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Abstract The research of a formulation to model

non-local interactions in the mechanical behavior of

matter is currently an open problem. In this context, a

strong non-local formulation based on fractional

calculus is provided in this paper. This formulation

is derived from an analogy with long-memory vis-

coelastic models. Specifically, the same kind of

power-law time-dependent kernel used in Boltzmann

integral of viscoelastic stress-strain relation is used as

kernel in the Fredholm non-local relation. This non-

local formulation leads to stress-strain relation based

on the space Riesz integral and derivative of fractional

order. For unbounded domain, proposed model can be

defined in stress- and in strain-driven formulation and

in both cases the stress–strain relation represent a

strong non-local model. Also, the proposed strain

driven and stress driven formulations defined in terms

of Riesz operators are proved to be fully consistent

each another. Moreover, the proposed model posses a

mechanical meaning and for unbounded non-local rod

is described and discussed in detail.

Keywords Fractional calculus � Non-local model �
Integral non-locality � Strong non-locality

1 Introduction

Nowadays, the increasing diffusion of micro- and

nanotechnologies has recently generated the need of

mathematical models capable of providing reliable

simulations of the mechanics of micro- and nanos-

tructures. The classical continuum mechanics theory

cannot be used to model size effects at small scales,

due to its inherent scale-independent behavior. On the

other hand, other strategies to simulate micro- and

nanomechanics, such as molecular dynamics, are

computationally expensive and sometimes even pro-

hibitive. For these reasons, in the last decades non-

local models have known a considerable interest in the

field of micro- and nanomechanics. From the pioneer-

ing works of Mindlin [1] and Eringen [2] many non-

local approaches have been proposed with the purpose

of capturing different aspects of small scale mechanics
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such as wave dispersion, stiffening and/or softening

effects.

Non-local models are subdivided into two main

classes [3]: strong or integral non-local models,

characterized by constitutive relationships or govern-

ing equations that involve integrals of some state

variables (strain, displacement, stress) and weak or

gradient non-local models, obtained as generalization

of classical local constitutive laws enriched by addi-

tional higher-order terms.

The idea of formulating a constitutive law in

integral form dates back to 1972 [2] with the purpose

of predicting waves dispersion phenomena not pro-

vided by classical continuum theory. This approach,

often labeled as strain driven model, has also been

effective in modeling other phenomena such as screw

dislocation [4]. Nevertheless, in presence of bounded

domains this approach provides paradoxical results,

such as violation of the static equilibrium [5–7]. For

this reason, manymodifications to the original Eringen

model or alternative formulations have been proposed,

such as local/non-local mixture models [8, 10–12],

strain difference models [13–15], the peridynamic

model [16], the mechanically based [17–22] and, more

recently, the stress driven model [7, 23]. All these

approaches belong to the class of strong non-locality

and are not affected by the inconsistency of the

original Eringen model. Further, each approach has

some advantage, such as the capability of providing

analytical solution [7, 23, 24], the possibility to be

justified on a physical basis [16, 17] or the possibility

to define an associated finite element formulation

[13, 19, 25, 26]. Gradient models [27–39] have also

been proposed in order to study non-local phenomena.

Some interesting results have been obtained in liter-

ature with these models. However, differently from

the integral formulations, only local operators are

involved in the mathematical description of these

models, therefore defined as weak non-local models.

For this reason strong non-local models appears more

attractive for the simulation of non-local effects.

Recently, some studies have proposed generaliza-

tions of existing non-local models that involve the

presence of fractional-order operators in the non-local

constitutive equation [40]. Indeed, fractional order

derivatives and integrals are by definition non-local

operators and appear suitable in modeling non-local

phenomena [41, 42]. This strategy has been proposed

both for integral models [43–46] and for gradient

models [47, 48], not only in non-local elasticity but

also in non-local fluid mechanics [49–51]. Recently, it

has been shown that a proper definition of a fractional

non-local model is capable of modeling both stiffening

and softening non-local effects [52], typical of integral

and gradient models, respectively.

In this paper, the fractional calculus approach to

non-local elasticity is adopted with two main pur-

poses. First, the adoption of power-law attenuation

function leads to truly strong non-local models, i.e.

integral non-local models which inversion leads again

to integral non-local models. Conversely, strong

integral non-local models with exponential Helmholtz

kernel leads to gradient models with additional

boundary conditions (BC), characterized by the pres-

ence of local differential operators only. Second, it is

shown that with a proper arrangement of the power-

law attenuation functions, the main integral non-local

models, i.e. the strain driven, the stress driven and the

peridynamic models, are equivalent each other. With

this result, the main limitations of each of these

approaches is overcome.

The paper is organized as follows. In Sect. 2, the

basic definitions of fractional operators are introduced.

Section 3 describes the main integral approaches and

their gradient counterparts obtained by adopting expo-

nential kernel. In Sect. 4, the equivalence between

strong non-local models with power-law attenutation

functions is demonstrated. In Sect. 5 the main results

and future developments are briefly discussed.

2 Preliminaries on fractional calculus

In this section some basic concepts and definitions of

fractional order operators are introduced.

