
water

Article

Enhancement of Anaerobic Digestion of Waste-Activated
Sludge by Conductive Materials under High Volatile Fatty
Acids-to-Alkalinity Ratios

Paolo S. Calabrò 1,* , Filippo Fazzino 1, Carlo Limonti 2 and Alessio Siciliano 2,*

����������
�������

Citation: Calabrò, P.S.; Fazzino, F.;

Limonti, C.; Siciliano, A.

Enhancement of Anaerobic Digestion

of Waste-Activated Sludge by

Conductive Materials under High

Volatile Fatty Acids-to-Alkalinity

Ratios. Water 2021, 13, 391.

https://doi.org/10.3390/w13040391

Academic Editors: Constantinos

V. Chrysikopoulos and Maria

Cristina Collivignarelli

Received: 4 January 2021

Accepted: 28 January 2021

Published: 3 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil, Energy, Environmental and Materials Engineering,
Mediterranean University of Reggio Calabria, Via Graziella, loc. Feo di Vito, I-89122 Reggio Calabria, Italy;
filippo.fazzino@unirc.it

2 Department of Environmental Engineering, University of Calabria, via P. Bucci, 87036 Rende (CS), Italy;
carlo.limonti@unical.it

* Correspondence: paolo.calabro@unirc.it (P.S.C.); alessio.siciliano@unical.it (A.S.)

Abstract: Anaerobic digestion (AD) represents a suitable option for the management of the waste-
activated sludge (WAS) produced in municipal wastewater treatment plants. Nevertheless, due to
its complex characteristics, WAS is often barely degradable under conventional anaerobic processes.
The use of conductive materials during AD provides a promising route for enhancing WAS digestion,
through the effects of direct inter-species electron transfer (DIET). The present paper aims to evaluate
the effects of the addition of four different materials—granular activated carbon (GAC), granular
iron, and aluminium and steel scrap powders—in semi-continuous lab-scale reactors under very
high volatile fatty acids-to-alkalinity ratios. In particular, the use of metallic aluminium in WAS
digestion was investigated for the first time and compared to the other materials. The AD of WAS
without the addition of conductive materials was impossible, while the use of steel powder and
zero-valent iron is shown not to improve the digestion process in a satisfactory way. On the contrary,
both GAC and Al allow for effective WAS degradation. At stable conditions, methane yields of
about 230 NmLCH4/gVS and 212 NmLCH4/gVS are recorded for GAC- and Al-amended reactors,
respectively. These two materials are the most promising in sustaining WAS AD through DIET also
in case of unbalanced volatile fatty acids-to-alkalinity ratios.

Keywords: aluminium; alkalinity; anaerobic digestion; granular activated carbon; waste-activated
sludge; zero-valent iron

1. Introduction

The most common wastewater treatment process worldwide is activated sludge,
introduced at the beginning of the 20th century in the United Kingdom by two engineers,
Edward Ardern and W.T. Lockett [1]. The main by-product of the process is waste-activated
sludge (WAS), which is separated from clarified wastewater in secondary clarifiers and
is only partially recycled to sustain the process [2]; when wasted, it contains about 1%
solids by weight typically [3]. Depending on the wastewater treatment plant (WWTP)
layout, if a primary clarifier is present, primary sludge is also produced. Waste-activated
(and, if present, primary) sludge must be subjected to treatment before utilization or
disposal since it contains partially degraded organic matter, nutrients, pathogens and
various toxic organic compounds, such as surfactants, hydrocarbons and residues derived
from plastics [3,4].

In this context, anaerobic digestion (AD) can play a primary role in sludge manage-
ment, as it allows for the required biological stabilization for energy recovery through
biogas production and for greenhouse gases reduction at the same time [5–11].
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Unfortunately, the efficient conversion of WAS to biomethane in a full-scale plant is
problematic [12–14]; in fact, the actual production often represents only a small fraction
(20–30%) of the theoretical one, typically on the order of 450–600 NmLCH4/gVS [15,16].

Low yields have been mainly attributed to the low biodegradability of WAS con-
stituents which are not directly available for assimilation by bacteria [17]. In particular, the
difficulty in converting complex organic matter into simpler substrates which are then used
by bacteria makes hydrolysis the limiting step of the whole process. In order to improve
biodegradability, many pre-treatments have been proposed including thermal hydrolysis,
mechanical (such as ultrasound, high pressure and lysis), advanced chemical oxidation
(mainly O3- and H2O2-based techniques), and alkali processes [18–21].

A different approach to increasing the conversion of organic sludge compounds into
biomethane is based on the metabolic enhancement of microorganisms. Parameters such
as the ratio between volatile fatty acids and alkalinity (VFA/ALK), pH, temperature, and
oxidation–reduction potential directly influence microbial and enzymatic activity, as well
as the presence of macro- and micro-nutrients [22–24].

