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Abstract: By enabling name-based routing and ubiquitous in-network caching, Named Data Network-
ing (NDN) is a promising network architecture for sixth generation (6G) edge network infrastructures.
However, the performance of content retrieval largely depends on the selected caching strategy,
which is implemented in a distributed fashion by each NDN node. Previous research showed the
effectiveness of caching decisions based on content popularity and network topology information.
This paper presents a new distributed caching strategy for NDN edge networks based on a metric
called popularity-aware closeness (PaC), which measures the proximity of the potential cacher to the
majority of requesters of a certain content. After identifying the most popular contents, the strategy
caches them in the available edge nodes that guarantee the higher PaC. Achieved simulation results
show that the proposed strategy outperforms other benchmark schemes, in terms of reduced content
retrieval delay and exchanged data traffic.

Keywords: Named Data Networking; information centric networking; caching; edge networks; 6G

1. Introduction

A multitude of innovative applications, ranging from holographic telepresence to
extended reality (XR), are expected to be delivered on top of sixth-generation (6G) networks,
which would highly challenge the existing Internet infrastructure. Disruptive solutions
are needed to cope with the demands of such future bandwidth-hungry and low-latency
applications. By supporting name-based routing and ubiquitous in-network caching, the
Named Data Networking (NDN) [1] paradigm is identified as a key enabler of 6G network
architectures aimed at improving content distribution.

NDN is an information centric networking (ICN) architecture that promotes a commu-
nication model directly based on topology-independent content names, instead of internet
protocol (IP) addresses. Content retrieval is based on the exchange of two named packets:
the Interest, transmitted by the end-clients to retrieve the content, and the Data, transmitted
by any node owning a copy of the content. Each Data packet is uniquely named and secured
and, therefore, it can be cached by any NDN node in the path between the requester and
the original source.

More specifically, NDN nodes are provided with a Content Store (CS) to cache incom-
ing Data packets. The default caching strategy in NDN is Cache Everything Everywhere

(CEE) coupled with Least Recently Used (LRU) replacement, i.e., each node caches
each incoming Data packet and, if the CS is full, the LRU policy is applied to remove an
existing item and make room for the new one. Although this strategy can speed up the data
retrieval, several studies have showed that better performance can be obtained if selective
decision strategies are implemented that improve the cache diversity [2].
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One of the most important caching decision metrics is the content popularity. Typically,
Internet contents show a skewed popularity distribution [3]: only a few contents are highly
requested and deserve to be cached. Another crucial caching decision metric is the centrality
of the nodes. The work in [4] focuses on the betweenness centrality metric and demonstrates
that caching at the most central nodes can increase the cache hit probability and decrease
the cache eviction rate, as these nodes are traversed by the majority of content requests.
However, from the perspective of content retrieval, the node centrality should be re-defined
by taking into account the capability of the node of satisfying the content requests, in
addition to its topological feature [5,6].

So far, existing work [5–7] defined a popularity-aware betweenness centrality metric
to enable coordinated caching decisions between distributed cachers. Basically, these
strategies weight the betweenness centrality of a node with the popularity of the contents
that can be transmitted through it. By introducing a relevant signalling among the nodes,
collaborative decisions are deployed, where the most popular contents are cached in the
most central nodes. However, in edge topologies, typically characterized by hierarchical
topologies [6,8], the nodes with the highest betweenness centrality are also far away from
the end-clients, i.e., the content consumers. Therefore, they cannot guarantee a low retrieval
delay and a small network traffic. Instead, it would be crucial to cache the content as close as
possible to the consumers to meet the proximity requirements of upcoming 6G applications.

In this paper, we define a new caching scheme based on a popularity-aware close-
ness (PaC) metric, which allows to cache the most popular contents in the edge nodes
according to their proximity to the majority of requesters. Thanks to lightweight signalling
piggybacked in Interest and Data packets, the potential cachers are ranked according to
the PaC metric, and the best available cacher per path is selected. Performance evaluation
shows that the conceived strategy is able to limit the retrieval delay while maintaining low
exchanged traffic and the signalling overhead, compared to related literature based on the
betweenness centrality metric [6].