The left sided and right sided Riemann-Liouville

(RL) fractional integrals of order a 2 Rþ of a function

f(x) are defined as

ðaIax f ÞðxÞ ¼
1

CðaÞ

Z x

a

ðx� nÞa�1f ðnÞdn; ð1aÞ

ðxIab f ÞðxÞ ¼
1

CðaÞ

Z b

t

ðn� xÞa�1f ðnÞdn; ð1bÞ

where Cð�Þ is the Euler Gamma function. Conversely,

the right sided and left sided RL fractional derivatives

of order a are defined as
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aD
a
xf

� �
ðxÞ ¼ 1

Cðn� aÞ
dn

dxn

Z x

a

f ðnÞ
ðx� nÞa�nþ1

dn

ð2aÞ

xD
a
bf

� �
ðxÞ ¼ ð�1Þn

Cðn� aÞ
dn

dxn

Z b

x

f ðnÞ
ðn� xÞa�nþ1

dn

ð2bÞ

where n� 1\a\n. Notice that the definitions given

in Eqs. (1) and (2) are suitable also for a ! �1 and

b ! 1.

Integration and differentiation of fractional order

may be performed also in unbounded domains. To this

regard Riesz fractional integrals and derivative are

defined as

RIaf
� �

ðxÞ ¼ 1

2mcðaÞ

Z 1

�1

f ðnÞ
jx� nj1�a dn

¼ 1

2 cos ap=2ð Þ �1Iax f
� �

ðxÞ þ xI
a
1f

� �
ðxÞ

� �

ð3aÞ

RDaf
� �

ðxÞ ¼ 1

2mcð�aÞ

Z 1

�1

f ðnÞ � f ðxÞ
jx� njaþ1

dn

¼ 1

2 cos ap=2ð Þ �1Da
xf

� �
ðxÞ þ xD

a
1f

� �
ðxÞ

� �

ð3bÞ

where mcðaÞ ¼ CðaÞ cosðap=2Þ. It is noteworthy that

Riesz fractional operators may be expressed in terms

of RL operators, as revealed by the definitions in

Eqs. (3).

For the developments of the next sections, a useful

definition is the Caputo fractional derivative, in its

right sided and left sided formulations

C
a D

a
xf

� �
ðxÞ ¼ 1

Cðn� aÞ

Z x

a

f ðnÞðnÞ
ðx� nÞa�nþ1

dn ð4aÞ

C
x D

a
bf

� �
ðxÞ ¼ ð�1Þn

Cðn� aÞ

Z b

x

f ðnÞðnÞ
ðn� xÞa�nþ1

dn ð4bÞ

provided that f(x) is differentiable up to n-order.

Remarkably, the Caputo fractional derivatives in

Eqs. (4) may be obtained from the RL fractional

derivatives by means of the following relationships

C
a D

a
xf

� �
ðxÞ ¼ aD

a
x f ðxÞ �

Xn�1

k¼0

f ðkÞðaÞ
k!

ðx� aÞk
 !" #

ð5aÞ

C
x D

a
bf

� �
ðxÞ ¼ xD

a
b f ðxÞ �

Xn�1

k¼0

f ðkÞðbÞ
k!

ðb� xÞk
 !" #

ð5bÞ

Correspondingly, the RL fractional derivatives can be

obtained from the Caputo derivatives as follows

aD
a
xf

� �
ðxÞ ¼ C

a D
a
x f

� �
ðxÞ þ

Xn�1

k¼0

f ðkÞðaÞ
Cð1þ k � aÞ ðx� aÞk�a

ð6aÞ

xD
a
bf

� �
ðxÞ¼ C

x D
a
bf

� �
ðxÞþ

Xn�1

k¼0

ð�1Þk f ðkÞðbÞ
Cð1þk�aÞðb�xÞk�a

ð6bÞ

More details about the definitions and the properties

introduced in this section may be found in [41, 42].

3 Existing non-local approaches

In this section the main existing integral non-local

models are introduced. The main strengths and

weakness are highlighted for the strain driven, stress

driven and for the peridynamic model and mixture

models are also briefly discussed. The non-local

models are introduced with reference to the model of

a rod, but the concepts highlighted in the following are

valid also for beam models.

3.1 Strain driven models

The first and most celebrated integral non-local

formulation is due to Eringen [2, 4] and was initially

introduced to solve wave dispersion problems in

unbounded domains. It assumes that the stress r at a

point x of a non-local body B is given by a convolution

between the elastic strain field e and a scalar positive

kernel g. That is,

rðxÞ ¼
Z
B
gðx; nÞEðnÞeðnÞdn ð7Þ

where E is the elastic stiffness tensor and x, n are
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position vectors. Since in the constitutive Eq. (7) the

stress field is obtained from the strain field, the

Eringen model is often labeled as strain driven. By

particularizing the integral law in Eq. (7) to an infinite

rod, an integral non-local constitutive relation between

the axial force N and the axial strain e is obtained. That
is,

NðxÞ ¼
Z 1

�1
gðx� nÞkaðnÞeðnÞdn ð8Þ

where the beam axis coincides with the x-axis and

kaðxÞ is the elastic axial stiffness. The model in Eq. (8)

