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Abstract: The SCS-CN, Horton, and USLE-family models are widely used to predict and control
runoff and erosion in forest ecosystems. However, in the literature there is no evidence of their use
in Mediterranean forests subjected to prescribed fire and soil mulching. To fill this gap, this study
evaluates the prediction capability for runoff and soil loss of the SCS-CN, Horton, MUSLE, and USLE-
M models in three forests (pine, chestnut, and oak) in Southern Italy. The investigation was carried
out at plot and event scales throughout one year, after a prescribed fire and post-fire soil mulching
with fern. The SCS-CN and USLE-M models were accurate in predicting runoff volume and soil loss,
respectively. In contrast, poor predictions of the modelled hydrological variables were provided by
the models in unburned plots, and by the Horton and MUSLE models for all soil conditions. This
inaccuracy may have been due to the fact that the runoff and erosion generation mechanisms were
saturation-excess and rainsplash, while the Horton and MUSLE models better simulate infiltration-
excess and overland flow processes, respectively. For the SCS-CN and USLE-M models, calibration
was needed to obtain accurate predictions of surface runoff and soil loss; furthermore, different
CNs and C factors must be input throughout the year to simulate the variability of the hydrological
response of soil after fire. After calibration, two sets of CNs and C-factor values were suggested
for applications of the SCS-CN and USLE-M models, after prescribed fire and fern mulching in
Mediterranean forests. Once validated in a wider range of environmental contexts, these models
may support land managers in controlling the hydrology of Mediterranean forests that are prone to
wildfire risks.

Keywords: runoff; erosion; soil loss; hydrological modeling; oak; chestnut; pine; calibration

1. Introduction

Wildfire is one of the most dangerous threats to forest ecosystems, since it impacts
almost all components (air, soil, plants, fauna, surface water [1]). Fire alters the soil
properties and removes vegetation, leaving the soil bare and, thus, exposed to flooding and
erosion [2–4]. The hydrological impacts of fire are particularly important in Mediterranean
forests. Here, the frequency, extent, and intensity of wildfires have been associated with an
increase in climate warming in the last three decades [5], due to specific weather conditions
(e.g., low humidity, high temperature, and strong winds [6]), and hydrological regimes
(extreme and flash storm events with heavy and erosive rainfalls [7,8]).
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To control fire severity and frequency, and at the same time mitigate the hydrological
impacts in fire-affected areas, several pre- and post-fire management actions have been
proposed. Prescribed fire applications, as well as soil mulching, have been used in several
environments with satisfactory results [9,10]. Many studies have demonstrated how low-
intensity fires are effective for removing the fuel that can generate a high-intensity fire,
and therefore for reducing the wildfire risk in treated forests [11,12]. Soil mulching with
vegetation residues is one of the most common post-fire management strategies to limit
runoff and erosion in the short term, since mulch protects soil from rainsplash prior to
vegetation regrowth [13,14].

The hydrological processes in burned soils are very complex, since several factors
(weather, fire severity, vegetation cover, soil properties, morphology, and land management)
influence the hydrological response of soil [2,4,15]. Computer-based hydrological models
are essential tools to better understand and predict the hydrological processes in a cost-
effective and time-efficient way [16], including in burned soils. However, validation under
different environmental conditions is required, to ensure model applicability and reliability
for predicting post-fire hydrology [17,18].

Many models have been developed to forecast runoff, erosion, and transport of pollut-
ing compounds under a large variety of climatic and geomorphological condi- tions [18,19].
Empirical models are of easier and quicker to apply compared to the most sophisticated
physically-based routines. Their prediction capability may be considered acceptable for
many needs and uses [20,21]. The use of empirical models is practically compulsory in
data-poor environments, where input parameters are scarce or are difficult to collect, so
that more complex models cannot be implemented [22,23]. The Soil Conservation Ser-
vice (SCS)-curve number (CN) (henceforth “SCS-CN model”), Horton, and USLE-family
(universal soil loss equation) models are the most common empirical methods adopted in
various environments to predict runoff and erosion, respectively [18,19,24]. Thanks to the
advantages of these empirical models, the SCS-CN, Horton, and USLE methods have been
used as the hydrological and erosion components of many hydrological models applied at
catchment scale (e.g., AnnAGNPS and SWAT models).

Regarding runoff and erosion predictions after fire using these models, several authors
have evaluated the performance of hydrological models in burned forest areas, with or
without post-fire treatments [4]. Regarding runoff prediction, the SCS-CN method is
commonly used in fire-affected forests, but the CN values are still not well-known for
burned conditions [25,26]. According to the latter authors, the literature on SCS-CN model
accuracy and CN values for simulating runoff in burned forests is limited. Moreover, the
variability of the hydrological predictions of different models, using the SCS-CN method
as sub-component, highlights the difficulties in setting proper CN values for post-fire
conditions using observed data [25].

The USLE-family models (USLE, RUSLE, MUSLE, USLE-M, HUSLE, etc.) have been
developed to estimate soil erosion in agricultural lands, and their applicability in burned
forest is not predictable, since fire impacts on vegetation and soil properties are different,
and complicated by several factors (e.g., soil water repellency, ash effects), especially in the
Mediterranean environment [27]. Moreover, these equations have mainly been applied for
multi-year predictions, while modeling tests after the so-called ‘window of disturbance’ [28]
(occurring immediately after a fire and throughout about one year, when the soil is bare
and the pre-fire levels of soil properties have not yet been recovered) have been mainly
carried out using RUSLE in soils burned by wildfires (e.g., [29,30]). To the authors’ best
knowledge, no applications are available in the literature about the use of the MUSLE and
USLE-M models after prescribed fires. As such, the optimal values of CNs and C factors,
which are key parameters for the accurate estimation of runoff and erosion [31,32], have
not yet been identified in burned conditions and with post-fire management. Moreover,
the validation of soil erosion models in soils subjected to post-fire management treatments,
such as mulching, is particularly scarce globally [28,33]. Therefore, the applicability of
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the SCS-CN method and USLE-family models may remain questionable, without targeted
modeling evaluations.

These literature gaps require studies that should assess the prediction capability of
the SCS-CN, Horton, and USLE models in burned forests in Mediterranean areas under
pre-fire and post-fire management, such as prescribed fire and soil mulching.

To satisfy this need, this study evaluates the prediction capability for runoff and soil
loss of the SCS-CN, Horton, and USLE-family models (MUSLE and USLE-M) in three
forests (pine, chestnut, and oak) of Southern Italy. The investigation was carried out at the
plot and event scales throughout one year after a prescribed fire and with post-fire soil
mulching with fern residues. The research questions which this study aims to answer are
two: (i) Are the tested models reliable and accurate for predicting surface runoff and soil
erosion in Mediterranean burned forests? (ii) Which are the optimal values of the input
parameters of the tested models?

2. Materials and Methods
2.1. Study Area

The investigation was carried out in three of the most dominant forests of Calabria
(Southern Italy), whose climate is semi-arid (‘Csa’ class, ‘hot-summer Mediterranean’
climate, according to Koppen) [34]. The mean annual precipitation and temperature are
1102 mm and 17.4 ◦C, respectively (weather station of Sant’Agata del Bianco, geographical
coordinates 42◦17′54” N, 59◦51′59” E, period 2000–2020).

Close to the municipality of Samo, three forest sites were identified to collect the
hydrological observations used for the model evaluation (Figure 1):

• a pine (Pinus pinaster Aiton, “Calamacia” site, 38◦4′52” N; 16◦1′46” E) stand reforested
in 1984 over an area between 650 and 700 m a.s.l.

• a natural oak (Quercus frainetto Ten., “Rungia” site, 38◦5′20” N; 16◦0′39” E) stand
(900–950 m a.s.l.)

• a chestnut stand (Castanea sativa Mill., “Orgaro” site, 38◦4′59” N; 16◦1′50” E) about
30 years-old, between 700 and 750 m.