The remainder of this paper is organized as follows. Section 2 provides background
material on caching strategies in NDN. The proposal is discussed in Section 3 and evaluated
in Section 4. Final remarks are reported in Section 5.

2. Background and Motivations
2.1. NDN in a Nutshell

In NDN, caching operations are embedded in the forwarding process of the Interest
and Data packets, which is shown is Figure 1.

Figure 1. Forwarding process in NDN.

At the reception of an Interest packet, the node looks in the CS and, in case of a name
matching, it immediately sends the Data back. Vice versa, the node checks if an equal
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request is pending in the Pending Interest Table (PIT) and, in case of a positive outcome,
the incoming interface of the Interest is added to the PIT entry and the packet is discarded,
thus reducing the traffic in the network. If the PIT matching fails, the Interest is forwarded
according to named-based forwarding rules towards the original source.

When the Data packet arrives, the node checks for a name matching in the PIT and,
in case of a positive outcome, the packet is cached and then forwarded towards the con-
sumer(s). Vice versa, if the PIT matching fails, the Data is considered unsolicited and it
is discarded.

The vanilla NDN caching strategy, CEE, typically leads to poor performance due to
the lack of cache diversity [2]. A conventional scheme that limits the cache redundancy
without introducing much complexity is Fixed Probability-based caching, where the Data
packets are cached according to a fixed probability, usually set to 0.5 [9].

2.2. Caching Strategies in the Literature

To improve the content retrieval performance, several NDN caching strategies have
been proposed in the last few years [2]. Among them, we can identify two major categories,
namely popularity-based schemes and centrality-based schemes, which leverage, respec-
tively, content popularity information and network topology information to select which
contents to cache and where.

In popularity-based schemes [10–14], NDN nodes cache the most popular contents
according to the locally measured rate of received Interests, which is stored in a Popularity
Table. Typically, a threshold based mechanism is considered: contents that are requested a
number of times higher than the threshold are cached.

In centrality-based schemes [4], instead, the caching decision depends on the importance
of the nodes, expressed in terms of topological centrality. For instance, the pioneering
proposal called Betw [4] leverages the betweenness centrality of the nodes as decision metric
and replaces contents with the least recently used (LRU) policy. According to the graph
theory, given a set V of network nodes, the betweenness centrality (CB) of a node vi ∈ V is
defined as:

CB(vi) = ∑
vk 6=vj 6=vi∈V

σvk ,vj(vi)

σvk ,vj

, (1)

with σvk ,vj(vi) and σvk ,vj being, respectively, the number of shortest content delivery paths
from the two endpoints vk and vj that pass through vi and the total number of shortest
content delivery paths between the same endpoints. Betw strategy is built on the follow-
ing intuition: if a node vi is traversed by many content delivery paths, then it is more
likely to get a cache hit. Therefore, contents are cached in the nodes with the higher
betweenness centrality.

