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A B S T R A C T

In this paper, the authors present a new condition of the uniqueness of the solution for a previous 1𝐷 semi-
linear elliptic boundary value problem of membrane MEMS devices, where the amplitude of the electric field is
considered proportional to the curvature of the membrane. The existence of the solution (membrane deflection)
depends on the material of the membrane, which is obtained by Schauder–Tychonoff’s fixed point approach.
Thus, in this paper, the result of uniqueness has been completely reformulated to obtain a condition depending on
the material of the membrane achieving a new result of existence and uniqueness, depending on both the material
of the membrane and the geometrical characteristics of the device. Then, by shooting numerical method, more
realistic conditions for detecting eventual ghost solutions and new ranges of both operational parameters and
mechanical tension of the membrane ensuring convergence have been achieved confirming the useful information
on the industrial applicability of the model under study.

1. Introduction

Nowadays, the new industrial guidelines oblige researchers and
designers to develop low-cost sensors and actuators that can combine
the physical nature of the problem under study and low-level ma-
chine languages. In this domain, for example, micro-electro-mechanical-
systems (MEMSs) (both static and dynamic) represent some of the
most important innovations of micro engineering because numerical
modeling can model situations that may be overlapped with industrial
reality [1,2]. However, the main problem is that modeling often does
not permit the obtainment of explicit analytical solutions, for which we
must be satisfied with conditions that ensure existence and uniqueness
(without prejudice to the fact that the problem could be dealt with
from a numerical viewpoint but taking precautions from any ghost
solutions [3–5]). In the scientific literature, there are various study
fronts that range from thermoelastic systems [6,7] to biomedical ap-
plications [8]. From the theoretical viewpoint, many MEMS models
(sophisticated with strong non-linearity) have been elaborated to obtain
the conditions of existence, uniqueness and regularity of the solution (in
some cases) [9–11]. However, these models provide conditions where
the properties of the materials of the device are not explicitly involved;
thus, they are difficult to implement and not very interesting from an
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industrial viewpoint. One of the most accredited models considers a
dimensionless MEMS device that consists of two metal plates: one is
fixed, and the other is deformable but anchored to the edges; the applied
electric voltage moves the deformable plate towards the fixed one. Its
differential model in general terms, in which 𝑢 represents the deflection
of the deformable plate, is:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼1𝛥2𝑢 =
(

𝛽 ∫𝛺 |∇𝑢|2𝑑𝑥 + 𝛾
)

𝛥𝑢 + 𝜆1𝑓1(𝑥)

(1−𝑢)𝜎
(

1+𝜒 ∫𝛺
𝑑𝑥

(1−𝑢)𝜎1−1

)

𝑢 = 𝛥𝑢 − 𝑑𝑢𝛼1 = 0, 𝑥 ∈ 𝜕𝛺, 𝑑 ≥ 0
0 < 𝑢 < 1, 𝑥 ∈ 𝛺

(1)

where the dielectric characteristics of the material are represented by
the bounded function 𝑓1; the applied voltage is 𝜆1; and 𝛼1, 𝛽, 𝛾 and 𝜒 are
physical parameters related to the mechanic and electric characteristics
of the material (for a better understanding of the symbols present in
the text, see Table 1). Finally, to account for more general electrostatic
potentials, the exponent 𝜎1 ≥ 2 is considered. However, this model
considers the deformable plate with a given thickness. Therefore, if we
want to model membrane devices, we must neglect both plate thickness
and inertial effects. In other words, by imposing 𝜎1 = 2, 𝛼1 = 1, 𝛽 = 0,
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𝛾 = 0 and 𝜒 = 0 (1) is simplified as follows [12]:

⎧

⎪

⎨

⎪

⎩

𝛥2𝑢(𝑥) = 𝜆1𝑓1(𝑥)
[1−𝑢(𝑥)]2

0 < 𝑢(𝑥) < 1 in 𝛺,
𝑢 = 𝛥𝑢 − 𝑑𝑢𝛼1 , on 𝜕𝛺, 𝑑 ≥ 0

(2)

In this work, starting from (2), where the bottom plate is replaced by
a thin membrane attached to the edge, we obtain the following boundary
elliptical semi-linear model:
{

𝑢′′ = −𝑓2(𝑥)
𝜆1

(1−𝑢(𝑥))2 in 𝛺 = [−𝐿,𝐿]

𝑢 = 0 on 𝜕𝛺.
(3)

For the 1𝐷 model in [13], where the applied voltage 𝑉 (linked to
parameter 𝜆1) is expressed in terms of the amplitude of the electrostatic
field |𝐄|, 𝐄 on the membrane is a locally orthogonal vector to the tangent
direction of the membrane. Thus, |𝐄| is considered proportional to the
curvature 𝐾 of the membrane to build a model where singularity 1−𝑢(𝑥)
does not explicitly appear. The main results in [13] concern the condi-
tions that ensure the existence and uniqueness of the solution to the
formulated 1𝐷 problem. Although the condition of existence strongly
depends on the electromechanical characteristics of the material of the
membrane, the condition that ensures the uniqueness does not present
the same peculiarities. Then, this work aims to obtain, firstly, a new
condition that ensures the uniqueness of the solution depending on
both the electromechanical parameters of the material constituting the
membrane and the applied voltage in order to achieve a new condition
of existence and uniqueness of the solution for the problem under
study with the same peculiarities. In addition, starting from this new
condition, the authors, by a numerical approach based on shooting
procedure, reconstruct the profile of the membrane highlighting new
range of values of electromechanical characteristics of the membrane
(mechanical tension of the membrane, 𝜎) and operational parameters
(pair applied voltage and 𝑠𝑢𝑝 of |𝐄|, (𝑉 , 𝑠𝑢𝑝|𝐄|)) that, being achieved
from the new condition of existence and uniqueness,1 are more adherent
to reality and, then, more interesting from the industrial point of view.
The remainder of the paper is structured as follows. Section 2 recalls
the 1𝐷 model studied in [13], where |𝐄| is considered proportional
to 𝐾, |𝐄(𝑥)| = 𝜇(𝑥, 𝑢(𝑥), 𝑉 )𝐾(𝑥, 𝑢(𝑥)) with 𝑉 is the voltage applied,
which formulates the problem in the Dirichlet form considering the
safety distance 𝑑∗ (i.e., the distance to the top of the membrane profile
from the upper plate). Then, Section 3 shows the most important
results concerning the existence of the solution of the problem with
sketches of the proofs while . The core of this paper is Section 4, where
the authors present a new result of the uniqueness of the solution,
which depends on the electromechanical properties of the membrane
for industrial applications. Unlike previous works (see [13]), where the
study of the uniqueness of the solution did not impose any conditions,
here, we must obtain a condition that ensures both existence and
uniqueness, as shown in Section 5. In Section 6, after to have solved the
problem numerically by means of shooting procedure and reconstruct
the profile of the membrane, some results of convergence regarding the
new ranges of 𝜎 and (𝑉 , 𝑠𝑢𝑝|𝐄|) have been carried out. Finally, some
numerical considerations complete the study particularly in reference
to the validity of the numerical methodologies in [3], which are also
applicable with the conditions of existence and uniqueness here. Finally,
some remarks conclude the work in Section 7.