The tree density was about 950 (pine), 225 (oak), and 725 (chestnut) trees/ha. The
tree height was 21 (pine), 10 (chestnut), and 18 (oak) m, while the breast diameter was 28,
20, and 41 cm, respectively. Shrub formations mainly consisted of Quercus ilex L., Rubus
ulmifolius S., and Bellis perennis L. (pine forest); Cyclamen hederifolium and Bellis perennis L.
(oak); and Rubus ulmifolius S., Pteridium aquilinum L., and Bellis perennis L. (chestnut). All
forest stands had not been subject to management actions after planting or in the last fifty
years for the natural stand.

The soils of the experimental sites (Cambisols, according to the World Reference Base
for soil resources classification) were homogenous. The mean slope of soils was about
20% for all stands, and the texture was loamy sand (10.6 ± 2.57% of silt, 8.76 ± 0.61% of
clay, and 80.7 ± 2.68% of sand). The unburned area of the pine forest in Calamacia instead
showed a sandy loam texture (10.1 ± 1.01% of silt, 9.0 ± 0.01% of clay, and 81.0 ± 0.99%
of sand).

2.2. Prescribed Fire Operations and Mulching Application

The prescribed fire was carried out in early June 2019, following the national and
regional rules, and taking care that the main conditions during fire application at the
experimental site (absence of wind and air humidity between 50 and 60%) were ideal, to
avoid an uncontrolled wildfire. The burn severity of soils after the prescribed fire was low,
according to the classification by [35].
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Figure 1. Location of the experimental sites (Samo, Calabria, Southern Italy).

Straw is commonly used as a mulch material, mainly in croplands, and this mulch
is not always suitable in forest areas. Biomass transport from agricultural sites may be
expensive, and these vegetal residues often contain agro-chemicals and parasites, with
the possible development of non-native vegetation and diseases to forest plants [36].
Woodchips are sometime used as a mulch material in forests (particularly in young stands),
but production may be expensive and difficult, due to the need of big machinery and a large
amount of wood biomass [37]. Fern (Pteridium aquilinum (L.) Kuhn), which is abundant on
the Mediterranean forest floor and does not bring non-native seeds or chemical residues into
the forest ecosystem, may replace straw for the mulching of fire-affected areas. However,
no studies prior to the present investigation have evaluated its suitability as a mulch cover
for burned soils.

At the experimental sites, one day after the fire, small pieces (maximum length of
5 cm) of fern stems were applied to the soil as a mulch material in a part of the burned
area. The fern was supplied from the same forest and the fresh residues were spread on the
ground at a dose of 500 g/m2 of fresh weight (200 g/m2 of dry matter, as suggested for
straw mulching by [38,39]).

2.3. Hydrological Monitoring

In each forest site, three series of plots (each one with three replications) were delimited
at a reciprocal distance, between 1.5 and 20 m (Figure 2).
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Figure 2. Images of the experimental plots installed for hydrological monitoring of the experimental sites: (a) pine; (b), oak,
and (c), chestnut forests.

The plots (3 m in length × 1 m in width, for a total area of 3 m2) were hydraulically
isolated, in order to prevent the inflow of surface water, using 0.3-m high metallic sheets
inserted up to 0.2 m below the soil surface. Downstream of each plot, a transverse channel
intercepted the water and sediment flows, which were collected in a 100-litre tank.
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The hydrological monitoring started immediately after site installation and was carried
out until September 2020, over 15 months (Table 1). Precipitation height and intensity were
measured in 15-min steps by a tipping bucket rain gauge at a maximum distance of 1 km
from the experimental sites. Surface runoff and sediment concentration after the monitored
events were measured according to Lucas-Borja et al. (2019b) [40]. In short, after mixing
the water in the tank, three separate samples were collected for each rainfall–runoff event
(total of 0.5 L). The samples were oven-dried at 105 ◦C for 24 h in the laboratory. Then,
the dried sediments were weighed, and the weight was divided by the sample volume, to
calculate the sediment concentration. The product of the latter by the runoff volume gave
the soil loss.

Table 1. Main hydrological variables of rainfall events monitored at the experimental sites (Samo, Calabria, Southern Italy).

Date Height (mm) Net Height (mm) *
Duration (h)

Intensity (mm/h)
Pine Oak Chestnut Max Mean

15 July 2019 65 61.8 59.8 60.5 36 22.2 1.99
9 October 2019 49.9 45.4 43.9 44.9 26 14.6 1.85

11 November 2019 142.8 135.7 132.8 132.8 41 26.2 3.49
23 November 2019 87.1 82.7 81.0 81.9 19 24.7 4.58
5 December 2019 147.2 141.3 138.4 139.8 30 19 4.90

24 March 2020 155.9 149.7 146.5 149.7 32 13.8 2.86
14 July 2020 22.4 20.6 19.7 20.4 7 12.8 2.58

Note: * recorded at the rain gauge station under a tree canopy in each forest.

2.4. Short Description of the Models

Some brief information about the tested models is provided below, while more details
are available in the works by the cited authors.

2.4.1. SCS-CN Model

The Soil Conservation Service-curve number (SCS-CN) [41] was developed by the
United States Department of Agriculture in the 1950s. This empirical model derives some
assumptions from physically-based infiltration equations and requires only a few data
points to estimate runoff for a given rainfall event.

The SCS-CN method assumes:
V
Pn

=
W
S

(1)

where V is the runoff volume, Pn is the net rainfall, W is the soil potential retention, and S
is the maximum soil potential retention (all values are in mm).

V is calculated by the following equation:

V =
Pn

2

Pn + S
(2)

where Pn is the difference between the rainfall depth P and the initial abstraction Ia (both in
mm). The latter is the amount of rainfall retained in soil storage as interception, infiltration,
and surface storage before runoff begins [42]. By convention, Ia is equal to the product of a
coefficient λ (generally equal to 0.2) by S.

Therefore, V becomes:

V =
(P− 0.2S)2

Pn + S
(3)

S is a function of the dimensionless ‘curve number’ (CN) parameter:

S = 25.4
(

1000
CN

− 10
)

(4)
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CN describes the antecedent potential water retention of a soil [43]. Theoretically, CN
varies between 0 and 100, but the usual values of CNs are in the range 40–98 [42].

The CN of agro-forest soils depends on the soil hydrological class, vegetal cover,
hydrological condition (good, medium, poor), and cultivation practice; moreover, for CN
calculation the antecedent moisture condition (AMC) of the soil must be determined. The
soil hydrological class (A to D) is related to the soil’s capability to produce runoff, which
in turn is due to the soil infiltration capability. The actual AMC of the soil subject to a
rainfall/runoff event is estimated as a function of the total height of precipitation in the
five days before the event in the two different conditions of crop dormancy or growing
season. In this regard, three AMCs are identified:

• AMCI: dry condition and minimum surface runoff
• AMCII: average condition and surface runoff
• AMCIII: wet condition and maximum surface runoff.

The SCS-CN guidelines report tables to calculate the CN values for soils of a given
hydrological class and condition, vegetal cover, cultivation practice, and average AMC
(AMCII). The values of CNs related to AMCI (CNI) or AMCIII (CNIII) can be calculated with
the following equations:

CNI =
4.2CNI I

10− 0.058CNI I
(5)

CNI I I =
23CNI I

10 + 0.13CNI I
(6)

2.4.2. Horton Equation

Horton’s method was formulated by Robert E. Horton in 1939 as an infiltration model
to describe the physical process of infiltration in a quantitative manner.

The runoff rate q (in mm h−1) at a given time t is given by:

q(t) = i(t) − f(t) (7)

where i(t) and f(t) (both in mm h−1) are the rainfall intensity and infiltration rate at time t,
respectively.

The infiltration rate f(t) is calculated as:

f(t) = fc + (f0 − fc) e−kt (8)

During a storm, f (t) generally declines from the maximum rate f0 to the minimum
value fc through the parameter k. Equation (7) gives q(t) when i(t) exceeds f(t). The runoff
volume is the integral of Equation (7), when q(t) is positive, between the start and the end
of the runoff event.

