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Abstract: Methanation reaction of carbon dioxide is currently envisaged as a facile solution for the
storage and transportation of low-grade energies, contributing at the same time to the mitigation of
CO2 emissions. In this work, a nickel catalyst impregnated onto a new support, Engelhard Titanium
Silicates (ETS), is proposed, and its catalytic performance was tested toward the CO2 methanation
reaction. Two types of ETS material were investigated, ETS-4 and ETS-10, that differ from each other
in the titanium content, with Si/Ti around 2 and 3% by weight, respectively. Catalysts, loaded with
5% of nickel, were tested in the CO2 methanation reaction in the temperature range of 300–500 ◦C and
were characterized by XRD, SEM–EDX, N2 adsorption–desorption and H2-TPR. Results showed an
interesting catalytic activity of the Ni/ETS catalysts. Particularly, the best catalytic performances are
showed by Ni/ETS-10: 68% CO2 conversion and 98% CH4 selectivity at T = 400 ◦C. The comparison
of catalytic performance of Ni/ETS-10 with those obtained by other Ni-zeolites catalysts confirms
that Ni/ETS-10 catalyst is a promising one for the CO2 methanation reaction.

Keywords: methanation; carbon dioxide; nickel; titanium silicate

1. Introduction

The Power to Gas technology, based on the conversion of electricity to hydrogen via
electrolysis, is regarded among the most environmentally sustainable approaches that
could enable the chemical storage of energy [1]. However, hydrogen is not the appropriate
medium for a storage application due to the significant compression (>100 bar) required
to reach a moderate energy density. In contrast, the energy density of methane (CH4) is
three times higher than hydrogen and facilities for transport and storage are widespread.
Indeed, the methane can be produced converting hydrogen (H2) with carbon dioxide (CO2)
following the well-known reaction (1) and easily stored as a renewable energy source:

4H2(g) + CO2(g) � CH4(g) + 2H2O(g) ∆H◦ = −165 kJ mol−1 (1)

The carbon dioxide methanation reaction provides a solution for the storage and the
transportation of low-grade energies. Moreover, it can potentially promote the abatement
of polluting gas emissions since methane can be produced by simultaneously recycling
carbon dioxide, CO2 [1–5]. Indeed, carbon oxides are regarded the major pollutants in the
atmosphere, and their decrement represents a pressing challenge necessary to detect and
limit their harmful effects [6,7].

Catalytic methanation reactors are typically operated at temperatures between 200 ◦C
and 550 ◦C and at pressures ranging from 1 to 100 bar, since CO2 methanation is also a
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strongly exothermic reaction and increasing the temperature is obviously unfavorable.
However, it could be desirable to achieve higher conversions at the higher temperature
when reagent gases (carbon monoxide, carbon dioxide and hydrogen) derive from other
process, such as the reforming of hydrocarbon coal gasification processes, or came from the
exit-streams of the solid oxide electrolyzer cells (SOECs).

Despite several metals, such as Ni, Ru, Rh and Co, being used as catalysts [8], Ni is
considered the best one due to its low cost and catalytic performance.

Alongside the active metal, the support of this phase plays a fundamental role. The
support can improve the dispersion of active components and tunes the surface structure
of the catalysts; these effects can influence the adsorption characteristics of the species
involved and, consequently, the reaction pathways [2,9]. Among the support tested, SiO2-
based materials, such as zeolites, used as supports for metal catalysts, exhibit peculiar
features such as ordered structures, high surface area, large pore volume and affinity versus
the CO2 due to the intrinsic basicity of the support [10].

In the last years, different types of zeolites were used as metal supports to prepare
active and stable catalysts [10]. Indeed, despite their massive utilization is mainly related
to other specific applications, such as molecular sieves and adsorbent materials [11,12],
their use in catalysis has manifold reasons: (i) the zeolite confinement effects (zeolite cages
and channels intersections really act like nanoreactors, boosting catalysts’ activity); (ii) the
possibility to adapt their basicity or acidity by both cationic exchange with alkaline metals
and post-synthesis treatments (e.g., dealumination); and (iii) their hydrothermal stability
that can be improved by steaming treatments.

Recently, Bacariza et al. have reviewed several works about the use of zeolite-based
catalysts for carbon dioxide methanation, showing the potentiality of zeolites as support
catalysts in this reaction. The type of zeolites more investigated are Y, A, X and ZSM-5,
which essentially differ for framework structure and aluminum content [13].