The ecology of the process is also of capital importance, as syntrophic interactions
among the different strains involved are crucial; for example, the syntrophic association
between hydrogenotrophic methanogens and acidogenic bacteria allows preservation of
hydrogen partial pressure in the system below the level which ensures the thermodynamic
feasibility of the process [17]. Similarly, acetoclastic methanogens consume acetate in order
to produce carbon dioxide and methane; in doing so, they maintain the conditions for
acetate production from volatile fatty acids (VFAs) performed by fermentative bacteria [25].
As both interactions consist of oxidation and reduction reactions, they require electron
exchanges among syntrophic microorganisms. In particular, inter-species electron transfer
(IET) with hydrogen and formate as electron carriers is known to be a major pathway.
However, recent studies [26–28] have shown that electrons can flow from one cell to another
without being shuttled by molecules but, instead, directly through direct contact, making
methane production faster and thermodynamically more efficient. This phenomenon
has been called direct inter-species electron transfer (DIET) [29,30] and can occur through
electrically conductive pili, electrically conductive materials, and electron transport proteins
on cell surfaces [31].

Conductive materials are known to promote DIET in AD processes [25]; for instance,
carbon-based materials, such as granular activated carbon (GAC), carbon cloth, and biochar,
thanks to their high surface area and electrical conductivity, have been added to reactors
to facilitate electrical connections in microorganisms attached to granules, thus providing
them the possibility to grow [31,32]. Furthermore, these materials are commonly used in
AD bioreactors, owing to their microporous structure that allows them to adsorb toxic
compounds which potentially inhibit methane production [33]. In regards to WAS AD,
literature [34–36] shows a wide range of dosages (0.125–35 g/L) and increase of methane
production (+17.4–+241%).

Considering metal-based materials, iron and its compounds have been widely used
as conductive materials in AD processes. The reason for this resides in its corrosion in
anaerobic conditions: according to the equations listed below, zero-valent iron reacts with
water (Equation (1)) to produce hydrogen, while its hydroxide is not stable in anaerobic
environments and is liable to be transformed into magnetite, as in Equation (2) [37].

Fe0 + 2H2O→ Fe2+ + 2OH− + H2 (1)

3Fe(OH)2 → Fe3O4 + H2 + 2H2O (2)

Hence, the addition of iron can indirectly reduce CO2 present in biogas, as methane
is produced by hydrogenotrophic methanogens thanks to the hydrogen formed through
its corrosion. Furthermore, during iron corrosion, the buffering capacity of the system
is improved. Finally, magnetite produced by the transformation of iron (II) hydroxide
(Equation (2)) plays an important role in the DIET mechanism. In fact, according to
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Lovley [31], magnetite particles allow direct electron transfer between microbial species
(e.g., Geobacter to Methanosarcina). Recent research [38–42] reports the use of several
iron-based materials (e.g., zero-valent iron (ZVI) in granular, powdered or nanoscale form,
clean and rusted scrap iron, magnetite) for enhancing AD of WAS; most of the tests were
carried out in batch mode. Dosages show great variability (0–20 mg/L; 0–1 gZVI/gVS), as
do the results; methane production increase is indicated in the range 13–186%, in general
yield increase is higher for batch experiments.

Therefore, DIET is a promising route for enhancing the AD of WAS in the circular
economy framework, which could increase the energy self-sufficiency of the plants and
reduce the expenses related to sludge disposal.

The specific aim of this experiment is the assessment and comparison of the effects of
the addition of four different conductive materials (GAC, granular ZVI, and aluminium
and steel scrap powders) in WAS AD in semi-continuous lab-scale reactors under very
high VFA/ALK conditions. In particular, to the knowledge of the authors, the effect of the
addition of aluminium on WAS AD and the effect of conductive materials addition under
high VFA/ALK conditions are evaluated for the first time in literature. Aluminium was
chosen because of its high electrical conductivity and relatively low toxicity; in fact, it is
not included in the metals regulated in the case of land application in Europe [43]. The
comparison of a conductive and adsorbent material like GAC and of highly conductive
metallic materials allows us to verify whether DIET is likely to occur.

2. Materials and Methods
2.1. Substrate, Inoculum, and Additives for Semi-Continuous Test

The substrate used in the experiment was WAS produced in the “Gallico” WWTP
located in Reggio Calabria (Calabria Region, Italy). This is a secondary treatment plant
with pre-denitrification built for 35,000 P.E., which is actually overloaded (with incoming
hydraulic load corresponding to about 50,000 P.E., on average).

Fresh WAS was collected at the inlet of the aerobic digester of the plant, as withdrawn
from the secondary clarifier (thickening section is not present) every 20 days, corresponding
to three times during the entire experimental period. After collection, it was gravity-
thickened in 2 L graduated cylinders for 24 h at room temperature and then stored at 4 ◦C
until further use.

The inoculum used for the start-up of the semi-continuous test was liquid digestate
coming from a local full-scale AD plant, which was mainly fed with manure and various
residues from the agro-industry. It was sieved to remove fibrous materials (e.g., straw)
and then kept in anaerobic conditions in an oven at 35 ◦C for about a week before the
experiments, in order to reduce as much as possible of the non-specific biogas production.