2.4.3. MUSLE Equation

The ‘universal soil loss equation’ (USLE) was first established in the USA to model
erosion in small agricultural catchments. USLE has a mathematical form that depends on
six input parameters linked to climate, soil cover and properties, topography, and human
activities; the six so-called “USLE-factors” (R, K, L, S, C, and P).

The USLE equation has been modified and updated over several versions and has
been replaced by the revised USLE (RUSLE) [44,45]. Reference [46] developed a modified
version, called MUSLE, which is the acronym modified USLE. The MUSLE model replaces
the USLE rainfall factor (R) by a runoff factor, to consider the effect of flow on sediment
transport. Therefore, the expression of the MUSLE equation has the following general form:

Y = a (Q’qp)b K L S C P (9)

where Y is the soil loss (tons ha−1) on a storm basis, Q is the runoff volume (m3), qp is the
peak flow rate (m3 s−1), K is the soil erodibility factor (tons h MJ−1 mm−1), L and S are the
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slope-length and steepness factor, respectively, C is the cover management factor, and P is
the conservation practice factor. The a and b coefficients are site-specific empirical factors
for calculating the runoff factor.

2.4.4. USLE-M Equation

Kinnell and Risse (1998) [47] proposed the USLE-M model based on the hypothesis
that the sediment concentration in the runoff is affected by the event rainfall erosivity index
(Re, [48] per unit quantity of rain (Pe, mm). According to the USLE-M, Y is calculated as:

Y = QR Re K LS C P (10)

where QR and Re are the runoff coefficient and the erosivity index for the modelled event,
respectively. The other factors of the USLE-M have the same meaning as the USLE and
MUSLE equations, but the values of K and C factors are calculated using different expres-
sions (see Sections 2.4.3 and 2.4.4) [47].

2.5. Model Implementation in the Experimental Plots
2.5.1. SCS-CN Model

The sub-hourly precipitation records collected at the rain gauge stations were aggre-
gated in daily values and supplied as input to the SCS-CN model. The AMC was derived
according to the antecedent rainfall depths of each precipitation event. The soil hydro-
logical group was identified using the data of the soil map of Calabria [49] and according
to [50], who measured the hydraulic conductivity of the same sites.

The default values of CN were assumed, following the standard procedure by the
USDA Soil Conservation Service [41] (Table 2).

2.5.2. Horton Equation

In the same experimental sites, [50] determined the water infiltration curves for the
three soil conditions using a rainfall simulator (Eijkelkamp®, https://en.eijkelkamp.com/),
following the methods reported by [51]. In short, for each forest stand and soil condition,
rainfall simulations were carried out in three randomly chosen points. Rainfall of 3.0 mm,
at an intensity of 37.8 mm/h, was generated over a surface area of 0.305 m × 0.305 m.
Throughout the simulated rainfall, the surface runoff volume was collected and measured
in a small graduated bucket at a time scale of 30 s. The infiltration curves were determined
by subtracting the runoff from the rainfall at each time interval. The infiltration test stopped
when three equal time measurements of instantaneous infiltration had been recorded.

For Equation (8), we interpolated these infiltration curves using Equation (13), which
has the following mathematical structure:

f (t) = me−nt (11)

where m and n are the two constant coefficients and t is expressed in seconds. The goodness-
of-fit of this equation was measured by the coefficient of determination (r2) (Table 2).

For the modeled events, the hyetograph i(t) was derived from the rainfall records and
the difference between i(t) and f(t) at a given t gave the runoff rate q(t) every five minutes.
Given the very short time of concentration (less than one minute) of the plot, the surface
runoff stop was considered the same as the rainfall end.

https://en.eijkelkamp.com/
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Table 2. Values of input parameters adopted to simulate surface runoff volumes and soil loss using the SCS, Horton, MUSLE, and USLE-M models applied in the experimental plots.

Model Input Parameter Measuring Unit
Soil Conditions

Unburned Burned Burned and Mulched
Default Model Calibrated Model Default Model Calibrated Model Default Model Calibrated Model

Chestnut

SCS-CN
CN - 46 43 70 80 * 45 50 65 * 32
λ - 0.2

Horton
m mm h−1 33.65 - 30.51 - 37.61 -
n s−1 0.006 - 0.004 - 0.004 -
r2 - 0.90 - 0.95 - 0.99 -

MUSLE

a - 89.6
b - 0.56

K-factor tons h MJ−1 mm−1 0.03
C-factor - 0.009 1 0.390 1 0.011 1
P-factor - 1

USLE-M

Qr - max 0.17 0.34 0.10
min 0.07 0.09 0.02

Re-factor MJ mm ha−1

h−1
max 69.5 84.8 54.6
min 2.86 3.26 1.05

KUM-factor tons h MJ−1 mm−1 0.043 0.024 0.102
CUM-factor - 0.004 0.021 0.203 0.288 * 0.038 0.008 0.019 * 0.004

P-factor - 1
Oak

SCS-CN
CN - 46 45 80 83 * 47 50 76 * 45
λ - 0.2

Horton
m mm h−1 17.95 - 16.38 - 22.93 -
n s−1 0.007 - 0.005 - 0.005 -
r2 - 0.67 - 0.95 - 0.90 -

MUSLE

a - 89.6
b - 0.56

K-factor tons h MJ−1 mm−1 0.03
C-factor - 0.001 1 0.356 1 0.011 1
P-factor - 1

USLE-M

Qr - max 0.19 0.48 0.35
min 0 0.14 0.07

Re-factor MJ mm ha−1

h−1
max 62.7 84.8 72
min 0 24.9 8.16

KUM-factor tons h MJ−1 mm−1 0.052 0.023 0.034
CUM-factor - 0.001 0.020 0.356 0.104 * 0.056 0.011 0.056 * 0.045

P-factor - 1
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Table 2. Cont.

Model Input Parameter Measuring Unit
Soil Conditions

Unburned Burned Burned and Mulched
Default Model Calibrated Model Default Model Calibrated Model Default Model Calibrated Model

Pine

SCS-CN
CN - 39 40 90 79 * 41 55 65* 39
λ - 0.2

Horton
m mm h−1 34.69 - 39.90 - 32.44 -
n s−1 0.003 - 0.00 - 0.004 -
r2 - 0.95 - 0.98 - 0.94 -

MUSLE

a - 89.6
b - 0.56

K-factor tons h MJ−1 mm−1 0.03
C-factor - 0.001 1 0.36 1 0.003 1
P-factor - 1

USLE-M

Qr - max 0.08 0.34 0.10
min 0 0.06 0.06

Re-factor MJ mm ha−1

h−1
max 50.1 75.8 33.8
min 0 15.6 10.9

KUM-factor tons h MJ−1 mm−1 0.085 0.033 0.068
CUM-factor - 0.004 0.008 0.203 0.208 * 0.006 0.008 0.055 * 0.003

P-factor - 1

Notes: CN = curve number; λ = initial abstraction ratio; m, n = coefficients of Equation (13); r2 = coefficient of determination; a, b = site-specific factors; Re = RUSLE rainfall R-factor; K, C and P = factors of the
MUSLE model; KUM and CUM = factors of the USLE-M model; * first two modeled events.
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2.5.3. MUSLE Equation

The MUSLE model is usually applied at the catchment scale; however, in some studies,
it has been implemented at the plot scale (e.g., [52,53]). Q of Equation (9) was the runoff
volume predicted by the SCS-CN method. The parameter qp was calculated using the
following formula:

qp = z
AQ
tp

(12)

where A is the plot area (m2), z is a conversion coefficient, and tp (0.01 h in this study)
is the plot concentration time, which was experimentally measured at the plots using a
surface tracer.

We deliberately adopted the values of Q and qp as predicted by the SCS-CN method
or calculated using Equation (12), rather than using the observed values, since these
observations are never available in practical applications, and, therefore, the modeler is
forced to use estimations from models. The site-specific factors, a and b, in Equation (8)
were 0.87 and 0.56, according to the suggestions by [54].

