
Integrated use of Sentinel-1 and Sentinel-2 data and open-source machine 
learning algorithms for land cover mapping in a Mediterranean region
Giandomenico De Luca a, João M. N. Silva b, Salvatore Di Fazio a and Giuseppe Modica a

aDipartimento Di Agraria, Università Degli Studi Mediterranea Di Reggio Calabria, Reggio Calabria, Italy; bForest Research Centre, School of 
Agriculture, University of Lisbon, Lisboa, Portugal

ABSTRACT
This paper aims to develop a supervised classification integrating synthetic aperture radar 
(SAR) Sentinel-1 (S1) and optical Sentinel-2 (S2) data for land use/land cover (LULC) mapping in 
a heterogeneous Mediterranean forest area. The time-series of each SAR and optical bands, 
three optical indices (normalized difference vegetation index, NDVI; normalized burn ratio, 
NBR; normalized difference red-edge index, NDRE), and two SAR indices (radar vegetation 
index, RVI; radar forest degradation index, RFDI), constituted the dataset. The coherence 
information from SAR interferometry (InSAR) analysis and three optical biophysical variables 
(leaf area index, LAI; fraction of green vegetation cover, fCOVER; fraction of absorbed photo-
synthetically active radiation, fAPAR) of the single final month of the time-series were added to 
exploit their correlation with the canopy structure and improve the classification. The random 
forests (RF) algorithm was used to train and classify the final dataset, and an exhaustive grid 
search analysis was applied to set the optimal hyperparameters. The overall accuracy reached 
an F-scoreM of 90.33% and the integration of SAR improved it by 2.53% compared to that 
obtained using only optical data. The whole process was performed using freely available data 
and open-source software and libraries (SNAP, Google Earth Engine, Scikit-Learn) executed in 
Python-script language.
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Introduction

Mapping the vegetation composition, besides provid-
ing information on the quantitative and qualitative 
status of the area under study, is a necessary early 
step in the analysis and monitoring protocols of the 
state of the vegetation and ecosystems’ responses 
affected by various environmental disturbances 
(Choudhury et al., 2021; Grabska et al., 2020; 
Monroe et al., 2020; Pollino & Modica, 2013; 
Rodman et al., 2021; Semeraro et al., 2019), including 
wildfires (Gitas et al., 2012), storms (Giannetti et al., 
2021; Hamdi et al., 2019), deforestation (Nicolau et al., 
2021), forest degradation (Modica et al., 2015), deser-
tification (Hill et al., 2008) and climate change effect 
(Yang et al., 2013). Therefore, mapping the composi-
tion of forest vegetation is fundamental for the con-
crete implementation of sustainable land management 
policies at any scale, regional to global (e.g., the REDD 
+ activities; Gulinck et al., 2018; Nicolau et al., 2021).

In the context of vegetation mapping and monitor-
ing, several remote sensing techniques based on dif-
ferent types of multispectral sensors have been 
developed and successfully used over the years 
(Grabska et al., 2019; De Luca et al., 2019; Modica et 
al., 2016; Morin et al., 2019; Praticò et al., 2021; Solano 
et al., 2019). The use of spectral signatures, temporally 

differentiated following the phenological cycles of the 
various seasons, allows a better spectral separability of 
the investigated vegetation types and, therefore, their 
recognition and characterization (Aragones et al., 
2019; Aubard et al., 2019; Grabska et al., 2020, 2019; 
Morin et al., 2019; Praticò et al., 2021). Grabska et al. 
(2019) used a Sentinel-2 (S2) time-series to map forest 
composition showing the effectiveness of seasonal 
phenology variations in improving spectral discrimi-
nation between species, achieving better accuracy 
results than using single images. Moreover, the spec-
tral vegetation indices (VIs) enhance the sensibility of 
single-bands spectral signals to the variability of the 
bio-physical state of plant tissues, the photosynthetic 
activity, and leaf productivity (Aragones et al., 2019; 
Marzialetti et al., 2019; Praticò et al., 2021; Semeraro et 
al., 2019). Strong correlations were found between 
specific regions of the electromagnetic spectrum and 
species-specific physiological characteristics useful in 
estimating forest cover, especially using VIs based on 
infrared wavelengths: the normalized difference vege-
tation index (NDVI; Marzialetti et al., 2019; Spadoni et 
al., 2020), the normalized difference red-edge index 
(NDRE; Evangelides & Nobajas, 2020), the normalized 
burn index (NBR; Praticò et al., 2021; Shaun et al., 
2020). The red-edge, near infra-red (NIR) and short- 
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wave infra-red (SWIR) regions have, respectively, a 
long-established correlation to the leaf pigments con-
tent, vegetation net primary productivity, and leaf 
water content, being very effective in vegetation mon-
itoring (Arevalo-Ramirez et al., 2020; Delegido et al., 
2011; Eitel et al., 2011; Knipling, 1970).

