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Abstract

Microbiome science is revolutionizing many concepts of plant biology, ecology, and evolution. 
Understanding plant microbiomes is key to developing solutions that guarantee crop health 
without impacting the environment. In this perspective article, we highlight the importance 
of both the structure and functions of plant-associated microbial communities in protecting 
their host from pathogens. These new findings have a high potential to aid biocontrol 
programs and to replace traditional chemical products, guiding the transition towards a 
sustainable production.
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1. Introduction

Plants associate with a wide diversity of microscopic organisms, including archaea, bacteria, 
and eukaryotes, collectively called the plant microbiota. Each microbial community occupies 
a reasonably well-defined habitat with specific physico-chemical properties and microbial 
structural elements, including for example relic DNA, mobile genetic elements, and viruses 
(Berg et al., 2020). Plant-associated microorganisms strongly influence the fitness, 
phenotype, evolution, and ecology of their host plants. For example, Lau and Lennon (2012) 
found that plants exposed to novel environmental conditions increased their fitness when 
interacting with a soil microbial community that evolved under that specific environment. 
Also, differences in phenotype have been observed in plants of Populus trichocarpa 
inoculated with different root bacterial endophytes (Henning et al., 2016). The influence of 
plant-associated microorganisms on host fitness and phenotype might have driven plant 
ecology and evolution (Hawkes et al., 2020). Different empirical studies have also found co-
diversification of host phylogeny and the structure of their associated microbial communities 
in different plant clades, further suggesting that plant-associated microorganisms might play 
a role in the evolution of their host (Abdelfattah et al., 2021; Bouffaud et al., 2014). Plant 
microbiome research is not only transforming the way we understand plants, but places the 
term “plant health” into a new perspective, where the classic disease triangle (host, 
environment, pathogen) is expanded to include whole plant-associated microbial 
communities (Bernardo-Cravo et al., 2020; Brader et al., 2017; Trivedi et al., 2020).

The microbial communities inhabiting different plant organs (e.g., leaves, roots, 
flowers, seeds, or internal plant tissue) are commonly referred to as the plant microbiota 
(Berg et al., 2016), and contain a multitude of microorganisms with different ecological roles 
within a defined environment. Some of these microbes can improve plant nutrition and 
protection or can mitigate the negative effects of different stresses. We usually refer to these 
microorganisms as beneficial microbes. Other microorganisms may have detrimental effects 
on plant fitness or cause a damage to plants. We usually refer to these microorganisms as 
plant pathogens. The field of plant protection focuses on these two broad categories, studying 
how to counteract pathogens and how to promote beneficial microorganisms. Traditionally, 
plant-microbe relationships have been studied by isolating single microbes in vitro and testing 
whether their presence influences plants positively or negatively. However, this field has 
recently expanded due to the increased affordability of high-throughput sequencing 
technologies, which also elicited the interest in plant-associated microbial communities. We 
now know that the interaction between plants and communities of microorganisms is 
extremely complex, and the tag “pathogenic” or “beneficial” is often context dependent. 
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Indeed, what we usually identify as a beneficial microorganism can have detrimental effects 
on some host plants (Pineda et al., 2013; Purin and Rillig, 2008), whereas those that we usually 
tag as plant pathogens may function as growth promoters under certain conditions (Li et al., 
2021). Furthermore, environmental conditions can promote the shift of lifestyle of some 
microorganisms from being endophytes to becoming pathogens. For example, Álvarez-Loayza 
et al. (2011) found that the endophyte Diplodia mutila becomes a pathogen of Iriartea 
deltoidei seedlings when they are grown in presence of light, suggesting that the fungus 
produces hydrogen peroxide as response to light and, thus, causing the disease on plants. 
Also, the pathogen Verticillium dahliae, known to cause disease on several plant species, it 
has also been isolated from several asymptomatic plants, suggesting that under certain 
conditions it may act as an endophyte (Malcolm et al., 2013). Several studies also confirmed 
that even the microbiomes associated with “healthy” plants actually contain plant pathogens 
(Berg, 2009; Manzotti et al., 2020; Wassermann et al., 2019). Furthermore, there is a larger 
portion of microorganisms that do not fall within any clear classification, and their ecological 
role is still unknown. Despite the numerous studies defining a “healthy microbiota”, there is 
no clear concept from the perspective of plant protection.