The K-factor was estimated using the nomograph in [48]. The C-factor was calculated
using an empirical equation based on canopy cover and aboveground biomass proposed
by [55]. Usually, the C-factor is calculated as the product of some sub-factors, depending
on the previous land use, canopy cover, surface cover, surface roughness, and soil moisture
content (e.g., in [56]). In this study, we preferred to use a simpler equation, based on soil
cover, since often these sub-factors are not easy to measure or determine. The P-factor was
always set to one (Table 2).

2.5.4. USLE-M Equation

The runoff coefficient QR of Equation (10) was calculated as:

QR = Q/Pe (13)

where Q and Pe are the runoff volume (again estimated using the SCS-CN method) and
rainfall depth (both in mm), respectively. Following Renard et al. (1991) [45], the rainfall
R-factor (Re, MJ mm ha−1 h−1) factor was calculated using the following equation:

Re = EI30/1735 (14)

where NSE is the rainfall kinetic energy (tons m ha−1) and I30 is the maximum rainfall
intensity in 30 min (mm h−1) for each event.

The correction of K proposed by Kinnel et al. (1998) was adopted to calculate the
K-factor of USLE-M (KUM). The C- and P-factors (CUM) were calculated as for the MUSLE
equation (Table 2).

2.6. Model Calibration

The SCS-CN, MUSLE, and USLE-M models were initially run with default parameters,
estimated from the guidelines of the three models. Since the models provided poor
predictions (see Section 3), we chose the most sensitive input parameters (CN for the
SCS-CN model [57,58], and the C-factor for the MUSLE and USLE-M equations [59,60])
and calibrated the models. In our study, the hydrological effects of prescribed fire and soil
mulching were considered by tuning these parameters. The models were first calibrated
using constant CNs and C-factors over time. In a further calibration trial, the CNs and
C-factors were increased for the first two rainfall events, to take into account the variability
of the soil hydrological response throughout the first year after fire, as demonstrated by
several authors (e.g., [22,61,62]).

Calibration was carried out manually using a trial-and-error procedure, and was
considered optimal when the coefficient of efficiency (NSE, see Section 2.6) was the highest
and the error between the mean values of the observations and simulations of runoff



Land 2021, 10, 1166 13 of 31

(SCS-CN and Horton models) or soil loss (MUSLE and USLE-M models) was the lowest
among the runs. The Horton equation was not calibrated, since all the relevant input
parameters come from measurements from the infiltration tests. Table 2 reports the default
and calibrated parameters, with their sources, for the four models.

2.7. Model Performance Evaluation

The runoff/erosion prediction capability of the four models was evaluated using
qualitative and quantitative approaches. First, the observed and simulated values were
visually compared around the line of perfect agreement in scatter plots. Then, we adopted
a combination of the following criteria for model quantitative evaluation: (i) the main
statistics (i.e., maximum, minimum, mean, and standard deviation of both observed and
simulated values); and (ii) a set of indexes, commonly used in hydrological modeling. These
indexes consisted of the determination coefficient (r2), the efficiency coefficient (NSE, [63]),
and percentage bias (PBIAS, [64]), adopting a p-level of 0.05. In more detail, r2 measures the
dispersion of the ‘observations vs. predictions’ points around the interpolating line; values
over 0.5 are deemed acceptable [56,65,66]. NSE, which is the ‘goodness of fit’ of the model
predictions, is optimal if NSE = 1, good if NSE ≥ 0.75, satisfactory if 0.36 ≤ NSE ≤ 0.75,
and unsatisfactory if NSE ≤ 0.36 [66]. PBIAS indicates whether the model over-predicts (if
negative) or under-predicts (if positive) the output variable. A PBIAS below 0.25 and 0.55
for runoff and erosion, respectively, are considered fair [67,68].

3. Results and Discussions
3.1. Hydrological Characterization

Throughout the monitoring period, 516 rainfall events with a total depth of 1120 mm
were recorded at the rain gauging stations. Of these events, only seven were classified as
erosive events (that is, with a depth over 13 mm), according to [48] (Table 1).

In the unburned plots, the maximum runoff (up to 18.1 ± 12.9 mm in chestnut forest)
was observed after the highest rainfall (156 mm). In two events (9 October 2019 and
14 July 2020), no runoff was collected in the unburned chestnut and oak forests and in all
soil conditions of the pine and oak sites (Figure 3).

The highest runoff volume in the burned plots was always collected after the first
post-fire event. One month after the prescribed fire, the runoff was from 22.3 ± 1.35 mm
(chestnut) to 31.3 ± 2.29 (oak) (Figure 3).

The first rainfall event also produced the highest runoff in the burned and mulched
plots of the chestnut and oak forests (6.61 ± 1.16 mm and 23 ± 3.69 mm, respectively).
Conversely, in the pine forest, the maximum runoff (10.4 ± 0.80 mm) was measured after
the second event (Figure 3).

The soil loss in the unburned plots was in the range 5.31 ± 1.40 g/m2 (pine forest)
to 15.34 ± 3.21 g/m2 (chestnut), and these values were measured after the first and
second post-fire rainfalls (Figure 4). For these two events, erosion increased very much
in the burned soils of all forests, and particularly in the pine and chestnut soils (soil loss
equal to 51.61 ± 6.92 and 52.26 ± 13.67 g/m2, respectively). In oak soils, the soil loss
was noticeably lower (15.12 ± 2.87 g/m2), but much higher compared to the unburned
plots. Soil mulching with fern was effective for reducing erosion, and, under this soil
condition, the maximum soil losses were between 10.62 ± 0.99 g/m2 (pine forest) and
14.58 ± 4.80 g/m2; again recorded after the first event. After the first two events, the soil
loss showed a low variability in the unburned soils, while, in the burned and not treated
soils, erosion decreased over time (Figure 4).
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Figure 3. Precipitation and runoff volume (mean ± std. dev., n = 3 plots) measured in plots ((a), pine;
(b), chestnut; (c), oak) after prescribed fire and soil mulching using fern. Notes: U = unburned soils;
B = burned and not treated soils; B + M = burned and mulched soils; no runoff was observed in pine
and oak plots on 14 July 2020.
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Figure 4. Precipitation and soil loss (mean ± std. dev., n = 3 plots) measured in plots ((a), pine;
(b), chestnut; (c), oak) after prescribed fire and soil mulching using fern. Notes: U = unburned soils;
B = burned and not treated soils; B + M = burned and mulched soils; no soil loss was observed in
pine and oak plots on 14 July 2020.
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Soil mulching with fern mainly reduced the erosion in pine and chestnut forests
compared to the fire-affected plots. The maximum soil losses were equal to 1.87 ± 0.33
and 0.81 ± 0.16 g/m2 (both surveyed in the third event), respectively. In these plots,
the estimated soil losses were even lower compared to unburned soils, while the pre-fire
erosion rates were only restored in oak forests for two events (Figure 4).

3.2. Hydrological Modeling
3.2.1. SCS-CN Model

The SCS-CN model, running with default input CNs, always gave poor predictions of
surface runoff, as shown by the great scattering of the observations/simulations around
the line of perfect agreement (Figure 5). This low accuracy is confirmed by the poor values
of the evaluation indexes (Table 3). In more detail, r2 was much lower than 0.5 (with two
exceptions, unburned soils in pine and chestnut forests, r2 of 0.73 and 0.79), and NSE
was below 0.35 (except for unburned soils in pine forest, NSE = 0.36). PBIAS, which was
positive in some soil conditions and negative in others, indicates a high underprediction or
overestimation for a observation, respectively. Moreover, the statistics calculated for the
observations and predictions were highly different (mean error of up to 500%).

Land 2021, 10, x FOR PEER REVIEW 19 of 33 
 

 

 
Figure 5. Scatter plots of runoff volumes observed in forest sites ((a), pine; (b), chestnut; (c), oak) subject to prescribed fire 
and soil mulching with fern vs. predicted using the SCS-CN model. Values are reported on logarithmic scales. 