The Engelhard Titanosilicate (ETS) is a microporous material that presents a structure
similar to that of inorganic microporous zeolites [14], composed of tetrahedral SiO4

4− and
octahedral TiO6

8− units [15]. ETS-4 (Na9Si12Ti5O38(OH)·12H2O) and ETS-10 (M2TiSi5O13
H2O with M = Na, K) both have a microporous structure but differ from each other in the
Si/Ti ratio and in the pore size.

Few studies have employed the ETS material as catalyst support. In particular, in
the dry reforming of methane, ETS-10 titanosilicate was proved to be an active and stable
support for Ru species [16]. Philippou et al. [17] have used ETS-10 as Pt support in the
hexane reforming, reporting that this material catalyzes the reaction with remarkably high
selectivity. The mesoporous ETS-10 assembled Cu catalysts (named Cu/ETS-10-M) were
also prepared and applied in the styrene functionalization reaction [18]. Santamaría and
co-workers have investigated the use of Pt/ETS-10 catalyst for the selective oxidation of
CO in the presence of H2, CO2 and H2O concluding that the Pt–ETS-10 catalyst is active
and selective in the above-mentioned reaction [19].

However, these materials, due to their porosity features, need more in-depth investi-
gation to improve their application in the catalysis field.

In the present work, we investigated the suitability of ETS material as support for
Ni catalyst in the methanation reaction. Ni/ETS-4 and Ni/ETS-10 catalysts have been
prepared by impregnation method, characterized by different analytical techniques and
tested in the methanation of carbon dioxide in the temperature range of 300–500 ◦C.

2. Results
2.1. Catalyst Characterization Results

X-ray diffraction patterns of synthesized ETS-4 (Figure 1, ETS-4 fresh) and ETS-10
(Figure 2, ETS-10 fresh) were found to be identical to the reference patterns reported in
the literature (COD ID 4002324 and COD ID 7110493), confirming that the synthesized
supports are pure ETS-4 and ETS-10.
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Figure 2. Diffraction pattern of fresh ETS-10 (f) and Ni/ETS-10 (i) after the impregnation treatment
and Ni/ETS-10 (r) after the reduction treatment.

In order to check the support stability during the catalyst preparation, the XRD
analysis was carried out after both the impregnation and reduction procedures (see
Figures 1 and 2). Impregnation does not significantly modify the pattern of tested ma-
terials, but the reduction indeed destroyed the structure of ETS-4. In fact, in the related
pattern (Figure 1, ETS-4 (r)), the only peak defined at around 2θ = 44.6◦ corresponds to the
metallic nickel (COD ID 9013004) (enlargement in Figure 1). In addition, in the reduced
Ni/ETS-10 (Figure 2, ETS-10 (r)) the peak related to the metallic nickel (enlargement in
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Figure 2) is detectable, and the broadness of this peak can be related to a very small particle
size. The low thermal stability of ETS-4 is related to the hydrogen bonding between the ex-
tra framework water molecules and the framework oxygens, which leads to the formation
of a vitreous amorphous phase [20].

Table 1 summarizes the main texture properties of supports and catalysts. The amount
of deposited nickel is quite like the nominal content for both samples. The bare supports
have microporous characteristics (the internal surface area is higher than the external one)
and are characterized by a monomodal distribution in the range of micropores. The values
of BET surface area of the as synthesized ETS are coherent to those reported in literature [21].

Table 1. Textural and Surface properties of bare support impregnated and catalyst samples.

Sample Si/Ti a Ni a

[w/w%]
SBET b

m2/g
Sint c

m2/g
Sext c

m2/g
Vmic c

cm3/g
Vmes d

cm3/g
Loss of

Crystallinity e [%]

ETS-4 (f) 1.90 - 312 279 38 0.12 0.00 –

Ni/ETS-4 (i) 1.87 4.86 270 219 56 0.10 0.00 46

Ni/ETS-4 (r) 1.63 4.34 48 4 46 0.00 0.18 100

ETS-10 (f) 2.93 - 386 369 47 0.15 0.00 –

Ni/ETS-10 (i) 2.89 4.88 358 313 49 0.14 0.00 8

Ni/ETS-10 (r) 2.90 4.97 312 222 96 0.10 0.05 23
a Determined by EDX analysis considering at least 20 points of investigation for three different magnifications; b Valued by BET model;
c Valued by “t-plot” approach (Harkins–Jura reference equation); d Valued as difference of the Vmic by Vtot; e Valued as loss of intensity of
the main peak respect the fresh sample.