Another layer of complexity within microbiomes is represented by the non-linearity in 
the link between structure and function. Indeed, even if two microbial communities are 
taxonomically similar they might code for different functions, and microbiomes with different 
structures might code for a similar set of functions (Doolittle and Booth, 2017). Structure and 
function are key aspects of all biological systems, including microbiomes. The structure of 
plant-associated microbial communities is influenced by several factors, including plant 
species (Dastogeer et al., 2020; Trivedi et al., 2020; Turner et al., 2013; Wassermann et al., 
2019), soil quality and management (Benitez et al., 2021; Grady et al., 2019; Malacrinò et al., 
2021a; Zarraonaindia et al., 2015), atmosphere (Abdelfattah et al., 2019), herbivory (Hoysted 
et al., 2018; Kong et al., 2016; Malacrinò et al., 2021b), geographic location (Berg et al., 2016; 
Fitzpatrick et al., 2020), rootstock/scion combinations (Liu et al., 2018), and many others. The 
magnitude of change driven by each of these factors is not always clear, and few studies tried 
to quantify the contribution of multiple factors on structuring the plant microbiome. For 
example, when comparing the relative magnitude of different factors (herbivory, plant 
species, soil microbial diversity), Malacrinò et al. (2021a) found that soil diversity was the 
major driver of the plant microbiome structure in potato plants, while herbivory and plant 
species played a minor role. Within each plant, microbial communities mainly cluster by 
compartment (e.g., roots, leaves, fruits), and even spatially differentiate within the same 
compartment (e.g., calyx vs. and stem end of fruits, endosphere vs. ectosphere) (Abdelfattah 
et al., 2016; Dastogeer et al., 2020; Trivedi et al., 2020). Studying the taxonomical composition 
of a plant microbiome can provide important information about the role of specific plant or 
environmental factors in influencing the microbial community. This information can also be 
used as a proxy to infer about the potential role of these microorganisms within the 
community and their relationship with the plant. For example, Benitez et al (2021) used 
structural equation models to predict maize and soybean responses to taxonomic changes in 
bacterial and fungal communities due to crop rotation. The study of the functions coded by 
plant microbiomes can also provide an extra layer of information to identify combinations of 
microbial taxa and genes that have potential for plant protection.

To date, most research work has focused on the composition of plant microbiomes. 
Plant microbial diversity has been promoted as a plant health indicator (Berg et al., 2017) but 
functional diversity seems to be even more important (Lemanceau et al., 2017). Here, we 
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argue that an analysis of both the composition and the functions of plant-associated microbial 
communities are essential for understanding the impact of microbiomes on plant health. To 
this aim, we review the recent insights on the structure and the function of the plant 
microbiome, the plant pathobiome, and the environmental microbiome (Fig. 1), analyzing 
their impact on plant health, and how this can be exploited to drive further advances in plant 
protection and biological control.

2. The plant microbiome

A wide variety of microbes, spanning several clades of the tree of life, may be present in a 
plant microbiome. These microbes can assemble in many ways and are responsible for a 
variety of functions with both positive and negative effects on plants. Thus, the study of the 
composition of plant microbiomes represents an important source of information about 
which taxa can be valuable for improving plant health. This approach sets the base for our 
current understanding of plant microbiomes (Abdelfattah et al., 2018; Trivedi et al., 2020), 
and has motivated researchers to look for new sources of potential microbes and microbial 
consortia to improve plant health. In this context, the microbiomes associated with wild 
relatives of crop plants are attracting increasing interest (Pérez-Jaramillo et al., 2018).

