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Abstract— Light Emitting Diodes (LEDs) are the longest 
lasting source of artificial illumination whose duration can 
exceed 50.000 continuous working hours. Nevertheless, they 
show a gradual reduction of the luminous flux due to the 
increase of the device temperature. In this work, a Machine 
Learning algorithm will be introduced and discussed, able to 
predict the junction temperature value of a LED in real-time 
while connected in the end-user circuit, taking into account 
current and voltage flowing in the device and, further, the actual 
model and aging of the LED. The algorithm was implemented 
on a microcontroller, showing the feasibility of performing edge 
machine learning on tiny yet powerful devices. 
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I. INTRODUCTION 
Light-emitting diodes (LEDs) are a good choice for general 
illumination due to low operating voltage, high luminous 
efficiency and long lifetime [1], [2]. The LED system is 
widely used in different field (signaling, automotive and 
consumer electronics) and they are composed by packages, 
optics, thermal and power management systems. The heat 
increasing in the LED may decrease its efficiency. Packaging 
materials have contributed toward improving the efficiency 
of LED packages [3], [4]. The thermal resistance greatly 
influences the junction temperature (𝑇") of the LED and, in 
particular, a higher thermal resistance affects the luminous 
efficiency with variations in the light emitted. Consequently, 
the prediction of the junction temperature is fundamental to 
guarantee the performance of the LED; unfortunately, 𝑇"  
cannot be measured directly. Generally, to estimate 𝑇" , the 
principal method used is the transient thermal measurement 
using lab equipment [5], [6]. In this method, the correlation 
between forward voltage and temperature is predetermined in 
a temperature-controlled room with small sensing current (to 
avoid self-heating) [7]. However, this method is time 
consuming. Some studies numerically estimated the junction 
temperature and the temperature distribution around the LED 
device, such as Liu et al. [8].  Another method for 𝑇"  
estimation is based on the InfraRed (IR) thermometry [9] but 
this technique manifests different problems [6], [10]. In this 
work an innovative method for the prediction of the LED 
junction temperature is proposed: we use machine learning 
techniques to monitor the junction temperature of a diode to 
eventually implement a management of the LED's heat and 
luminous flux, instead of using temperature sensors [11] that 

should be integrated with the LED fabrication technology. 
This work is moved by the spread of the cooling technology 
that is regarded as an important requirement for a reliable 
operation of electronics devices [12], [13]. The state of the art 
of LED thermal management lies in the use of techniques 
based on conduction and convention thermodynamics [14] 
(passive thermal management) or on subsystems that force 
the exit of heat outside the system (active thermal 
management) [15]. As LEDs use is increasing rapidly, power 
flow control can be carried out in an Internet of Things (IoT) 
scenario (e.g. Smart Cities) [16] through a machine learning 
system capable of predicting the junction temperature of the 
LED using tiny devices. This is made possible through the 
state of the art of machine learning, the Deep Neural 
Networks (DNNs)[17] which require less computational 
power in the application phase than in the training phase. This 
can be exploited to execute artificial intelligence algorithms 
on devices with small memory and computational power. In 
fact, in the learning phase, a large amount of data is used to 
calculate the weights and biases of the network and this 
involves the use of a powerful computational machine. Once 
the learning phase has been completed and the network has 
been trained, it can be used, with less computational demand, 
for real time applications on edge devices [18]. 
 In our project, if the temperature expected by the model is 
above the limits or a threshold, it is possible to eventually 
reduce the current in the LED diode by modifying the value 
of the driving signal, a Pulse Width Modulated (PWM) digital 
signal generated by the microcontroller (PWM1 in Fig. 2).  

The calculation of the junction temperature 𝑇#  is not in fact 
straightaway since it passes from the calculation of various 
resistance values, whose resulting value is the thermal 
resistance 𝑅𝛩#&'(), defined as the temperature variation per 
unit of heat:  

𝑅𝛩#&'() =
+,&+-./

01
,   (1) 

- 𝑅𝛩#&'(): thermal resistance between the junction  and 
the reference point ( °3

4
 ); 

-  𝑇"	: temperature junction ( °𝐶); 
- 𝑃8  : power dissipated by the led (𝑊); 
- 𝑇'(): room temperature; 

 
Since the room temperature 𝑇'() and the dissipated power 

𝑃8  can be calculated directly, the only unknown parameter  to 
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solve the problem is hence the thermal resistance, which, 
however, depends on the various layers involved (junction 
resistance, PCB, filler and heat sink resistance). The various 
resistance values are difficult to be determined without the 
data provided by the manufacturer and therefore, to predict 
the junction temperature of the LED, we can automate the 
calculation by assigning the task to a machine learning 
algorithm. 
 