In [5], however, the authors observe that the topological centrality metric alone does
not reflect the importance of a node from the content delivery perspective. Therefore, the
authors define a new popularity-aware centrality metric, which aims at placing the most
popular contents at high central nodes, and the remaining contents with decreasing popu-
larity at nodes with decreasing centrality score. With the same target, the Betweenness and
Edge Popularity caching (BEP) strategy [6] leverages a coordinated signalling mechanism
piggybacked into Interest and Data packets. In BEP, the edge nodes (i.e., the leaf nodes
directly connected to the consumers) track the number of received requests and periodically
compute the content popularity with an exponential weighted moving average (EWMA)
formula. The information is maintained in a Popularity Table, where contents are also
ranked in terms of popularity. When a content request arrives, the edge node includes the
correspondent popularity ranking in the Interest and forwards it towards the origin source.
In addition, the Interest carries an array of betweenness centrality values, which is filled by
all on-path routers. When the origin source receives the Interest, it compares the popularity
ranking against the available betweeneess values and identifies the cacher by matching the
two metrics, i.e., if the content has the highest popularity, it will be cached in the node with
the highest centrality, and so on.
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Despite their differences, all the noted approaches consider the betweenness centrality
in the caching decision. However, this metric does not guarantee the minimum retrieval
delay for the consumers. Indeed, especially when considering edge domains, typically
characterized by hierarchical topologies [8], the nodes with the highest betweenness cen-
trality are usually far away from the leaf nodes, where the consumers are attached. Instead,
a peripheral edge node, e.g., a base station (BS), has typically low betweenness centrality,
but it can be very close to the consumers and cover a key role as cacher.

Given a content x, the closest node to the requesters of x would be able to deliver the
content with the lowest delay. Therefore, to take advantage of the limited cache capacity
at the edge, it is necessary to select the most popular contents and cache them in the
closest nodes along the delivery paths. In addition to reducing the content retrieval latency,
caching contents close to the consumers allows for the reduction of intra-domain traffic.
Indeed, contents may traverse a lower number of hops and free bandwidth resources over
edge links.

Table 1 compares the main features of the related caching strategies available in the
literature and our proposal.

Table 1. Comparison of caching strategies based on popularity and/or topology metrics.

Work Popularity Topology Domain Decision Strategy

[10] X - Edge/Core Caching popular contents based on a fixed
popularity threshold

[11] X - Edge Caching popular and fresh contents based on a flexible
popularity threshold

[12] X - Edge/Core
Caching only popular long-lasting contents (in the core

network); caching popular short-lasting contents only once per
each delivery path (in the edge network)

[13] X - Edge/Core Caching popular contents based on a flexible
popularity threshold

[14] X - Edge Caching popular contents based on a strict hierarchical
coordination between the nodes

[4] - X Edge/Core Caching contents in the most central nodes based on the
betweenness centrality metric

[5] X X Edge Caching based on a popularity-weighted
content-based centrality

[6] X X Edge/Core Caching based on popularity and betweenness
centrality metric

Our work X X Edge Caching based on a popularity aware consumer
proximity metric

3. PaC-Based Caching
3.1. Main Pillars and Assumptions

To capture the aforementioned needs and overstep the limitations of existing solutions,
we propose a different topological metric that accounts for the proximity of potential cachers
to the consumers and is weighted by the content popularity. We leverage the resulting metric,
namely PaC, in a new strategy aimed at caching the most popular contents as close as
possible to the majority of consumers in order to limit the data retrieval delay and the
exchanged data traffic.

As shown in Figure 2, the reference scenario of our study is an edge domain, e.g., the
backhaul network of a mobile network operator, a campus network, composed of a set V
of NDN nodes [8]. A subset of nodes denoted as I ⊂ V act as ingress nodes that consumers
are connected to. A few other nodes, instead, act as egress nodes towards the content
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sources, i.e., remote servers hosting the contents. A catalogue X of cacheable contents
is considered.

For ease of reference, the key notations used in the paper are summarized in Table 2.

Table 2. Summary of the main notations.

Symbol Description

V set of NDN edge nodes
I set of NDN ingress nodes, with I ⊂ V
X catalogue of contents
vj generic ingress node
vi generic edge node
xn generic content
Rvi (xn) average request rate for content xn at node vi
ΘP popularity threshold
Rvj average content request rate at ingress node vj
T time interval for updating caching decision parameters
Mvj number of distinct contents received at the ingress node vj
Îi(xn) set of ingress nodes forwarding Interests for content xn to node vi
PaC(vi, xn) popularity-aware closeness metric for content xn at node vi
h(vi ,vj) hop distance between nodes vi and vj

Figure 2. Reference scenario.