2. An overview on the formulation for |𝐄| in terms of curvature of
the membrane

2.1. Some physical backgrounds

To understand how a membrane MEMS works, let us consider a
system of Cartesian axes 𝑂′𝑥′𝑦′𝑧′ in R3, where an electrostatic–elastic

1 Depending on both characteristics of the membrane and operational pa-
rameters

Table 1
List of the useful symbols.

Symbol Description

𝐄 Electrostatic field
𝜖0 Permittivity of the free space
2𝐿 Length of the device
2𝐿1 Length of the device (dimensionless)
𝜎 Mechanical tension of the membrane
ℎ Height of the device
𝛼1, 𝛽, 𝛾, 𝜒 Electromechanical parameters of the material constituting the

membrane
𝜎1 Coulomb exponent
𝑉 Applied electric voltage
𝜙 Electrostatic potential
𝛷 Electrostatic potential (dimensionless)
𝐷 Flexure rigidity of the membrane
𝑑∗ Critical distance
𝑢 Deflection of the membrane (dimensionless)
𝜖𝑡 Dielectric strength of the membrane
𝛼 1 − 𝑑∗

𝑀 𝑠𝑢𝑝{𝜆}
𝐻 𝑠𝑢𝑝{|𝑢′|}
𝜃 ∈ R+ Coefficient of proportionality between −𝑢′′ and |𝐄|2

𝑓1(𝑥) Electrical properties of the membrane (bounded function)
𝐾 Curvature of the membrane
𝛿 = 𝐷∕((2𝐿)2𝜎) Relative importance of tension and rigidity
𝐺(𝑥, 𝑠) Green function
𝐻 𝑠𝑢𝑝|𝐻|

𝜆2 > 0 Minimum voltage to apply to the device to win the mechanical
inertia of the membrane

MEMS occurs because of a pair of parallel plates (located normally to
the axis 𝑧′) with a length of 2𝐿 and a mutual distance ℎ; one plate is
fixed, and the other is elastic (and deformable) but fixed to the edges.
An electrostatic voltage 𝑉 is applied to the device, whose fixed plate is
at zero potential (𝜙 = 0), so that 𝛥𝜙 = 0 in the zone bounded by the
plates [1,13]. Considering as dependent variable the elastic deflection
of the elastic plate, 𝑤1, and indicating by 𝜎 the mechanical tension in
the plate, 𝐷 is the flexural rigidity, and 𝜖𝑜 is the permittivity of free
space, using suitable scaling factors, we obtain the following system of
nonlinear coupled partial differential equations [1,13]:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜖2𝛥⊥𝛷 + 𝜕2𝛷
𝜕𝑧2

= 0

−𝛥⊥𝑤 + 𝛿𝛥2
⊥𝑤 = −𝜆2

[

𝜖2|∇⊥𝛷|

2 +
(

𝜕𝛷
𝜕𝑧

)2]

𝛷 = 1 on elastic plate
𝛷 = 0 on fixed plate.

(4)

In (4) 𝛷 and 𝑤 are the scaled electrostatic potential and the scaled
deflection of the elastic plate (that is in dimensionless conditions) while

𝛿 = 𝐷∕((2𝐿)2𝜎); 𝜖 = ℎ∕(2𝐿) (5)

and, in addition,

𝜆1 = 𝜆2 =
𝜖0𝑉 2(2𝐿)2

2ℎ3𝜎
= 𝛽𝑉 2 (6)

is the ratio of a reference electrostatic force to a reference elastic force,
and

𝛽 =
𝜖0(2𝐿)2

2ℎ3𝜎
(7)

considers the electro-mechanical characteristics of the material of the
membrane that, in dimensionless conditions, becomes

𝛽1 = 𝜖0∕(2𝜎) ≥ 1012. (8)

However, experimentally, the values of 𝜚 are greater than 1012.
Because modern technologies enable us the extreme exploitation of
materials, 𝐷 can be neglected. Thus, by neglecting the thickness and
width of the device with respect to its length (1𝐷 model) and replacing
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the deformable plate with a membrane anchored to the fixed plated,
which serves only as a membrane support, in stationary conditions, we
can write:
{

𝑢′′ = − 𝜆2

(1−𝑢)2 in 𝛺 = [−𝐿1, 𝐿1]

𝑢(−𝐿1) = 𝑢(𝐿1) = 0
(9)

where axes 𝑧 is reversed, 𝐿1 = 0.5 represents dimensionless 𝐿 and 𝑢 is
the new deflection of the membrane.

2.2. Membrane MEMS: A well-known 1𝐷 model

As studied in [13], in (9), considering (6), 𝜆2 is proportional to 𝑉 2,
so 𝜆2(1−𝑢)−2 ∝ |𝐄|2. Because 𝜃 indicates this function of proportionality,
(9) assumes the following form:
{

−𝑢′′ = 𝜃|𝐄|2 in 𝛺 = [−𝐿1, 𝐿1]
𝑢(−𝐿1) = 𝑢(𝐿1) = 0 𝜃 ∈ R.

(10)

In [13], since the line of force of 𝐄 is orthogonal to the tangent of the
membrane surface at each point on the membrane, |𝐄| is expressed as
the product of the membrane curvature 𝐾 and function of proportion-
ality 𝜇:

|𝐄(𝑥)| = 𝜇(𝑥, 𝑢(𝑥), 𝜆)𝐾(𝑥, 𝑢(𝑥)) (11)

where
{

𝜇(𝑥, 𝑢(𝑥), 𝜆) = 𝜆
(1−𝑢(𝑥)−𝑑∗)

𝜇(𝑥, 𝑢(𝑥), 𝜆) ∈ 𝐶0([−𝐿1, 𝐿1] × [0, 1) × [𝜆,𝑀])
(12)

where 𝜆2 and 𝑀 = 𝑠𝑢𝑝{𝜆} are, less than coefficients that regulate any
proportionality, the minimum voltage for the device to win the inertia
of the membrane and the maximum admissible voltage, respectively;
𝑑∗ = 𝜆(𝜖𝑡)−1; 𝜖𝑡 is the dielectric strength of the material of the membrane,
which represents the critical distance to ensure that even if 𝑢 reaches its
maximum amplitude, the membrane does not touch the upper plate of
the device (mathematically, it is represented by a singularity). Then,
considering 𝐾(𝑥, 𝑢(𝑥)) = |𝑢′′(𝑥)|∕(1 + |𝑢′(𝑥)|2)−3∕2 as the usual one-
dimensional Cartesian curvature [14], problem (10) is rewritten as:

⎧

⎪

⎨

⎪

⎩

𝑢′′(𝑥) = − (1+(𝑢′(𝑥))2)3

𝛽1𝜇2(𝑥,𝑢(𝑥),𝜆)
in 𝛺

𝑢(−𝐿1) = 𝑢(𝐿1) = 0
0 < 𝑢(𝑥) < 1 − 𝑑∗ = 𝛼.