is capable of capturing wave dispersion phenomena in

unbounded domain that can not be explained in the

theory of local elastic continuum. The kernel g is the

attenuation function that can be selected among

exponential, Gaussian or power-law type functions

and must satisfy the properties of symmetry, positivity

and limit impulsivity. A frequent choice is the bi-

exponential Helmholtz function defined as follows

gðxÞ ¼ 1

2Lc
exp � jxj

Lc

� �
ð9Þ

where Lc is a characteristic length governing the

spatial decaying of the attenuation function. Notice

that for Lc ! 0 the attenuation function in Eq. (9)

reverts to the Dirac’s delta function (impulsivity

property) and Eq. (7) reverts to the Hooke law. With

the choice of the attenuation function in Eq. (9) and

assuming a constant axial stiffness ka ¼ EA, being E

the Young modulus and A the cross section area of the

rod, a differential formulation equivalent to Eq. (8) is

found by inverting the constitutive law (8) in the

Fourier domain:

eðxÞ ¼ 1

EA
NðxÞ � L2cN

ð2ÞðxÞ
h i

ð10Þ

Interestingly, the formulation of Eq. (8), belonging to

the class of so-called strong non-local formulations, is

equivalent to an ordinary differential constitutive law

and hence belonging to the class of weak non-local

models. This is quite surprisingly, since the mathe-

matical structure of Eq. (8) describes a mechanics

involving long-range interaction, while in Eq. (10)

only local operators (second order derivative) related

to local interactions are present.

Further, by considering a limited domain 0 6 x 6 L

in Eq. (8), simple mathematical manipulations still

lead to Eq. (10) with the following constitutive

boundary conditions (BC):

Nð1Þð0Þ ¼ 1

Lc
Nð0Þ

Nð1ÞðLÞ ¼ � 1

Lc
NðLÞ

8>><
>>:

ð11Þ

where the signs in Eq. (11) are consequence of the fact

that the first derivative of the attenuation function is an

odd function [7]. Eqs. (11) are clearly in contrast with

the static boundary conditions of most structural

schemes. Also from the integral formulation it is

possible to prove that inserting the equilibrated stress

in Eq. (8) particularized in the bounded domain

0 6 x 6 L, the Fredholm equation admits no solution

in terms of elastic strain [7]. Therefore, the incompat-

ibility between the equilibrium requirements and the

constitutive non-local law reveals that applying the

strain-driven model to bounded domains leads to ill-

posed mechanical problems.

3.2 Stress driven models

An efficient strategy to overcome the limits of

Eringen’s formulation in presence of bounded

domains has been developed in Refs. [7, 23]. It

consists in an integral non-local constitutive law, the

stress-driven model, obtained by formally swapping

the roles of stress and strain fields in the strain driven

model of Eq. (7). The formulation belongs to the class

of strong non-local models. According to the stress

driven formulation, the elastic strain field at a point x

of the continuous body B is given by the convolution

integral between the local elastic strain field e and the

attenuation function Uk. That is,

eðxÞ ¼
Z
B
gðx; nÞCðnÞrðnÞdn ð12Þ

where C is the elastic compliance C ¼ E�1.

Applied to a 1-D domain, such as a rod, the stress-

driven model gives

eðxÞ ¼
Z 1

�1
gðx� nÞ NðnÞ

kaðnÞ
dn ð13Þ

Similarly to the Eringen model, by assuming the bi-

exponential attenuation function of Eq. (9), for Lc ! 0

Eq. (12) reverts the Hooke law. An equivalent

differential formulation may be found by inverting
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the constitutive law in Eq. (13), with the choice of the

attenuation function (9), in the Fourier domain. That

is,

NðxÞ ¼ EA eðxÞ � L2ce
ð2ÞðxÞ

h i
ð14Þ

If the rod is limited in the domain 0 6 x 6 L, simple

mathematical manipulations of Eq. (13) still lead to

Eq. (14) with the following constitutive BCs

eð1Þð0Þ ¼ 1

Lc
eð0Þ

eð1ÞðLÞ ¼ � 1

Lc
eðLÞ

8>><
>>:

ð15Þ

Unlike BCs in Eq. (11) related to the strain driven

model, those in Eq. (15) are not in contrast with the

equilibrium of the rod, hence the stress driven model

leads to well posed problems providing exact solutions

capable of describing the actual behavior of micro-

and nano-structures, both in static and dynamical

problem. However, similarly to the Eringen model, the

inverse constitutive law of the stress driven integral

formulation involves only local differential operators,

capable of capturing a mechanics with local interac-

tions only.

