learning requires a 
balanced use of Random Access Memory (RAM) and Flash 
of the MCU, due to the limited resources of the hardware. To 
this end, attention shall be devoted to the size of the NN, in 
terms of bias, weights and data structures. The SensorTile 
module by ST Microelectronics, shown in Fig. 2, is used as 
prototype both in dataset creation phase and in testing phase. 
This hardware module embeds the ultra-low-power 
STM32L476 microcontroller (80MHz clock, 1Mbyte Flash 
and 128Kbyte SRAM), a BLE module (with a peak current of 
8.2mA at 0dBm) used for data transmission and the used 
sensors, namely the system-in-package LSM6DSM with 
accelerometer and gyroscope. Other sensors are assembled on 
the same board such as environment sensors and microphones, 
however they are not used within this application. Finally, the 
SensorTile module is powered by a 100 mAh Li-Ion battery. 
Ultra-low-power sleep modes for both BLE module and 
microcontroller allows low average current consumption, 
resulting in longer battery duration. 

 

Fig. 2. SensorTile Hardware on the left. Prototype of the fitness tracker 
band and axes direction representation on the right. 

IV. DATASET 
A new dataset was created for this work using the 

hardware explained above. A group of 15 volunteers aged 
between 22 and 25 was selected for obtaining the activity 
recordings. Each person performed various series of simple 
exercises wearing the device around the wrist. Three exercises 
were chosen for this application (Squat, Curl, Push-Up), with 
the addition of another class named NAE (Not An Exercise), 
useful to detect rest and wrong execution of exercise. With 
NAE class is also possible to distinguish between an exercise 
and rest as well between series or repetitions. Labels are, then: 

• Squat: quadriceps and glutes exercise (label 1) 

• Curl: biceps exercise (label 2) 

• Push-Up: pectoral and triceps exercise (label 3) 

• NAE: not an exercise (label 4) 

Accelerometer and gyroscopic values were collected with 
20 Hz frequency. Subsequently, collected data were analyzed 
and processed with a MATLAB custom script to correctly 
label each dataset sample. An example of accelerometer data, 
related to curl exercise, is plotted in Fig. 5; as can be seen, 
repetitions are clearly discernable because inertial data vary 
during the execution of the exercise. The NN shall classify the 
exercises and, in order to count also repetitions, it was trained 
with single repetition. With respect to Fig. 5, the repetition 
duration is defined approximately as the time between Ti,n 
(instant in which the movement starts) and Tf,n (the instant in 
which the movements end). Single repetition duration is 
variable depending on the exercise type. For this reason, the 
correct definition of the acquisition window is critical. Short 
windows may enhance performances of the NN but may lead 
to data losses. On the other side, long windows may have 
negative impact during classifications and counting 
operations. A custom MATLAB script was used to collect 
repetition windows (yellow box in figure 5) of the same length 
to be able to label each window as a specific exercise 
repetition. So, each entry of the dataset is a fixed-length 
window of 68 sample for a total of 3.4 seconds 
(68/20Hz=3.4s) in which each sample is composed by 3 axes 
data acquired by accelerometer and 3 axes data acquired by 
gyroscope (6 values for each sample). Data between two 
successive windows are labeled as NAE together with other 
data acquired while the user is resting. Repetitions of Squat, 
for example, can be counted thank to a series of alternated 
NAE and Squat recognition of the NN. A total of 700 
repetitions for the 3 exercise were collected of which 80% was 
used to train the NN and 20% for test.  

V. NEURAL NETWORK 
Among various architectures, CNN was chosen for its 

characteristics. Initially, a Recurrent Neural Network (RNN) 
was developed with the same dataset, showing not satisfactory 
performances with accuracy around 65%.  Like Multi-Layer 
Perceptron (MLP), the CNN is a network where the main 
operation is convolution [11]. They are often used in Machine 
Learning applications with imaging recognition and clustering 
[12]. In the current state of the art they are also applied on 
HAR problems, e.g. running-walking or sitting-standing 
recognition [13]. Thanks to convolution, the CNN can reduce 
the input pattern in any layer, trying to keep the information 
content intact, with the use of special filters. After sliding the 
filter over all the locations, the output layer called Activation 
Map is passed through activation function and then for a 
pooling layer to reduce problem size. In the last, the actual 
classification happens; the output is composed by n positive 
value whom sum is equal to 1, with n the number of labels. 