Substrate and inoculum were characterized according to standard methods [44],
carrying out tests in triplicates.

Inoculum had 7.2% TS, VS were 76.2% TS, and pH was equal to 7.7, while the charac-
teristics of the substrate are summarized in Table 1.

Four different conductive materials were added in the AD process to promote the
DIET mechanism: GAC (CARBOSORB 2040, 20 × 40 mesh; Comelt srl, Milan, Italy),
ZVI (FERBLAST RI 850/3.5, mean grain size of 0.5 mm and coefficient of uniformity
equal to 2; conductivity 1·107 S·m−1; Pometon srl, Venice, Italy), and aluminum (conduc-
tivity 3.5·107 S·m−1) and steel (conductivity 1.4·107 S·m−1) scrap powders, which were
by-products collected from a local window fixture building workshop. For this reason,
these two latter were pre-treated before use by sieving and then immersing in NaOH
(Sigma-Aldrich) 0.1 M alkaline solution at room temperature for 18 h, in order to clean
them from dirt, grease, or oil. At the end of the treatment, materials were washed several
times with distilled water and then fed to the reactors. Each additive was added only at the
beginning of the experiment, in the respective reactor, at a dosage of 10 g/L. This dosage
was chosen following relevant literature [37,42].
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Table 1. Substrate characterization.

Thickened WAS–I * Thickened WAS–II
**

Thickened WAS–III
***

TS (%) 1.38 ± 0.16 1.39 ± 0.14 1.39 ± 0.24
VS (%) 1.11 ± 0.26 1.08 ± 0.12 1.10 ± 0.31

pH 6.60 6.50 6.70
Conductivity

(mS/cm) 7.30 1.50 1.43

COD (g/L) 15.29 ± 0.19 15.80 ± 0.64 14.91 ± 0.49
VFA (gCH3COOH/L) 1.27 ± 0.03 1.23 ± 0.05 1.20 ± 0.02

ALK (gCaCO3/L) 0.19 ± 0.00 0.11 ± 0.00 0.11 ± 0.00
TN (g/L) 0.46 ± 0.02 0.47 ± 0.02 0.46 ± 0.01

N-NH4
+ (g/L) 0.16 ± 0.01 0.10 ± 0.01 0.09 ± 0.00

P-PO4
3− (g/L) 0.10 ± 0.00 0.09 ± 0.00 0.08 ± 0.00

SO4
2− (g/L) 0.12 ± 0.01 0.15 ± 0.01 0.15 ± 0.01

Fe (mg/L) 49.88 ± 3.75 39.81 ± 4.94 37.24 ± 3.78
Al (mg/L) 173.34 ± 4.43 145.84 ± 13.91 143.57 ± 2.85
Mn (mg/L) 0.82 ± 0.15 0.68 ± 0.19 0.61 ± 0.18
Zn (mg/L) 9.06 ± 0.11 8.71 ± 0.24 7.60 ± 0.2
Pb (mg/L) N.D. N.D. N.D.
Cu (mg/L) 3.03 ± 0.39 2.64 ± 0.2 2.47 ± 0.26
Cr (mg/L) N.D. N.D. N.D.
Ni (mg/L) N.D. N.D. N.D.

* used as substrate in days 1–21; ** used as substrate in days 24–38; *** used as substrate in days 41–58. WAS =
waste activated sludge; N.D. = under detection limits.

2.2. Batch Test Setup

In order to assess the maximum biomethane production in the hydraulic retention
time (HRT) set for the semi-continuous test (14 days), the three thickened WAS samples
used as substrate were subjected to three different cycles of biochemical methane potential
(BMP) tests (labelled as I, II, and III) under mesophilic conditions (35 ± 0.5 ◦C). Each
cycle was performed in triplicate, using a method extensively adopted in previous experi-
ments [45,46].

Each bottle (WTW-Germany with 1.1 L volume) had three necks, two sealed with
perforable septa allowing periodic biogas collection, while the main central neck was used
to load the reactors at the beginning of the experiment and then was sealed with a stopper
(Figure 1). The reactors were placed in a thermostatic cabinet at 35 ± 0.5 ◦C and mixed by a
magnetic stirrer throughout the test period [33]. The generated biogas was measured three
times per week. In particular, using a graduated syringe, 100 mL of biogas were taken
from each bottle and transferred into an alkaline trap containing 750 mL of a 3 M NaOH
solution. The amount of NaOH was very high to neutralize even large CO2 quantities
(up to 1.125 moles). In this way, the carbon dioxide present in the biogas was rapidly and
totally absorbed into the alkaline solution while the methane caused a pressure increase in
the trap and induced the displacement of an equivalent volume of solution [45,47].

The duration of the test was 18 days for cycles I and III and 19 days for cycle II.
The substrate-to-inoculum ratio was set at 0.3, in terms of VS; and biogas collection and
measurement were operated three times per week. The net specific biochemical methane
production was calculated by the following equation:

BMP
[

NmL CH4

g VS

]
=

(
VCH4,s − VCH4,blank

)
[NmL CH4]

VSs[gVS]
(3)

where
(

VCH4,s − VCH4,blank

)
is the net methane production measured at the end of the test

(normal volumes) and VSs is the mass of volatile solids of the substrate added to the batch.
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Figure 1. Experimental design scheme.

