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Observability inequalities for degenerate transport equations

Giuseppe Floridia and Hiroshi Takase

Abstract. In this paper, we prove an observability inequality for a degenerate transport equation with time-
dependent coefficients. First we introduce a local in time Carleman estimate for the degenerate equation,
then we apply it to obtain a global in time observability inequality by using also an energy estimate.

1. Introduction and main result

Let d ∈ N, T > 0, ! ⊂ Rd be a bounded domain with smooth boundary ∂!, and
ν(x) be the unit outer normal to ∂! at x ∈ ∂!. Without loss of generality, we suppose
0 ∈ !. We set Q := ! × (0, T ) and $ := ∂! × (0, T ). We introduce the differential
operator A such that

Au(x, t) := ∂t u + H(t) · ∇u, (1.1)

where H(t) := (H1(t), . . . , Hd(t)) is a continuous vector-valued function on [0, T ].
A lot of inverse problems via Carleman estimates for transport equations have been

studied. Klibanov and Pamyatnykh [10] proved a global uniqueness theorem for an
inverse coefficient problem.Gaitan andOuzzane [7],Machida andYamamoto [11], and
Gölgeleyen and Yamamoto [8] proved Lipschitz stabilities for inverse coefficient and
source problems via global Carleman estimates for transport equations with variable
coefficients. Cannarsa, Floridia, Gölgeleyen, and Yamamoto [3] proved local Hölder
stability to determine principal terms and zeroth-order terms. We should note that
these results were all for transport equations the coefficients of which do not depend on
time variable t but depend on space variable x . In regard to transport equations having
a time-dependent principal part, Floridia and Takase [13] proved global Lipschitz
stabilities for inverse problems of first-order hyperbolic equations. Cannarsa, Floridia,
and Yamamoto [4] proved an observability inequality for the operator A defined by
(1.1) with |H(t)| > 0 for all t ∈ [0, T ], i.e., non-degenerate case, whichwasmotivated
by applications to inverse problems. In this paper, we eliminate the assumption on
the positivity of |H(t)| and prove the observability inequality in the degenerate case.
Although this paper is inspired by [4], we note that our methodology is a little different
from it, since we do not use the partition arguments employed in [4]. Moreover, we
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prove the observability inequality using a synthetic technique recently introduced in [9]
by Huang, Imanuvilov, and Yamamoto, without using the classical cut-off arguments
in the proof of the observability through the Carleman estimate. This enables us to
simplify proofs of observability inequalities.

For more applications of Carleman estimates to inverse problems, controllability,
and unique continuations for hyperbolic equations, readers are referred to Bellassoued
and Yamamoto [2], and Takase [12]. They established Carleman estimates for second-
order hyperbolic operators with variable coefficients on manifolds. Moreover, for
degenerate evolutions equations there is an extensive literature, one can see, e.g.,
Floridia [5] and Floridia, Nitsch, and Trombetti [6].

The structure of this paper is following. In this section, after describing the problem
formulation and some notations, we present our main result in Theorem 1.4. In Sect. 2,
we prepare some propositions needed to prove Theorem 1.4. In particular, we obtain
the energy estimate (see Lemma 2.1 and Proposition 2.2), and the Carleman estimate
for the degenerate case (see Proposition 2.3), which play important roles in proving the
main result. Finally, in Sect. 3we proveTheorem1.4. In Sect. 4, using themethodology
of this paper we obtain an observability inequality for the non-degenerate case, studied
in [4], by a proof shorter than one in [4].

In this paper, we consider the degenerate case, where we impose the following
assumptions on the vector field H ∈ C([0, T ];Rd):

H(0) = 0; (1.2)

∃T1 ∈ (0, T ], ∃ρ > 0 s.t. H ∈ C1([0, T1];Rd) and

min
t∈[0,T1]

|H ′(t)| ≥ ρ . (1.3)

Under assumptions (1.2) and (1.3), we consider the Cauchy problem

{
Au = ∂t u + H(t) · ∇u = 0 in Q,

u = g on $,
(1.4)

where g ∈ L2($), and prove an observability inequality in Theorem 1.4. Unlike the
non-degenerate case by Cannarsa, Floridia, and Yamamoto [3], we should impose the
extra assumption (1.3) on the positivity of |H ′(t)| due to degeneration (1.2). Never-
theless, the regularity class in (1.3) imposed on H is the same one as in [4].