All the nodes have caching capabilities and implement the traditional NDN forwarding
fabric with the best route strategy, i.e., Interests are forwarded along the shortest path
between ingress and egress nodes. A routing protocol, e.g., named-data link state routing
protocol (NLSR) [15], is enabled for intra-domain dissemination of both connectivity and
name prefix information.

To enable the PaC-based caching (PaCC), the following main modifications are foreseen
to the legacy NDN routines, data structures, and packet fields:

• Content popularity is tracked at the edge nodes in terms of locally perceived content
request rate. Values are maintained in a Popularity Table and properly advertised in the
new RATE field of the Interest packet to account for the actual content request number
over each edge link.

• Each node tracks the distance, in terms of hop count, from the on-path ingress nodes
through a newly added field HOPCOUNT. This information, combined with the content
request rate, is used to compute the PaC metric that is then advertised in the new PAC

field of the Interest packet by the forwarding nodes.
• The highest PaC metric, discovered during the Interest forwarding, is carried by the

returning Data packet in a new PAC field, and it is used to select the cacher.
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Figure 3 shows the new fields introduced in the Interest and Data packets, respectively,
that enable the PaC-based caching thanks to an implicit signalling mechanism, which will
be clarified subsequently.

(a) Interest

(b) Data

Figure 3. Overhauled NDN packets (fields with text in orange are those added by the PaC-
based caching).

3.2. Tracking Content Popularity

Similarly to other schemes [6,10,11,13], the edge nodes track in the Popularity Table
the received requests in order to identify the most popular contents.

Basically, the ingress nodes (green devices in Figure 2) counts the Interests received
from consumers they are connected to, in order to determine the average request rate of
each content. At the ingress node vj ∈ I, the average request rate for content xn is denoted
as Rvj(xn).

The node periodically updates the average request rate, with a time interval T set to
one minute, similarly to [13], to properly infer potential changes in the request patterns.
Therefore, we assume each entry in the Popularity Table includes three fields: content name,
average request rate, and current counter of requests.

In our design, the ingress nodes are also in charge of identifying the most popular
contents that should be cached along a delivery path. More specifically, a content is
considered popular by the ingress node vj if it is requested a higher number of times than a
popularity threshold ΘP. This latter is computed as the EWMA of the average request rate
per each requested content:

ΘP = (1− α)ΘPOld + αRvj , (2)

with

Rvj =
∑

Mvj
n=1 Rvj(xn)

Mvj

, (3)

with Mvj being the number of distinct contents requested during the last time interval
T, as perceived by node vj, and α ∈ (0, 1) set to 0.125 to avoid large fluctuations in the
computation and give relevance to the historical values.

Because the Interest aggregation in the PIT hides the actual number of consumers
requesting the same contents, a specific signalling mechanism is deployed to let intermedi-
ate nodes effectively track the request rate. More specifically, each time an ingress node
vj forwards an Interest for content xn to the next on-path node vi, it includes the average
request rate information in the RATE field. Of course, the same edge node vi can be in
multiple shortest delivery paths towards the same content. For instance, node v4 in Figure 2
is traversed by two shortest paths from the ingress nodes v8 and v9. Instead, node v2 is
traversed by three shortest delivery paths from the ingress nodes v8, v9, and v10.

We denote as Îi(xn) ⊂ I the set of ingress nodes forwarding Interests for content xn to
vi. In other words, vi belongs to the shortest paths connecting the ingress nodes belonging
to Îi(xn), which receive the requests from the consumers, and the egress node towards
the origin source. Since NDN implements only on-path caching, vi is a candidate cacher
for a content xn for which requests are received by ingress nodes in Îi(xn). For instance,



Sensors 2022, 22, 3460 7 of 15

a content cached at v2, in Figure 2, may serve the requests coming from the three ingress
nodes, v8, v9, v10.