The duration of the test was 18 days for cycles I and III and 19 days for cycle II. The
substrate-to-inoculum ratio was set at 0.3, in terms of VS; and biogas collection and
measurement were operated three times per week. The net specific biochemical methane
production was calculated by the following equation:

BMP
NmL CH4
g VS

=
VCH4,s − VCH4,blank NmL CH4

VSs gVS
(3)

where VCH4,s − VCH4,blank is the net methane production measured at the end of the test
(normal volumes) and VSs is the mass of volatile solids of the substrate added to the
batch.

2.3. Semi-Continuous Test Setup
The semi-continuous test was carried out in five reactors designated with numbers

from 1 to 5, indicating blank, GAC, ZVI, scrap aluminium powder, and scrap iron
powder supplemented reactors, respectively.

The bottles used were the same as for the batch tests, but the two lateral necks were
equipped with valves and flexible tubes, allowing for periodic biogas collection, feeding
of the substrate, and withdrawal of the digestate by a graduated 100 mL syringe
(Figure 1). In this case, the reactors were placed in the thermostatic cabinet at 35 ± 0.5 °C
and mixed by a magnetic stirrer throughout the test period.

At the beginning of the experiment, each reactor was loaded with 650 mL of
inoculum, 50 mL of thickened WAS (i.e., substrate), and (with the exception of the blank
reactor) with 7 g of additive, as previously explained. HRT and Organic Loading Rate
(OLR) were kept constant during the whole experiment and set at 14 days and 1.3
gVS/L·d, respectively; this corresponded to a loading of 50 mL/day of sludge.
Semi-continuous reactors were fed three times per week (100 mL of sludge on Monday
and Wednesday and 150 mL on Friday) for 58 days and then operated in batch mode
until day 77. Before feeding, an equal amount of digestate was extracted. During sludge
extraction, mixing speed was reduced in order to allow the deposition of the additives
and thus avoid the washout of the conductive materials.

In order to investigate the process, pH, conductivity, TS, VS, COD, VFA, total
nitrogen (TN), ammonium (N-NH4

+), reactive phosphorus (P-PO4
3−), sulfate (SO4

2−), and
alkalinity (ALK) were evaluated on average weekly digestate samples.

The blank was fed with substrate only on days 1, 4, 9, 14, 16, 18 because absent or
extremely limited biogas production was observed. The WAS feeding was interrupted to
avoid overload conditions. Moreover, in order to establish an effective AD process, on
day 7, the WAS was replaced by an equal amount (100 mL; the substrate dose for two

Figure 1. Experimental design scheme.

2.3. Semi-Continuous Test Setup

The semi-continuous test was carried out in five reactors designated with numbers
from 1 to 5, indicating blank, GAC, ZVI, scrap aluminium powder, and scrap iron powder
supplemented reactors, respectively.

The bottles used were the same as for the batch tests, but the two lateral necks were
equipped with valves and flexible tubes, allowing for periodic biogas collection, feeding of
the substrate, and withdrawal of the digestate by a graduated 100 mL syringe (Figure 1).
In this case, the reactors were placed in the thermostatic cabinet at 35 ± 0.5 ◦C and mixed
by a magnetic stirrer throughout the test period.

At the beginning of the experiment, each reactor was loaded with 650 mL of inoculum,
50 mL of thickened WAS (i.e., substrate), and (with the exception of the blank reactor) with
7 g of additive, as previously explained. HRT and Organic Loading Rate (OLR) were kept
constant during the whole experiment and set at 14 days and 1.3 gVS/L·d, respectively;
this corresponded to a loading of 50 mL/day of sludge. Semi-continuous reactors were
fed three times per week (100 mL of sludge on Monday and Wednesday and 150 mL on
Friday) for 58 days and then operated in batch mode until day 77. Before feeding, an
equal amount of digestate was extracted. During sludge extraction, mixing speed was
reduced in order to allow the deposition of the additives and thus avoid the washout of
the conductive materials.

In order to investigate the process, pH, conductivity, TS, VS, COD, VFA, total nitrogen
(TN), ammonium (N-NH4

+), reactive phosphorus (P-PO4
3−), sulfate (SO4

2−), and alkalinity
(ALK) were evaluated on average weekly digestate samples.

The blank was fed with substrate only on days 1, 4, 9, 14, 16, 18 because absent or
extremely limited biogas production was observed. The WAS feeding was interrupted to
avoid overload conditions. Moreover, in order to establish an effective AD process, on day
7, the WAS was replaced by an equal amount (100 mL; the substrate dose for two days)
of inoculum. For analogous reasons, the feeding of the reactor supplemented with ZVI
was stopped from days 21–35 and again from day 42 to the end of the experiment. The
withdrawal of digestate samples from the blank and the reactor with ZVI was interrupted
when the WAS feeding was stopped.