Before describing mathematical settings, we mention a synthetic statement of the
main result in Theorem 1.4. We note to prove an observability inequality for a hyper-
bolic equation the observation time should be given sufficiently large due to the finite
propagation speed (e.g., Bardos, Lebeau, and Rauch [1]). Theorem 1.4 claims that if
the direction of the unit vector H ′(t)

|H ′(t)| changes moderately comparing with the time for
the distant wave to reach the boundary, then we can obtain observability inequality
(1.9) for a sufficient large observation time. To formulate this situationmathematically,
we define some preliminary notations.
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Definition 1.1. Let T > 0, c0 ∈ ( 1√
2
, 1), and H be a vector-valued function satisfying

(1.3). We define a positive number t1 ∈ (0, T1] such that

t1 := sup
{
τ ∈ [0, T1] | H ′(t)

|H ′(t)| ·
H ′(0)
|H ′(0)| ≥ c0, ∀t ∈ [0, τ ]

}
. (1.5)

Remark 1.2. Note that t1 > 0 because H ′ is continuous.

By the definition of the positive time t1 ∈ (0, T1] introduced in (1.5), the angle
between H ′(t)

|H ′(t)| and
H ′(0)
|H ′(0)| is less than or equal to

π
4 for t ∈ [0, t1]. The positive time t1

will be crucial to prove observability inequality (1.9) in Theorem 1.4. The next lemma
is a basic property for H ′ in the time interval [0, t1].

Lemma 1.3. Let T > 0, c0 ∈ ( 1√
2
, 1), H be a vector-valued function satisfying

(1.3), and t1 ∈ (0, T1] be the positive number defined by (1.5). Then, there exists
x0 ∈ !

c := Rd\! such that

min
(x,t)∈!×[0,t1]

H ′(t) · (x − x0)
|H ′(t)||x − x0|

≥ 2c20 − 1(> 0). (1.6)

Proof. If we take x0 := −Rθ0 ∈ !
c
for R > 1+c0

1−c0
diam! and θ0 := H ′(0)

|H ′(0)| , we find

(x − x0) · θ0 = x · θ0 + R ≥ R − |x | ≥ R − diam!

> c0(R + diam!) ≥ c0|x − x0|

holds for all x ∈ !, which implies min
(x,t)∈!×[0,t1]

x − x0
|x − x0|

· θ0 ≥ c0. Moreover, taking

min
(x,t)∈!×[0,t1]

H ′(t)
|H ′(t)| · θ0 ≥ c0 into account, we finally conclude (1.6) is true by the

trigonometric addition formulas for the angle between x−x0
|x−x0| and θ0, and the angle

between H ′(t)
|H ′(t)| and θ0. !

For a fixed x0 ∈ !
c
satisfying (1.6), define the positive number

T0 :=

√√√√max
x∈!

|x − x0|2 − min
x∈!

|x − x0|2

δ
, (1.7)

where

δ := ρ(2c20 − 1)dist(x0,!) > 0. (1.8)

The next theorem is our main result in this paper.



G. Floridia, H. Takase J. Evol. Equ.

Figure 1. The situation of H ′(t) and x0 ∈ !
c
in Lemma 1.3

Theorem 1.4. Let T > 0, c0 ∈ ( 1√
2
, 1), H ∈ C([0, T ];Rd), and g ∈ L2($). Assume

(1.2) and (1.3). If the number t1 ∈ (0, T1] defined by (1.5) satisfies T0 < t1 for some
x0 ∈ !

c
satisfying (1.6), then there exists a constant C > 0 independent of g ∈ L2($)

such that for all t ∈ [0, T ],

‖u(·, t)‖L2(!) ≤ C‖g‖L2($) (1.9)

holds for all u ∈ H1(Q) satisfying (1.4).

2. Preliminaries

In this section, we prepare some results needed to prove Theorem 1.4. In Sect. 2.1,
by energy estimate Lemma 2.1 we prove Proposition 2.2, whichmeans if observability
inequality (1.9) holds locally in time, then it holds also globally in time. In Sect. 2.2,
we present the Carleman estimate in Proposition 2.3.

2.1. Energy estimate

For the proof of Theorem 1.4, we use the energy estimate of the following type,
which is proved without assuming (1.2) and (1.3).

Lemma 2.1. Let T > 0, H ∈ C([0, T ];Rd), and g ∈ L2($). Then, there exists a
constant C > 0 independent of g ∈ L2($) such that for all t ∈ [0, T ],

∣∣∣‖u(·, t)‖2L2(!)
− ‖u(·, 0)‖2L2(!)

∣∣∣ ≤ C‖g‖2L2($)

holds for all u ∈ H1(Q) satisfying (1.4).