(13)

It is worth noting that model (13) represents a particular occurrence
of the following general problem

⎧

⎪

⎨

⎪

⎩

𝑢′′(𝑥) + 𝑓 (𝑥, 𝑢(𝑥), 𝑢′(𝑥)) = 0 in 𝛺 = [𝐿1,−𝐿1]
𝑢(−𝐿1) = 𝑢(𝐿1) = 0
0 < 𝑢 < 𝛼 𝑢 ∈ 𝐶2(𝛺)

(14)

in the Dirichlet’s form, where 𝑓 and 𝛼 are characterized as 𝑓 ∈ 𝐶0(𝛺 ×
R × R) and 𝛼 = 1 − 𝑑∗. Then:
{

𝑢′′(𝑥) = − (1+(𝑢′(𝑥))2)3

𝜃𝜇2(𝑥,𝑢(𝑥),𝜆) = − 1
𝜃𝜆2

(1 + (𝑢′(𝑥))2)3(𝛼 − 𝑢(𝑥))2 in 𝛺

𝑢(−𝐿1) = 𝑢(𝐿1) = 0; 0 < 𝑢 < 𝛼
(15)

where 𝑢 ∈ 𝐶2(𝛺) because membrane tears are not allowed, and the
slopes continuously vary: 𝜇 = 𝜇(𝑥, 𝑢(𝑥), 𝜆) ∈ 𝐶0(𝛺 × [0, 1], [𝜆,𝑀]) and
𝜇 = 𝜆(𝛼 − 𝑢(𝑥))−1. So, the problem under study assumes the following
form [13]:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢′′(𝑥) = − (1+(𝑢′(𝑥))2)3

𝜃𝜇2(𝑥,𝑢(𝑥),𝜆) = − 1
𝜃𝜆2

(1 + (𝑢′(𝑥))2)3(𝛼 − 𝑢(𝑥))2 in 𝛺

𝑢(−𝐿1) = 𝑢(𝐿1) = 0
0 < 𝑢 < 𝛼
𝜇 = 𝜇(𝑥, 𝑢(𝑥), 𝜆) ∈ 𝐶0(𝛺 × [0, 1], [𝜆,𝑀])
𝜇 = 𝜆

(𝛼−𝑢(𝑥)) .

(16)

Obviously, increasing 𝜃𝜆2, 𝑢′′(𝑥) decreases that, from the geometric
point of view, represents the concavity of the membrane profile (pres-
ence of the minus sign). In other words, the higher the value of 𝜃𝜆2, the
more the membrane flattens out.

3. A well-known result of existence

The condition of existence for the solution of (15) obtained in [13]
used a fixed-point result, according to which a completely continuous
operator, which is defined by a convex, closed and limited subsets of a
Banach space in itself, has at least one fixed point (Schauder–Tychonoff).
Thus, indicating by 𝐻 = 𝑠𝑢𝑝{|𝑢′(𝑥)|}, two functional spaces 𝑃 and 𝑃1
were defined in 𝛺 = [−𝐿1, 𝐿1] (closed and limited sets on which the
problem under study is defined):

𝑃 = {𝐶2
0 (𝛺) ∶ 0 < 𝑢(𝑥) < 𝛼, |𝑢′(𝑥)| < 𝐻 < +∞} (17)

𝑃1 = {𝐶1
0 (𝛺) ∶ 0 < 𝑢(𝑥) < 𝛼, |𝑢′(𝑥)| < 𝐻 < +∞} (18)

By differentiation and considering a suitable Green’s function 𝐺(𝑥, 𝑠)
[14], the problem is rewritten in its equivalent integral formulation:

𝑢(𝑥) = ∫

𝐿1

−𝐿1

𝐺(𝑥, 𝑠)𝑓 (𝑠, 𝑢(𝑠), 𝑢′(𝑠))𝑑𝑠, 0 < 𝑢 < 𝛼 (19)

so that (15) assumes the form:

𝑢(𝑥) = ∫

𝐿1

−𝐿1

𝐺(𝑥, 𝑠)
(1 + (𝑢′(𝑠))2)3

𝜃𝜇2(𝑠, 𝑢(𝑠), 𝜆)
𝑑𝑠. (20)

With these premises, the existence of the solution for 𝑇 (𝑢) = 𝑤 with
𝑢 ∈ 𝑃 is proven by the fixed point approach, with 𝑇 operator from 𝑃
to 𝑃 . For the details and proof, see [13]. The condition guarantees the
existence of at least one solution to the problem under study depending
on 𝐻 and the parameters related to the physical properties of the
membrane material of the device (including the electrostatic potential
of inertia of the membrane: 𝜆2). Formally, this condition was [13]:

1 +𝐻6 < 𝐻𝜃𝜆2

4𝛼𝐿1
. (21)

These important results guarantee the applicability of the fixed-point
approach. (21) is valid for each value of 𝐻 , even for its upper value,
𝑠𝑢𝑝{𝐻}. However, a clarification is, at this point, a duty. In [13] the
conditions of existence and uniqueness of the solution to the problem,
studied numerically, showed a value of 𝑠𝑢𝑝{𝐻} = 𝑠𝑢𝑝{|𝑢′(𝑥)|} = 99,
corresponding to 88.92 degree dimensionless. This value is considerably
high due to the fact that, in order to obtain (21), a large number
of increases have been exploited, producing the value of 99 which,
although excessive, is analytically correct.

4. On the uniqueness of the solution: A new result depending on
the electro-mechanical characteristics of the membrane

[13] provided a proof of uniqueness of the solution2 of the problem
under study, which did not depend on the electro-mechanical properties
of the membrane; thus, it seemed natural to propose here a new
demonstration to derive a condition of uniqueness that depends on the
type of membrane material. The theorem in this section proves that
problem (15) admits a unique solution under a particular condition
depending on the material of the membrane. Thus, let us consider, by
contradiction, two different solutions of 𝑃 : 𝑢1, 𝑢2. Before obtaining the
condition to assure the uniqueness of the solution, we begin with two
useful remarks.