2.4. Analytical Methods

During the experiments, the samples were analyzed by means of standard methods [44].
Specifically, pH and conductivity were detected using bench analyzers. Total and

volatile solids (TS and VS) were estimated by weight analysis after drying the samples
at 105 ◦C and 550 ◦C, respectively. COD was determined by means of digestion with
K2Cr2O7 and volumetric titration with (NH4)2Fe(SO4)2·6H2O. Volatile fatty acids (VFA)
were detected by means of distillation and titration with NaOH. Total nitrogen (TN) was
estimated through digestion before sample titration with NaOH and HCl. Alkalinity (ALK)
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was measured by the potentiometric procedure. Ammoniacal nitrogen (N-NH4
+), reactive

phosphorus (P-PO4
3−), and sulfate (SO4

2−) were obtained by spectrophotometric analyses.
Metals were measured through atomic absorption spectrophotometry. Each analysis was
carried out in triplicate and the mean value was used.

3. Results
3.1. BMP Batch Tests

Figure 2 shows the results of the batch tests carried out on the three WAS samples used
as substrates; each line shows the net methane specific production from a single batch. It is
evident that, out of the nine tests, two failed (Figure 2c, batch A, B) (with production lower
than that of the inoculum) and, for the other seven, two (Figure 2a, batch A; Figure 2c, batch
C) had significantly lower production than the others (Figure 2a, batch B, C; Figure 2b,
batch A, B, C). These findings could be due to the presence of inhibiting compounds in the
sludge (e.g., hydrocarbons), demonstrating the difficulty in anaerobically digesting this
specific substrate. Considering only the five higher values, the average BMP in 14 days (i.e.,
the sludge retention time (SRT) set in the semi-continuous tests) was 292 NmLCH4/gVS;
considering all the seven tests with net positive production, it was 242 NmLCH4/gVS.
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Figure 2. Specific cumulated biomethane production from three cycles of batch tests ((a) – cycle I; (b) – cycle II; (c) – cycle
III). Each cycle was conducted in triplicate at T = 35 ± 0.5 ◦C and with a substrate-to-inoculum ratio of 0.3.

3.2. Semi-Continuous Tests
3.2.1. Biomethane Production

The blank reactor did not produce any biogas, even if several attempts (e.g., feeding
suspension and reinoculation) were performed in order to establish a stable AD process.
Cumulated specific biomethane production during the regime phase was significantly
higher for GAC- and Al-supplemented reactors with respect to those amended with ZVI
and steel. In the reactor containing ZVI, production was significant only for the first 14
days; then, if feeding was suspended to avoid overload, it slightly recovered only on days
35–39 and finally stopped (Figure 3a). During the post-regime phase (days 53–77) with
reactors operating in batch mode, limited production was observed (Figure 3a).

The first 14 days of operation were considered the acclimation phase and the processes
were unsteady (Figure 3b–e); this was clearly shown by the methane yield, which was
significantly more regular for days 14–53 in the reactors supplemented with ZVI, Steel,
and Al while, for GAC, it assumed a decreasing trend which tended to stabilize from day
28 (Figure 3b,c). The specific yield in the regime phase (i.e., considering only days 14–53
in the calculation) was 230 NmLCH4/gVS for the GAC reactor, 212 NmLCH4/gVS for Al,
27 NmLCH4/gVS for steel, and 18 NmLCH4/gVS for ZVI.
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The first 14 days of operation were considered the acclimation phase and the
processes were unsteady (Figure 3b–e); this was clearly shown by the methane yield,
which was significantly more regular for days 14–53 in the reactors supplemented with
ZVI, Steel, and Al while, for GAC, it assumed a decreasing trend which tended to
stabilize from day 28 (Figures 3b-c). The specific yield in the regime phase (i.e.,
considering only days 14–53 in the calculation) was 230 NmLCH4/gVS for the GAC reactor,
212 NmLCH4/gVS for Al, 27 NmLCH4/gVS for steel, and 18 NmLCH4/gVS for ZVI.

The methane daily generation rate showed a very peculiar trend (Figure 3e).
Analysing the two more interesting reactors (GAC and Al), it is clear that the daily
generation rate for the GAC reactor was significantly higher in the first 11 days (during
the acclimation phase); after this period, that Al reactor showed similar performance.
Regarding the methane level in the produced biogas, the percentage was between 62
and 78% (Figure 3d), without significant differences among the reactors.
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Figure 3. Cumulated specific methane production (a), specific methane yield (b), specific methane
yield for the regime phase (days 14–53) (c); %CH4 in biogas (d) and daily generation rate (e)
during the semi-continuous tests. The color codes are always the same for all figures.

The fraction of CO2 in the produced biogas was the difference between 100% and
the percentage of methane plotted in Figure 3d, as the fractions of other gases (other
than CH4 and CO2) in biogas are negligible.