Proof. Multiplying the equation in (1.4) by 2u and integrating over ! yield
∫

!
∂t (|u|2)dx +

∫

!
H(t) · ∇(|u|2)dx = 0,
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i.e.,

d
dt

(∫

!
|u|2dx

)
= −

∫

∂!
(H(t) · ν(x)) |g|2dσ.

Integration over [0, t] yields
∣∣∣‖u(·, t)‖2L2(!)

− ‖u(·, 0)‖2L2(!)

∣∣∣ ≤ C‖g‖2L2($)
,

for some C > 0 independent of g ∈ L2($), t ∈ [0, T ], and u ∈ H1(Q). !
Proposition 2.2. Let T > 0, H ∈ C([0, T ];Rd), and g ∈ L2($). Assume there
exist τ ∈ [0, T ] and a constant C1 > 0 independent of g ∈ L2($) such that for all
t ∈ [0, τ ],

‖u(·, t)‖L2(!) ≤ C1‖g‖L2($)

holds for all u ∈ H1(Q) satisfying (1.4). Then, there exists a constant C2 > 0
independent of g ∈ L2($) such that

‖u(·, t)‖L2(!) ≤ C2‖g‖L2($)

holds for all t ∈ [0, T ] and u ∈ H1(Q) satisfying (1.4).

Proof. The claim is trivial when τ = T . When τ < T , Lemma 2.1 and the assumption
in Proposition 2.2 yield

‖u(·, t)‖2L2(!)
≤ ‖u(·, 0)‖2L2(!)

+ C‖g‖2L2($)

≤ (C2
1 + C)‖g‖2L2($)

for all t ∈ [0, T ] and u ∈ H1(Q) satisfying (1.4). If we set C2 :=
√
C2
1 + C , we

complete the proof. !
2.2. Carleman estimate

Let τ > 0 and c0 ∈ ( 1√
2
, 1) be fixed constants. We set Q±,τ := ! × (−τ, τ ) and

$±,τ := ∂! × (−τ, τ ). In this section, we establish the Carleman estimate for the
differential operator A,

Au := ∂t u + H(t) · ∇u

in Q±,τ under the following assumptions:

H ∈ C1([−τ, τ ];Rd); (2.1)

∃ρ > 0 s.t. min
t∈[−τ,τ ]

|H ′(t)| ≥ ρ; (2.2)

∃θ0 ∈ Sd−1 s.t. min
t∈[−τ,τ ]

H ′(t) · θ0
|H ′(t)| ≥ c0, (2.3)
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where Sd−1 := {ξ ∈ Rd | |ξ | = 1}.
Under assumptions (2.1)–(2.3), wewill obtain the Carleman estimate for A in Q±,τ .

We can take x0 ∈ !
c := Rd\! satisfying min

(x,t)∈Q±,τ

H ′(t) · (x − x0)
|H ′(t)||x − x0|

≥ 2c20 − 1 by

the same argument as in the proof of Lemma 1.3.

For a positive constant β > 0 to be fixed later, we set

ϕ(x, t) := |x − x0|2 − βt2, (x, t) ∈ Q±,τ . (2.4)

We establish Carleman estimate Proposition 2.3 for the operator A having time-
dependent coefficients. Nevertheless, our choice of weight functions is more similar
to the one by Klibanov–Pamyatnykh [10] and Gaitan–Ouzzane [7] than by Cannarsa–
Floridia–Yamamoto [3].

Proposition 2.3. Assume (2.1), (2.2), and (2.3). Let ϕ be the smooth function defined
by (2.4), where β > 0 is an arbitrary positive number satisfying

0 < β < δ := ρ(2c20 − 1)dist(x0,!).

Then, there exists a constant C > 0 such that

s
∫

Q±,τ

e2sϕ |u|2dxdt

≤ C
∫

Q±,τ

e2sϕ |Au|2dxdt + Cs
∫

$±,τ

e2sϕ Aϕ(H(t) · ν(x))|u|2dσdt

+ Cs
∫

!

(
e2sϕ(x,τ )|u(x, τ )|2 + e2sϕ(x,−τ )|u(x,−τ )|2

)
dx (2.5)

holds for all s > 0 and u ∈ H1(Q±,τ ). Here dσ denotes the volume element of ∂!.