The free availability of the higher temporal and 
spatial resolution Copernicus S2 mission multispectral 
data (ESA Sentinel Homepage, 2021), provided by the 
European Space Agency (ESA), improved the accuracy 
of forest cover classification maps and allowed for the 
launch of several successful monitoring studies at a 
higher scale of detail (Grabska et al., 2020; Immitzer et 
al., 2016; Inglada et al., 2017; Praticò et al., 2021; 
Solano et al., 2019).

In addition to the use of multispectral data, several 
authors studied the applicability of active synthetic 
aperture radar (SAR) systems for mapping land 
cover (Lapini et al., 2020; Nicolau et al., 2021; Perko 
et al., 2011; Waske & Braun, 2009). Besides the all-day 
and all-weather operational capability, these sensors 
provide different and complementary physical infor-
mation helpful for improving the spectral data when 
combined with optical imagery (Nicolau et al., 2021; 
Spracklen & Spracklen, 2021; Stroppiana et al., 2015). 
The total signal backscattered from forest vegetation 
results from the combination and interaction of the 
canopy and ground backscatters (Lapini et al., 2020; 
Saatchi, 2019; Yu & Saatchi, 2016). This backscatter 
response is affected by implicit sensor variables, such 
as wavelength and polarization, and by some vegeta-
tion features as cover shape, structure, and orienta-
tion, moisture content, geometric and dielectric 
property of the surface (Lapini et al., 2020; De Luca 
et al., 2021a).

The Copernicus mission provides two polar-orbit-
ing SAR satellite platforms belonging to the Sentinel-1 
(S1) constellation (S1-A and S1-B) carrying a C-band 
sensor (wavelength of 5.6 cm) with both cross-polar-
ized (VH) and co-polarized (VV) polarization (ESA 
Sentinel Homepage, 2021). At these wavelengths, the 
backscatter is mainly due to the leaves, needles, and 
small branches of the upper canopy and presents lower 
penetration power than longer wavelengths (Lapini et 
al., 2020). Potentially, the information from the upper 
canopy could allow the discrimination between forest 
and non-forest areas.

Referring to forest applications, recently, Nicolau et 
al. (2021) assessed the potential of S1 time-series for 
land use/land cover (LULC) purposes in tropical for-
ests, while Numbisi et al. (2019) utilized S1 time series 
to discriminate agroforests environments in a hetero-
geneous savannah-forest transition zone. On the other 
hand, Lapini et al. (2020) assessed the multi-frequency 
approach for Mediterranean forest classification, dis-
criminating forest from non-forest areas and broad-
leaved from coniferous forests, using data from 

different SAR sensors (X-, C- and L-band). These 
authors concluded that the L-band is better for the 
first purpose, but C-band and X-band performed bet-
ter for distinguishing coniferous and broadleaves.

The utility of SAR signal in forest vegetation dis-
crimination can be also explicated by its particular 
sensitivity to the forest stand height (Deutscher et al., 
2013; Li et al., 2020; Perko et al., 2011; Siqueira, 2019). 
The simple SAR backscatter is indirectly and empiri-
cally related to the forest stand height since its value 
increases with a high presence of canopy scattering 
elements, proportional to forest height (vertical distri-
bution) and canopy density, as a function of wave-
length and polarization. Moreover, there is a 
geometric relationship between the SAR signal and 
the heights of the objects on the Earth’s surface, estim-
able through SAR interferometry (InSAR) models 
(Siqueira, 2019). The InSAR technique exploits the 
phase information of the radar signal to obtain infor-
mation about the topography and height of the Earth’s 
surfaces (Ferretti et al., 2007; Ghosh et al., 2020). The 
S1 constellation observes the same scene at two differ-
ent times, applying the repeat-pass InSAR. The 
amount of temporal phase decorrelation occurring 
between two passes is one of the models used to 
estimate the forest stand height. The temporal decorr-
elation is assumed to be higher the greater the height 
of the canopy due to a more significant presence of 
small scatter elements (Siqueira, 2019). The interfero-
metric coherence can represent the temporal phase 
decorrelation: the higher is the time phase decorrela-
tion, the lower is the resulting coherence. Several 
authors (Deutscher et al., 2013; Ghosh et al., 2020; 
Perko et al., 2011; Siqueira, 2019) applied empirical 
models to estimate the forest stand height from the 
interferometric coherence measure, with levels of 
accuracy that can vary greatly depending on various 
factors. For this reason, in this study, the coherence 
relationship with the forest stand height was exploited 
to discriminate the presence of standing forest con-
cerning the other surrounding LULC classes.