3.2.2. Other Process Parameters
TS decreased very quickly in all reactors, including the blank and the reactor with

ZVI, until the fourth week (Figure 4a), due to the progressive dilution of inoculum with
WAS and to the consumption of the biodegradable substrate. It is interesting to note that
the reactor supplemented with GAC allowed for the highest reduction of TS, whose
concentration tended to stabilize at a value close to 10 g/L. In the reactor with Al powder,
the TS was around 15–17 g/L from the 4th to 8th weeks and had declined to 10 g/L by
the end of the experiment.

In the case of the reactor supplied with Steel powder, a singular behaviour was
monitored. Indeed, compared to the other reactors, the TS showed a lower initial value,
which grew until the 5th week and then progressively decreased, reaching a
concentration comparable to those of the reactors containing GAC and Al. It is possible
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The methane daily generation rate showed a very peculiar trend (Figure 3e). Analysing
the two more interesting reactors (GAC and Al), it is clear that the daily generation rate for
the GAC reactor was significantly higher in the first 11 days (during the acclimation phase);
after this period, that Al reactor showed similar performance. Regarding the methane
level in the produced biogas, the percentage was between 62 and 78% (Figure 3d), without
significant differences among the reactors.

The fraction of CO2 in the produced biogas was the difference between 100% and the
percentage of methane plotted in Figure 3d, as the fractions of other gases (other than CH4
and CO2) in biogas are negligible.

3.2.2. Other Process Parameters

TS decreased very quickly in all reactors, including the blank and the reactor with
ZVI, until the fourth week (Figure 4a), due to the progressive dilution of inoculum with
WAS and to the consumption of the biodegradable substrate. It is interesting to note
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that the reactor supplemented with GAC allowed for the highest reduction of TS, whose
concentration tended to stabilize at a value close to 10 g/L. In the reactor with Al powder,
the TS was around 15–17 g/L from the 4th to 8th weeks and had declined to 10 g/L by the
end of the experiment.
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In the case of the reactor supplied with Steel powder, a singular behaviour was
monitored. Indeed, compared to the other reactors, the TS showed a lower initial value,
which grew until the 5th week and then progressively decreased, reaching a concentration
comparable to those of the reactors containing GAC and Al. It is possible that, at the
beginning of the test, the addition of steel powder caused the enhanced deposition of
suspended solids at the bottom of the reactor. The increase of TS in the following weeks
denotes that the degradation of organic matter was lower than the amount of solids fed
with the WAS. Only from the 6th week did a significant degradation of solid content
appear. At the end of the experiment, the high residual amount of TS in the blank reactor
underlined the ineffective evolution of the digestion process in the absence of additives.

The trends of VS concentrations followed those of TS described above (Figure 4b).
This parallelism confirms that the variation of solids during the experiments was mainly
attributable to the degradation of the volatile fraction. With very few exceptions, VS were
between 70 and 75% for all tests. The VS fractions decreased to just below 70% at the end
of the experiments, when the reactors were operated in batch mode. In this period, the
absence of WAS feeding clearly allowed a higher reduction of VS.

The trends of COD concentration, as expected, reflected those of volatile solids
(Figure 4c). This correspondence underlines the reliability of the analyses carried out.
It can be easily noticed that the COD in the GAC reactor notably reduced between the
2nd week and the 6th week, which is consistent with the observed biomethane production
trend. The removal of organic matter was slower in the reactor with Al powder, whose
COD concentration stabilized at around to 15 g/L and further decreased only when the
system was operated in batch mode.

pH is a main parameter affecting the stability of anaerobic processes; in a mixed
culture digester, as methanogenesis is considered the limiting phase, the pH should be in
the range 6.8–8.0 to avoid inhibition phenomena [15].

For each reactor monitored, the pH remained in the optimal range for AD with values
between 7 and 8 (Figure 5). These trends suggest that the inhibition of methanogen activity
related to pH values did not occur.
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Despite the adequate pH values, very high VFA/ALK ratios were detected during
the entire operating period for each reactor investigated (Figure 6a). Indeed, with few
exceptions, the VFA/ALK ratio was always greater than 1.5 gCH3COOH/gCaCO3. Alkalinity
(data not reported) show quite uniform, continuously decreasing values in all reactors,
while VFA concentration is higher in metal supplemented reactors and especially in that
containing Al.
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The WAS used in this work had an adequate COD/N ratio (Table 1); during the semi-
continuous tests, the COD/N ratios were always quite low for all the reactors monitored
(Figure 6b). On the basis of these findings, it can be stated that the availability of nitrogen
is not a limiting factor for WAS digestion. As a consequence of the transformation of
most of the organic nitrogen into reduced inorganic form, the TN in the reactors consisted
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mainly of dissolved ammoniacal nitrogen, which reached maximum concentrations near
to 1.2 g/L. The detected ammonium amounts were much lower than the threshold value
(about 3 g/L), which is considered the upper tolerable limit for AD [15]. Therefore, the
occurrence of potential toxic phenomena due to excessive amounts of ammoniacal nitrogen
could also be excluded.