Proof. Set z := esϕu and Pz := esϕ A(e−sϕz) for u ∈ H1(Q±,τ ) and s > 0. Since ϕ

is smooth, it follows that z ∈ H1(Q±,τ ). We note that

Aϕ(x, t) = −2βt + 2H(t) · (x − x0)

and

A2ϕ = −2β + 2H ′(t) · (x − x0)+ 2|H(t)|2.
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Since we have Pz = Az − s(Aϕ)z,

‖Pz‖2L2(Q±,τ )
≥ 2(Az,−s(Aϕ)z)L2(Q±,τ )

= −2s
∫

Q±,τ

(∂t z + H(t) · ∇z)(Aϕ)zdxdt

= −s
∫

Q±,τ

(Aϕ)∂t (|z|2)dxdt − s
∫

Q±,τ

(Aϕ)H(t) · ∇(|z|2)dxdt

= s
∫

Q±,τ

A2ϕ|z|2dxdt − s
∫

$±,τ

Aϕ(H(t) · ν(x))|z|2dσdt

− s
∫

!

[
Aϕ|z|2

]t=τ

t=−τ
dx

≥ 2s
∫

Q±,τ

(
− β + H ′(t) · (x − x0)

)
|z|2dxdt

− s
∫

$±,τ

(Aϕ)(H(t) · ν(x))|z|2dσdt − s
∫

!

[
Aϕ|z|2

]t=τ

t=−τ
dx

(2.6)

holds. For the fixed x0 ∈ !
c
so that min

(x,t)∈Q±,τ

H ′(t) · (x − x0)
|H ′(t)||x − x0|

≥ 2c20 − 1(> 0), it

follows that

H ′(t) · (x − x0) = |H ′(t)||x − x0|
H ′(t) · (x − x0)
|H ′(t)||x − x0|

≥ ρdist(x0,!) min
(x,t)∈Q±,τ

H ′(t) · (x − x0)
|H ′(t)||x − x0|

≥ δ(> 0)

for all (x, t) ∈ Q±,τ owing to (2.2) and (2.3). We then obtain from (2.6)

‖Pz‖2L2(Q±,τ )
≥ 2(δ − β)s

∫

Q±,τ

|z|2dxdt − s
∫

$±,τ

(Aϕ)(H(t) · ν(x))|z|2dσdt

− s
∫

!

[
Aϕ|z|2

]t=τ

t=−τ
dx .

Hence, for all 0 < β < δ, there exists a constant C > 0 such that

s
∫

Q±,τ

e2sϕ |u|2dxdt

≤ C
∫

Q±,τ

e2sϕ |Au|2dxdt + Cs
∫

$±,τ

e2sϕ Aϕ(H(t) · ν(x))|u|2dσdt

+ Cs
∫

!

(
e2sϕ(x,τ )|u(x, τ )|2 + e2sϕ(x,−τ )|u(x,−τ )|2

)
dx

holds for all s > 0 and u ∈ H1(Q±,τ ). !
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Remark 2.4. In Proposition 2.3, we do not assume the positivity of |H(t)|. In
that respect, Proposition 2.3 is different from Theorem 1.5 in Cannarsa–Floridia–
Yamamoto [3]. Proposition 2.3 says the Carleman estimate holds regardless of what-
ever |H(t)| is positive if we assume appropriate properties in regard to H ′.

The technical difference appears in estimate (2.6). In the non-degenerate case (e.g.,
[3] and Proposition 4.3 in this paper), we can use the positivity of Aϕ. However, in
the degenerate case, we use the positivity of A2ϕ.

3. Proof of Theorem 1.4

To prove the main result, we use not only Lemma 2.1 and Proposition 2.2 but also
Proposition 2.3, i.e., the Carleman estimate for the operator A. Furthermore, we should
describe a technical remark in applying Carleman estimates. In existing works, when-
everwe appliedCarleman estimates to obtain stability estimates for some inverse prob-
lems, we introduced appropriate cut-off functions χ and applied Carleman estimates
to χu, where u is a solution to considering equations. This was because χu vanished
on boundaries of considering domains. However, in our proof of Theorem 1.4, we
need not use the cut-off arguments because our Carleman estimate in Proposition 2.3
contains all the boundary terms on ∂Q±,τ . This argument without cut-off functions is
presented by Huang, Imanuvilov, and Yamamoto [9].

Proof of Theorem 1.4. In the beginning, we extend H ∈ C([0, T ];Rd) and u ∈
H1(Q) satisfying (1.4) in Q± := ! × (−T, T ) by setting

H̄(t) =
{
H(t), t ∈ [0, T ],
−H(−t), t ∈ [−T, 0],

and

u(x, t) =
{
u(x, t) in ! × (0, T ),

u(x,−t) in ! × (−T, 0).