Remark 4.1.
|

|

|

(1 + (𝑢′2)
2)3 − (1 + (𝑢′1)

2)3||
|

≤ 24𝐻5
|𝑢′2 − 𝑢′1|. (22)

2 The proof presented in [13] used both Poincaré inequality and Gronwall
Lemma.
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Proof. Since 𝐻 > 1, quantity |

|

|

(1 + (𝑢′2)
2)3 − (1 + (𝑢′1)

2)3||
|

admits the
following chain of inequalities:
|

|

|

(1 + (𝑢′2)
2)3 − (1 + (𝑢′1)

2)3||
|

= |

|

|

[(1 + (𝑢′2)
2) − (1 + (𝑢′1)

2)][(1 + (𝑢′1)
2)2 (23)

+ (1 + (𝑢′2)
2)(1 + (𝑢′1)

2) + (1 + (𝑢′2)
2)2]||

|

= |

|

|

[(𝑢′2)
2 − (𝑢′1)

2][(1 + (𝑢′1)
2)2 + (1 + (𝑢′2)

2)(1 + (𝑢′1)
2) + (1 + (𝑢′2)

2)2]||
|

= |

|

|

[(𝑢′2 − 𝑢′1)(𝑢
′
2 + 𝑢′1)][(1 + (𝑢′1)

2)2 + (1 + (𝑢′2)
2)(1 + (𝑢′1)

2) + (1 + (𝑢′2)
2)2]||

|

≤ |𝑢′2 − 𝑢′1|2𝐻[(1 +𝐻2)2 + (1 +𝐻2)(1 +𝐻2) + (1 +𝐻2)2]

= |𝑢′2 − 𝑢′1|2𝐻|(1 +𝐻2)2 + (1 +𝐻2)2 + (1 +𝐻2)2|

= |𝑢′2 − 𝑢′1|2𝐻|3(1 +𝐻2)2| = |𝑢′2 − 𝑢′1|(6𝐻(1 +𝐻2)2)

= |𝑢′2 − 𝑢′1|(6𝐻 + 6𝐻5 + 12𝐻3) ≤ 24𝐻5
|𝑢′2 − 𝑢′1|.

Remark 4.2. Considering that 𝛼 < 1 because 0 < 𝑢 < 1−𝑑∗, ∀ 𝑢1, 𝑢2 ∈ 𝑃 ,
we can write:
|

|

|

(1 + (𝑢′2)
2)3(𝛼 − 𝑢2)2 − (1 + (𝑢′1)

2)3(𝛼 − 𝑢1)2
|

|

|

(24)

≤ 216𝐻5
|𝑢′2 − 𝑢′1| + 24(1 +𝐻6)|𝑢2 − 𝑢1|.

Proof. Considering the quantity |

|

|

(1+(𝑢′2)
2)3(1−𝑑∗−𝑢2)2−(1+(𝑢′1)

2)3(1−

𝑑∗ − 𝑢1)2
|

|

|

, we can write:

|

|

|

(1 + (𝑢′2)
2)3(1 − 𝑑∗ − 𝑢2)2 − (1 + (𝑢′1)

2)3(1 − 𝑑∗ − 𝑢1)2
|

|

|

(25)

= |

|

|

(1 + (𝑢′2)
2)3(1 + 𝑑∗ + 𝑢22 − 2𝑑∗ − 2𝑢2 + 2𝑢2𝑑∗)

− (1 + (𝑢′1)
2)3(1 + 𝑑∗ + 𝑢21 − 2𝑑∗ − 2𝑢1 + 2𝑢1𝑑∗)

|

|

|

= |

|

|

(1 + (𝑢′2)
2)3 + 𝑑∗(1 + (𝑢′2)

2)3 + 𝑢22(1 + (𝑢′2)
2)3 − 2𝑑∗(1 + (𝑢′2)

2)3

− 2𝑢2(1 + (𝑢′2)
2)3 + 2𝑢2𝑑∗(1 + (𝑢′2)

2)3 − (1 + (𝑢′1)
2)3 − 𝑑∗(1 + (𝑢′1)

2)3

− 𝑢21(1 + (𝑢′1)
2)3 + 2𝑑∗(1 + (𝑢′1)

2)3 + 2𝑢1(1 + (𝑢′1)
2)3 − 2𝑢1𝑑∗(1 + (𝑢′1)

2)3||
|

≤ |

|

|

(1 + (𝑢′2)
2)3 − (1 + (𝑢′1)

2)3||
|

+ |𝑢22|
|

|

|

(1 + (𝑢′2)
2)3 − 𝑢21(1 + (𝑢′1)

2)3||
|

+ 𝑑∗||
|

(1 + (𝑢′2)
2)3 − (1 + (𝑢′1)

2)3||
|

+ 2𝑑∗||
|

(1 + (𝑢′2)
2)3 − (1 + (𝑢′1)

2)3||
|

+ 2||
|

𝑢2(1 + (𝑢′2)
2)3 − 𝑢1(1 + (𝑢′1)

2)3||
|

+ 2𝑑∗||
|

𝑢2(1 + (𝑢′2)
2)3 − 𝑢1(1 + (𝑢′1)

2)3||
|

= |

|

|

(1 + (𝑢′2)
2)3 − (1 + (𝑢′1)

2)3||
|

+ |

|

|

𝑢22(1 + (𝑢′2)
2)3 − 𝑢22(1 + (𝑢′1)

2)3

+ 𝑢22(1 + (𝑢′1)
2)3 − 𝑢21(1 + (𝑢′1)

2)3||
|

+

+ 𝑑∗||
|

(1 + (𝑢′2)
2)3 − (1 + (𝑢′1)

2)3||
|

+ 2𝑑∗||
|

(1 + (𝑢′2)
2)3 − (1 + (𝑢′1)

2)3||
|

+ 2||
|

𝑢2(1 + (𝑢′2)
2)3 − 𝑢2(1 + (𝑢′1)

2)3 + 𝑢2(1 + (𝑢′1)
2)3 − 𝑢1(1 + (𝑢′1)

2)3||
|

+ 2𝑑∗||
|

𝑢2(1 + (𝑢′2)
2)3 − 𝑢2(1 + (𝑢′1)

2)3 + 𝑢2(1 + (𝑢′1)
2)3 − 𝑢1(1 + (𝑢′1)

