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Abstract: The plant microbiome plays an important role in plant biology, ecology, and evolution.
While recent technological developments enabled the characterization of plant-associated microbiota,
we still know little about the impact of different biotic and abiotic factors on the diversity and struc-
tures of these microbial communities. Here, we characterized the structure of bacterial microbiomes
of fruits, leaves, and soil collected from two olive genotypes (Sinopolese and Ottobratica), testing
the hypothesis that plant genotype would impact each compartment with a different magnitude.
Results show that plant genotype differently influenced the diversity, structure, composition, and
co-occurence network at each compartment (fruits, leaves, soil), with a stronger effect on fruits
compared to leaves and soil. Thus, plant genotype seems to be an important factor in shaping the
structure of plant microbiomes in our system, and can be further explored to gain functional insights
leading to improvements in plant productivity, nutrition, and defenses.
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1. Introduction

Plants associate with a plethora of microscopic organisms, including bacteria, archaea,
eukaryotes and viruses, often designated as the plant microbiota. The structure of plant-
associated microbial communities depends on a multitude of factors. For example, the
abiotic environment has been reported to strongly drive the composition of the plant
microbiome, including soil [1–3], atmosphere [4], geography [5,6], and many others. In
addition, the plant microbiome is under the influence of many biotic factors, some of
them exogenous like herbivory [1,7] or plant diseases [8–17], some others are instead
driven by the plant itself. Indeed, previous studies reported variation in the structure of
plant microbiomes according to compartment (e.g., root, leaf, fruit, flower) [18], but also
within the same compartment, for example between different parts of flowers and fruits,
or between internal and external tissues [18,19]. Plant genotype is a major driver of the
structure of plant-associated microbial communities, an effect mainly driven by the different
physical and chemical properties that characterize different compartments [18,19]. The effect
of plant genotype in driving the structure of plant microbiomes has been reported in several
systems, including Boechera stricta [20], Medicago trunculata [21], Solanum tuberosum [1],
Glycine max [22], Populus trichocarpa [23], Cucurbita pepo [24], and many others, while in
some other species plant genotype has been found to drive a weak signal, for example in
Triticum aestivum [25], and Phaseolus vulgaris [26]. Thus, we are still not able to predict the
strength of the effect driven by plant genotype on plant-associated microbiomes.

Predicting the effect of different factors on plant microbiomes can be pivotal in under-
standing the dynamics of these complex communities. Indeed, recent research is providing
increasing evidence of the role of plant microbiomes in guaranteeing plant health [18]. In
particular, it is important to understand how plant microbiomes vary according to plant
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genotype, as it might be key to understand the link between the plant genome and the
plant microbiome, enabling microbiome manipulation to positively influence plant health.
Among the many plant species, several studies targeted the microbiome of olive trees
(Olea europaea), trying to understand the factors shaping their microbiome. For example,
Fausto et al. [27] found that soil management impacted the microbial composition of leaves
and xylem sap. Fernández-González et al. [28] found differences in the microbiome struc-
ture of root and rhizosphere. Other studies suggested differences between compartments.
For example olive leaves, flowers and fruits show different fungal microbiomes [8]. Also
the infection by Xylella fastidiosa has been found to influence the olive tree microbiome in
different tissues, with an effect mostly dependent on the resistance to this pathogen [29,30].
In a study on 10 different olive genotypes, Müller et al. [31] found that the structure of
communities of endophytes thriving in olive leaves reconciled with the plant origins in
“Eastern” and “Western” areas of the Mediterranean basin. Similarly, the analysis of the
foliar fungal endophytes in different varieties revealed a strong signature driven by plant
genotype [32]. In a wider study on 36 genotypes cultivated under a common garden setup,
Fernández-González et al. [28] found that plant genotype influenced the structure of root
and rhizosphere bacterial and fungal communities. A signature of plant genotype was also
detected when analyzing the xylem microbiota [33]. Although we still lack information
about how different factors (e.g., plant genotype, abiotic/biotic stressors, agricultural prac-
tices) influence the olive microbiota at different compartments, and which is their relative
strength, many studies support plant genotype as the major driver of microbiome structure
in olive trees.