The micropore volumes of the two supports are close to the typical value of other
microporous materials, (0.12 and 0.15 cm3/g for ETS-4 and ETS-10, respectively). The
contribution of the internal surface area to the total surface area, for both as-synthesized
samples was very important (95% for ETS-10 and 90% for ETS-4). For both samples, the N2
adsorption–desorption technique after the impregnation shows a reduction of the surface
area value of ca. 13% for ETS-4 and of ca. 9% for ETS-10. However, all isotherms are
of type I (results not shown for briefness); then for both structures, the Ni deposition by
impregnation does not significantly affect nor the specific surface area of the final sample
neither its microporous volume.

Reduction on Ni/ETS-10 causes a decrease in the internal surface area, i.e., micropore
volume, compared with the parent material, whereas the external surface area increases.
The N2 adsorption isotherm of Ni/ETS-10 (not shown) after reduction exhibits a hysteresis
loop at a relative pressure of 0.45–0.96, which is attributed to the presence of mesopores in
the sample. In contrast, Ni/ETS-4 showed a more important loss of internal surface area
with respect to the bare ETS-4. This causes an important decrease of the micropore volume
of Ni/ETS-4, which is almost zero compared to the parent material. This behavior can be
explained by incipient structure collapse, as confirmed by XRD (Figure 1); the collapse of
the structure is responsible of the complete loss of the microporous area.

Despite the collapse of crystalline structure, the morphology of ETS-4 is not fully
destroyed after the treatments of impregnation and reduction, as shown in Figure 3. The
bare sample exhibits a morphology identified as “cuboids”, namely an intergrown polycrys-
talline form wherein small plate crystals grow in tandem to form more complex aggregate
shapes [22]. The largest crystal measured approximately 2 µm × 20 µm × 5 µm (a × b × c)
for cuboids. The dimensions for the largest individual plates (which make up the cuboids),
were less than one-tenth of their intergrown cuboid dimensions. The treatment of im-
pregnation does not modify the morphology of the support, but the reduction treatment
promotes a “dissolution” of crystal in agreement with the XRD observations.
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The samples based on ETS-10 support exhibit a cubic shape intergrown morphology
with multimodal distribution. The crystal habit is not altered like the ETS-4 based samples
by impregnation and reduction step (Figure 4). The distribution of nickel on the ETS-10
surface was regular as mapped by EDX (Figure 4), and metal crystal size was estimated
equal to 9.2 nm (±0.6 nm) through the Debye–Scherrer relation, as elsewhere reported [3].

To study the reducibility of nickel precursor species and the metal–support interaction,
TPR-H2 experiments were performed.

The TPR profiles showed different sets of H2 consumption peaks, as displayed in
Figure 5. However, for both samples, the peaks at lower temperature (367 ◦C for ETS-4
and 336 ◦C for ETS-10) can be attributed to the reduction of Ni species located outside of
the structure and, therefore, are more easily reducible. In contrast, the peaks located at
higher temperature (415 ◦C for ETS-4 and 392 ◦C for ETS-10) can be correlated to the nickel
species located within the zeolite super cages [23]. These peaks for ETS-4 were shifted to
higher temperature with respect to ETS-10: this means a greater interaction of Ni species
with the ETS-4 support. At higher temperature, in the TPR profile of ETS-4 a shoulder and
broader peak at 500 ◦C appears, due to the changing of the titanium reduction state from
+4 to +3 state [24].

Comparing the TPR-H2 behavior of nickel-based support of ETS with the other zeolite
supports, such as zeolite Y and zeolite Beta [25], it is possible to observe that ETS has a
better reducibility of Ni-species, which depends on the low nickel/ETS interactions.

2.2. Catalytic Tests Results

Carbon dioxide methanation was performed over bare ETS supports and Ni/ETS
catalysts in the temperature range 300–500 ◦C. As expected, due to the absence of the active
catalytic phase, ETS-4 and ETS-10 supports did not exhibit any catalytic activity, whereas
results of Ni based catalysts are reported in the Figure 6. On a dry basis, the only products
observed in the outlet gas stream are methane and carbon monoxide.
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Both catalysts Ni/ETS-4 and Ni/ETS-10 reached optimum conversion at 400 ◦C, and
when the temperature was increased up to 500 ◦C, the CO2 and H2 conversions were
reduced due to the thermodynamic limitations of CO2 methanation. Indeed, the Ni/ETS-4
showed ca. 11% CO2 conversion at 300 ◦C, which increased to ca. 62% at 400 ◦C, and
Ni/ETs-10 showed ca. 29% of CO2 conversion at 300 ◦C, which increased to ca. 67% at
400 ◦C, remaining below the thermodynamic limits; this could be due to the greater kinetic
barrier for the full reduction of CO2 (+4) to CH4 (−4), an eight-electron process that
obviously requires high activation energy [26]. Further increase in the reaction temperature
at 500 ◦C led to a slightly decrease in the CO2 conversion (55% for Ni/ETS-4 and 60% for
Ni/ETS-10) due to thermodynamic limit of methanation reaction and to the occurrence of
RWGS (reverse water gas shift) reaction [26].