2)3||
|

≤ |

|

|

(1 + (𝑢′2)
2)3 − (1 + (𝑢′1)

2)3||
|

+ |𝑢22|
|

|

|

(1 + (𝑢′2)
2)3 − (1 + (𝑢′1)

2)3||
|

+ |𝑢22 − 𝑢21|(1 + (𝑣′1)
2)3 + (𝑑∗ + 2𝑑∗)||

|

(1 + (𝑢′2)
2)3 − (1 + (𝑢′1)

2)3||
|

+ (2 + 2𝑑∗)||
|

𝑢2(1 + (𝑢′2)
2)3 − 𝑢2(1 + (𝑢′1)

2)3

+ 𝑢2(1 + (𝑢′1)
2)3 − 𝑢1(1 + (𝑢′1)

2)3||
|

≤ (1 + |𝑢22| + (𝑑∗ + 2𝑑∗) + (2 + 2𝑑∗)|𝑢2|)
|

|

|

(1 + (𝑢′2)
2)3 − (1 + (𝑢′1)

2)3||
|

+ [|𝑢2 − 𝑢1|(2 + 2𝑑∗) + |𝑢22 − 𝑢21|](1 + (𝑢′1)
2)3

≤ 216𝐻5
|𝑢′2 − 𝑢′1| + |𝑢2 − 𝑢1|[(2 + 2𝑑∗) + |𝑢2 + 𝑢1|](1 + (𝑢′1)

2)3

≤ 216𝐻5
|𝑢′2 − 𝑢′1| + 24(1 +𝐻6)|𝑢2 − 𝑢1|

Based on these premises, we should enunciate the following theorem,
where we present the new condition3 guarantees the uniqueness of the
solution for (15). Formally, the following theorem for uniqueness holds.

Theorem 4.3. If

1 +𝐻6 < 𝜃𝜆2

24𝐿1(𝐿1 + 1)
(26)

3 With respect to [13].

Then, the problem under study admits the uniqueness of the solution.

Proof. By contradiction, we assume that 𝑢1, 𝑢2 ∈ 𝑃 are two different
solutions for the problem under study, so 𝑢1 = 𝑇 (𝑢1) e 𝑢2 = 𝑇 (𝑢2). Thus,
we can write:

𝑢1(𝑥) = ∫

𝐿1

−𝐿1

𝐺(𝑥, 𝑠)
(1 + (𝑢′1(𝑠))

2)3

𝜃𝜇2(𝑠, 𝑢1(𝑠), 𝜆)
𝑑𝑠 (27)

= ∫

𝐿1

−𝐿1

1
𝜃𝜆2

𝐺(𝑥, 𝑠)(1 + (𝑢′1(𝑠)
2)3)(𝛼 − 𝑢1(𝑠))2𝑑𝑠

𝑢2(𝑥) = ∫

𝐿1

−𝐿1

𝐺(𝑥, 𝑠)
(1 + (𝑢′2(𝑠))

2)3

𝜃𝜇2(𝑠, 𝑢2(𝑠), 𝜆)
𝑑𝑠 (28)

= ∫

𝐿1

−𝐿1

1
𝜃𝜆2

𝐺(𝑥, 𝑠)(1 + (𝑢′2(𝑠)
2)3)(𝛼 − 𝑢2(𝑠))2𝑑𝑠

𝑢′1(𝑥) = ∫

𝐿1

−𝐿1

𝐺𝑥(𝑥, 𝑠)
(1 + (𝑢′1(𝑠))

2)3

𝜃𝜇2(𝑠, 𝑢1(𝑠), 𝜆)
𝑑𝑠 (29)

= ∫

𝐿1

−𝐿1

1
𝜃𝜆2

𝐺𝑥(𝑥, 𝑠)((1 + (𝑢′1(𝑠))
2)3)(𝛼 − 𝑢1(𝑠))2𝑑𝑠

𝑢′2(𝑥) = ∫

𝐿1

−𝐿1

𝐺𝑥(𝑥, 𝑠)
(1 + (𝑢′2(𝑠))

2)3

𝜃𝜇2(𝑠, 𝑢2(𝑠), 𝜆)
𝑑𝑠 (30)

= ∫

𝐿1

−𝐿1

1
𝜃𝜆2

𝐺𝑥(𝑥, 𝑠)((1 + (𝑢′2(𝑠))
2)3)(𝛼 − 𝑢2(𝑠))2𝑑𝑠

Therefore, we have:

‖𝑢1 − 𝑢2‖𝐶1([−𝐿1 ,𝐿1]) = 𝑠𝑢𝑝𝑥∈[−𝐿1 ,𝐿1]|𝑢1 − 𝑢2| + 𝑠𝑢𝑝𝑥∈[−𝐿1 ,𝐿1]|𝑢
′
1 − 𝑢′2| (31)

Considering (23), we can write:

‖𝑇 (𝑢1) − 𝑇 (𝑢2)‖ = 1
𝜃𝜆2

𝑠𝑢𝑝𝑥∈[−𝐿1 ,𝐿1] (32)

× |

|

|∫

𝐿1

−𝐿1

𝐺(𝑥, 𝑠)((1 + (𝑢′1(𝑠))
2)3)(𝛼 − 𝑢1(𝑠))2𝑑𝑠

− ∫

𝐿1

−𝐿1

𝐺(𝑥, 𝑠)((1 + (𝑢′2(𝑠))
2)3)(𝛼 − 𝑢2(𝑠))2𝑑𝑠

|

|

|

+ 1
𝜃𝜆2

𝑠𝑢𝑝𝑥∈[−𝐿1 ,𝐿1]
|

|

|∫

𝐿1

−𝐿1

𝐺𝑥(𝑥, 𝑠)((1 + (𝑢′1(𝑠))
2)3)(𝛼 − 𝑢1(𝑠))2𝑑𝑠

− ∫

𝐿1

−𝐿1

𝐺𝑥(𝑥, 𝑠)((1 + (𝑢′2(𝑠))
2)3)(𝛼 − 𝑢2(𝑠))2𝑑𝑠

|

|

|

= 1
𝜃𝜆2

𝑠𝑢𝑝𝑥∈[−𝐿1 ,𝐿1]
|

|

|∫

𝐿1

−𝐿1

𝐺(𝑥, 𝑠)[((1 + (𝑢′1(𝑠))
2)3)(𝛼 − 𝑢1(𝑠))2

+ ((1 + (𝑢′2(𝑠))
2)3)(𝛼 − 𝑢2(𝑠))2]𝑑𝑠

|

|

|

+ 1
𝜃𝜆2

𝑠𝑢𝑝𝑥∈[−𝐿1 ,𝐿1]
|

|

|∫

𝐿1

−𝐿1

𝐺𝑥(𝑥, 𝑠)[(−(1 + (𝑢′1(𝑠))
2)3)(𝛼 − 𝑢1(𝑠))2

+ ((1 + (𝑢′2(𝑠))
2)3)(𝛼 − 𝑢2(𝑠))]𝑑𝑠

|

|

|

≤ 1
𝜃𝜆2

𝐿1
2
𝑠𝑢𝑝𝑥∈[−𝐿1 ,𝐿1]