While several studies contributed to decipher the olive tree microbiome, and many
supported a strong effect driven by plant genotype on both the bacterial and fungal
communities [28–33], we still need to quantify the contribution of plant genotype in shaping
the olive microbiota associated with different compartments. In this study, we contribute
to fill this gap by characterizing the bacterial microbial communities associated with two
different olive genotypes (Sinopolese and Ottobratica) at different compartments (fruits,
leaves, and soil) and quantifying the strength of the effect driven by plant genotype at each
compartment. Given that different plant genotypes strongly differ in the blend of VOCs
(Volatile Organic Compounds) and exudates they release, we hypothesize that the effect
driven by plant genotype would be stronger in plant-tissues (which are directly influenced
by the plant) than soil.

2. Methods
2.1. Sampling

Samples were collected in an olive orchard located in the Gioia Tauro plain (Calabria,
Italy) during October 2019. Within an area of ∼5 ha, we located 30 plants of two different
olive varieties: Ottobratica and Sinopolese (n = 15 each). These are two local olive varieties
mostly used to produce oil, and their phenology is pretty similar with full ripening of fruits
around the end of October. This field was selected because it was cultivated with both
varieties, and the climatic and pedological characteristics were homogeneous throughout
the sampled area. From each plant we collected ∼10 leaves from different parts of the
canopy, ∼10 fruits with the same strategy, and soil from 5 different points directly below
the canopy, discarding the litter and not sampling beyond 10 cm from the surface. All
collected leaves and fruit were apparently healthy as they did not show any symptom of
disease, and fruits were ripe and ready to be harvested. Samples were temporarily stored
at 4 °C for a few hours, and then at −20 °C until further processing.

2.2. DNA Extraction, Library Preparation, and Sequencing

Samples were pre-processed differently according to their source (soil, leaves, fruits).
Soil samples (∼25 mg) were mixed with 300 µL of extraction buffer (10 mM Tris, 100 mM
NaCl, 10 mM EDTA, and 0.5% sodium dodecyl sulfate) and crushed using three 1-mm-
diameter stainless steel beads per tube with the aid of a TissueLyzer II (Qiagen) bead mill
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homogenizer set at 30 Hz for 5 min. Leaf samples were finely cut into small pieces using
sterile scissors, freeze dried for ∼72 h, powdered with mortar and pestel using liquid
nitrogen, and ∼25 mg were processed as soil samples above. Similarly, fruits were peeled,
and the peer was cut into small pieces, freeze dried for ∼72 h, powdered and ∼25 mg were
processed as above.

DNA was extracted from each sample using phenol/chloroform, then quantified and
quality-checked using a Nanodrop 2000 spectrophotometer (Thermo Fisher). Metabarcod-
ing analyses targeted the bacterial 16S rRNA gene using the primer pair 515f/806rB [34].
PCRs were performed in a 25 µL mix (∼50 ng of DNA, 0.5 µM each primer, 1 X KAPA
Biosystems HiFi HotStart ReadyMix) using a Mastercycler Ep Gradient S (Eppendorf) set at
95 °C for 3 min; 98 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s repeated 35 times; and ending
with 10 min of extension at 72 °C. A non-template control, replacing the target DNA with
nuclease-free water, was included in all PCR assays. Libraries were checked on agarose gel
for successful amplification and purified with an Agencourt AMPure XP kit (Beckman and
Coulter) using the manufacturer’s instructions. A second short-run PCR was performed
in order to ligate the Illumina i7 and i5 barcodes and adaptors following the supplier’s
protocol, and amplicons were purified again as above. Libraries were then quantified using
a Qubit fluorometer (Thermo Fisher Scientific), pooled together at equimolar ratio, and
sequenced on an Illumina MiSeq platform using the MiSeq Reagent Kit v3 300PE following
the supplier’s protocol.

Paired-end reads were processed using the DADA2 v1.22 [35] pipeline implemented
in R v4.1.2 [36] to remove low-quality data, identify ASVs (Amplicon Sequence Variants)
and remove chimeras. Taxonomy was assigned using SILVA v138 [37]. Reads identified as
chloroplasts were removed from the downstream analyses.