The intermediate node vi (e.g., v4 in Figure 2) collects the Rvj(xn) values from the
Interests received through the incoming interfaces and calculates the local average request
rate as:

Rvi (xn) = ∑
j∈ Îi(xn)

Rvj(xn). (4)

When re-transmitting the Interest packet, vi, in its turn, overwrites the RATE field with
the new cumulative value, thus the next-hop node will be aware of the average number of
requests that can be satisfied with a Data packet over that incoming interface. The next-hop
node (e.g., v2 in Figure 2) also calculates the cumulative request rate, and so on.

3.3. Popularity-Aware Closeness Metric

The PaC metric of a potential cacher vi for content xn, PaC(vi, xn), considers the dis-
tance, in terms of hop count, between vi and the ingress nodes connected to the consumers.
Since, in NDN, vi receives Interests for xn from an ingress node vj only if it is in the for-
warding path between vj and the origin source, PaC(vi, xn) takes into account only the set
of ingress nodes Îi(xn).

In parallel, the metric considers the number of consumers that could be satisfied by
the potential cacher. The higher is the number of requests for xn that cross vi, the higher
should be the PaC metric.

In mathematical terms, the PaC metric for a node vi ∈ V and a content xn can be
expressed as:

PaC(vi, xn) =
Rvi (xn)| Îi(xn)|

∑j∈ Îi(xn)
(h(vi ,vj)

+ 1)
(5)

where | Îi(xn)| is the cardinality of the set of ingress nodes in Îi(xn), used to normalize the
metric, and h(vi ,vj)

is the hop distance between vi and the ingress node vj.
It can be observed that PaC(vi, xn) increases with the request rate of xn and it is equal

to zero if vi does not receive any request for xn. At the same time, the metric decreases if vi
is far from the consumers.

3.4. Caching Algorithm

When an Interest for content xn arrives at an ingress node vj, the latter updates the
corresponding entry in the Popularity Table, checks if the content is popular, and then
accesses the CS to find a matching Data packet to send back immediately. If the CS lookup
fails, then vj checks the PIT. If this lookup also fails, then vj acts differently depending
whether the content is popular, i.e., its average request rate is higher than the popularity
threshold, or not. If it is not popular, then there is no need to cache it along the path.
Therefore, vj increases by one the HOPCOUNT field of the Interest, fills the RATE field, in
order to allow the next hop updating the Popularity Table, but leaves the PAC field to the
default zero value, to indicate that the content is not popular. The request will be forwarded
towards the origin server according to the standard NDN forwarding fabric. Of course, it
may happen that an edge on-path node belonging to multiple delivery paths has cached
the content (because it is considered popular by another ingress node) and, therefore, the
request can be still satisfied at the edge.

The returning Data packet, being not popular, should not be cached. However, to
make the best of the available storage space, unpopular Data packets can be cached in case
the CS is not full, e.g., during the network bootstrap phases.

Vice versa, if xn is popular, then vj updates all the new fields of the Interests, i.e.,
HOPCOUNT, RATE, and PAC, and transmits the packet to the next-hop, according to the
FIB entry.

The subsequent node vi receiving the Interest performs a slightly different processing.
First, it accesses the information from the Interest header fields and checks if the Popularity
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Table needs to be updated. In NDN, Interests cannot loop, therefore a newly received
Interest carries consistent information in the header fields. The latter can be equal to the
previously recorded one, if the request pattern has not changed. The node then performs a
lookup in the CS for a match. If the Data packet is found, then vi computes its PaC metric
and compares it with the value in the PAC field. If its value is greater, then it overwrites the
field and sends the packet back. Vice versa, if its PaC value is smaller, it simply sends the
Data packet without altering it. The receiving node with the highest PaC will also cache
the Data, thus moving the copy closer to the consumers.

In case the CS and the consequent PIT matching fail, vi computes its PaC and, if its
value is greater than the current one, it updates the PAC, HOPCOUNT, and RATE fields.
Conversely, if the PaC is lower than the current one, it only updates the HOPCOUNT

and RATE fields. It then re-transmits the request according to the FIB and waits for the
Data packet.