With a COD/SO4
2− ratio between 4 and 10 gCOD/gSO4, a partial toxic effect oc-

curs, while a total inhibition of methanogens takes place when the ratio is less than
4 gCOD/gSO4 [48]. The WAS used in this work showed extremely high COD/SO4

2− values,
indicating a notable surplus of organic matter (Table 1). During the entire operational
period, the COD/SO4

2− ratio remained far above 10 gCOD/gSO4 in all reactors (Figure 6c).
The observed trends clearly indicate that no competition or inhibition effects attributable
to sulfate degradation occurred in the conducted experiments [15,23,48].

3.2.3. Characterization of the Final Digestates

The characterization of the effluent of the semi-continuous reactors at the end of
the experiments (Table 2) clearly shows, as only ZVI addition influences significantly the
presence of iron in the digestate.

Table 2. Characterization of the final digestates.

Fe
[mg/L]

Al
[mg/L]

Mn
[mg/L]

Zn
[mg/L]

Pb
[mg/L]

Cu
[mg/L]

Cr
[mg/L]

Ni
[mg/L]

BlankDigestate 58.1 ± 8.3 147.9 ± 20.6 4.6 ± 0.2 6.4 ± 0.0 0.97 ± 0.07 4.26 ± 0.22 - 2.20 ± 0.17
Blank Liquid

phase 3.9 ± 0.2 11.1 ± 0.4 0.10 ± 0.0 0.4 ± 0.0 0.49 ± 0.05 0.18 ± 0.09 - 0.25 ± 0.03

GAC
Digestate 55.9 ± 6.9 135.5 ± 7.7 1.7 ± 0.1 7.2 ± 0.1 0.68 ± 0.05 2.98 ± 0.25 - 0.21 ± 0.04

GAC
Liquid phase 6.2 ± 0.7 12.3 ± 0.5 0.2 ± 0.1 0.9 ± 0.1 0.30 ± 0.07 0.39 ± 0.02 - 0.14 ± 0.03

ZVI
Digestate 140.1 ± 19.5 115.5 ± 3.3 1.8 ± 0.1 8.0 ± 0.5 0.63 ± 0.04 5.44 ± 0.58 - 0.18 ± 0.09

ZVI
Liquid phase 19.8 ± 1.8 18.9 ± 1.1 0.3 ± 0.0 1.2 ± 0.0 0.28 ± 0.05 0.58 ± 0.02 - 0.04 ± 0.00

Al
Digestate 43.7 ± 0.6 189.5 ± 4.5 0.7 ± 0.1 7.9 ± 0.2 1.10 ± 0.09 3.65 ± 0.33 - 1.02 ± 0.06

Al
Liquid phase 16.6 ± 4.2 67.4 ± 0.5 0.3 ± 0.0 3.1 ± 0.1 0.92 ± 0.04 1.36 ± 0.12 - 0.31 ± 0.01

Steel
Digestate 62.5 ± 4.5 103.2 ± 5.9 1.1 ± 0.2 6.9 ± 0.1 1.41 ± 0.04 2.07 ± 0.26 - 0.91 ± 0.07

Steel
Liquid phase 27.4 ± 3.5 45.0 ± 2.7 0.4 ± 0.1 2.6 ± 0.1 0.57 ± 0.06 0.95 ± 0.06 - 0.42 ± 0.07

The relatively high concentrations of iron and aluminum detected also in the blank
and in the GAC supplemented reactors (Table 2) are due to the use of coagulant agents
(which are used to promote sludge sedimentation) in the wastewater treatment plant from
which the substrates were taken.

4. Discussion
4.1. BMP Batch Tests

BMP test results demonstrate the difficulty in anaerobically digesting this specific
substrate. This could be due to several causes; the most probable is the very high VFA/ALK
of the substrate and the eventual presence of inhibiting substances. The reduced alkalinity
is probably linked to an unbalanced process in the water line of the WWTP; in fact, ni-
trification, that is an alkalinity consuming process, is well established in the plant while
pre-denitrification is very inefficient due to a limited recirculation of the nitrate-rich sludge.
The BMP at 14 days of AD was on the order of 240–290 NmLCH4/gVS. These values, by
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considering the average COD/VS ratio (1.33) of the sludge fed in the bottles, became about
180–220 NmLCH4/gCOD.

4.2. Semi-Continuous Tests

The lack of production in the blank reactor fully confirmed that this specific WAS was
very difficult to digest. This difficulty was, most probably, attributable to the unbalanced
VFA/ALK ratios due to the characteristics of the sludge fed to the reactors, which was
characterized by very low levels of alkalinity, as compared to the VFA content (Table 1).

The initial high methane production observed in the reactor fed with GAC suggests
that the addition of this material immediately creates favourable conditions in the mixture,
allowing for the methanisation of VFA. The positive effect, however, reduced with time,
means that it is possible that, in spite of the precautions taken, GAC is removed with
digestate during feeding.