Plant evolution can be driven by interactions with symbiotic and pathogenic microbes 
and vice versa (Delaux and Schornack, 2021). In addition to the coevolution of natural plant-
microbe interactions, the wild relatives of common crop plants were domesticated. During 
this process, plants have been selected to favor traits that ensure productivity and edibility, 
and more intensive plant breeding resulted in a reduction of crop genetic diversity. Indirectly, 
there are indications that the plant microbiome was influenced as well. The diversity of the 
plant microbiota has been shown to be reduced in several domesticated plant species when 
compared with their wild relatives (Escudero-Martinez and Bulgarelli, 2019; Martínez-
Romero et al., 2020; Pérez-Jaramillo et al., 2018), although this might not be true for all plant 
clades (Chaluvadi and Bennetzen, 2018; Leff et al., 2017). We can speculate that breeding 
relaxes narrow-range defense mechanisms (e.g., secondary metabolites toxic to mammals) 
and strengthens pathways that broadly influence host-microbiome interactions (e.g., those 
targeted by breeders to enhance plant defenses), which can limit the interactions with a wide 
range of microorganisms, and lead to a decrease in microbiome diversity. This might also 
explain the differential patterns observed in different plant lineages, as not all crops are 
subjected to the same breeding strategies. Another hypothesis is that the reduction of 
microbial diversity is not the result of the domestication or genetic improvement processes, 
but the consequence of the spread of intensive agricultural practices (e.g., simplified 
ecosystem, use of chemical products) that indirectly influence the plant microbiome and 
select for a less diverse microbial community. This reduction in plant microbial diversity might 
cause the loss of key beneficial microbial taxa, resulting in changes in the network of 
interactions within the microbiome and in a higher susceptibility of diseases and stresses. 
Berg and Cernava (2022) proposed that different human activities are linked to a shift in the 
diversity and evenness of plant microbiota, a decrease in host specificity, and an increase in 
r-strategic microbes, pathogens, and hypermutators.

In general, plant microbiomes can be managed either directly by applying (i) 
microbiota transplants, (ii) microbes with beneficial properties, (iii) microbiota-active 
metabolites, or (iv) indirectly by changing environmental conditions in a way that 
microbiomes also shift their structure and function from dysbiosis into a healthy state (Berg 
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et al., 2020). Wild crop relatives have high potential as a source for microbiota transplants for 
crop species and beneficial microbes (Pérez-Jaramillo et al., 2018). Several studies report a 
co-diversification of plant phylogeny and the diversity/structure of their microbiota 
(Abdelfattah et al., 2021; Abdullaeva et al., 2021; Bouffaud et al., 2014; Kim et al., 2020; Mazel 
et al., 2018; Mendes et al., 2018; Schlaeppi et al., 2014; Vincent et al., 2016). Thus, we 
speculate that the microbiota of wild relatives might still include microbial species that have 
been lost during the process of domestication, and that they might be restored in modern 
varieties to improve plant growth and health. This has been tested empirically by Chock et al. 
(2021), who inoculated plants of Eugenia koolauensis with microorganisms obtained from its 
wild relatives, and found a decrease in foliar disease caused by Austropuccinia psidii. Thus, 
the microbial diversity in wild relatives of crop species might open new paths to crop 
protection. We might explore the microbiomes of wild relatives and ancient heirloom breeds 
of crop cultivars as source of microorganisms to improve plant health and growth, in the same 
way we have been using wild plants to introgress genes into cultivated plants to compensate 
their limited genetic diversity.

Beneficial plant-associated microorganisms are involved in the germination, growth, 
performance, and health of their hosts. Understanding the modes of action of beneficial 
microbes is important for the design of promising microbial inoculants for sustainable 
agriculture. Plant-associated microorganisms are able to interact with their hosts and often 
protect the host plant against potential pathogens (Berg, 2009). Microbiome research has 
drastically changed our understanding of microbiome-inoculant interactions. Plant 
microbiome modulations are a crucial mode of action of beneficials. The microbiome can be 
modulated towards (i) transient microbiome shifts, (ii) stabilization or increase of microbial 
diversity, (iii) stabilization or increase of plant microbiome evenness, (iv) restoration of a 
dysbiosis/compensation or reduction of a pathogen-induced shift, (v) targeted shifts toward 
plant beneficial members of the indigenous microbiota, and (vi) suppression of potential 
pathogens (Berg et al., 2021).