3.2.2. Horton Model 
The runoff prediction capability of the Horton model was inaccurate under all soil 

conditions and forest species. In more detail, despite the satisfactory coefficients of deter-
mination calculated in the unburned soils of the three forest species (r2 > 0.65), the r2 was 
always lower than 0.14 in the other soil conditions. The differences between the mean 
observed and predicted runoff volumes were over 50%, with peaks of up to 677%. More-
over, NSE and PBIAS were negative for all modeled soil conditions at the three sites (Table 
4). These coefficients indicate the wide scattering of the observations/simulations around 
the line of perfect agreement (Figure 6), and a noticeable overestimation of the modeled 
runoff volumes (Table 4). 

1.0E-03

1.0E-01

1.0E+01

1.0E+03

1.0E-03 1.0E-01 1.0E+01 1.0E+03

Observed runoff (mm)

Pr
ed

ic
te

d 
ru

no
ff 

(m
m

)

1.0E-03

1.0E-01

1.0E+01

1.0E+03

1.0E-03 1.0E-01 1.0E+01 1.0E+03

Observed runoff (mm)

Pr
ed

ic
te

d 
ru

no
ff 

(m
m

)

1.0E-03

1.0E-01

1.0E+01

1.0E+03

1.0E-03 1.0E-01 1.0E+01 1.0E+03

Observed runoff (mm)

Pr
ed

ic
te

d 
ru

no
ff 

(m
m

)

Unburned (default) Unburned (calibrated)

Burned (default) Burned (calibrated)

Burned and mulched (default) Burned and mulched (default)

1:1

(a)

(c)

(b)

1.0E-03

1.0E-01

1.0E+01

1.0E+03

1.0E-03 1.0E-01 1.0E+01 1.0E+03

Observed runoff (mm)

Pr
ed

ic
te

d 
ru

no
ff 

(m
m

)

1.0E-03

1.0E-01

1.0E+01

1.0E+03

1.0E-03 1.0E-01 1.0E+01 1.0E+03

Observed runoff (mm)

Pr
ed

ic
te

d 
ru

no
ff 

(m
m

)

1.0E-03

1.0E-01

1.0E+01

1.0E+03

1.0E-03 1.0E-01 1.0E+01 1.0E+03

Observed runoff (mm)

Pr
ed

ic
te

d 
ru

no
ff 

(m
m

)

Unburned (default) Unburned (calibrated)

Burned (default) Burned (calibrated)

Burned and mulched (default) Burned and mulched (default)

1:1

(a)

(c)

(b)

Figure 5. Scatter plots of runoff volumes observed in forest sites ((a), pine; (b), chestnut; (c), oak) subject to prescribed fire
and soil mulching with fern vs. predicted using the SCS-CN model. Values are reported on logarithmic scales.
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Table 3. Statistics and indexes evaluating the runoff prediction capability of the SCS-CN model in forest plots subject to
prescribed fire and soil mulching with fern.

Run off Volume Mean
(mm)

Standard
Deviation(mm)

Minimum
(mm)

Maximum
(mm) r2 NSE PBIAS

Pine
Unburned

Observed 7.00 4.54 0.00 13.06 - - -
Simulated (default) 5.18 5.74 0.00 12.34 0.73 0.36 0.26

Simulated
(calibrated) 5.86 6.43 0.00 13.79 0.73 0.34 0.16

Burned
Observed 13.28 6.26 7.01 22.31 - - -

Simulated (default) 81.00 43.61 27.02 126.50 0.00 −85.36 −5.10
Simulated

(calibrated) 12.41 7.06 0.52 22.28 0.69 0.81 0.07

Burned and mulched
Observed 7.41 2.31 4.37 10.35 - - -

Simulated (default) 20.04 18.32 0.32 40.58 −1.70 −81.26 0.79
Simulated

(calibrated) 7.06 4.53 0.14 12.34 0.62 −0.70 0.05

Chestnut
Unburned

Observed 9.65 5.09 3.37 18.13 - - -
Simulated (default) 9.13 10.78 0.00 23.49 0.79 −0.72 0.05

Simulated
(calibrated) 6.95 8.45 0.00 18.44 0.79 −0.13 0.28

Burned
Observed 15.39 6.39 3.85 22.31 - - -

Simulated (default) 35.35 31.85 0.00 74.04 0.14 −16.25 −1.30
Simulated

(calibrated) 13.71 9.32 0.00 23.62 0.75 0.65 0.11

Burned and mulched
Observed 3.46 1.72 1.25 6.63 - - -

Simulated (default) 12.43 14.07 0.00 30.76 0.00 −5.14 −2.59
Simulated

(calibrated) 2.86 2.77 0.00 8.13 0.72 0.94 0.17

Oak
Unburned

Observed 10.66 6.18 0.00 16.36 - - -
Simulated (default) 10.65 10.96 0.00 23.49 0.49 −0.66 0.00

Simulated
(calibrated) 9.77 10.17 0.00 21.77 0.49 −0.43 0.08

Burned
Observed 20.18 7.09 10.00 31.34 - - -

Simulated (default) 59.25 37.76 13.74 99.21 0.04 −19.13 −1.94
Simulated

(calibrated) 19.04 8.85 2.81 27.96 0.52 0.70 0.06

Burned and mulched
Observed 14.84 7.13 3.27 22.98 - - -

Simulated (default) 14.51 14.19 0.00 30.76 0.19 −1.28 0.02
Simulated

(calibrated) 14.53 7.32 1.86 21.77 0.54 0.61 0.02

Notes: r2 = coefficient of determination; NSE = coefficient of efficiency; PBIAS = coefficient of residual mass.

These model’s poor performances indicate that the literature values that were adopted
as defaults for the input CNs were not suitable for simulating the runoff volume. This
especially holds true under burned soil conditions, when the soil’s hydrological response
was increased by fire. The CNs of fire-affected areas are usually estimated by increasing
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the post-fire values, depending on the fire severity (e.g., [69]). This statement agrees with
the findings of [26], who highlighted the need to increase the CN values of burned soils
by about 25 units. The worsening of the hydrological response of the burned soil after
fires with different intensities has been shown by various studies (e.g., [70,71]), and this
is also true in the case of prescribed fire (e.g., [1]). This increase is mainly due to the soil
hydrophobicity and removal of vegetation due to fire. However, these effects vanish some
months after a fire. The mulching treatment ‘smooths’ the increased hydrological response
of burned soils, and this effect requires a lower increase in CN values [22].

However, in our experience, model runs with higher but constant CNs increase
the runoff prediction capability of the SCS-CN model, but this calibration effort did not
significantly improve the model performance in all soil conditions (data not shown).
Regarding the unburned plots, the model predictions of runoff were also disappointing.
Although the values of r2 were satisfying (over 0.49), the NSE was negative in chestnut
and oak forests, and lower than 0.36 in pine soils, while PBIAS (>0.08) showed a noticeable
tendency to model underprediction (Table 3). The difference between the mean values of
the observed and predicted runoff was 8.3% to 28%. In contrast to our results and those
by [26], references [27,72] observed no apparent increase of CNs in post-fire conditions.

In order to simulate the effects of a repellent and bare soil on surface runoff, there is a
need to increase the CNs in the window-of-disturbance [3,28]. The authors of [22], working
in burned pine forests under semi-arid Mediterranean conditions, demonstrated that the
SCS-CN model performs better for simulating surface runoff, if the CNs are increased in
the few months after the prescribed fire. Accordingly, when the CNs were increased for
the first two modeled events after fire in our study, the performances of the calibrated
model were always satisfactory for burned soils (mulched or not), except for the mulched
soils in pine forest. The scattering of observations/simulations around the line of perfect
agreement was reduced (Figure 5), and the evaluation indexes were generally over the
acceptance limits for model predictions (Table 3). The SCS-CN model performance was
good in burned soil for pine (r2 = 0.69, NSE = 0.81 and PBIAS = 0.07), and satisfactory, both
in burned and not treated, and burned and mulched soils, of chestnut (r2 > 0.72, NSE > 0.65
and PBIAS < 0.17) and oak (r2 > 0.52, NSE > 0.61 and PBIAS < 0.06) forests (Table 3). The
difference between the mean observed and predicted runoff was lower than 17.5%. The
model prediction capability of runoff was excellent in the burned and mulched soils of
chestnut, where the r2 and NSE were 0.72 and 0.94, respectively (Table 3).