Catalysts 2021, 11, 1225 7 of 12

Catalysts 2021, 11, x FOR PEER REVIEW 7 of 13 
 

7 
 

Ni/ETS-10) due to thermodynamic limit of methanation reaction and to the occurrence of 
RWGS (reverse water gas shift) reaction [26].  

The CH4 selectivity results are showed in Figure 7. For Ni/ETS-4, the CH4 selectivity 
increases from ca. 29% at 300 °C to 42% at 400 °C and then decreases to ca. 2% at 500 °C. 
In contrast, the CH4 selectivity increases for Ni/ETS-10 from ca. 56% at 300 °C and to 98% 
at 400 °C and then decreases to 35.4% at 500 °C (Figure 7). Apparently, this phenomenon 
was not thermodynamically consistent, because methane concentration should decrease 
by increasing the temperature, due to the methanation equilibrium; this suggests that the 
methanation on the Ni/ETS catalysts at relative low temperatures (Tset <  400 °C) was 
probably a kinetics-controlled reaction [27].  

Despite the profiles of CH4 selectivity for both catalysts are similar, the values of CH4 
selectivity in the range of temperature examined are very different (Figure 7).  

Ni/ETS-10 allows obtaining a selectivity value at 400 °C close to 100%; in contrast, at 
the same temperature, the selectivity of CH4 reached by Ni/ETS-4 catalyst is lower than 
the half.  

 
Figure 5. TPR-H2 profiles of Ni/ETS-4 and Ni/ETS-10 catalysts. 

300 400 500
0

20

40

60

80

100

%

Temperature (°C)

 CO2

 H2

Equilibrium

300 400 500
0

20

40

60

80

100

%

Temperature (°C)

 CO2

 H2

Equilibrium

(a) Ni/ETS-4 (b) Ni/ETS-10 

Figure 6. CO2 and H2 conversion of samples Ni/ETS-4 (a) and Ni/ETS-10 (b) in the temperature range 300–500 °C. Figure 6. CO2 and H2 conversion of samples Ni/ETS-4 (a) and Ni/ETS-10 (b) in the temperature range 300–500 ◦C.

The CH4 selectivity results are showed in Figure 7. For Ni/ETS-4, the CH4 selectivity
increases from ca. 29% at 300 ◦C to 42% at 400 ◦C and then decreases to ca. 2% at 500 ◦C. In
contrast, the CH4 selectivity increases for Ni/ETS-10 from ca. 56% at 300 ◦C and to 98%
at 400 ◦C and then decreases to 35.4% at 500 ◦C (Figure 7). Apparently, this phenomenon
was not thermodynamically consistent, because methane concentration should decrease
by increasing the temperature, due to the methanation equilibrium; this suggests that the
methanation on the Ni/ETS catalysts at relative low temperatures (Tset < 400 ◦C) was
probably a kinetics-controlled reaction [27].
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Despite the profiles of CH4 selectivity for both catalysts are similar, the values of CH4
selectivity in the range of temperature examined are very different (Figure 7).

Ni/ETS-10 allows obtaining a selectivity value at 400 ◦C close to 100%; in contrast, at
the same temperature, the selectivity of CH4 reached by Ni/ETS-4 catalyst is lower than
the half.