When finally receiving the Interest, the origin server, or an intermediate cacher, copies
the PaC value from Interest to the corresponding field in the Data packet header and
transmits the packet. The first node with the corresponding PaC will cache the Data. If the
CS if full, an existing item is replaced according to the LRU policy.

The flowcharts summarizing the Interest processing and Data processing for the
PaC-based caching are depicted in Figure 4 and Figure 5, respectively.

Figure 4. Interest processing in the presence of PaC-based caching.

Figure 5. Data processing in the presence of PaC-based caching.

3.5. A Toy Example

To better understand the PaC metric, we consider the toy example in Figure 6 that
includes eight edge nodes in a hierarchical topology. The nodes v1, v2, . . . ,v5 are ingress
nodes tracking the average content request rate. For the sake of simplicity, we assume that
three distinct popular contents, namely x1, x2, x3, should be cached at the edge and their
request rate is stable. The available storage space at each node allows for caching only
one content.

It can be observed that the average request rate for x1, the most requested content
at the edge, is 22 at v1 and 20 at v2, v3, whereas it is 6 at v5. When computing the PaC
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metric for the nodes traversed by the Interests for x1, according to Equation (5), it results in
PaC(v1, x1) = 22, PaC(v2, x1) = PaC(v3, x1) = 20, PaC(v5, x1) = 6, PaC(v6, x1) =

62·3
6 =

31, PaC(v7, x1) =
6·1
2 = 3, and PaC(v8, x1) =

68·4
12 = 22.66. The node with the highest PaC

metric for x1 is v6, which is indeed the node closer to the majority of consumers that are
attached to the ingress nodes v1 − v3. If instead we consider the path {v5 → v7 → v8}, the
node with the highest PaC is v8. However, caching x1 at v6 would imply that the node at
the upper layer, v8, will not receive further Interests for x1 and therefore, its local request
rate will decrease. As a consequence, in a subsequent time window, x1 will be cached at v5.

Vice versa, an approach based on the betweenness centrality, like BEP, would be
considered as best cacher for x1 node v8, which has the highest centrality, but it is also the
farthest away from the consumers. Therefore, caching x1 at v8 would highly increase the
retrieval delay and the intra-domain traffic.

Content x2 is requested only at v4 and v5 and it results in PaC(v4, x2) = 15,
PaC(v5, x2) = 3, PaC(v7, x2) = 18·2

4 = 9, PaC(v8, x2) = 18·2
6 = 6. The node with the

highest PaC metric is v4 which, again, is the one closer to the majority of consumers. There-
fore, the majority of requests will be served with minimum delay and with minimum
intra-domain traffic. To serve requests coming from path {v5 → v7 → v8}, instead, v7
would be selected as cacher.

By following the same procedure, it can be found that the higher PaC for content x3 is
obtained at v8.

Figure 6. Toy example: an edge network with eight nodes.

4. Performance Evaluation
4.1. Simulation Settings

The proposed caching strategy has been implemented in ndnSIM, the official simulator
of the NDN research community [16]. As representative edge domain, we consider a tree
topology randomly generated with the Georgia Tech Internetwork Topology Models (GT-
ITM) [17]. The topology includes 20 intermediate nodes and 8 leaves acting as ingress
nodes. The root node connects the edge domain with a remote server acting as content
producer. Because the performance assessment is focused on the edge domain, the external
network is simply simulated as a link, with latency of 30 ms [18], between the root node
and the server. The latency of edge links is instead uniformly distributed in the range
[2–5] ms.

We consider a catalog of 15,000 contents, each one consisting of 1000 Data packets
1 Kbyte-long. A variable number of consumers attached to the leaf nodes of the topology,
request contents according to the Zipf’s law [3], with skewness parameter α set to 1. In
these settings, we consider two distinct simulation scenarios.