The worse performance of the SCS-CN model in unburned soils compared to burned
conditions was quite surprising. This low accuracy could be explained by the low genera-
tion capacity of the unburned soils of the experimental sites, which was not well simulated
by the SCS-CN model, unless unrealistic CNs are input (runoff of three rainfall events
simulated as zero) (Figure 5). The hydrological models generally tend to overestimate the
lower events and underestimate the most intense flows [73,74]. A modified hydrological
response due to fire increases the runoff generation capacity, which is better reproduced by
this method. Overall, since the SCS-CN method does not optimally simulate the changes
in soil properties due to management or other factors, without calibrating the input CNs,
further studies should improve the model simulation of the temporal evolution of soil
properties [75]. This could be done, for instance, by tuning the CNs proposed in the SCS
guidelines using correction factors that should take into account the effects of soil water
repellency and changes in hydraulic conductivity [76,77]. Until then, our results indicate
that the suggested values of CN should be used instead of the standard SCS values for
runoff predictions in soils burned by prescribed fires and treated with mulching under
similar properties, climate, and management conditions as our experimental sites.

3.2.2. Horton Model

The runoff prediction capability of the Horton model was inaccurate under all soil
conditions and forest species. In more detail, despite the satisfactory coefficients of de-
termination calculated in the unburned soils of the three forest species (r2 > 0.65), the
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r2 was always lower than 0.14 in the other soil conditions. The differences between the
mean observed and predicted runoff volumes were over 50%, with peaks of up to 677%.
Moreover, NSE and PBIAS were negative for all modeled soil conditions at the three sites
(Table 4). These coefficients indicate the wide scattering of the observations/simulations
around the line of perfect agreement (Figure 6), and a noticeable overestimation of the
modeled runoff volumes (Table 4).

Table 4. Statistics and indexes evaluating the runoff prediction capability of the Horton model in forest plots subject to
prescribed fire and soil mulching with fern.

Run Off
Volume

Mean
(mm)

Standard
Deviation(mm)

Minimum
(mm)

Maximum
(mm) r2 NSE PBIAS

Pine
Unburned

Observed 10.70 4.68 4.69 18.13 - - -
Simulated 24.83 17.05 6.12 41.63 0.65 −18.32 −1.32

Burned
Observed 17.31 4.24 12.49 22.31 - - -
Simulated 26.96 17.23 6.91 44.10 0.03 −5.43 −0.56

Burned and mulched
Observed 3.83 1.55 2.51 6.63 - - -
Simulated 26.51 18.49 1.71 44.48 0.14 −15.67 −5.92

Chestnut
Unburned

Observed 9.65 5.09 3.37 18.13 - - -
Simulated 25.03 18.30 1.92 45.49 0.76 −17.30 −1.59

Burned
Observed 15.39 6.39 3.85 22.31 - - -
Simulated 23.99 18.28 1.51 44.57 0.12 −3.81 −0.56

Burned and mulched
Observed 3.46 1.72 1.25 6.63 - - -
Simulated 24.06 17.92 0.87 44.21 0.04 −15.94 −5.95

Oak
Unburned

Observed 10.70 4.68 4.69 18.13 - - -
Simulated 31.51 15.43 14.95 46.50 0.68 −29.15 −1.95

Burned
Observed 17.31 4.24 12.49 22.31 - - -
Simulated 30.60 15.70 13.12 46.03 0.02 −6.06 −0.77

Burned and mulched
Observed 3.83 1.55 2.51 6.63 - - -
Simulated 29.77 16.17 11.30 45.80 0.08 −17.39 −6.77

Notes: r2 = coefficient of determination; NSE = coefficient of efficiency; PBIAS = coefficient of residual mass.

The inaccuracy detected in this study for the Horton model was basically due to
the noticeable overestimation of the observed runoff volumes, since the model was not
calibrated, and, furthermore, the infiltration rate curves were not updated to account for
the variability of infiltration rates over time. Furthermore, it cannot be excluded that
the worse runoff prediction capability shown by the Horton model in comparison to the
SCS-CN model may be due to the fact that the dominant runoff generation mechanism of
the experimental soils is soil saturation during a storm (which is better simulated by the
SCS-CN model) rather than infiltration excess (on which the Horton equation is based); as
would be expected in soils in semi-arid environments [39].
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Figure 6. Scatter plots of runoff volumes observed in forest sites ((a), pine; (b), chestnut; (c), oak) subject to prescribed fire
and soil mulching with fern vs. predicted using the Horton model.

3.2.3. MUSLE Model

Before calibration, the erosion predictions provided by the MUSLE equation were
poor. The simulated soil losses were lower by at least one order of magnitude compared
to the corresponding observations. The model strongly underestimated erosion in all soil
conditions and forests (see the PBIAS close to one), which caused a great scattering of
observations/simulations around the line of perfect agreement (Figure 7). These poor
predictions were confirmed by the very low NSE and r2 (< 0 and < 0.20, the latter except
for burned and mulched soils of chestnut forests, r2 = 0.79) (Table 5).
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Figure 7. Scatter plots of soil losses observed in forest sites ((a), pine; (b), chestnut; (c), oak) subject to prescribed fire and
soil mulching with fern vs. predicted using the MUSLE model. Values are reported on logarithmic scales.

This inaccuracy of the MUSLE equation for simulating soil loss suggested the need to
calibrate the model. We were forced to input C-factors equal to one, trying to reduce the
model underestimation. This attempt was however disappointing, since the reliability of
the calibrated MUSLE remained unsatisfactory. In addition, after calibration, the differences
between predictions and observations were high, over 76% (Figure 7), and the evaluation
indexes were poor. The values of NSE and r2 were negative and lower than 0.20 in all
forests (except r2 = 0.79 in burned and mulched soils of chestnut), and the underestimation
of soil loss was always high (as shown by the positive PBIAS, > 0.76) (Table 5).
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Table 5. Statistics and indexes evaluating the runoff prediction capability of MUSLE model in forest plots subject to
prescribed fire and soil mulching with fern.

Soil Loss Mean
(tons/ha)

Standard
Deviation(tons/ha)

Minimum
(tons/ha)

Maximum
(tons/ha) r2 NSE PBIAS

Pine
Unburned

Observed 0.02 0.02 0.00 0.05 - - -
Simulated (default) 0.00 0.00 0.00 0.00 0.04 −0.73 1.00

Simulated
(calibrated) 0.01 0.01 0.00 0.01 0.04 −0.55 0.76

Burned
Observed 0.12 0.20 0.01 0.52 - - -

Simulated (default) 0.00 0.00 0.00 0.01 0.53 −0.06 0.97
Simulated

(calibrated) 0.01 0.01 0.00 0.02 0.53 −0.01 0.92

Burned and mulched
Observed 0.02 0.04 0.00 0.11 - - -

Simulated (default) 0.00 0.00 0.00 0.00 0.01 −0.37 1.00
Simulated

(calibrated) 0.01 0.00 0.00 0.01 0.01 −0.21 0.77

Chestnut
Unburned

Observed 0.05 0.05 0.00 0.15 - - -
Simulated (default) 0.00 0.00 0.00 0.00 0.18 −0.90 1.00

Simulated
(calibrated) 0.00 0.00 0.00 0.01 0.18 −0.86 0.95

Burned
Observed 0.16 0.21 0.00 0.52 - - -

Simulated (default) 0.00 0.00 0.00 0.00 0.20 −0.25 0.99
Simulated

(calibrated) 0.01 0.00 0.00 0.01 0.20 −0.22 0.97

Burned and mulched
Observed 0.03 0.05 0.00 0.15 - - -

Simulated (default) 0.00 0.00 0.00 0.00 0.79 −0.05 1.00
Simulated

(calibrated) 0.00 0.00 0.00 0.00 0.79 −0.02 0.97

Oak
Unburned

Observed 0.05 0.02 0.00 0.07 - - -
Simulated (default) 0.00 0.00 0.00 0.00 0.05 −4.15 1.00

Simulated
(calibrated) 0.01 0.01 0.00 0.02 0.05 −2.86 0.83

Burned
Observed 0.11 0.03 0.07 0.15 - - -

Simulated (default) 0.01 0.00 0.00 0.01 0.03 −1.35 0.94
Simulated

(calibrated) 0.02 0.01 0.00 0.02 0.03 −1.01 0.86

Burned and mulched
Observed 0.07 0.03 0.04 0.12 - - -

Simulated (default) 0.00 0.00 0.00 0.00 0.00 −3.63 1.00
Simulated

(calibrated) 0.01 0.01 0.00 0.02 0.00 −2.47 0.84

Notes: r2 = coefficient of determination; NSE = coefficient of efficiency; PBIAS = coefficient of residual mass.