The different behavior of the ETS-4 and ETS-10 can be related to the content of
titanium in the framework of the zeolitic structure. The ETS-4 has a higher titanium content
that determines the low thermal stability of the impregnated sample, as verified by XRD
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diffraction results of the reduced samples (Figure 1). Although the zeolite structure is
not preserved, the dispersion of the active metal catalysts is still observed, as indeed
confirmed by EDX analysis (Figure 3) and by the high values of conversion. Then, in
order to elucidate how the catalytic performance of nickel supported on titanium silicate is
affected, the methanation reaction, in the same operative conditions and at the temperature
of 400◦, has been carried out using silicon dioxide (S 718483 Sigma–Aldrich, SBET 175 m2/g)
and titanium dioxide (637262 Sigma–Aldrich Titanium (IV) oxide, SBET 50 m2/g) as nickel
supports, loading the supports with the same amount of metal. In Figure 8, the comparison
of conversion and selectivity values for all supports tested at T = 400 ◦C are reported. Both
supports exhibit a higher value of CO2 conversion with respect to titanium silicate, but the
CH4 selectivity for Ni catalysts supported on titanium dioxide is consistently lower than all
other catalysts. Then, the catalyst based on titanium silicate ETS-4 performs worse value of
CH4 selectivity because it is loaded with higher content of titanium. Moreover, during the
reduction procedure, with the collapse of zeolites structure, there is a leaching of titanium
from the framework, and at the same time, the titania undergoes a reduction to TiOx (x < 2).
This titanium species covers the nickel particles that, although they remain in their metallic
state, are encapsulated by Ti suboxides (TiOx) after thermal treatment, in agreement with
Pan et al. [28]. TiOx species addresses the CO2 dissociation, decreases the hydrogen
dissociation and then probably causes the change in the selectivity of products [29].
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Catalysts supported on ETS-10, after reaction, retain the zeolitic structure and the
featuring morphology, as showed in the Figure 9. Comparing these results with those
obtained by other researcher that used zeolites materials as Ni support for CO2 methanation
in similar reaction conditions, the ETS-10 appears to be a promising support for Ni catalyst
in the methanation reaction (Table 2).
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An interesting comparison can be carried out between Ni catalyst supported on ETS-10
and zeolite Beta is that these supports, in fact, have topological similarities. Both these
materials have three-dimensional pore systems, almost identical, although the zeolite Beta
is an aluminosilicate composed of tetrahedral SiO4

4− and AlO4
5− units, whereas ETS-10 is

a titanosilicate composed of tetrahedral SiO4
4− and octahedral TiO6

8− units [15,30–32].
Comparing the catalytic activity of Ni/ETS-10 and Ni/Beta (Table 2), it was observed

that, despite both the lower loading and the higher GHSV employed for Ni/ETS-10, it still
exhibits better catalytic activity as compared to Ni/Beta catalyst.

Table 2. Summary of CO2 methanation performance of Ni/zeolites catalysts at high temperature
reaction (T > 350 ◦C).

Catalyst
Composition H2/CO2

GHSV
[h−1]

T
[◦C]

CO2
Conversion

CH4
Selectivity Ref.

5%NiY 4:1 43,000 450 50 95 [23]
5%NiSilicalite 4:1 60,000 450 57 91 [24]
5%Ni/ETS-10 4:1 30,000 400 68 98 [This work]
5%Ni/ETS-10 4:1 30,000 350 52 90 [This work]

10%NiHY 4:1 10,000 350 15 88 [33]
10%NiNaY 4:1 10,000 350 30 82 [33]

10%NiHBeta 4:1 10,000 350 23 82 [33]
10%NiNaBeta 4:1 10,000 350 33 88 [33]
15%NiHbeta 4:1 16,000 350 80 79 [33]
15%NiHbeta 4:1 16,000 400 76 75 [25]

For this material, each TiO6 unit contributes two minus charges to the framework,
leading to the framework oxygen atoms in TiO6 unit bearing negative charges, regarded
as the basic sites [34,35]. For CO2 adsorption, providing the basic sites on the catalyst
surface likely improve CO2 uptake via acid–base interaction. Further, the CO2 uptake
increases in the presence of oxygen vacancies on the support, ascribed as an adsorption
site for CO2 molecules [36]. Oxygen vacancies can be formed within reducible support
(TiO2, CeO2, ZrO2, etc.) since the oxygen vacancy can be mobile inside the lattice and plays
an important role in the redox process. The presence of defected sites on Ni/ETS-10 was
probably due to the incipient support mesoporosity, indirectly confirmed by the loss of
crystallinity introduced after the reduction treatment.

The differences in the catalytic performance between the different Ni-based zeolite
supports (Table 2) can be then ascribed to the different zeolite framework, both from a
compositional and topological point of view, that influences: (i) the interaction and affinity
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with CO2 and (ii) the metal support interactions, affected by the spatial arrangement and
bond angles present in the microporous materials.

3. Experimental Section
3.1. Catalyst Preparation

The two different types of Engelhard Titanium Silicates, namely ETS-4 and ETS-10,
were synthesized according to a procedure reported elsewhere [33,37].