By our assumptions (1.2) and (1.3), H̄ ∈ C([−T, T ];Rd) ∩ C1([−T1, T1];Rd) and
u ∈ H1(Q±). Furthermore, the derivatives with respect to t of H̄ and u satisfy

H̄ ′(t) =
{
H ′(t), t ∈ [0, T1],
H ′(−t), t ∈ [−T1, 0],

and

∂t u(x, t) =
{

∂t u(x, t) in ! × (0, T ),

−∂t u(x,−t) in ! × (−T, 0),
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which imply u satisfies
{
Au = ∂t u + H̄(t) · ∇u = 0 in Q±,

u = ḡ on $± := ∂! × (−T, T ),
(3.1)

where ḡ is extended by

ḡ(x, t) =
{
g(x, t) in ∂! × (0, T ),

g(x,−t) in ∂! × (−T, 0).
(3.2)

Let t1 > 0 be the positive number defined by (1.5) and x0 ∈ !
c
be the point satisfying

(1.6) under the assumption

T0 < t1,

where T0 is defined by (1.7). Owing to Proposition 2.2, it suffices to prove observability
inequality (1.9) in the interval [0, t1], then we can extend it to all the interval [0, T ].
For the fixed x0 ∈ !

c
, we take 0 < β < δ, where δ is defined by (1.8), satisfying

(T0 <)

√
dM − dm

β
< t1,

where we define

dM := max
x∈!

|x − x0|2, dm := min
x∈!

|x − x0|2.

Then, there exists κ > 0 such that

dM − dm − βt21 < −κ. (3.3)

Henceforth, by C > 0 we denote a generic constant independent of u and ḡ which
may change from line to line, unless specified otherwise. We find that H̄ satisfies
assumptions (2.1)–(2.3) of Sect. 2.2 by taking τ = t1 and θ0 = H ′(0)

|H ′(0)| needed for
Proposition 2.3. Set Q±,t1 := ! × (−t1, t1) and $±,t1 := ∂! × (−t1, t1). Applying
Proposition 2.3 to the extended u ∈ H1(Q±,t1) satisfying (3.1) yields

s
∫

Q±,t1

e2sϕ |u|2dxdt

≤ Cs
∫

$±,t1

e2sϕ Aϕ(H̄(t) · ν(x))|u|2dσdt

+ Cs
∫

!

(
e2sϕ(x,t1)|u(x, t1)|2 + e2sϕ(x,−t1)|u(x,−t1)|2

)
dx . (3.4)

On the left-hand side of (3.4), we obtain

s
∫

Q±,t1

e2sϕ |u|2dxdt ≥ se2s(dm−βε2)

∫ ε

−ε

∫

!
|u|2dxdt, (3.5)
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where ε ∈ (0, t1) is an arbitrary small constant satisfying for all x ∈ ! and |t | ≤ ε,

ϕ(x, t) > 0,

i.e.,
dm − βε2 > 0. (3.6)

Furthermore, keeping in mind that u is the even extension, applying Lemma 2.1 in
(3.5), we have

s
∫

Q±,t1

e2sϕ |u|2dxdt ≥ 2se2s(dm−βε2)

∫ ε

0

∫

!
|u|2dxdt

≥ 2εse2s(dm−βε2)
(
‖u(·, 0)‖2L2(!)

− C‖g‖2L2($)

)
. (3.7)

Moreover, in regard to the second summand of the right-hand side of (3.4), applying
Lemma 2.1 yields

Cs
∫

!

(
e2sϕ(x,t1)|u(x, t1)|2 + e2sϕ(x,−t1)|u(x,−t1)|2

)
dx

≤ Cse2s(dM−βt21 )
(
‖u(·, t1)‖2L2(!)

+ ‖u(·,−t1)‖2L2(!)

)

≤ 2Cse2s(dM−βt21 )
(
‖u(·, 0)‖2L2(!)

+ C‖g‖2L2($)

)
. (3.8)

From (3.4), (3.7), and (3.8), keeping in mind (3.2), we obtain

2εse2s(dm−βε2)
(
‖u(·, 0)‖2L2(!)

− C‖g‖2L2($)

)

≤ Cse2s(dM−βt21 )
(
‖u(·, 0)‖2L2(!)

+ C‖g‖2L2($)

)
+ CseCs‖g‖2L2($)

,

i.e.,

e2s(dm−βε2)
(
2ε − Ce2s(dM−dm−βt21+βε2)

)
‖u(·, 0)‖2L2(!)