3.3 Peridynamic models

The peridynamic model was firstly introduced by

Silling [16]. According to this model, each couples of

volume elements in an elastic body mutually

exchanges forces proportional to their volumes, their

relative displacements and an attenuation function

depending on their distance. Contact forces charac-

terizing the classical Cauchy continuum are not

included. With this approach, the non-local force in

x, due to the relative motion with the volume element

in n, is written as:

df x; nð Þ ¼ ~E uðnÞ � uðxÞ½ �G x; nð ÞdVðxÞdVðnÞ ð16Þ

where ~E is the non-local modulus and G x; nð Þ ¼
g x; nð ÞJðx; nÞ being Jðx; nÞ the Jacobi directional

tensor containing the components of the unit vectors

associated with the direction x� n, that is the

direction of the non-local force df x; nð Þ. The resultant
of non-local forces on the volume element in x is

evaluated by integrating Eq. (16) over the domain B of

the body:

df xð Þ ¼ dVðxÞ ~E
Z
B
uðnÞ � uðxÞ½ �G x; nð ÞdVðnÞ

ð17Þ

It follows that the static equilibrium of the generic

volume element in x is written as

~E

Z
B
uðnÞ � uðxÞ½ �G x; nð ÞdVðnÞ ¼ �bðxÞ ð18Þ

being bðxÞ the external volume force field per unit

volume. The model in Eq. (18) belongs to class of

integral or strong non-local models. Since non-local

forces depend of the displacement field, the peridy-

namic model is considered a displacement based non-

local model. The main advantage of this model is its

mechanical representation since the non-local inter-

actions in Eq. (16) may be interpreted by the approach

described in [17, 19]. In order to substantiate this

statement, consider a non-local peridynamic

unbounded rod with cross section area A. Due to the

relative motion uðnÞ � uðxÞ, an axial force dfx x; nð Þ is
applied to the volume element dVðxÞ ¼ Adx:

dfx x; nð Þ ¼ ~EA2 uðnÞ � uðxÞ½ �g x� nð Þdxdn ð19Þ

and a force dfx n; xð Þ ¼ �dfx x; nð Þ is applied to the

volume element dVðnÞ ¼ Adn. From a mechanical

point view, the force in Eq. (19) mutually exerted

between the volume elements in x and in n can be

modeled as an elastic interaction due to the presence of

a long-range spring connecting the two volumes dV(x)

and dVðnÞ, as depicted in Fig. 1. To the long-range

spring is associated a non-local distance-dependent

stiffness knlðx� nÞ ¼ ~EA2gðx� nÞdxdn.
Considering Eq. (19) the equilibrium equation of

the generic volume element dV(x) of an unbounded

rod may be written as

Fig. 1 Mechanical representation of the non-local interaction

between two volume elements of the rod
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~EA2

Z 1

�1
uðnÞ � uðxÞ½ �g x� nð Þdn ¼ �bðxÞ ð20Þ

being u the axial displacement and b(x) the axial force

per unit length.

The peridynamic model has been proven powerful

in solving elastic problems in presence of discontinu-

ity of the domain and it is suitable for the modeling of

non-local elastic phenomena. However, since no

contact forces are taken into account in the peridy-

namic formulation, the classical notion of Cauchy

stress is not contemplated in this theory. Further, in

presence of bounded domain non-local BCs, cumber-

some to handle, appears. By assuming the attenuation

function in Eq. (9) and considering the unbounded rod

introduced before, inversion of the equilibrium equa-

tion Eq. (20) in the Fourier domain leads to an ordinary

differential equation. That is,

~EA2L2cu
ð2ÞðxÞ ¼ �bðxÞ þ L2cb

ð2ÞðxÞ ð21Þ

Analogously to the case of strain driven and stress

driven models, a strong non-local formulation with the

peridynamic approach (Eq. (20)) is equivalent to a

weak non-local formulation (Eq. (21)). It is noticed

that Eq. (21) is of the same order of the classical

differential equation of a local elastic rod. If a rod with

finite length L is considered, by means of some

manipulations the integral model again corresponds to

a differential equation given as:

~EA2L2c cðxÞuð2ÞðxÞ þ 2cð1ÞðxÞuð1ÞðxÞ
h i

¼ �bðxÞ þ L2cb
ð2ÞðxÞ

ð22Þ

where

cðxÞ ¼
Z L

0

gðx; nÞdn ð23Þ

with the following constitutive BCs

uð1Þð0Þ ¼ bð0Þ � Lcb
ð1Þð0Þ

~EA2Lccð0Þ

uð1ÞðLÞ ¼ � bðLÞ þ Lcb
ð1ÞðLÞ

~EA2LccðLÞ

8>>>><
>>>>:

ð24Þ

Notice that as the boundaries of the integral in Eq. (23)

go to �1, cðxÞ ! 1 and cð1ÞðxÞ ! 0, and Eq. (22)

reverts to Eq. (21).

3.4 Mixture models

The formulations described in the previous Sec-

tions may be further enriched by considering both

non-local interactions, as modeled in the different

approaches, and contact forces between volume

elements as in the classical Cauchy continuum. These

model are labeled as mixture models since they

involve both local and non-local contributions in the

definition of the governing equations.