Most current research describes changes in the taxonomical diversity of plant 
microbiome as a consequence of domestication. However, a change in microbial diversity 
does not mean that the functionality of the community is compromised. As suggested by 
Doolittle et al. (2017), the influence of selection on the taxonomic composition of a 
microbiome is trivial if the function is preserved. In this context, the redundancy in gene 
functions (Allison and Martiny, 2008) can contribute to the mechanisms of pathogen 
suppression exhibited by the plant microbiome. A high diversity of microbial species coding 
for the same function or acquiring a function by horizontal gene transfer can contribute to 
pathogen suppression. Thus, further research is necessary to understand the functioning of 
plant microbiomes.

3. The plant pathobiome

Plant diseases are a major threat to agricultural and natural ecosystems. Research has 
demonstrated that most of plant-associated microbial communities contain plant pathogens 
(Berg, 2009; Manzotti et al., 2020; Wassermann et al., 2019), suggesting that the distinction 
between a healthy microbiome and an unhealthy one is not solely based on the presence or 
absence of pathogens. This limits the “one microbe—one disease” concept. Agents of plant 
disease can, indeed, generate a disturbance in the interactions between the microbiome and 
its host, or within the microbiome itself. This disturbance can generate a microbiome that 
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deteriorates the host’s health status, termed a “pathobiome” (Mannaa and Seo, 2021; 
Vayssier-Taussat et al., 2014).

In terms of community structure, healthy and diseased plants often associate with 
distinct microbial communities, as shown in several systems (Abdelfattah et al., 2015; Bez et 
al., 2021; Cui et al., 2021; Diskin et al., 2017; Ewing et al., 2021; Ginnan et al., 2020; 
Kusstatscher et al., 2019a; Solís-García et al., 2021; Wen et al., 2020; Yurgel et al., 2018). In 
general, diseased plants show a higher abundance of the pathogen and an altered network 
of interactions within the plant microbiome. High pathogen pressure can also enrich for plant 
beneficial microorganisms, particularly antagonists of pathogens (Garbeva et al., 2004; Liu et 
al., 2021; Weller et al., 2002). This represents a chance to isolate biocontrol microorganisms 
that co-occur with the pathogen. This approach was originally used to recover 
microorganisms with biocontrol potential against postharvest rots in apple (Wilson et al., 
1993). More recently, Kusstatscher et al. (2019b) employed this approach to obtain beneficial 
bacteria from sugar beets that were selected from fields with high pathogen pressure from 
Fusarium oxysporum, revealing that ∼50% of isolated bacterial strains were antagonistic to 
the plant pathogen. Similarly, Zachow et al. (2011) found that ∼28% of microbial strains 
isolated in proximity to sclerotia (dormant resting bodies) of the fungal plant pathogen 
Rhizoctonia solani had an antagonistic action against this pathogen. Sclerotia are indeed a 
promising source from which to isolate pathogen-antagonistic bacteria (Mehmood et al., 
2020; Mülner et al., 2019). The identification of key features in the microbial community 
structure of healthy and diseased plants holds potential to uncover beneficial microorganisms 
useful to counteract the negative effects of plant pathogens.