≤ CeCs‖g‖2L2($)
.

Applying (3.3) and (3.6) to the left-hand side of the above inequality yields
(
2ε − Ce−2s(κ−βε2)

)
‖u(·, 0)‖2L2(!)

≤ CeCs‖g‖2L2($)
.

By choosing s > 0 large enough to satisfy 2ε −Ce−2s(κ−βε2) > 0 for the sufficiently
small ε > 0 and applying Lemma 2.1 for (3.1) again on the left-hand side of the above
inequality, we have

‖u(·, t)‖2L2(!)
≤ C‖g‖2L2($)

for all t ∈ [0, t1]. !
Remark 3.1. In Theorem 1.4, the degenerate point t∗ ∈ [0, T ] on which H(t∗) = 0
could be not necessarily equal to 0. Indeed, by similar arguments to Lemma 2.1 and
Proposition 2.2, it suffices to prove the observability inequality in a closed time interval
containing t∗. Therefore, if there exists a sufficiently long time interval containing t∗
on which H ′(t)

|H ′(t)| ·
H ′(t∗)
|H ′(t∗)| ≥ c0 holds, we can prove the observability inequality on the

time interval by the same way as in the proof of Theorem 1.4 using the extension.
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4. Non-degenerate transport equations

In this section, we prove the observability inequality for the non-degenerate case
studied by Cannarsa, Floridia, and Yamamoto [4] without the partition arguments and
cut-off arguments. Given T > 0, we replace assumption (1.2) and (1.3) on H ∈
C([0, T ];Rd) with the following:

∃T ′
1 ∈ (0, T ], ∃ρ > 0 s.t. min

t∈[0,T ′
1]
|H(t)| ≥ ρ . (4.1)

4.1. Preliminaries

Our methodology is based on the energy estimate given in Proposition 2.2, which
still holds for the non-degenerate case. We define a positive number corresponding to
t1 in Definition 1.1.

Definition 4.1. Let T > 0, c0 ∈ ( 1√
2
, 1), and H ∈ C([0, T ];Rd) be a vector-valued

function satisfying (4.1). We define a positive number t ′1 ∈ (0, T ′
1] such that

t ′1 := sup
{
τ ∈ [0, T ′

1] | H(t)
|H(t)| ·

H(0)
|H(0)| ≥ c0, ∀t ∈ [0, τ ]

}
. (4.2)

Lemma 4.2. Let T > 0, c0 ∈ ( 1√
2
, 1), H ∈ C([0, T ];Rd)bea vector-valued function

satisfying (4.1), and t ′1 ∈ (0, T ′
1] be the positive number defined by (4.2). Then, there

exists x0 ∈ !
c := Rd\! such that

min
(x,t)∈!×[0,t ′1]

H(t) · (x − x0)
|H(t)||x − x0|

≥ 2c20 − 1(> 0). (4.3)

Proof. If we take x0 := −Rθ0 ∈ !
c
for R > 1+c0

1−c0
diam! and θ0 := H(0)

|H(0)| , we find

(x − x0) · θ0 = x · θ0 + R ≥ R − |x | ≥ R − diam!

> c0(R + diam!) ≥ c0|x − x0|

holds for all x ∈ !, which implies min
(x,t)∈!×[0,t ′1]

x − x0
|x − x0|

· θ0 ≥ c0. By the same

argument as in the proof of Lemma 1.3, we find (4.3) holds true. !

One of the most important tools in our methodology is the Carleman estimate.
Let τ > 0 and c0 ∈ ( 1√

2
, 1) be constants. We set Qτ := ! × (0, τ ) and $τ :=

∂!× (0, τ ). We assume (4.4)–(4.6) for the non-degenerate case instead of (2.1)–(2.3)
for the degenerate case:
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H ∈ C1([0, τ ];Rd); (4.4)

∃ρ > 0 s.t. min
t∈[0,τ ]

|H(t)| ≥ ρ; (4.5)

∃θ0 ∈ Sd−1 s.t. min
t∈[0,τ ]

H(t) · θ0
|H(t)| ≥ c0. (4.6)

In the non-degenerate case, we choose a different weight function from (2.4). For a
constant β > 0, let us define

ψ(x, t) := |x − x0|2 − βt, (x, t) ∈ Qτ , (4.7)

where x0 ∈ !
c
is a point satisfying min

(x,t)∈Qτ

H(t) · (x − x0)
|H(t)||x − x0|

≥ 2c20 − 1.