For an unbounded non-local strain driven rod, such

a strategy may result in the adoption of the following

constitutive equation

NðxÞ ¼ bEAeðxÞ þ ð1� bÞ
Z 1

�1
gðx� nÞkaðnÞeðnÞdn

ð25Þ

where 0 6 b 6 1 weight the amount of local and non-

local contributions. The model in Eq. (25) overcome

the drawbacks related to constitutive BCs of the pure

strain driven model and has been adopted in several

studies [5, 8–10, 13–15, 23]. However both for

unbounded and bounded domains, the constitutive

Eq. (25) is equivalent to an ordinary differential

equation with additional constitutive BCs, as already

observed for the pure strain driven model in Sect. 3.1.

The equivalent differential formulation and the asso-

ciated constitutive BCs are not reported here for

brevity, see [59] for more details. Therefore, while the

mathematical structure of the direct constitutive law in

Eq. (25) is a proper representation of a mechanics

involving long range elastic interaction, the equivalent

differential equation involves only local operators that

do not appear capable of describing the presence of

non-local actions.

Similarly, a mixture model may be formulated also

by assuming the non-local forces are modeled with the

stress driven approach. For an unbounded rod, the

stress driven mixture model may be written as

eðxÞ¼b
rðxÞ
E

þð1�bÞ
Z 1

�1
gðx�nÞNðnÞ

kaðnÞ
dnÞeðnÞdn

ð26Þ

With the same approach, the peridynamic model may

be enriched with contact forces, resulting in the so-

called mechanically-based non-local model, following
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the approach widely studied in several papers

[17, 19–22]. For an unbounded non-local mechani-

cally-based rod model, the governing equation reads

bEAuð2ÞðxÞ þ ð1� bÞ ~EA2

Z 1

�1
uðnÞ � uðxÞ½ �g x� nð Þdn ¼ �bðxÞ

ð27Þ

The advantage of the model in Eq. (27) is that when

formulated for bounded domains the non-local con-

tributions to BCs are negligible in comparison with

local BCS. It follows that the same BCs valid for

problems involving classical local elastic continua still

hold for the mechanically based non-local model.

However, also in this case the strong non-local

formulation is equivalent to a differential equation

involving only local differential operators (see [59] for

more details).

4 Unified formulation with power-law attenuation

function

In the previous section the main integral non-local

models have been introduced and discussed in the

particular case of bi-exponential attenuation function,

that is the most common choice in many theoretical

study involving integral non-local models. It has been

shown that all the considered integral non-local

models can be reduced to differential non-local

models, with additional constitutive boundary condi-

tions, when the attenuation function is selected as the

bi-exponential one in Eq. (9). From amechanical point

of view, the correspondence between a strong non-

local model and a weak non-local model is not

desirable, since it suggests that the integral non-local

model may not be really considered as strong non-

local models. On the other hand, this undesirable

feature of integral non-local models appears to be

related to the particular choice of the attenuation

function g. In order to substantiate this statement, the

case of integral non-local models is compared with the

problem of viscoelasticity that can be interpreted as

non-locality in time and has some analogy with non-

local elasticity.

4.1 Analogy between non-locality

and viscoelasticity (non-locality in time).

In linear viscoelasticity external actions on a vis-

coelastic materials produce effects delayed in time. In

this light, viscoelastic materials are considered mate-

rials with memory, in the sense that past external input

on the viscoelastic material has still consequences at

the actual time. Based on this observation, viscoelas-

ticity may be interpreted as a sort of non-locality in the

time domain.

The first viscoelastic models were formulated by

combining the features of purely elastic solid and of

purely viscous fluids [53], resulting in the well known

Maxwell (series spring-dashpot) and Kelvin-Voigt

(KV) (parallel spring-dashpot) models (see Fig. 2).

The differential governing equation of these models

are given as follows:

_rðtÞ þ rðtÞ=s0 ¼ E _eðtÞ ð28aÞ

_eðtÞ þ eðtÞ=s0 ¼ rðtÞ=g ð28bÞ

being E the spring stiffness, g the dashpot viscosity

and s0 ¼ E=g is the so-called characteristic time.

Linear viscoelastic materials in time domain are

commonly characterized by the creep and relaxation

functions. The creep function J(t) describes the

increasing behavior of the strain when a constant

stress is applied, while the relaxation function R(t)

provides the decreasing behavior of the stress due to an

applied constant strain. As an example, the relaxation

function for the Maxwell model is easily evaluated

from Eq. (28a) by assuming eðtÞ ¼ UðtÞ, being U(t)

the unit step function:

RðtÞ ¼ E exp � t

s0

� �
ð29Þ

while the creep function for the KV model is found

from Eq. (28b) by assuming rðtÞ ¼ UðtÞ:

Fig. 2 Maxwell (a) and KV (b) viscoelastic models

123

Meccanica



JðtÞ ¼ 1� exp � t

s0

� �� �
=E ð30Þ

In the theory of linear viscoelasticity the Boltzmann

superposition principle is assumed valid. Accordingly,

the response in terms of stress (strain) history due to an

applied strain (stress) can be evaluated by means of a

convolution integral, where the relaxation (creep)

function is the kernel:

rðtÞ ¼
Z t

0

Rðt � sÞ _eðsÞds ð31aÞ

eðtÞ ¼
Z t

0

Jðt � sÞ _rðsÞds ð31bÞ

Similarly to the case of non-local elasticity, Eq. (31a)

is a strain driven Boltzmann equation while Eq. (31b)

is its stress driven counterpart.