The unsatisfactory performance of the MUSLE model was quite surprising, despite
calibration. We verified whether the applications of the Q and qp simulated by the SCS-CN
method rather than the observed values had influenced the erosion prediction capability of
the MUSLE model. In modelling soil loss, the use of measured runoff volume and peak
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flow is suggested to improve the model accuracy, although this practice is often impossible
in ungauged plots without runoff monitoring devices. However, the erosion prediction
capability of the MUSLE model did not noticeably improve using the observed values of
the hydrological variables in the runoff factor, since r2 and NSE were lower than 0.50 and
negative, respectively, and PBIAS was always over the acceptance limit of 0.55 for erosion
prediction, as suggested in the literature.

The over-prediction of the MUSLE model is common in some studies carried out in
different environments and soil conditions [78–80]. These authors reported that the low
prediction capability could often be due to the fact that the model is applied in contexts
that are different from the environments where the MUSLE was developed. More generally,
the authors of [81,82] highlighted that small soil losses are usually over-predicted by
USLE-family models.

3.2.4. USLE-M Model

As found for the MUSLE equation, the erosion predictions using the uncalibrated
USLE-M were inaccurate, as visually shown in the relevant scatter plots (Figure 8). All
the values of the evaluation indexes were unsatisfactory, since r2 was lower than 0.41,
NSE was negative, and PBIAS indicated strong model underprediction or overprediction
(|PBIAS| > 0.74; except for unburned, as well as burned and mulched, soils of pine, with
PBIAS equal to 0.43–0.44, and therefore acceptable). Moreover, the differences between the
mean or maximum values of predicted soil losses and the corresponding observations were
always higher than 40% (with one exception, unburned soils of chestnut, 29%) (Table 6).
Moreover, for this erosion model, we ascribed this poor performance to the tendency
of hydrological models to overestimate and underestimate the lower and higher soil
losses, respectively [18,73,81]. According to [18], the tendency for USLE-family models to
overpredict low soil losses could be improved by incorporating an erosivity threshold in
precipitation that must be exceeded before any sediment is generated.

The USLE-M model inaccuracy was removed thanks to calibration for the conditions
of burned, and burned and mulched soils of all the forest species, while the erosion
predictions provided by the calibrated USLE-M equation were still unsatisfactory for the
unburned plots. For the latter soil condition, r2 was lower than 0.14 and the NSE was
negative (Table 6). In contrast, these evaluation indexes were over 0.56 (r2) (except in the
burned soil of oak, r2 = 0.23) and 0.67 (NSE) in burned soils (mulched or not) of all forests,
and the |PBIAS| was lower than 0.17. The latter index reveals that in some soil conditions
and forest species the model generally underpredicted erosion (burned soils, treated or not,
of oak, and burned plots of chestnut), while, in the other cases, a slight tendency for the
overestimation of soil loss was found). Moreover, the values of PBIAS were well below the
acceptance limit of 0.55 stated in the literature ([67,68], see also Section 2.6). In addition,
for burned soils of oak, the erosion prediction capability of the USLE-M equation can be
considered as satisfactory, although the r2 was low (0.23). As a matter of fact, both the NSE
and PBIAS indexes complied with the acceptance limits (NSE > 0.36 and PBIAS < 0.55), and
the differences between the mean or maximum values of the observations and predictions
was only 8.5%. This statement is a proof that sometimes r2 may be misleading in model
evaluation [64,83], since it measures the scattering of values around the regression line and
not around the line of perfect agreement.

The contrasting performances of the USLE-M model in predicting erosion between
unburned and burned soils contrasts with the findings of [84], who reported insignificant
impacts on erosion estimates between burned and non-burned forests.
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Figure 8. Scatter plots of soil losses observed in forest sites ((a), pine; (b), chestnut; (c), oak) subject to prescribed fire and
soil mulching with fern vs. predicted using the USLE-M model. Values are reported on logarithmic scales.

Overall, for the USLE-family models, a calibration process has been considered nec-
essary by several authors for improving their prediction accuracy. For instance, [85,86],
applying the USLE-M in plots in Western Sicily (Italy) and under different soil conditions,
highlighted the importance of the calibration process to allow its adaption to the different
climatic and edaphic conditions.

Since five (K, L, S, C, and P) of the six USLE-factors are common in the two models
under each soil condition, it is possible to compare the effects of the R-factor on the
predicted soil losses. This indicates that, under the experimental conditions, the soil loss
is mainly due to rainsplash erosion. This fact derives from the better performance of the
USLE-M model, whose rainfall erosivity is based on the R-factor, compared to the MUSLE
model. In contrast, the lower accuracy in simulating erosion shown by the latter equation,
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which includes parameters related to surface runoff, indicates the minor role of the soil loss
produced in our plots by overland flow, which determines particle detachment. However,
these statements depend strictly on the small scale of the experimental plots (only a few
square meters), as well as the low number of plots, and thus must be verified at larger
scales. As carried out for the MUSLE model, we ran the USLE-M model using the observed
QR rather than the value calculated using the runoff volume predicted by the SCS-CN
model, but the erosion prediction capability of USLE-M did not appreciably improve (data
not shown). This means that the model can be applied to ungauged plots (that is, without
equipment to measure runoff and peak flow) without losing accuracy when predicting soil
losses in burned soils.

Table 6. Statistics and indexes to evaluate the runoff prediction capability of the USLE-M model in forest plots subject to
prescribed fire and soil mulching with fern.

Soil Loss Mean
(tons/ha)

Standard
Deviation
(tons/ha)

Minimum
(tons/ha)

Maximum
(tons/ha) r2 NSE PBIAS

Pine
Unburned

Observed 0.02 0.02 0.00 0.05 - - -
Simulated (default) 0.01 0.01 0.00 0.04 0.14 −0.93 0.43

Simulated
(calibrated) 0.02 0.03 0.00 0.07 0.14 −2.33 −0.15

Burned
Observed 0.12 0.20 0.01 0.52 - - -

Simulated (default) 0.57 0.38 0.02 1.08 0.12 −5.84 −3.65
Simulated

(calibrated) 0.12 0.19 0.00 0.42 0.87 0.90 −0.01

Burned and mulched
Observed 0.02 0.04 0.00 0.11 - - -

Simulated (default) 0.01 0.01 0.00 0.03 0.01 −0.20 0.44
Simulated

(calibrated) 0.03 0.03 0.00 0.09 0.81 0.81 −0.08

Chestnut
Unburned

Observed 0.05 0.05 0.00 0.15 - - -
Simulated (default) 0.06 0.09 0.00 0.23 0.14 −3.97 −0.29

Simulated
(calibrated) 0.05 0.07 0.00 0.18 0.14 −2.57 0.00

Burned
Observed 0.16 0.21 0.00 0.52 - - -

Simulated (default) 0.49 0.41 0.00 1.18 0.05 −4.06 −1.98
Simulated

(calibrated) 0.16 0.21 0.00 0.53 0.95 0.96 0.01

Burned and mulched
Observed 0.03 0.05 0.00 0.15 - - -

Simulated (default) 0.05 0.05 0.00 0.12 0.41 0.25 −0.98
Simulated

(calibrated) 0.03 0.05 0.00 0.13 0.86 0.88 −0.17

Oak
Unburned

Observed 0.05 0.02 0.00 0.07 - - -
Simulated (default) 0.01 0.01 0.00 0.02 0.05 −3.13 0.87

Simulated
(calibrated) 0.05 0.06 0.00 0.15 0.05 −4.67 −0.02

Burned
Observed 0.11 0.03 0.07 0.15 - - -

Simulated (default) 0.45 0.29 0.07 0.93 0.07 −40.70 −3.26
Simulated

(calibrated) 0.12 0.05 0.04 0.17 0.23 0.67 0.08

Burned and mulched
Observed 0.07 0.03 0.04 0.12 - - -

Simulated (default) 0.02 0.01 0.00 0.04 0.05 −2.00 0.74
Simulated

(calibrated) 0.07 0.02 0.04 0.09 0.56 0.78 0.05

Notes: r2 = coefficient of determination; NSE = coefficient of efficiency; PBIAS = coefficient of residual mass.