2.3. Data Analysis

Data was analyzed using R v4.1.2 [36] with the packages phyloseq [38], vegan [39],
DESeq2 [40], and lme4 [41]. We tested the influence of plant genotype on the diversity and
structure of the bacterial microbiome at each compartment. The diversity of microbial
communities was estimated for each sample using Faith’s phylogenetic diversity index [42].
We selected this index because it considers the phylogenetic relationship between the
different components of the microbiome. Tests were performed by fitting a linear model
specifying compartment (i.e., soil, leaf, and fruits), plant genotype, and their interactions as
fixed factors. Models were fit using the lm() function and the package emmeans was used to
infer pairwise contrasts (corrected using false discovery rate, FDR). Similarly, we tested the
influence of plant genotype on the structure of bacterial microbiomes in our system using a
multivariate approach. Data was normalized using DESeq2 [40], and distances between
pairs of samples, in terms of community composition, were calculated using a unweighted
Unifrac matrix, then visualized using a canonical analysis of principal coordinates (CAP)
procedure. Differences between sample groups were inferred through permutational multi-
variate analysis of variance (PERMANOVA) (999 permutations), specifying compartment,
plant genotype, and their interactions as fixed factors.

For each compartment, we also tested which ASVs varied in relative abundance
as response to plant genotype. Using DESeq2, we built a model for each compartment
including plant genotype as fixed factor, extracting the appropriate contrasts (Sinopolese
vs. Ottobratica), and filtering ASVs with a FDR-corrected p < 0.05. We also attempted
to quantify the impact of plant genotype on influencing the bacterial microbiome at each
compartment using two methods. First, we tested the impact of plant genotype separately
on each compartment using PERMANOVA. Second, using DESeq2, we calculated the effect
of plant genotype on the abundance of each ASV (expressed as absolute log2 fold changes)
at each plant compartment. To do so, we built a model for each compartment using plant
genotype as fixed factor, and then we extracted the appropriate contrasts (Sinopolese vs.
Ottobratica). From each contrast, we used the absolute log2 fold-change values for each
ASV to quantify the impact of plant genotype on the microbiota in each compartment.
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Comparisons of absolute log2 fold-change values were performed by fitting a linear mixed-
effects model, specifying compartment as fixed factor and ASV identity as a random effect,
and using the package emmeans to infer contrasts (FDR corrected).

The network analysis was performed using the R package NetCoMi [43], testing
differences in network metrics between pairs of network using the function netCompare().

3. Results
3.1. Description of Bacterial Communities

Metabarcoding analyses identified 2498 different ASVs in our system (Figure 1). In
soil samples, we mostly found unidentified taxa (43.97%), Acinetobacter (16.06%), and Sphin-
gomonas (16.04%), while in leaves we found a higher amount of unidentified Escherichia-
Shigella (39.17%) and Hymenobacter (21.05%). The fruit microbiome was dominated by
Pseudomonas (28.05%), Pantoea (21.66%), and unknown taxa (40.02%).

Figure 1. Bacterial community composition at each compartment (fruits, leaves, soil, combined for
both genotypes). Bacterial genera with a relative abundance <1% are not reported.

3.2. Plant Genotype Influences Diversity and Structure of Olive-Associated Bacterial Microbiota

Both phylogenetic diversity and microbiota structure were influenced by the inter-
action between compartment × plant genotype (Table 1, Figure 2). Post-hoc contrasts
on phylogenetic diversity analysis revealed that soil (p < 0.0001) and fruits (p = 0.0014)
microbiome diversity was influenced by plant genotype, with higher values in samples
coming from the Sinopolese genotype, while leaves (p = 0.2919) microbiome diversity was
not affected by this factor (Figure 2A). Instead, post-hoc contrasts on the multivariate model
show differences between plant genotypes in soil (p = 0.006), leaves (p = 0.039), and fruits
(p = 0.001).
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Table 1. Results from testing the effect of compartment (soil, leaves, fruits), plant genotype
(Sinopolese, Ottobratica), and their interaction on the structure (PERMANOVA) and phylogenetic
diversity of bacterial microbiota.