In Section II, the hardware and software resources used in 
this study will be presented. Section III provides insights 
about the dataset extraction and the obtaining of the model. In 
Section IV and V, respectively, operation and validation of the 
edge machine learning algorithm are presented. Conclusions 
are depicted in Section VI.  

II. HARDWARE	AND	TOOL 
The microcontroller that was used in the realization of the 

control system is the STM32F401RE, mounted on the 
NUCLEO-F401RE development board. According to 
documentation [19], the CPU has a 32-bit ARM Cortex-M4 
architecture, a maximum operating frequency of 84MHz, 
512KB of Flash, 96KB of SRAM, 50 GPIO (on which an 
external interrupt can be set), a 12-bit ADC converter with 16 
multiplexed input channels, 7 Timers and integrated serial 
communication protocol. The development board also 
supports connectivity with Arduino and allows for easy 
expansion of functionality with a wide selection of 
specialized shields. Finally, the board integrates a linker, the 
ST-LINK, which acts as both a debugger and a programmer. 
The STM32F401RE microcontroller has the task of 
processing the input data and predict the junction temperature 
of the LED according to the LED part number, aging of the 
device and, in particular, of voltage and current values 
measured from the LED. The current is measured through a 
1 W shunt resistance in series with the LED by means of an 
INA285 Integrated Circuit (IC), used as a current amplifier. 
In addition, two transistors are used, whose gates are driven 
by two different PWM signals, in order to differentiate the 
measurement phase (PWM2 in Fig. 1) with that of normal 
LED operation (PWM1). 

First, the DNN was realized in Python using as libraries 
Keras with Tensorflow in backend, then, in order to 
implement the model at an embedded level, we used the X-
CUBE-AI tool [20] (vers. 4.0.0), an expansion of the 
STM32CubeMX environment that extends its potential by 
allowing an automatic conversion of pre-trained Neural 
Networks to more powerful hardware. X-CUBE-AI also 
optimizes libraries by modifying, for example, layers and 
reducing the number of weights - the reduction is only 
applicable to dense layers and is based on weight sharing 
algorithms such as K-means clustering - to make the network 
more "memory-friendly". Finally, the code generator 
produces a library that developers can use in their custom 
applications. X-CUBE-AI adds tools in the CubeMX 
application GUI that allow to analyze the model, compress 
the weights and validate the model both on the desktop and 
on the targets. X-CUBE-AI 4.0.0 only supports the 
conversion of DNN and no of SVR or Random Forest, 
although the accuracy of their models in Python is very high. 

Furthermore, a CNN has not been used as it is useful mainly 
when the number of inputs is very high. 

III. DATASET AND MODEL	
In the creation of the dataset, 5 Led LUW CQUAR [21] by 

OSRAM were used. The LEDs, connected in series, are first 
stressed with a forward voltage value of 3.0 V and a current 
of 0.5 A for 900 hours. They are then treated in the 
thermostatic oven, within which they are brought to their 
maximum junction temperature (135 ° C), starting from the 
room temperature, with a step of 10 ° C.  

During this process, the current-voltage characteristics (I-
V) of each of the 5 LEDs are obtained using the Agilent 
4155C instrument, setting a range of input currents. For each 
current value, the instrument returns a voltage value, until the 
entire curve typical of a LED is built, whose characteristic 
coincides with that of a diode (Figure 3). Note that, by 
increasing the temperature, the characteristic shift to the left 
[22], [23]. To derive the samples of our dataset, which 
consists of 165000 elements, the current was increased from 
10 µA to 10 mA (region of the characteristic in which the 
diode behaves linearly) with a step of 10 µA, in order to 
realize a matrix table in which, at a given current value, 
corresponds a voltage value, but not necessarily the same 
temperature value, which is also a function of the aging to 
which the LED has been subjected. 

 

 
Fig. 1. Circuit schematic 

 

Fig. 2. Prediction on testing 

Data pre-processing is fundamental in the training of the 
neural network. The dataset was balanced, performing both a  

 

 



mixing of the data - since these were taken incrementally - 
and a standardization of the input values, using the 
preprocessing method. Standardization is in fact a common 
practice, which allows the model to learn better and faster, 
taking advantage of a Gaussian distribution with zero mean 
and unit variance. Subsequently, we defined the model. The 
prediction of the LED junction temperature is in effect a 
regression problem. We provide the model with 4 input 
values: current (A), voltage (V), aging in hours and LED 
model; the target, instead, is the value that the model must 
predict, i.e. the temperature (expressed in degrees Celsius). In 
the model definition, we used 2 hidden layers, excluding the 
input and output level, and relu as activation function. 
Obviously, the output layer consists only of a perceptron, 
being the regression problem.  