For this work, the CNN was chosen for three main reasons. 
First one, it doesn’t require data pre-processing to extract 
features. Considering the edge machine learning applications, 
this is helpful because the introduction of pre-processing 
operations on the MCU can increase the complexity and the 
needed memory. Nevertheless, the reduction of the 
computation burden of the MCU has a positive impact on the 
power consumption, as the system is battery powered. The 
second benefit is the weight sharing, that bring to the network 

 



less links between layer and a memory saving. Lastly, the 
CNN can exploit the concept of invariance, in fact, for the 
pattern discrimination purpose, response of the network 
remains almost the same despite simple transformations of 
input patterns (like small temporal or spatial alterations).   

This last benefit makes the application generalizable for 
any user. In one repetition’s movement of an exercise there 
are 68 samples (each with 6 values). So even if they are 
slightly different from data with which the network has been 
trained, it is still possible to classify the exercise correctly. 

In this project a CNN-1D was used. It has a 3D array input 
of [68, 6, 700] size and an array output containing 4 values 
corresponding to the probability related for each class 
depending on the specific input pattern.  This CNN has two 
hidden layers, with a kernel size equal to 3. Activation 
functions are relu in the first layer and sigmoid in the second. 
Filters have both the same dimension. MaxPooling was used 
to further reduce dimension and redundancy without altering 
information content. Training (80% of dataset entries) and test 
remaining 20%) were performed 10 times with a number of 
epochs equal to 200 and the accuracy was calculated 
evaluating the cross-entropy; when this has reached a value 
greater than 95%, the testing phase started, both on desktop 
and on target (MCU).  

VI. TESTING AND RESULTS 
 After generating model, the NN was tested on Keras with 
data not present in the input space. For all input patterns (about 
50), the CNN gave the right output every time. After this 
phase, the challenge was to convert this CNN in C-code 
compatible with the MCU firmware. For this reason, a free 
software released by STMicroelectronics was used, namely 
STM32CubeMX, and his tool STM32CubeAI. This tool can 
translate the NN from .h5 saved format to C library, 
automatically generating the APIs to use in the firmware. In 
this tool, there are three different bundle about code 
generation: Validation, System Performance and Application 
Template. The first and the second have been used during the 
validation and the testing of device using the NN, the last was 
selected to write the firmware about this application. This tool 
allows a further compression of the NN to reduce the occupied 
memory. Subsequently, the CNN was desktop tested with 
STM32CubeAI and then it was tested on target, with NN in 
run-time on the MCU. In both tests, random and unknown data 
input are used, for a total of 70 input. In each of these, the 
CNN gives the right output and the confusion matrix is 
consistent with the obtained results, having only main 
diagonal elements different from 0 as can be seen in Fig. 5. 

In this part of the work, application performances have 
been analyzed, such as occupied memory from NN (both 
RAM and Flash), or inference time needed to produce an 
output from the network (which was estimated to be around 
80ms). The Table 1 shows the values of RAM and Flash 
memory, represented for any configuration of compression. In 
this work the selected compression is 8x to obtain more 
memory for future developments, as the compression doesn’t 
reduce the NN performances. 

TABLE I.  COMPRESSION AND MEMORY  

Compression RAM FLASH 

- 16,25 Kbytes 416,34 Kbytes 

4x 16,25 Kbytes 117,47 Kbytes 

Compression RAM FLASH 

8x 16,25 Kbytes 66,53 Kbytes 

 

 
Fig. 3. Confusion matrix in both testing activities on desktop and on target. 

 
Fig. 4. Visual representation of the counting reps algorithm. When the NN 

recognises an exercise followed by a NAE, the rep count for that 
exercise is increased by one. 

After checking that MCU’s memory was enough, the 
application firmware was conceived. For exercise recognition, 
overlapping windows of raw sensor data are provided to a 
CNN that predicts the type of exercise for each window. For 
repetition counting, MCU analyzes outputs of CNN. During 
the execution of the exercise, an example of CNN output is 
showed in Fig. 4. The NN recognizes and classifies “NAE” 
when the user starts/finishes a single repetition. In this way, 
MCU processes this information and identifies how many 
times that condition has occurred. After the execution of the 
ML algorithm, the output is transmitted via BLE channel on 
the smartphone application, under development. Further 
details will be provided during the conference.    
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Fig. 5. Accelerometer data captured while executing Curl Exercise. Highlighted areas refers to the execution of a single repetitions. 

 