Proposition 4.3. Assume (4.4), (4.5), and (4.6). Let ψ be the smooth function defined
by (4.7), where β > 0 is an arbitrary positive number satisfying

0 < β < 2δ := 2ρ(2c20 − 1)dist(x0,!).

Then, there exist constants s∗ > 0 and C > 0 such that

s2
∫

Qτ

e2sψ |u|2dxdt

≤ C
∫

Qτ

e2sψ |Au|2dxdt + Cs
∫

$τ

e2sψ Aψ(H(t) · ν(x))|u|2dσdt

+ Cs
∫

!
e2sψ(x,τ )|u(x, τ )|2dx (4.8)

holds for all s > s∗ and u ∈ H1(Qτ ). Here dσ denotes the volume element of ∂!.

Note that the order of s on the left-hand side of (4.8) is different from the one on
the left-hand side of (2.5).

Proof of Proposition 4.3. Set z := esψu and Pz := esψ A(e−sψ z) for u ∈ H1(Qτ )

and s > 0. Since ψ is smooth, it follows that z ∈ H1(Qτ ). We note that

Aψ(x, t) = −β + 2H(t) · (x − x0)

and

A2ψ = 2H ′(t) · (x − x0)+ 2|H(t)|2.
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Since we have Pz = Az − s(Aψ)z,

‖Pz‖2L2(Qτ )
≥ s2‖(Aψ)z‖2L2(Qτ )

+ 2(Az,−s(Aψ)z)L2(Qτ )

= s2
∫

Qτ

(
− β + 2H(t) · (x − x0)

)2
|z|2dxdt

− 2s
∫

Qτ

(∂t z + H(t) · ∇z)(Aψ)zdxdt

= s2
∫

Qτ

(
− β + 2H(t) · (x − x0)

)2
|z|2dxdt

− s
∫

Qτ

(Aψ)∂t (|z|2)dxdt − s
∫

Qτ

(Aψ)H(t) · ∇(|z|2)dxdt

=
∫

Qτ

[
s2

(
− β + 2H(t) · (x − x0)

)2
+ s(A2ψ)

]
|z|2dxdt

− s
∫

$τ

Aψ(H(t) · ν(x))|z|2dσdt − s
∫

!

[
Aψ |z|2

]t=τ

t=0
dx (4.9)

holds. For the fixed x0 ∈ !
c
so that min

(x,t)∈Qτ

H(t) · (x − x0)
|H(t)||x − x0|

≥ 2c20 − 1(> 0), it

follows that

H(t) · (x − x0) = |H(t)||x − x0|
H(t) · (x − x0)
|H(t)||x − x0|

≥ ρdist(x0,!) min
(x,t)∈Qτ

H(t) · (x − x0)
|H(t)||x − x0|

≥ δ(> 0)

for all (x, t) ∈ Qτ owing to (4.5) and (4.6). We then obtain from (4.9)

‖Pz‖2L2(Qτ )
≥

∫

Qτ

[
(2δ − β)2s2 + O(s)

]
|z|2dxdt − s

∫

$τ

(Aψ)(H(t) · ν(x))|z|2dσdt

− s
∫

!
Aψ(x, τ )|z(x, τ )|2dx

as s → +∞. Hence, for all 0 < β < 2δ, there exist constants s∗ > 0 and C > 0 such
that

s2
∫

Qτ

e2sψ |u|2dxdt ≤ C
∫

Qτ

e2sψ |Au|2dxdt + Cs
∫

$τ

e2sψ Aψ(H(t) · ν(x))|u|2dσdt

+ Cs
∫

!
e2sψ(x,τ )|u(x, τ )|2dx

holds for all s > s∗ and u ∈ H1(Qτ ). !
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4.2. Observability inequality for the non-degenerate case

For the fixed x0 ∈ !
c
satisfying (4.3), We define a positive number

T ′
0 :=

max
x∈!

|x − x0|2 − min
x∈!

|x − x0|2

δ
, (4.10)

where
δ := ρ(2c20 − 1)dist(x0,!) > 0. (4.11)

Theorem 4.4. Let T > 0, c0 ∈ ( 1√
2
, 1), H ∈ C([0, T ];Rd), and g ∈ L2($). Assume

(4.1) and H ∈ C1([0, T ′
1];Rd). If the positive number t ′1 > 0 defined by (4.2) satisfies

T ′
0 < t ′1 for some x0 ∈ !

c
satisfying (4.3), then there exists a constant C > 0

independent of g ∈ L2($) such that for all t ∈ [0, T ],

‖u(·, t)‖L2(!) ≤ C‖g‖L2($) (4.12)

holds for all u ∈ H1(Q) satisfying (1.4).