 
Fig. 3. LED’s characteristic in a) logarithmic scale and b) in linear scale 

Moreover, due the fact that the problem is not of 
classification type, as objective function we use the mean 
squared error instead of the cross entropy and, as an 
optimization function, the Adam. 

To avoid overfitting and underfitting, we use techniques 
such as L1-regularization and L2-regularization; those 
techniques allow to apply penalties on the parameters of the 
layer or on the activity of the layer during the optimization. 
Moreover, to overcome a too strong adaptation to the dataset 
used for training, we also make use of batching, validation at 
the end of each epoch and early stopping. 

The network was also reduced in the conversion phase 
by taking advantage of the compression provided by the X-
CUBE-AI tool. The conversion allows the reduction of the 
memory space (from 104.8 KBytes to 14.7 KBytes using an 
8-bit quantization), but not a variation of RAM and MACC. 

IV. WORKFLOW AND OPERATION 
As a demo of the functioning and also for testing purposes, 

a workflow that provides 5 seconds of LED ON and 3 
seconds of LED OFF was conceived. 

To manage the timings within the code, we use two timers 
(TIM3 and TIM4); overflow happens after 625 microseconds 
and, each time one of the two timers reach the overflow, a 
variable is incremented. Starting from the initial condition 
(condition of normal operation with the LED ON), the 
increase stops when the timer counts 5 seconds, after which 
the reading process will be started using the IA model. 
However, the reading process is not started immediately, but 
after 1.5 seconds, to allow time for the current to stabilize in 
the circuit following the enabling of the second PWM. 3 
seconds after disabling the first PWM, the LED is enabled 
again. The model is initialized in the main function during the 
start-up phase and the neural network is defined according to 
the activation functions and weights stored in the Flash ROM.  

V. VALIDATION AND MEASUREMENT 
During the validation phase, through the validation on 

target with the STM32CubeMX tool, we analyzed the 
model's inference time on the microcontroller. In particular, 
using 10 inputs, the average inference time at the 84 MHz 
frequency was estimated to be 2 ms, meaning that the system 
is to predict the junction temperature of the LED in 2 ms.  

Furthermore, we have also used the HAL_GetTick() 
method of the HAL library to be able to directly measure the 
run time of the model on the microcontroller at run time.  

To verify the effective operation of the measurement 
system, we used the Fratelli Galli G-2100 thermostatic oven, 
which has inside a PT100 temperature sensor with an 
accuracy of 1 ° C. In the test phase, the PWM that regulates 
the normal operation of the LED has been disabled, not to 
influence the junction temperature of the diode with self-
heating. The objective is, in fact, to force the temperature by 
means of the thermostatic oven, to be able to conclude that 
the junction temperature coincides with that of the system 
that we set. Therefore we only enabled the second PWM (at 
room temperature a current of 0.6mA flows), so that the 
power dissipated is minimal, and therefore the temperature 
does not differ from the one we set. The current flowing in 
the diode 𝐼8 is: 

𝐼8 = 	 𝐼;(𝑒
>?1
@AB − 1),   (2) 

 
and it strongly depends on the temperature. So, varying the 
temperature of the system - approximate to that of the 
junction for the hypotheses in which we have set - the current 
in the circuit varies and the model will succeed effectively in 
capturing the logic of the system. The test measurements 
were carried out starting from a temperature of 35 °C and, 
with a step of 5 °C, the temperature was brought to 130 °C.  
5 values were taken every 5 degrees, to obtain the expected 
average temperature value. To be sure of the temperature 
reached in the climatic chamber, before taking the values, a 
temperature stabilization inside the chamber was expected.  
The data, during the testing phase, was sent by the 
microcontroller to a PC using the serial communication 
protocol USART.  

 

 

a) 

b) 



VI. CONCLUSIONS 
In this work, an innovative method for the prediction of the 

LED junction temperature is proposed using machine 
learning techniques. As reported in Fig. 4, the prediction error 
is more accurate for temperatures above 50 °C, typical values 
in standard LED operations. The model is therefore able to 
capture the logic of the problem with a good accuracy (±2 °C) 
in the temperature range of interest (50 °C – 110 °C).  The 
system was implemented in an edge device. The inference 
time of the model is 2 ms, assuring at the same time low 
power consumption and quick response. 

The results can be further improved. In fact, due to the 
connections and the breadboard used in the test phases, a 
parasitic resistance is introduced, variable with the 
temperature, which inevitably alters the input values to the 
ADC of the microcontroller. The engineering of a custom 
PCB (Fig. 5) will improve the accuracy of the measurement 
system. Related results with the improved testbed will be 
shown during the conference. 

 

 
Fig. 4. Error on prediction  
 
 

 
Fig. 5. Custom PCB shield mounted on a NUCLEO ST Board 
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