On the contrary, the methane production phase in the Al reactor started with a delay of
about two weeks. This denotes that the digestion process requires a superior period to allow
the adaptation to the conditions created by the presence of Al. Nevertheless, once the start-
up phase was completed, the reactor with Al powder guaranteed a stable daily production
of about 220 NmLCH4/day; comparable to that monitored in the GAC reactor. If the first
14 days (acclimation phase) are not considered, the biomethane production of the GAC
reactor was only 12% higher than that of the Al one. It was also noticeable that the regime
specific methane yield was 13–36% higher than BMP for the GAC reactor while, for the Al
reactor, actual yield in the semi-continuous test was 10–25% lower than that of BMP. In the
literature, it has been indicated that using the same substrate in continuous tests generally
gives methane yields lower than those found here [49–53]. Indeed, a methane yield of
210 NmLCH4/gVS was found using powdered activated carbon as conductive material
in dry anaerobic digestion of sewage sludge [35]. A cumulative methane production
of 132.1 mLCH4/gVS was reached with the simultaneous addition of iron and activated
carbon [53]. Therefore, the results obtained in the present study (especially those for
GAC supplementation) are very significant. The values recorded for VFA/ALK were
far beyond the ratios considered suitable for an effective digestion process [15,23]. Such
high VFA/ALK levels clearly represent a very adverse factor for biogas production, as the
activity of methanogenic bacteria can be inhibited when the VFA amount is not adequately
balanced by alkaline compounds. It seems, however, that, confirming literature [38,40,42],
metals addition enhance hydrolysis and this also implies that, in this case, also due to the
noticeable amount of VFA present in the WAS used as substrate, the hydrolysis step is not
the limiting factor for methane production.

The reactors amended with steel and ZVI did not give good results. It seems that
these two supplements did not manage to boost methane production or help the bacterial
consortium to develop as it is observed in the reactor containing Al. This was unexpected,
especially for ZVI, as very promising results have been obtained in other cases [54]. In the
reactor filled with steel powder, an appreciable conversion of organic matter started from
the 5th week. The high residual levels of COD detected in the blank reactor and in the
reactor fed with ZVI powder revealed the poor conversion of organic matter into biogas, in
agreement with the results previously reported on CH4 production.

Also, if the toxicity due to the excessive presence of VFA certainly played a major role,
it is possible that the positive effects of ZVI were limited to the unfavourable corrosion
conditions linked to the slightly alkaline pH while, in the mentioned research, it was
between 5.5 and 7. Another possible cause of the poor efficiency monitored in the ZVI
reactor may be the formation of a passive layer of less-reactive products, such as maghemite
γ−Fe2O3 or lepidocrocite γ−FeOOH [55,56], on the surface of the ZVI particles. In effect,
while electrons can migrate almost freely through magnetite Fe3O4, few electrons can
penetrate a maghemite or lepidocrocite layer [55]. Therefore, the presence of these corrosion
products would make the ZVI particles ineffective in improving WAS digestion.
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Based on the production data monitored in this study, it seems that the use of GAC
and Al could neutralize the adverse effects of the WAS characteristics. The results for the
methane generation rate and the VFA clearly indicate how, in the Al supplemented reactor,
microbial consortium adaptation was an issue at least for the first two weeks [57]; while,
for GAC, the response of the system was immediate. This faster effectivity is probably
attributable to the fact that, in addition to DIET promotion (which requires the selection
and growth of adapted bacterial strains), GAC can absorb inhibiting compounds such as
VFA [58–60]. The decreasing trend for the yield in the GAC reactor may be attributable to
a progressive loss of adsorption capacity of the material which, however, preserved the
electron conductivity and continued to sustain the DIET. This fact suggests that AD with
GAC can benefit from continuous supplementation of carbon with the substrate.

It is clear, however, that both GAC and Al allowed stable and productive AD which
would be impossible without supplements (blank) or irregular and only slightly productive
with other additives (ZVI and steel).

5. Conclusions

In the present paper, an experimental investigation was conducted to evaluate the
ability of conductive materials in enhancing WAS digestion. In this regard, GAC, granular
ZVI, and aluminium and steel scrap powders were tested in semi-continuous lab-scale
digesters. The digestion of this activated sludge is hindered by the very unbalanced
VFA/ALK ratio, as witnessed by the fact that in the control reactor a stable AD process
was not established. The use of ZVI and steel powder did not sustain adequately methane
production. This negative performance could be also attributable to the slightly alkaline pH
in the reactors, which is able to limit the corrosion of the materials or lead to the formation
of a passive layer of less-conductive corrosion products on the material surface.

Differing from the results observed for ZVI and steel powder, reactors fed with GAC
and Al permitted the satisfactory conversion of VFA to methane. In particular, production
started immediately when using GAC as an additive, while a delay of about two weeks
occurred in the Al reactor due most probably to biomass acclimation. The stationary
methane rate was about 212 NmLCH4/day for the Al reactor, and around 230 NmLCH4/day
for the digester supplied with GAC. It is very likely that the positive effect exerted by these
conductive materials was linked to DIET.

These results support the use of aluminium and GAC as conductive materials to
improve the digestion of activated sludge. However, further studies need to be carried out,
in order to verify the efficiency of these materials, by changing the operating conditions
and specifically the dosage and the feeding mode of the conductive material.
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