Healthy and diseased plants also show differences in terms of microbial gene content 
and expression. For example, Broberg et al. (2018) found a group of 499 microbial genes 
upregulated in oak trees symptomatic to acute oak decline, including plant cell wall-degrading 
enzymes, toxins, and virulence-associated genes. Similar results were obtained by Shi et al. 
(2019) comparing the metagenome of potato plants grown under high or low pressure by 
potato common scab, and revealing that a set of microbial genes including ABC transporters, 
bacterial secretion systems, and quorum sensing genes, which were enriched when the 
pathogen was highly abundant. These results are fundamental for beginning to engineer plant 
microbiomes to promote plant health and growth (Ke et al., 2021). While advanced genome 
editing techniques like CRISPR tools are still difficult to apply in the field (Barrangou and 
Notebaart, 2019), the experimental evolution of plant microbiomes can also help in finding 
novel approaches to counteract plant diseases. For example, Li et al. (2021) evolved a plant 
pathogenic Pseudomonas into a plant mutualist within a few generations. Morella et al. 
(2020) used an experimental evolution approach to generate a plant microbiome that was 
resistant to invasion by other microbial strains. Thus, future research can combine the study 
of the functions encoded within the pathobiome to direct evolution experiments and 
generate microbial communities that can counteract plant pathogens, or to generate complex 
microbial consortia that can be inoculated to our crops and provide protection against agents 
of plant diseases.

4. The environmental microbiome

The environment in which plants grow is a continuous source of microbial inoculum (Berg and 
Smalla, 2009; Brown et al., 2020; Pieterse et al., 2016). Plants can drive the recruitment of 
beneficial microorganisms from soil through their metabolism, immune system, root 
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architecture, and root exudate composition (Abedini et al., 2021; Chagas et al., 2018; Jacoby 
et al., 2020; Park and Ryu, 2021). Thus, there is much potential to exploit the environmental 
microbiome to benefit plant protection.

One key example of protection against plant pathogens provided by the 
environmental microbiome is disease-suppressive soils. Disease suppressiveness is a unique 
phenomenon in soil microbial ecology, providing an immune response to the invasion by a 
pathogen (Raaijmakers and Mazzola, 2016). Disease suppressive soils have been shown to 
prevent establishment of soil-borne pathogens and/or reduce disease incidence, regardless 
of host susceptibility and environmental conditions conducive to disease (Bakker et al., 2018; 
Gómez Expósito et al., 2017; Schlatter et al., 2017; Weller et al., 2002).

Disease suppressive soils have shown diverse dynamics in relation to the structure of 
their microbial communities. For example, sugar beet plants grown on soils suppressive to R. 
solani show a higher abundance of members of Pseudomonadaceae, Burkholderiaceae, 
Xanthomonadales and Lactobacillaceae in the rhizosphere (Mendes et al., 2011). In a similar 
study, the rhizosphere of sugar beet plants grown on soil suppressive to R. solani was enriched 
in members of Oxalobacteraceae, Burkholderiaceae, Sphingobacteriaceae and 
Sphingomonadaceae when the pathogen was introduced into the system (Chapelle et al., 
2016). Wheat plants grown on soils suppressive to R. solani showed a higher abundance of 
Stenotrophomonas spp. and Buttiauxella spp. in their rhizosphere, compared to plants grown 
in non-suppressive soil (Hayden et al., 2018). Wei et al. (2019) found an higher abundance of 
Massilia, Dyadobacter, Terrabacter, Arachidicoccus, and Dyella in the rhizosphere of tomato 
plants grow on soil suppressive to Ralstonia solanacearum. Collectively, these results suggest 
that the microbial communities involved in disease suppression might be unique for specific 
combinations of soil microbiota, pathogens, and host plants, although their function might 
still be conserved across different scenarios.