Land 2021, 10, 1166 26 of 31

As previously mentioned, the MUSLE and USLE-M models had not been applied to
predict erosion in fire-affected areas (neither by wildfires nor low-severity fires) before
this study. Therefore, the results of the present study cannot be compared to similar
experiments in the same or other environmental contexts. Comparisons with published
studies that have evaluated the erosion prediction capability of USLE-family models are
thus possible with reference to the RUSLE model. The authors of [56] found that the latter
equation is ideal for fast and simple applications (i.e., prioritization of areas-at-risk) in
zones burned by wildfires in Portuguese pine forests; since, in this application, an NSE
between 0.63 and 0.70, and PBIAS in the range −12% to −20% were achieved. In contrast,
in burned forests of pine and eucalyptus, and in lands with post-fire management in Galicia
(NW Spain), references [29,30,87] found poor predictions of soil loss. Negative or very
low positive NSE and high PBIAS were detected by these authors, since the RUSLE model
overestimated the soil losses. These authors attributed the poor performance of the model
to three factors: (i) the use of an inadequate kinetic energy equation of rainfall for the
Mediterranean climate; (ii) the fact that soil water repellency, a key factor in post-fire soil
hydrology [15,88], is not explicitly considered in the RUSLE model; and (iii) the poor ability
of C- and K-factors to reflect changes in soil properties induced by fire. The attempts at
calibration by tuning the R- and C-factors [30] and by introducing a reduction factor for soil
erodibility (to take into account stone cover of the experimental soils) [29], or accounting for
high contents of soil organic matter [87], did not noticeably improved the RUSLE accuracy
for predicting soil loss. These statements agree with those reported by [18], who achieved
a low reliability with the RUSLE equation in modeling sediment yields throughout the first
year after fires of different severity in Colorado (USA). The same authors reported that
the model accuracy was not improved by increasing the K-factor of RUSLE (which should
simulate a decrease in aggregate stability after fire). Moreover, they advised that the use
of RUSLE in unburned forests may be troublesome (as was found in our study, given the
basically poor performance of the MUSLE and USLE-M models in the unburned plots),
because overland flow is not common [18,89]. Since the main effects of fire are the changes
in soil properties and surface covers [2,12,90], which may induce noticeable changes in the
K- and C-factors, all these studies concluded that these USLE-factors do not adequately
describe soil modifications after fire. Our study has instead demonstrated that satisfactory
predictions of erosion in soils burned by prescribed fire (with or without mulch treatment)
can be provided by the USLE-M model when using a simple calibration of the C-factor and
regardless of the specific process (e.g., soil water repellency, decrease in aggregate stability,
depletion of organic matter content) that affects the post-fire soil hydrology. A limitation of
this procedure is the need to calibrate the C-factor in each environmental context (that is,
in soils of different types and textures) before applying the USLE-M model. However, this
requirement seems to be an easy task, considering the low time and money requirements
of a small plot installation, as well as the low monitoring period (less than one year), as in
the present study. This consideration is in close accordance with [56,84], who suggested
that estimations of C-factors for burned areas should be determined for each context and
fire type, although previous works reported several indicative values [30,91]. Therefore,
the estimation of the site-specific C-factors using locally measured data, as was the aim of
our study, increases the erosion prediction accuracy of USLE-family models [92].

A limitation of our study is that the C-factors proposed in this investigation for the
modeled soil conditions were calibrated using observations collected at only one study area.
Furthermore, the low number of plots (due to budget limitations) in this study may explain
the low accuracy of the tested methods for modeling runoff and soil losses, especially in
the unburned plots. In some cases, this procedure can be misleading and must be validated
in other environmental conditions or supported by external parameters. Bearing in mind
the limitations of our study, the C factors proposed for the experimental soil conditions
could be reliable, at least for burned soils of Mediterranean forests (treated with mulching
or not), and fill the lack of similar values for USLE-M applications in the literature.
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Overall, the investigation enriched the literature about post-fire hydrological mod-
eling, which is not homogeneously distributed worldwide and is still far from being
exhaustive [93,94]. The results of our study confirm the applicability of two very common
hydrological models (SCS-CN and USLE-M). Moreover, the unsuitability of two other
methods (Horton equation and MUSLE) was demonstrated, at least in various forests in
Mediterranean areas, whose intrinsic conditions (e.g., very shallow soils, strong soil water
repellency, and peculiar hydrologic regime) often make the available hydrological models
unsuitable. These models were developed in other climatic contexts and not in fire-affected
areas, and therefore may find limited applicability without targeted modifications [56]. This
study supports the efforts of modelers in choosing the most suitable hydrological models
after prescribed fires and mulching treatments in Mediterranean forests that are prone to
risk wildfire. Moreover, our modeling experiment proposed important input parameters
(CNs and C-factors) for loamy sand soils supporting broadleaf (oak and chestnut) and
conifer (pine) forest species, and the proposed values can be used under the evaluated soil
and climatic conditions.

4. Conclusions

This study has demonstrated the feasibility of the SCS-CN and USLE-M models for
predicting surface runoff and erosion, respectively, in plots burned by prescribed fire and
mulched with fern residues in three Mediterranean forests of pine, chestnut, and oak. In
contrast, poor predictions of the modelled hydrological variables were provided by the
models in unburned plots, and by the Horton and MUSLE models for all the soil conditions.
This result answers the first research question about the feasibility of the four models for
hydrological applications in Mediterranean burned forests.

Regarding the second research question about the optimal values of the input parame-
ters for the tested models, the study has proved that a calibration process is a prerequisite
for the tested models for accurate predictions of surface runoff and soil loss. After calibra-
tion, we suggest the following two sets of CNs and C-factors for applications of the SCS-CN
and USLE-M models after prescribed fire and fern mulching in Mediterranean forests:

• for runoff modelling CNs of 80, 83, and 79 (burned soils) and 65, 76, and 65 (burned
and mulched soils) throughout the two to three months after fire, and 45, 47, and
41 (burned soils) and 32, 45, and 39 (burned and mulched soils) in the following
period, for chestnut, oak, and pine forests, respectively;

• for soil loss predictions C-factors of 0.521, 0.085, and 0.339 (burned soils) and 0.069,
0.060, and 0.040 (burned and mulched soils) immediately after a fire, and 0.052, 0.059,
and 0.008 (burned soils) and 0.007, 0.050, and 0.001 (burned and mulched soils) in the
following period, for chestnut, oak, and pine forests, respectively.

The different CNs and C-factors consider the variability of the hydrological response
of soil after fire.

Despite the satisfactory accuracy shown by the SCS-CN and USLE-M models in this
modeling experiment, these results are limited to the experimental conditions; however,
they are encouraging for further applications of these conceptually simple and widely used
models in analogous climatic and geomorphologic conditions. Further modeling studies
should also enlarge the spatial scale from plots to watersheds. Once validated in a wider
range of environmental contexts, these models may support land managers in controlling
runoff and erosion in forest soils that are prone to hydrogeological risks.
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