• In the first scenario, we assume that the total caching capacity of the edge domain,
uniformly distributed among the nodes, is varying from 0.25% to 2% of the overall
catalog size, similarly to the values reported in [19]. The number of consumers is set
to 60.
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• In the second scenario, we assume that the cache capacity is fixed to 0.5% of the overall
catalog size, whereas the number of consumers range from 20 to 70.

The main simulation settings are summarized in Table 3.

Table 3. Main simulation settings.

Parameter Value

Content catalog size 15,000 contents

Content size 1000 Data packets

Data packet size 1000 bytes

Content Popularity Zipf-distributed with α = 1

Scenario GT-ITM [17]

Edge link latency Uniformly distributed in [2, 5] ms

Number of consumers 20–70

Number of edge nodes 28

Caching capacity From 0.25% to 2% of the catalogue size

We compare the proposed model (labeled as PaCC in the plots) against the following
benchmark solutions:

• Cache everything everywhere (labeled as CEE in the plots). It is the vanilla NDN
caching strategy where all the incoming Data packets are cached.

• Fixed probability-based caching (labeled as Prob in the plots). It caches incoming Data
according to a fixed probability set to 0.5 [9].

• Betweenness and edge popularity caching (labeled as BEP in the plots). It implements a
caching scheme based on the popularity-aware betweenness centrality metric, as in [6].

For all the noted schemes, the replacement policy is LRU.
The following performance metrics are considered:

• Retrieval delay: it is computed as the average time taken by a consumer to retrieve a
content.

• Number of hops: it is computed as the average number of hops traveled by the Interest
packets for retrieving the corresponding Data packets.

• Exchanged NDN packets: it is the total number of Interest and Data packets transmit-
ted by all the nodes, i.e., consumers, providers, and edge nodes, during the simulation,
to retrieve the contents.

The first two metrics capture the effectiveness of the compared schemes in caching
content copies in proximity to the consumers. The last metric provides insights about the
efficiency of the schemes, in terms of traffic exchanged in the network. Results are averaged
over 10 runs and reported with 95% confidence intervals.

4.2. Results
4.2.1. Impact of the Cache Size

Figure 7 shows the performance metrics when varying the cache size of the edge
domain from 0.25% to 2% of the content catalogue size. As expected, it can be observed
that, as the cache size increases, performance improves for all the considered schemes.
Indeed, the higher the storage space at the edge, the higher is the number of contents that
can be stored, with consequent advantages in terms of reduced retrieval delay, number of
hops, and exchanged traffic.
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Figure 7. Metrics when varying the cache size of the edge domain from 0.25% to 2% of the content
catalogue size (number of consumers equal to 60).

Being oblivious of content popularity and topology information, the simplest CEE
solution shows the worst performance in terms of content retrieval delay, due to higher
number of hops traversed to reach the requested content. It generates the highest load of
exchanged NDN packets. The Prob scheme slightly outperforms CEE, because it does not
cache indiscriminately contents but it tries to better distribute them in the CS of edge nodes.

As the cache size of the edge domain increases, differences among the two decrease,
because there is higher chance to find storage space for caching contents within nodes.
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PaCC outperforms all the other schemes in terms of all the considered metrics. How-
ever, the gap with BEP reduces as the edge domain is more capable to cache contents.

To conclude the analysis, Figure 8 shows the percentage of Interest packets that reach
the origin server because it has not been found a CS matching at the edge. Reasonably,
the traffic to the cloud reduces when the storage space at the edge increases, with PaCC
outperforming all the benchmark schemes.
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Figure 8. Percentage of Interest packets that are forwarded to the origin server.

4.2.2. Impact of the Number of Consumers

The second set of results, reported in Figure 9, measures the metrics of interest when
varying the number of consumers.

Under such settings, the proposed PaCC solution achieves the best performance in
terms of content retrieval delay, number of hops, and exchanged NDN packets.