The disease reducing capacity of suppressive soils can be classified into two 
categories: general and specific suppression. All soils are virtually capable of general 
suppression of soil-borne pathogens if the resident microbial community outcompetes the 
invading pathogen. However, some soils are able to contrast the spread of specific plant 
pathogens (Schlatter et al., 2017). Specific disease suppression may be a product of the 
interaction between specific microbes (or microbial consortia) and specific pathogens, and 
may be caused by the release of metabolites during the interaction between the soil 
microbiota and the pathogen (Cha et al., 2016; Mendes et al., 2011). These metabolites, in 
turn, enrich for the disease-suppressive microorganisms at the expense of the pathogen 
(Chapelle et al., 2016). The biosynthesis of such secondary metabolites is quite complex, and 
it is usually under the control of clusters of genes shown to be enriched in disease-suppressive 
soils. For example, non-ribosomal peptide synthetases (NRPSs) gene clusters have been found 
enriched in soils suppressive to Fusarium (Tracanna et al., 2021; Zhao et al., 2018). Soils 
suppressive to R. solani were found enriched in NRPSs, polyketide synthases (PKSs) and 
chitinase gene clusters (Carrión et al., 2019; Mendes et al., 2011). A metatranscriptomics 
study found a higher expression of PKSs, terpenoid biosynthesis genes and cold shock proteins 
in soils suppressive to R. solani (Hayden et al., 2018). NRPSs and PKSs were also found 
enriched in soils suppressive to R. solanacearum (Wei et al., 2019). A wider study found PKSs 
gene clusters to be enriched in a wide variety of disease suppressive soils across a wide 
geographical range (van Elsas et al., 2008). In all these examples, NRPSs and PKSs gene clusters 
appear to play a major role in disease suppressive soils across a variety of systems. These gene 
clusters control the production of multiple secondary metabolites which are known to have 
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antimicrobial activity (Mousa and Raizada, 2015). Chitinase genes are also common in 
disease-suppressive soils (Carrión et al., 2019; Mendes et al., 2011) likely leading to chitin 
degradation and fungal cell wall degradation. Thus, while the taxonomical structure of disease 
suppressive soils seems to be quite variable, there is instead consensus on the genes that are 
enriched in these soils, and which represent a good target for manipulating the environmental 
microbiome to favor plant health.

5. Conclusions and future goals

Agriculture is still making extensive use of chemical inputs to increase crop yields and protect 
plants from pests and diseases. However, the shift towards a more sustainable agriculture is 
still slow (Siebrecht, 2020). Microbiome data are increasing our ability to understand and 
manipulate the interaction between plants and their associated microorganisms. Microbiome 
management and microbiome-based products represent one of the most promising 
alternatives to chemical products in agriculture. The benefits of introducing specific microbial 
strains into agricultural systems are widely known, and in several cases we now commonly 
use microorganisms to increase plant fitness and improve protection against pathogens and 
pests (Bashan et al., 2014; Harman, 2011). While inoculation of single strains is common, 
mainly because it is the easiest to implement into a commercial product, there is now an 
increased attention for the use of multi-strain products. The inoculation of complex microbial 
communities also known as synthetic communities (or SynComms), have the potential to 
provide higher benefits, in terms of plant growth and health, compared to the use of single 
microbial strains (de Souza et al., 2020; Marín et al., 2021). While we still know little about 
the best way to assemble these SynComms, we suggest that combining knowledge of both 
microbial species and their genome content will produce the most effective SynComms.

The last two decades of plant microbiome research set the baseline for the awareness 
of the importance of plant-associated microbial communities and their impact on plant 
growth and health. Here we promote extending beyond the taxonomical structure of these 
communities towards a deeper mechanistic understanding of their function in terms of gene 
content and expression. We expect that integrating both structure and function will allow us 
to enrich specific functions. Wild relatives, pathobiomes, environmental microbiomes, 
synthetic communities, experimental evolution, and microbial transplantations are all useful 
tools for promoting plant protection and can be integrated into a wider conceptual 
framework for microbiome management. Thus, the future challenge is to rethink agricultural 
practices to consider the power of plant and soil microbiomes. This might be one of the major 
ways to improve current biocontrol programs and, thus, reduce our dependence upon 
agrochemicals.

Figure captions

Figure 1. Structure and the function of the plant microbiome, the plant pathobiome, and the 
environmental microbiome can be studied to design synthetic communities (SynComms), 
which can be exploited in crop protection. Created with BioRender.com
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 Microbiome management can represent the next frontier of biological control
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