If the creep and relaxation function in Eqs. (29) and

(30) are assumed in Eq. (31a) and Eq. (31b), respec-

tively, these integral formulations are equivalent to the

differential formulation in Eqs. (28). Although the

mathematical form of Eqs. (31) suggests long memory

of the materials, the equivalent differential equations

in Eqs. (28) appear only suitable to describe memory

effects in short time scales. Further, the parameter s0
governs the time necessary for the creep function and

for the relaxation function to reach a constant value. In

other words, it is a measure of the length of the

memory of the material. In the analogy between

viscoelasticity and non-local elasticity, the parameter

s0 has a role analogous of that of the parameter Lc.

Although simple model as the Maxwell and the KV

exhibit memory effects qualitatively similar to those

of real materials, several studies have been devoted to

the development of viscoelastic models able of

capturing the real behavior of viscoelastic materials

(see e.g. [53] and related references). In the field of

classical viscoelasticity, the memory capability has

been improved by defining more complex viscoelastic

models, constituted by different arrangements of

springs and dashpots as Standard Linear Solid (SLS)

models and other [41]. As the number of springs and

dashpots increases, the number of exponential func-

tion in the creep and relaxation functions, each with a

different characteristic time, increases as well, pro-

ducing models capable of capturing more pronounced

viscoelastic effects. Correspondingly, the maximum

order of (time) derivatives in the associated

differential equation increases. To the limit, this

strategy has lead to the formulation of viscoelastic

models such as the Kelvin Voigt and Maxwell chains

[53] or hierarchical models of Schiessel and Blumen

[55] and of Heymans and Bauwens [54]. Thank to the

high number of time scale in the creep and relaxation

functions, these models are characterized by very long

memory, but are also difficult to calibrate due to the

high number of mechanical parameters. On the other

hand, from the observation that creep and relaxation of

real materials are well fitted by power-law function of

real order instead of exponential, the fractional order

viscoelastic models, typically featuring power-law

creep and relaxation functions, have become very

popular in the last decades. The introduction of power-

law creep and relaxation functions in Eq. (31) natu-

rally leads to integro-differential operator of real

order, namely fractional derivatives and integrals.

Indeed, it is not a case if fractional models have been

proved to be equivalent to hierarchical arrangements

of infinite springs and dashpots [54–56]. It follows that

the fractional models are more powerful in reproduc-

ing the real behavior of viscoelastic materials because

the power-law creep and relaxation functions feature a

very high number, or even infinite, of time scales

[57, 58]. Further, inversion of a fractional viscoelastic

constitutive laws always results in mathematical law

involving fractional order operator, that are non-local

by definition, instead of local differential operators.

Specifically, if we assume the following kernel

functions

RðtÞ ¼ Ebt
�b

Cð1� bÞ
ð32aÞ

JðtÞ ¼ tb

EbCð1þ bÞ ð32bÞ

in the Boltzmann integrals (31) we obtain fractional

constitutive laws. That is,

rðtÞ ¼ Eb
C
0D

b
t e

� �
ðtÞ ð33aÞ

eðtÞ ¼ 1

Eb
0I

b
t r

� �
ðtÞ ð33bÞ

where Eb is a viscoelastic modulus with anomalous

dimension and 0 6 b 6 1. Eqs. (32) is the only case

where the Boltzmann strain driven and stress driven

relations are related each other by a simple
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differentiation/integration operation. On the basis of

the analogy between non-local elasticity and vis-

coelasticity, the concepts discussed with regard to

viscoelasticity may be useful also in the field of non-

local elasticity. It is clear that integral non-local

models reverts to differential models with weak non-

locality due to choice of kernels characterized by a

single length scale. From these observations, a possi-

ble strategy to formulate proper strong non-local

models may be to imitate the fractional viscoelasticity

approach, as shown in the next section.

4.2 Integral non-local models with power-law

kernel—unbounded domain

With the purpose of defining non-local models

featuring strong non-locality properties in both the

direct and the inverse formulation, power-law atten-

uation function may be assumed. This is not a novelty,

since in the recent literature different works consid-

ering power-law attenuation function exist. A com-

mon result of this choice is that the governing equation

of the non-local problem is governed by fractional

integro-differential operators [43, 44]. However in the

following, some interesting relationship are found.

Consider a unbounded rod with cross section area A

and non-local modulus ~Ea. If the non-local behavior of

the bar is modeled with the peridynamic approach, the

governing equation of the bar is that in Eq. (20).