Ni catalysts were prepared by the incipient wetness impregnation method. The metal
precursor (nickel nitrate hexahydrate Ni(NO3)2·6H2O (Sigma–Aldrich, Saint Louis, MO,
USA) was opportunely solubilized in an ethanol solution and dispersed over the ETS
support, with a total metal content of 5 wt%. After the impregnation process, catalysts
were dried at 120 ◦C for 24 h; subsequently, a mixture of 10 vol% H2 in He flow was used to
reduce catalysts at 500 ◦C for 2 h, using the same heating and cooling rates. Samples were
characterized both after the impregnation/dry process and after the reduction treatment.

3.2. Catalysts Characterization

The identification of phases in fresh, impregnated/dry, reduced and spent catalysts
was performed by powder X-ray diffraction (XRD) using a Bruker D2 Phaser using CuKα

radiation at 30 kV and 20 mA (Bruker, Karlsruhe, Germany). Peaks attribution was made
according with COD (Crystallografic Open Database). The diffraction angles 2θ were
varied between 10◦ and 80◦ in steps of 0.02◦ and a count time of 5 s per step.

The reduction of metal oxides was monitored by the temperature programmed reduc-
tion (TPR), carried out with a Chemisorb Micromeritics 2750 instrument (Micrometrics,
Norcross, GA, USA) under a flux of 50 cm3 min−1 of 10 vol.% H2/Ar in the temperature
range 25–1000 ◦C at atmospheric pressure.

A Phenom Pro-X scanning electron microscope equipped with an energy-dispersive
X-ray (EDX) spectrometer was utilized for SEM analysis (Deben, Suffolk, UK). The EDX
analysis was used to evaluate the content and dispersion of metal, acquiring for all samples
at least 20 points of investigation at three different magnifications. The counting time for
the EDX analysis was 120 s. The results were found to be reproducible to less than ±5% for
all samples.

The porous features of the samples were determined by equilibrium adsorption and
desorption isotherms of N2 at 77 K with a Micromeritics ASAP 2020 instrument. Before
the analysis, all samples were pre-treated in vacuum condition at 200 ◦C for 12 h. In order
to determine the total surface area of the samples, the data collected were modeled using
the BET equation, which is more suitable for solids containing micropores. The evaluation
of microporous volumes, internal and external surface area and V–t curves were also
interpreted by the “t-plot” method using the Harkins–Jura reference isotherm [38].

3.3. Catalytic Test

CO2 methanation was carried out in a quartz tubular fixed-bed reactor (1 cm inner
diameter, 25 cm length) horizontally placed in a furnace under atmospheric pressure.
A mixture gas of H2/CO2/N2 with fixed molar ratio 4/1/1 was fed into the reactor by
mass flow controllers (Brooks Instrument, Smart Mass Flow). An Agilent 6890 Plus gas
chromatograph equipped with thermal conductivity (TCD) and flame ionization (FID)
detectors was used to on-line analyze reactants and products every 20 min. N2 was used
as internal standard for mass balance calibration.

Activity tests (8 h each) were carried at fixed temperature in the range T = 300–500 ◦C
and space velocity GHSV = 30,000 h−1. The total flow rate was 50 cc/min, and GHSV was
defined as follows: GHSV = Volumetric flow velocity of gas/ Volume of catalyst.

The CO2 and H2 conversion were calculated, on dry basis, by the following formula:
XCO2 = (moles CO2 IN – moles CO2 OUT)/moles CO2 IN; XH2 = (moles H2 IN – moles H2
OUT)/moles H2 IN.
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The selectivity of methane was defined as follows: SCH4 = moles CH4 produced/moles
of total products.

All reactions were repeated three times, and the deviation measured for the results
was ±4%. The conversion and selectivity were calculated referring to the stationary
values registered when the profile of conversion/selectivity versus time was stable and the
phenomenon of deactivation had not occurred yet.

4. Conclusions

The performance of Ni supported on ETS-4 and ETS-10 was investigated. The novel
supports were characterized and tested toward the methanation reaction in the range
T = 300–500 ◦C.

The results showed a potential catalytic activity of the Ni/ETS-10 catalyst, character-
ized by 68% CO2 conversion and 98% CH4 selectivity at T = 400 ◦C.

The ETS-4 was demonstrated to be not a suitable support for the Ni catalyst because of
the collapse of the structure, due to the thermal treatment carried out to obtain the catalyst.
In addition, the leaching of titanium species had a detrimental effect on the selectivity
toward methane.

Ni/ETS-10 retained its framework zeolitic structures and in comparison to other
microporous materials exhibited superior catalytic performance.
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