Proof. Let t ′1 > 0 be the positive number defined by (4.2) and x0 ∈ !
c
be the point

satisfying (4.3) with

T ′
0 < t ′1,

where T ′
0 is defined by (4.10). Owing to Proposition 2.2, it suffices to prove (4.12) in

the interval [0, t ′1]. For the fixed x0 ∈ !
c
, we take 0 < β < 2δ, where δ is defined by

(4.11), satisfying

(T ′
0 <)

dM − dm
β

< t ′1,

where we recall

dM := max
x∈!

|x − x0|2, dm := min
x∈!

|x − x0|2.

Then, there exists κ > 0 such that

dM − dm − βt ′1 < −κ. (4.13)

Henceforth, by C > 0 we denote a generic constant independent of u and g which
may change from line to line, unless specified otherwise. We find that H satisfies
assumptions (4.4)–(4.6) by taking τ = t ′1 and θ0 = H(0)

|H(0)| needed for Proposition
4.3. Set Qt ′1

:= ! × (0, t ′1) and $t ′1
:= ∂! × (0, t ′1). Applying Proposition 4.3 to

u ∈ H1(Qt ′1
) satisfying (1.4) yields

s2
∫

Qt ′1

e2sψ |u|2dxdt ≤ Cs
∫

$t ′1

e2sψ Aψ(H(t) · ν(x))|u|2dσdt

+ Cs
∫

!
e2sϕ(x,t

′
1)|u(x, t ′1)|2dx . (4.14)
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On the left-hand side of (4.14), we obtain

s2
∫

Qt ′1

e2sψ |u|2dxdt ≥ s2e2s(dm−βε)

∫ ε

0

∫

!
|u|2dxdt, (4.15)

where ε ∈ (0, t ′1) is an arbitrary small constant satisfying for all x ∈ ! and 0 ≤ t ≤ ε,

ψ(x, t) > 0,

i.e.,
dm − βε > 0. (4.16)

Furthermore, applying Lemma 2.1 in (4.15), we have

s2
∫

Qt ′1

e2sψ |u|2dxdt ≥ s2e2s(dm−βε)

∫ ε

0

∫

!
|u|2dxdt

≥ εs2e2s(dm−βε)
(
‖u(·, 0)‖2L2(!)

− C‖g‖2L2($)

)
. (4.17)

Moreover, in regard to the second summand of the right-hand side of (4.14), applying
Lemma 2.1 yields

Cs
∫

!
e2sψ(x,t ′1)|u(x, t ′1)|2dx

≤ Cse2s(dM−βt ′1)‖u(·, t ′1)‖2L2(!)

≤ Cse2s(dM−βt ′1)
(
‖u(·, 0)‖2L2(!)

+ C‖g‖2L2($)

)
. (4.18)

From (4.14), (4.17), and (4.18), we obtain

εs2e2s(dm−βε)
(
‖u(·, 0)‖2L2(!)

− C‖g‖2L2($)

)

≤ Cse2s(dM−βt ′1)
(
‖u(·, 0)‖2L2(!)

+ C‖g‖2L2($)

)
+ CseCs‖g‖2L2($)

,

i.e.,

e2s(dm−βε)
(
εs − Ce2s(dM−dm−βt ′1+βε)

)
‖u(·, 0)‖2L2(!)

≤ CeCs‖g‖2L2($)
.

Applying (4.13) and (4.16) to the left-hand side of the above inequality yields
(
εs − Ce−2s(κ−βε)

)
‖u(·, 0)‖2L2(!)

≤ CeCs‖g‖2L2($)
.

By choosing s > s∗ large enough to satisfy εs − Ce−2s(κ−βε) > 0 for the suffi-
ciently small ε > 0 and applying Lemma 2.1 again on the left-hand side of the above
inequality, we have

‖u(·, t)‖2L2(!)
≤ C‖g‖2L2($)

for all t ∈ [0, t ′1]. !
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Remark 4.5. In the non-degenerate case, we focused only on the time interval [0, t ′1]
near 0 and proved the observability inequality under the assumption that t ′1 is large
enough.Needless to say, if there exists a sufficiently long time interval [t∗, t∗] ⊂ [0, T ],
if not near 0, on which H(t)

|H(t)| ·
H(t∗)
|H(t∗)| ≥ c0 holds, the observability inequality holds

on the interval, which implies it holds also on [0, T ] by the similar arguments using
Lemma 2.1 and Proposition 2.2.
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