It can be observed that, as the number of consumers increases, all schemes experience
a shorter delay and a lower number of hops. Such a behaviour has to be ascribed to the
fact that under the simulated settings, due to the Zipf distribution, a higher number of
requests, from different consumers, concentrate on the same few contents, the most popular
ones. Hence, such contents are more likely to be cached in the edge domain, instead of
being retrieved from the original producer. The number of exchanged packets, instead,
reasonably increases with the number of consumers, to account for the increasing number
of Interests issued by more consumers and number of Data packets forwarded to each
single consumer.

4.2.3. Overhead Analysis

To better show the pros and cons of the conceived solution, we summarize in Table 4
the main differences between the compared schemes in terms of incurred overhead, i.e.,
additional signalling bytes piggybacked in the exchanged NDN packets. A high signalling
overhead introduced by a caching strategy could deteriorate the content retrieval perfor-
mance, e.g., by increasing the content retrieval delay due to the transmission of larger
packets that occupy the channel for a longer time and may generate a higher channel load
and resulting congestion. It is worth observing that the blind CEE and Prob schemes incur
no additional overhead. Similarly to PaCC, BEP foresees one additional field in the Data
packet to convey the maximum betweenness to be compared with that of the nodes along
the backforwarding path. It is the PaC metric in our proposal. Three additional fields per
Interest are foreseen by PaCC, for a total of 10 bytes (less than 1% overhead per packet). For
BEP, the overhead per Interest is a function of the number of nodes traversed along the path
(|Π|) by the packet carrying the BETWEENNESSARRAY field. For a path made of 5 nodes
the overhead gets equal to 24 bytes. Under the majority of settings (|Π| > 1), PaCC is also
more efficient than BEP in terms of exchanged bytes in the network per packet. Therefore,
the signalling overhead introduced by PaCC is extremely low, which contributes to limit
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the retrieval delay metric, as showed in Figures 7 and 9.
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Figure 9. Metrics when varying the number of consumers (cache size equal to 0.5% of the cata-
logue size).
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Table 4. Additional fields per packet: PaCC vs. benchmark schemes.

Strategy Interest (Size in Bytes) Data (Size in Bytes)

CEE - -

Prob - -

BEP POPULARITYRANKING (4) BETWEENNESS (4)
BETWEENNESSARRAY (4×|Π|)

PaCC
RATE (4) PAC (4)
PAC (4)

HOPCOUNT (2)

5. Conclusions

In this work we have proposed a novel caching strategy for edge domains, called
PaCC, which accounts for content popularity and proximity to the consumers. Achieved
results, collected under a variety of settings, confirm that the devised solution allows
more judicious content caching decisions that are particularly crucial when the storage
capabilities of the edge domain are small. As a consequence, the content retrieval delay
experienced by PaCC is reduced compared to the considered benchmark schemes.

As a further benefit, the proximity of contents to consumers achieved by PaCC allows
for reduction in the overall amount of exchanged data traffic at the expense of a negligible
additional overhead per NDN packet. Such a finding is relevant because future networks
will be overwhelmed by a myriad of (huge) contents exchanged by massively deployed
devices and requested by increasingly demanding users.

The performance of the conceived solution can be further improved by addressing the
following aspects: (i) optimizing the method for tracking the content popularity, (ii) optimiz-
ing the computation of the popularity-aware closeness metric. In PaCC, a threshold-based
mechanism is implemented to track the popularity of contents based on the number of
received content requests. However, more accurate mechanisms could be introduced in
our design, for instance based on artificial intelligence (AI) content popularity prediction
algorithms [20]. In parallel, more accurate metrics could be considered to estimate the
proximity of the cachers to the consumers. In our design, we leverage the hop count metric,
which, however, cannot reflect the presence of congested links or congested nodes. The
proximity information could be improved by taking into account other additional metrics
like the round-trip-time over the network links and/or the load on the nodes.
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