PERMANOVA Phylogenetic Diversity

df R2 F p F p

Compartment 2 0.15 8.42 <0.001 92.58 <0.001
Plant genotype 1 0.03 3.34 <0.001 15.49 <0.001
Compartment × Plant genotype 2 0.07 3.87 <0.001 8.64 <0.001

3.3. Plant Genotype Impacts Fruits Bacterial Microbiota More Than Leaves or Soil

We also attempted to quantify the impact of plant genotype on the structure of micro-
biota at each compartment using two different approaches. First, we run a PERMANOVA
separately for each compartment, and we found that plant genotype explained 22.96% of
the variation in fruits (F = 8.34, p < 0.001), 5.70% on leaves (F = 1.63, p = 0.06), and 6.45%
on soil (F = 1.86, p = 0.003). Second, we tested the impact of plant genotype in shifting the
relative abundance of each ASV, and used it as a metric to estimate the shift in microbiome
composition. While fruits showed higher absolute log2 fold-change values than leaves and
soil (Figure 2C), the linear mixed-effect model did not suggest any difference between these
groups (χ2 = 4.75, df = 2, p = 0.09).

We then tested which bacterial taxa were influenced by plant genotype at each com-
partment. In fruits, we found 96 differentially abundant ASVs, of which 38 Pseudomonas and
8 Escherichia-Shigella were more abundant in samples from the Sinopolese genotype, while
39 Raoultella, 1 Klebsiella, and 10 unknwon were more abundant in fruits from Ottobratica.
In leaves, we found only 12 Hymenobacter ASVs that were more abundant in samples from
Ottobratica plants. In soil, we found 4 Sphingomonas ASVs that were more abundant in
samples collected below the canopy of Sinopolese plants, while 1 unidentified ASV was
more abundant in soils collected in proximity of Ottobratica plants.

Finally, we tested whether plant genotype impacts the bacterial co-occurence network
within each compartment. In fruits we found differences in the degree (p < 0.001), closeness
centrality (p < 0.001), and hub taxa (p = 0.027) as response to plant genotype. On the other
hand, we did not find any impact of plant genotype on the co-occurence network within
leaves and soil compartments (p > 0.05).

Figure 2. (A) Comparison of Faith’s phylogenetic diversity index between plant genotypes
(Sinopolese, Ottobratica) across compartments (fruits, leaves, soil). *** p < 0.001, ** p < 0.01,
ns = p > 0.05. (B) Canonical analysis of principal (CAP) coordinates ordination using a Unifrac
distance matrix of samples. Percentages in parentheses report the variance explained by the respec-
tive axis. (C) Magnitude of changes in abundance for each ASV (absolute log2 fold changes). For each
compartment (fruits, leaves, soil), we investigated the response of single ASVs to the plant genotype.
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4. Discussion

In this study, we characterized the bacterial microbiota associated with fruits and
leaves of two olive tree genotypes (Sinopolese and Ottobratica), together with the bacterial
microbiota of the soil collected below the tree canopy. Our results show that microbiome
composition mainly cluster by compartment (fruits, leaves, soil), but also plant genotype in-
fluenced its diversity and composition, in a way that mostly depended on the compartment
× genotype interaction.

Previous studies tested whether olive plant genotype would influence the microbiome
structure in different plant compartments. For example, Giampetruzzi et al. [29] studied the
xylem microbiota of two olive genotypes (Kalamata and FS17) and compared its response
to the infection by X. fastidiosa. While they found a different microbiota according to the
infection status, they did not identify differences driven by plant genotype. Similarly,
another study tested a similar question on a different pair of varieties (Cellina di Nardò and
Leccino) focusing on both the xylem and leaf microbiomes, and found no differences in the
structure of microbial communities between the two genotypes when they were not infected
by X. fastidiosa, while they found a genotype-driven effect when plants were infected
by the pathogen [30]. On the other hand, the analysis of the phyllosphere endophyte
fungal communities of five different cultivars (Cobrançosa, Galega vulgar, Madural, Picual,
Verdeal Transmontana) found a strong signal driven by plant genotype [32]. A wider study
on ten olive genotypes collected in areas across the mediterranean basin, revealed that
the phyllosphere endophytes clustered into two main groups (“Eastern” and “Western")
according to the origin of each variety [31]. A strong effect driven by plant genotype
was detected in the olive tree root and rhizosphere microbiomes from a common garden
experiment that included 36 olive varieties [28]. Our results agree with several of these
examples [28,31,32], while contrast with others [29,30]. This might be because the two
studies our results disagree with [29,30] focused on the olive xylem, while the others
focused either on the phyllosphere or belowground tissues. Thus, the effect driven by plant
genotype might be weaker in internal tissues, like xylem, compared to other compartments
more directly exposed to the environment.