Following the fractional approach in viscoelasticity, a

power-law attenuation kernel is selected. Since the

attenuation function must satisfy symmetry, positivity

and limit impulsivity, the power-law attenuation

function is arranged as follows:

gðxÞ ¼ jxj�1�a

2mcðaÞ
ð34Þ

with 1\a 6 2. By inserting Eq. (34) into Eq. (20) the

following governing equation is obtained:

~EaA
2 RDau
� �

ðxÞ ¼ �bðxÞ ð35Þ

where RDauð ÞðxÞ is the Riesz fractional derivative

introduced in Eq. (3b). The model in Eq. (35) has a

clear mechanical interpretation and, given the specific

form assumed for the power-law attenuation function,

as a ! 2 it reverts to classical governing equation of

local rod. Indeed, the Riesz derivative reverts to

second order derivative as a ! 2. Further, the

presence of the Riesz fractional derivative allows to

easily define the inverse of the relationship in Eq. (35).

To this aim, notice that the inverse of the Riesz

fractional derivative of order a is the Riesz fractional

integral of order a introduced in Eq. (3a). It follows

that, given the external axial force per unit length b(x),

the response in terms of displacements for the model in

Eq. (35), is found as

uðxÞ ¼ �
RIabð ÞðxÞ
~EaA2

ð36Þ

Remarkably, inversion of the strong non-local formu-

lation in Eq. (35) leads to the strong formulation in

Eq. (36). This is quite different from what it has been

shown in Section 3.3 where the peridynamic model

with exponential attenuation function has been found

to be equivalent to weak non-local model. The

governing Eq. (36) describes a mechanics in which

the displacement at a given location x depends of the

volume forces distribution in the whole domain of the

body, mirroring the mechanics associated with

Eq. (35). Specifically, the kernel of the Riesz integral

in Eq. (36) is of order a� 1[ 0. It follows that the

displacement at a given location x is more influenced

by volume forces applied far from x than those applied

in location close to x. However, since the model in

Eq. (36) is found by exact inversion of the power

peridynamic model (35), the increasing behavior of

the kernel in Eq. (36) is in agreement with the

mechanics described in Fig. 1.

The adoption of power-law attenuation function

produce other very interesting results. Consider the

strain driven model in Eq. (8). With the assumption of

the following power-law kernel

gðxÞ ¼ jxj1�a

2mcðaÞ
; ð37Þ

with 1\a 6 2, the integral in Eq. (8) reverts to the

Riesz integral of order 2� a and the strain driven

model may be written as

NðxÞ ¼ EaA
RI2�ae
� �

ðxÞ ð38Þ

being Ea the anomalous Young modulus. Unlike the

strain driven model with exponential attenuation

function, inversion of the model in Eq. (38) leads to

an integral non-local model in the form
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eðxÞ ¼ 1

EaA
RD2�aN
� �

ðxÞ ð39Þ

Interestingly, the formulation in Eq. (39) can be

interpreted as the stress driven model in Eq. (13) with

the following attenuation function

gðxÞ ¼ jxja�3

2mcð�aÞ
ð40Þ

Remarkably, not only the inverse of a non-local

integral model with power-law kernel is still an

integral non-local model, but also with this choice

the strain driven and the stress driven models are one

the inverse of the other. Notice that since 1\a 6 2 the

order of fractional integral in Eq. (38) and the

fractional derivative in Eq. (39) are of order

0 6 2� a\1. Further, as a ! 2 both the power-law

strain driven model in Eq. (38) and the power-law

stress driven model in Eq. (39) reverts to the Hooke

law of elasticity. In agreement with exponential kernel

strain driven and stress driven models, the attenuation

functions in Eq. (37) and in Eq. (40) are both

decreasing. Indeed, in Eq. (37) �1 6 1� a\0 and

in Eq. (40) �2\a� 3 6 �1.

The choice of the orders of the power-law kernels in

Eq. (37) and Eq. (40) is not casual because generates

some more interesting relationship between integral

non-local models. To this regard, consider the power-

law strain driven model in Eq. (38). The Riesz integral

of order 2� a may be written as a summation of left

and right RL integrals (see Eq. (3a)), that is

NðxÞ ¼ EaA

2 cosðap=2Þ �1I2�a
x e

� �
ðxÞ þ xI

2�a
1 e

� �
ðxÞ

� �

ð41Þ

Since eðxÞ ¼ uð1ÞðxÞ, the RL fractional integrals of

order 2� a coalesces with the Caputo fractional

derivatives of order a� 1 as in the following

�1I2�a
x e

� �
ðxÞ¼ 1

Cð2�aÞ

Z x

�1
ðx�nÞ1�aeðnÞdn

¼ 1

Cð2�aÞ

Z x

�1

uð1ÞðnÞ
ðx�nÞa�1

dn¼ C
�1Da�1

x u
� �

ðxÞ

ð42Þ

for the left sided fractional operator, but analogous

relationship holds for the right sided definitions. In

view of Eq. (6a) and considering that for x!�1 :