|

|

|∫

𝐿1

−𝐿1

[(−(1 + (𝑢′1(𝑠))
2)3)(𝛼 − 𝑢1(𝑠))2

+ ((1 + (𝑢′2(𝑠))
2)3)(𝛼 − 𝑢2(𝑠))2]𝑑𝑠

|

|

|

+ 1
2𝜃𝜆2

𝑠𝑢𝑝𝑥∈[−𝐿1 ,𝐿1]
|

|

|∫

𝐿1

−𝐿1

[(−(1 + (𝑢′1(𝑠))
2)3)(𝛼 − 𝑢1(𝑠))2

+ ((1 + (𝑢′2(𝑠))
2)3)(𝛼 − 𝑢2(𝑠))]𝑑𝑠

|

|

|

= 1
𝜃𝜆2

(𝐿1
2

+ 1
2

)

𝑠𝑢𝑝𝑥∈[−𝐿1 ,𝐿1]
|

|

|∫

𝐿1

−𝐿1

[(−(1 + (𝑢′1(𝑠))
2)3)(𝛼 − 𝑢1(𝑠))2

+ ((1 + (𝑢′2(𝑠))
2)3)(𝛼 − 𝑢2(𝑠))]𝑑𝑠

|

|

|

Considering (25), we can write:

‖𝑇 (𝑢1) − 𝑇 (𝑢2)‖𝐶1([−𝐿1 ,𝐿1]) (33)

≤ 1
𝜃𝜆2

(𝐿1
2

+ 1
2

)

𝑠𝑢𝑝𝑥∈[−𝐿1 ,𝐿1]
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× |

|

|∫

𝐿1

−𝐿1

(216𝐻5
|𝑢′2 − 𝑢′1| + 24(1 +𝐻6)|𝑢2 − 𝑢1|)𝑑𝑠

|

|

|

= 1
𝜃𝜆2

(𝐿1
2

+ 1
2

)

(216𝐻52𝐿1)𝑠𝑢𝑝𝑠∈[−𝐿1 ,𝐿1]|𝑢
′
2(𝑠) − 𝑢′1(𝑠)|

+ 1
𝜃𝜆2

(𝐿1
2

+ 1
2

)

(24(1 +𝐻6)2𝐿1)𝑠𝑢𝑝𝑠∈[−𝐿1 ,𝐿1]|𝑢2(𝑠) − 𝑢1(𝑠)|.

However, being 𝑢1 = 𝑇 (𝑢1) and 𝑢2 = 𝑇 (𝑢2), by (31), with (33), we
obtain a contradiction if:
⎧

⎪

⎨

⎪

⎩

2𝐿1
𝜃𝜆2

(

𝐿1
2 + 1

2

)

216𝐻5 < 1

2𝐿1
𝜃𝜆2

(

𝐿1
2 + 1

2

)

24(1 +𝐻6) < 1
(34)

that is:
⎧

⎪

⎨

⎪

⎩

1
𝜃𝜆2

𝐿1(𝐿1 + 1)216𝐻5 < 1
1

𝜃𝜆2
𝐿1(𝐿1 + 1)24(1 +𝐻6) < 1

(35)

and again:

⎧

⎪

⎨

⎪

⎩

216𝐻5 < 𝜃𝜆2

𝐿1(𝐿1+1)

24(1 +𝐻6) < 𝜃𝜆2

𝐿1(𝐿1+1)
.

(36)

Considering the first inequality of (36), we can also write:

𝐻6 = 𝐻5𝐻 < 𝜃𝜆2

216𝐿1(𝐿1 + 1)
𝐻 (37)

from which:

1 +𝐻6 < 1 + 𝜃𝜆2𝐻
216𝐿1(𝐿1 + 1)

(38)

so (36) assumes the following form:

⎧

⎪

⎨

⎪

⎩

1 +𝐻6 < 1 + 𝜃𝜆2𝐻
216𝐿1(𝐿1+1)

1 +𝐻6 < 𝜃𝜆2

24𝐿1(𝐿1+1)
.

(39)

Furthermore, we observe that:
𝜃𝜆2

24𝐿1(𝐿1 + 1)
< 1 + 𝜃𝜆2𝐻

216𝐿1(𝐿1 + 1)
(40)

in fact, starting from (40), we can write:

9𝜃𝜆2 < 216𝐿1(𝐿1 + 1) + 𝜃𝜆2𝐻 (41)

from which

9 < 216
𝜃𝜆2

𝐿1(𝐿1 + 1) +𝐻 (42)

and again:

𝐻 > 9 − 216
𝜃𝜆2

𝐿1(𝐿1 + 1) (43)

so that

𝐻 > 9
(

1 − 24
𝜃𝜆2

𝐿1(𝐿1 + 1)
)

. (44)

That is definitely true for the competition. In fact, if we suppose by
contradiction that

𝜃𝜆2

24𝐿1(𝐿1 + 1)
> 1 + 𝜃𝜆2𝐻

216𝐿1(𝐿1 + 1)
(45)

we can write

9 > 216
𝜃𝜆2

𝐿1(𝐿1 + 1) +𝐻 (46)

from which:

𝐻 < 9 − 216
𝜃𝜆2

𝐿1(𝐿1 + 1) < 0. (47)

In other words, 𝐻 = 𝑠𝑢𝑝|𝑢′| assumes a negative value that represents
an impossible condition. Therefore, (34) is equivalent to the following
inequality:

1 +𝐻6 < 𝜃𝜆2

24𝐿1(𝐿1 + 1)
(48)

which is a representative of the constraint ensuring the uniqueness of
the solution for the problem under study. Even the uniqueness depends
on the physical parameters of the device’s membrane, but the inertia 𝜆2

of the membrane does not appear, which confirms the experimental fact
that when voltage 𝑉 is applied to the device, the membrane moves if
𝑉 overcomes the inertia 𝜆2. Therefore, the condition of existence of the
solution (21) depends on 𝜆2. However, when the membrane has moved
by overcoming its inertia, the condition that guarantees the uniqueness
of the solution (26) is independent of 𝜆2.