We also found that plant genotype explained a higher proportion of the microbiome
variation in fruits (∼23%), than leaves and soil (∼6%). Similarly, we found a higher number
of ASVs that are differentially abundant between plant genotypes in fruits (n = 96), than
leaves (n = 12), and soil (n = 5). Also, the network analysis suggests the impact of plant
genotype on the microbial co-occurence network in fruits, while this was not observed for
leaves and soil. Taken together, these results suggest that plant genotype has an influence
on several plant compartments, including the soil below the tree canopy, but this effect is
stronger in fruits than other compartments. To the best of our knowledge, only a previous
study found a strong genotype-driven effect on the root and rhizosphere of olive trees [28].
This is not surprising, as previous studies found that plants influence the microbiome of
each compartment through the release of VOCs and exudates, and this might be species
and genotype dependent [18]. In our case, the microbiome of leaves and fruits might have
been influenced by the genotype-specific chemical characteristics and by the production of
genotype-specific VOCs [44]. On soil, these effects might have been driven by differences in
the production of exudates and VOCs by the root system of the two genotypes [45,46], but
also by different chemicals released by the degradation of leaves of each plant genotype [47].
The relative strength of plant genotype on several plant compartments has been tackled
by few studies, for example our previous study on S. tuberosum [1]. The magnitude of
the genotype-driven effect seems to vary according to plant species and compartment
within each plant, although it is still hard to predict. In our case, the plant genotype-
driven effect was detected at all compartments, but it was stronger in fruits than leaves
and soil. The higher magnitude on fruits than leaves might be explained by the fact
that samples were collected towards the end of the plant annual cycle, and probably the
effect of plant genotype on leaves was masked by the effect of the environment (which is
homogeneous between plant genotypes). On fruits the genotype-driven effect was still
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detectable because they were just reaching maturity and the two genotypes slightly differ
in fruit morphological and chemical characteristics, and in the timing of fruit development.

Our results also suggest a high proportion of Pseudomonas and Pantoea in olive fruits,
with several ASVs identified as Pseudomonas, Escherichia-Shigella, Raoultella, and Klebsiella
being responsive to the olive genotype. Members of the genus Pseudomonas are widely
known to be associated with a variety of plants, playing different roles including being
endophytes, pathogens, or beneficial. Similarly, strains of Pantoea have been reported as
both pathogens [48] and beneficial [49]. The other bacterial genera Escherichia-Shigella,
Raoultella, and Klebsiella, have not been previously reported to play a major role within the
fruit microbiome. Our results also suggest that Hymenobacter is a major component of the
microbiome of olive leaves, and several ASVs have been found to shift between varieties.
This genus has been previously found to be associated with the olive phyllosphere [27,33],
but its functional role is still undisclosed. Soils were mostly characterized by unidentified
ASVs, which is not surprising since the microbiome of soil is not well described, especially
because we are still not able to cultivate in vitro the majority of soil microbial diversity.

Taken together, our findings suggest that plant genotype has a deep influence on the
plant microbiome, with potential effect on the plant-microbe relationship. A deeper study
to understand the mechanisms behind this effect might enable the manipulation of the
plant microbiome to improve plant nutrition, fitness, and defenses. Also, this genotype-
driven effect was observed in the microbiome of soil collected below the tree canopy.
This effect is worthy of further investigation, as changes in the soil microbiome might
result in consequences on the entire system, as soil microbiome is responsible for several
functions including nutrient cycling. We are now fully aware of the powerful influence the
microbiome has on its host plants, and we are now learning how to manipulate and exploit
its function to improve plant productivity, quality, and protection, with positive impact on
food security and safety, or the protection of natural resources.
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