uðxÞ¼0 the following relationship holds

C
�1Da�1

x u
� �

ðxÞ ¼ �1Da�1
x u

� �
ðxÞ ð43Þ

and analogous relationship is valid between the right

sided Caputo derivative of order a� 1 and the right

sided RL derivative of order a� 1. It follows that,

remembering Eq. (3b), Eq. (38) may be written as

NðxÞ ¼ EaA
RDa�1uðxÞ
� �

ð44Þ

The Riesz integral of order 2� a of the strain is

then equivalent to Riesz derivative of order a� 1 of

the displacement. At this point, consider the equilib-

rium equation of a rod element as in Fig. 3

Nð1ÞðxÞ ¼ �bðxÞ ð45Þ

Combination of Eq. (44) with Eq. (45) leads to the

following governing equation

EaA
RDau
� �

ðxÞ ¼ �bðxÞ ð46Þ

If we assume that ~Ea ¼ Ea=A, then Eq. (46) coalesces

with Eq. (35) related to the power-law peridynamic

model. Some remarkable consequences descend from

this finding:

– The choice of power-law attenuation functions

ensures that the non-local models considered in

this paper are characterized by strong non-locality

in both integral and differential form. Indeed, as in

viscoelasticity power-law time kernels are able to

represents long memory effects, in non-locality

power-law space kernels are able to simulate long-

range interactions.

– If the power-law attenuation functions of each

strong non-local model considered in this study are

properly chosen, the strain driven, the stress driven

and peridynamic model for an unbounded rod are

all equivalent to each other.

– Due to the equivalence of the power-law peridy-

namic model with the strain driven and stress

driven models with proper selected power-law

kernels, the mechanics associated with the

Fig. 3 Equilibrium of a rod element
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peridynamic model can be associated also with the

strain driven and stress driven models.

– The power-law peridynamic model can be

obtained starting from the power-law stress driven

model and considering standard equilibrium equa-

tions as in Eq. (45). It follows that the axiomatic

definition of Cauchy stress is preserved for the

power-law peridynamic model.

– The peridynamic model is defined directly in terms

of equilibrium equation and in general the associ-

ated constitutive law, namely the stress-strain

relationship, is not available. For the specific case

of the power-law attenuation function, instead, the

constitutive law associated with the peridynamic

model is constituted by the power-law strain driven

model in Eq. (38) or, equivalently, the power-law

stress driven model in Eq. (39).

Therefore, the adoption of power-law strong non-local

models appears to be a suitable strategy for the

definition of an universally recognized formulation of

non-local mechanics. However, this is actually at the

theoretical stage since some limitations arise when the

proposed strategy is applied to bounded domains.

Indeed, for bounded domains, the equivalences

described in Sect. 2 between Riesz fractional opera-

tors and the sum of left sided and right sided RL or

Caputo operators do not hold anymore. Also, the Riesz

fractional derivative in bounded domain is not the

inverse of the Riesz fractional integral in the same

bounded domain. These drawbacks have partially

faced up in [44], where a fractional order strong non-

local models has coherently formulated for bounded

domains. Indeed, the Riesz fractional derivative in

bounded domain may be written in terms of the sum of

left sided and right sided Marchaud fractional deriva-

tives [42], defined as the sum of a convolution integral

with power-law kernel and a non-integral term.

However, in order to give a suitable mechanical

interpretation to the additional non-integral terms,

long-range springs between boundaries and between

boundaries and volume elements have been intro-

duced. While long-range springs connecting volume

elements may be qualitatively associated to inter-

molecular interactions, long-range springs involving

boundaries have not a clear physical correspondence.

Moreover, this approach [44] does not allow to find for

bounded domains the relationship found in the present

study between different existing strong non-local

approaches. In order to overcome these drawbacks in

the future other theoretical developments are needed,

as well as accurate experimental observations capable

of validating power-law non-local models.

5 Conclusions and discussions

A mechanically consistent non-local formulation

based on fractional operators has been presented in

this paper. The proposed strong non-local model has

been derived from a peridynamic physical

scheme where long-range interactions are taken into

account. Following this approach the stress-strain

relation is ruled by a Fredholm integral equation where

the kernel is an attenuation function. This function

rules how long-range interactions decay in the non-

local continuum. It has been shown that if the long

range forces decay proportional to a specific space-

dependent power-law function the stress-strain rela-

tion is ruled by fractional differential or integral

operator. Specifically, in the proposed non-local

formulation for unbounded domain the stress is

proportional to the Riesz fractional integral of the

strain while the strain is proportional to the Riesz

fractional derivative of the stress. Both the involved

operators are convolution integrals and the selected

power-law kernel assures strong non-local interac-

tions. By the proposed unified non-local stress-strain

relation based on the fractional operators it has been

proven that non-local stress driven and non-local

strain driven models are fully consistent each another

as it happens in fractional viscoelasticity. As in fact in

the latter case the stress history is related to the strain

history (strain driven) by the Caputo’s fractional

derivative while the strain history is related to the

stress history (stress driven) by the inverse operator,

namely the RL fractional integral. Exactly the same

thing happens in non-local elasticity by assuming that

the long range interactions are power-law and also in

this case stress driven and strain driven are ruled by

inverse operators each another giving a physically

consistent model. Some concluding remarks and

useful outcomes have been derived and discussed

considering the unbounded non-local rod.
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