5. A condition ensuring both existence and uniqueness

Considering that (21) ensures the existence of the solution for the
problem under study and (26) ensures its uniqueness, it is imperative
to solve the following system:

⎧

⎪

⎨

⎪

⎩

1 +𝐻6 < 𝐻𝜃𝜆2

4𝛼𝐿1
(𝑒𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒)

1 +𝐻6 < 𝜃𝜆2

24𝐿1(𝐿1+1)
(𝑢𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠).

(49)

Immediately, we observe that the following condition is true:

𝜃𝜆2

24𝐿1(𝐿1 + 1)
< 𝐻𝜃𝜆2

4𝛼𝐿1
(50)

In fact, supposing for absurdity that:
1

24(𝐿1 + 1)
> 1

4𝛼
𝐻𝜆2 (51)

we obtain

𝐻 < 𝛼
6(𝐿1 + 1)𝜆2

(52)

and considering that 𝐿1 = 0.5, we can write:

𝐻 < 𝛼
9𝜆2

. (53)

Finally, considering the scaling factors and condition (53), it is
permissible to write:

𝐻 = 𝑧
𝑥
=

𝑧′2𝐿1
ℎ𝑥′

< 𝛼
9𝜆2

(54)

Hence, if we denote the dimensionless value of 𝐻 by 𝐻 ′, the
following holds:

𝐻 ′2𝐿1
ℎ

< 𝛼
9𝜆2

(55)

so that:

𝐻 ′ < ℎ𝛼
18𝐿1𝜆2

. (56)

Thus, 𝐻 ′ should be lower than a notably small amount that is incom-
patible with the definition of 𝐻 ′. Therefore, system (49) is equivalent
to the unique inequality:

1 +𝐻6 < 𝜃𝜆2

24𝐿1(𝐿1 + 1)
(57)

which represents the new condition to be imposed to 𝐻 to ensure both
existence and uniqueness of the solution for the problem under study. In
other words, the uniqueness of the solution is a guarantee of its existence
unlike what obtained in [13] where it was necessary to evaluate the exis-
tence of the solution while the uniqueness was still guaranteed. This was
due to the fact that uniqueness had been demonstrated independently
of the characteristics of the material constituting the membrane with
consequent reduction of the risk of obtaining ghost solutions (that is
numerical solutions not verifying the analytical condition of existence).
Finally, it is worth underlining the fact that in (57) the 𝛼 parameter does
not appear for which the existence and uniqueness of the solution to the
problem under study is independent of the safety distance.
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6. Some numerical tests

6.1. The exploited numerical approach

In [3] the model under study (16) was already dealt numerically by
a shooting procedure by rewriting the model (16) as a first-order system
as follows
{

𝑢′1(𝑥) = 𝑢2(𝑥)
𝑢′2(𝑥) = − 1

𝜃𝜆2
(1 + 𝑢2(𝑥)2)3(𝛼1 − 𝑢1(𝑥))2

(58)

in which
{

𝑢1(𝑥) = 𝑢(𝑥)
𝑢2(𝑥) =

𝑑𝑢1(𝑥)
𝑑𝑥 = 𝑑𝑢(𝑥)

𝑑𝑥 .
(59)

The model (58) (BVP) was then transformed into an IVP equivalent by
replacing the boundary condition of the solution 𝑢1(𝐿1) at 𝑥 = 𝐿1 with
𝑢2(−𝐿1) = 𝜂, 𝜂 ∈ R, as initial condition defining implicitly a nonlinear
equation 𝐹 (𝜂) = 𝑢1(𝐿1; 𝜂) = 0. The latter, starting from suitable values
of both 𝜂0 and 𝜂1, the system has been solved numerically,4 by means of
secant method,5 method generating a sequence of values 𝜂𝑘, 𝑘 = 2, 3,…,
until 𝜂𝑘 → 𝜂, 𝑘 → +∞ satisfying a suitable termination criteria (for
details, see [3]).

6.2. Some results of convergence

With these premises, in [3], 𝜃𝜆2 values which guaranteed conver-
gence were all and only those for which 𝜃𝜆2 ∈ [0.63,+∞) in the
sense that values of 𝜃𝜆2 ∈ [0, 0.63) did not guarantee convergence. So,
indicating with (𝜃𝜆2)𝑐𝑜𝑛𝑣 ∈ [0.63,+∞), the following chain of inequality
made sense:

𝑖𝑛𝑓{(𝜃𝜆2)𝑐𝑜𝑛𝑣} = 𝑚𝑖𝑛{(𝜃𝜆2)𝑐𝑜𝑛𝑣} = 0.63 (60)

which generated, as 𝑑∗, the merit curves (𝜃𝜆2 vs 𝐻) in which the
areas of convergence and non-convergence were evident. Furthermore,
by superimposing the curves obtained numerically (𝜃𝜆2 vs 𝐻𝑗 , 𝑗 ∈ N
𝑗th profiled obtained in condition of convergence) with the analytical
curve (𝜃𝜆2 vs 𝐻) the values of 𝜃𝜆2 that generated ghost solutions were
highlighted (that is all the solutions obtained numerically that did not
satisfy the analytical condition of existence and uniqueness (21)). Figs. 1
and 2 show these results achieved in [3] for a particular value of 𝑑∗.

6.3. Search for eventual ghost solutions

Since the model under study (16) is the same as that studied
in [13], the range of convergence is the same (𝜃𝜆2 ∈ [0.63,+∞)). In
addition, the equalities (60) hold and the profiles of the membrane
achieved numerically in [13] as solutions of the model (16) are still
valid. However, changing the condition that establishes the existence
and uniqueness of the solution (that is passing from (21) to (48)) the
figures of merit above defined change and, consequently, the range 𝜃𝜆2,
in which the ghost solutions fall back, changes. And again, from the
analytical condition of existence and uniqueness of the solution obtained
here in this work, (57), we can write:

𝐻 < 6

√

𝜃𝜆2
24𝐿1(𝐿1 + 1)

− 1 (61)

that makes sense if only if the rooting is not negative:

𝜃𝜆2

24𝐿1(𝐿1 + 1)
− 1 ≥ 0 (62)

4 By means of ODE23 solver, MatLab ODE suite with the accuracy and
adaptivity parameters defined by default. The routines have been implemented
on Intel Core 5 CPU 1.47 GHz using MatLab R2013a.

5 Because Newton method required more restrictive convergence conditions.

Fig. 1. Convergence area achieved in [3] with 𝑑∗ = 0.0001.

Fig. 2. Ghost solutions area highlighted in [3] with 𝑑∗ = 0.0001.

from which, setting 𝐿1 = 0.5, we obtain:

𝜃𝜆2 ≥ 24𝐿1(𝐿1 + 1) = 18. (63)

This means that for 𝜃𝜆2 ∈ [0, 0.63) the convergence of the shooting
procedure is not guaranteed, whereas for 𝜃𝜆2 ∈ [18,+∞), in addition
to being in conditions of convergence of the numerical procedure, we
are sure not to have ghost solutions and, increasing 𝜃𝜆2, increases
the value of 𝐻 eliminating the limitation 𝐻 = 99 that in [13] took
place.6 Finally, when 𝜃𝜆2 ∈ [0.63, 18), despite being in conditions of
convergence, we are in the presence of ghost solutions since, being
𝐻 < 0, we are in the presence of an unachievable physical condition
because, although subjecting the device to a given electrical voltage,
the membrane deforms in the opposite direction. (See Fig. 3.)

6.4. Some considerations on the fields of application of the device

From (61) it is possible to obtained the range of the values of 𝑉 that
the device here presented admits in condition of convergence and in the

6 Even if, as above mentioned, 𝐻 = 99 is a sufficiently high value.

29



M. Versaci, G. Angiulli, L. Fattorusso et al. International Journal of Non-Linear Mechanics 109 (2019) 24–31

Fig. 3. New curve of merit 𝐻 vs 𝜃𝜆2 (the dependence on 𝑑∗ is not present). If 𝜃𝜆2 ≥ 18
the convergence of the numerical method is guarantee in absence of ghost solutions.

absence of ghost solutions. In fact, taking into account that [13]:

𝜆2 = 𝜃𝑉 2 (64)

from (57), and indicating with (𝜃𝜆2)𝑖𝑛𝑓 the 𝑖𝑛𝑓 of 𝜃𝜆2, we can write:

1 +𝐻6 <
(𝜃𝜆2)𝑖𝑛𝑓

24𝐿1(𝐿1 + 1)
< 𝜃𝜆2

24𝐿1(𝐿1 + 1)
= 𝜃2𝑉 2

18
(65)

from which:

𝑉 >

√

18(1 +𝐻6)
𝜃2

(66)

that represents, once chosen the material constituting the membrane
(parameter 𝜃), the permissible values of 𝑉 to which the device can
undergo convergence conditions (and in the absence of ghost solutions).
Conversely, from (65):

𝐻 < 6

√

𝜃2𝑉 2

18
− 1 (67)

that, once chosen the material constituting the membrane and varying
the applied voltage 𝑉 , fixes he range of admissible values of 𝐻 . In
addition, since the condition [3,13]

𝜃𝐸2 = 𝜆2

(1 − 𝑢(𝑥))2
=

𝜖0𝑉 2(2𝐿)2

2ℎ3(1 − 𝑢(𝑥))2
=

𝛽𝑉 2

(1 − 𝑢(𝑥))2
(68)

is still valid and, multiplying (68) by 𝜆2 and considering that (1−𝑢(𝑥))2 <
1, 𝐸2 < 𝑠𝑢𝑝{𝐸2}, 𝛽1 = 𝜖0

2𝜎 and 𝜆2 = 𝛽1𝑉 2, the two following expressions
to be valid [3]:

𝜃𝜆2𝐸2 =
𝛽1𝑉 2𝜆2

(1 − 𝑢(𝑥))2
=

𝛽21𝑉
4

(1 − 𝑢(𝑥))2
(69)

𝜃𝜆2 =
𝜖20𝑉

2

4𝜎2(1 − 𝑢(𝑥))2𝐸2
>

𝜖20𝑉
4

4𝜎2𝑠𝑢𝑝{𝐸2}
(70)

so that, in convergence conditions and in absence of ghost solutions,
the electromechanical characteristics of the membrane (𝜎) the operation
parameters (𝑉 , 𝑠𝑢𝑝{𝐸2}) verify:

𝜖20𝑉
4

4𝜎2𝑠𝑢𝑝{𝐸2}
≥ 18. (71)

Then, taking into account both (66) and (71), we can write:

⎧

⎪

⎨

⎪

⎩

𝜎 ≤ 𝜖𝑉 2

2
√

18𝑠𝑢𝑝{𝐸2}

𝑉 >
√

18(1+𝐻6)
𝜃2

(72)

which represent the two conditions to which 𝜎, 𝑉 and 𝐸 must meet to
ensure both convergence of the numerical method and absence of ghost
solutions. Again, from (67), setting 𝜃 = 1012 and 𝑉 = 17 we can write:

𝐻 < 6

√

1012
18

− 1 ≃ 62 (73)

corresponding to 88.61 degree (in dimensionless conditions) which still
represents a good limitation for 𝑠𝑢𝑝|𝐻|. Then, the limitations (72) can
be furthermore written as:

⎧

⎪

⎨

⎪

⎩

𝜎 ≤ 𝜖𝑉 2

2
√

18𝑠𝑢𝑝{𝐸2}

𝑉 >
√

18(1+𝑠𝑢𝑝|𝐻|

6)
𝜃2

=
√

18(1+626)
1012 = 2.63 ⋅ 10−4 V.

(74)

However, even with these limitations,8 all numerical results in [3]
remain valid, which confirms that the methods based on shooting
techniques can efficiently obtain stable solutions of the model under
study.

7. Conclusion and perspectives

In this work, the authors propose a method to improve the con-
ditions for the existence and uniqueness of the solution of a well-
known 1𝐷 differential model of a membrane MEMS device where the
contribution from the amplitude of the electrostatic field, |𝐄|, in the
device (following the application of the external voltage, 𝑉 ) was thought
to be locally proportional to the membrane curvature, 𝐾. The model
was examined through a Schauder–Tychonoff’s fixed-point approach
provided a condition for the existence of a solution depending on the
electromechanical characteristics of the membrane material, as required
by innumerable industrial applications. However, for the uniqueness
of the solution, such adherence with the application industrialists has
not been manifested. Thus, starting from the aforementioned works,
the authors have highlighted an alternative method to demonstrate
uniqueness of the solution and obtain a new condition that is explicitly
linked to the geometrical characteristics of the device and electrome-
chanical properties of the membrane. Combined with the condition of
existence, this condition shows, exploiting a numerical approach based
on shooting techniques, a good adherence with the experimental results,
which imperatively require that this condition is linked to the type
of MEMS device. Moreover, the present study has highlighted a new
range of values of electromechanical characteristics of the membrane
and operational parameters more adherent to the experimentation that
guarantee the convergence of the numerical approach and, at the same
time, avoid the presence of ghost solutions. However, to improve the
quality of the results, in the future, it appears important to make more
performant the mathematical model considering more sophisticated
geometrical curvatures formulations, even if it requires higher regularity
conditions.
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