Considering the research experiences mentioned 
above, the combined use of both optical and SAR 
data would further improve the identification of forest 
cover, as confirmed by several authors (Ienco et al., 
2019; Morin et al., 2019; Polychronaki et al., 2014; 
Spracklen & Spracklen, 2021; Zhang et al., 2019). 
Spracklen and Spracklen (2021) used S1 and S2 time- 
series to distinguish natural and plantation forests in a 
tropical monsoon climate zone, concluding that the 
different sensitivity of these two sensors makes them 
complementary in analyzing the investigated vegeta-
tion surface. In particular, while the SAR backscatter 
depends on the vegetation’s physical properties, the 
optical signal is correlated to the biochemical state of 
vegetation. Several studies use combined data S1 and 
S2 data for vegetation cover purposes. Ienco et al. 
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(2019) proposed a Convolutional Neural Network 
(CNN) architecture, combining S1 and S2 time-series 
for LULC mapping in tropical regions, obtaining satis-
factory results. Zhang et al. (2019) used the differences 
in temporal signatures between vegetation cover types, 
combining three temporal information of S1 and S2, 
for distinguishing woody canopy from the herbaceous 
canopy in savanna ecosystems using the Support 
Vector Machines (SVM) classifier. Morin et al. 
(2019) combined the use of S1, S2 and ALOS- 
PALSAR data to estimate forest structure parameters 
and the aboveground biomass in maritime pine plan-
tations. In Mediterranean environment, besides the 
literature concerning the single use of optical sensors 
(e.g., Aragones et al., 2019; Aubard et al., 2019; Modica 
et al., 2016; Praticò et al., 2021), there seems to be a 
lack of studies exploiting the SAR (Lapini et al., 2020) 
and its integration with optical imagery for LULC 
classification. Polychronaki et al. (2014), integrated 
the Système Pour l’Observation de la Terre (SPOT) 
optical data with the European Remote Sensing (ERS) 
C-band VV for LULC object-based classification 
affected by a fire in a Mediterranean landscape. They 
observed that the use of SAR backscatter improved the 
accuracy, reducing the commission errors related to 
forest land cover class and the misclassification 
between forest and shrub classes in shadowed areas. 
Chust et al. (2004) assessed the performances of com-
bining ERS and SPOT images for Mediterranean 
LULC discrimination, resulting in a slight improve-
ment of the obtained accuracy.

Chatziantoniou et al. (2017) evaluated the com-
bined use of Sentinel-1 and Sentinel-2 data for a 
regional-scale Mediterranean wetlands classification, 
and they concluded that SAR data did not significantly 
improve classification accuracy. Some other authors 
focused on Mediterranean crop detection (Campos- 
Taberner et al., 2017; Lobo et al., 1996; Villa et al., 
2015). Considering this, more studies should be car-
ried out to explore the potential of integrating multi-
spectral and SAR sensors on mapping heterogeneous 
Mediterranean ecosystems and to investigate how the 
single information contributes to the obtained accu-
racy.This work aimed to develop a supervised classifi-
cation procedure by integrating S1 and S2 data for 
forest cover mapping in a Mediterranean area of 
southern Portugal. The obtained results are essential 
to fulfilling the main research framework in which this 
work was conducted, based on applying remote sen-
sing methodologies to analyze and monitor wildfires’ 
effects in Mediterranean forest ecosystems. The first 
analysis on this study area was carried out to develop 
an unsupervised classification of the burned areas and 
based only on SAR S1 data and reported in De Luca et 
al. (2021a), while the combined use of SAR S1 and 
optical S2 data allowed to map the spatial distribution 
of burn severity (De Luca et al., 2021b).

The initial goal was to create a binary map to distin-
guish the forest cover from other LULC classes (pas-
tures/shrubs, urban, agricultural, etc.). Afterward, we 
decided to implement this workflow further by subdi-
viding the forest ecosystems into three forests LULC 
classes better representing the territory: Eucalyptus, 
Pine, and native broadleaf forest (Quercus suber, Q. 
ilex, etc.). In the same way, the main surrounding no- 
forest LULC classes were classified individually (pas-
tures/shrubs, bare soil, urban and agricultural). For this 
purpose, we provided an original and open workflow (i. 
e., implemented using diverse open-source software 
and freely available upon a reasonable request to the 
authors) based on an advanced coupling of SAR (S1) 
and multispectral (S2) time-series imagery. In particu-
lar, the time-series of SAR S1 backscatter (both VH and 
VV polarizations) and two derived indices, radar vege-
tation index (RVI) and radar forest degradation index 
(RFDI), were combined to the time-series of the optical 
S2 bands and three derived VIs: NDVI, NDRE, and 
NBR. In order to optimize the classification procedure, 
the coherence measure coming from InSAR analysis of 
different pairs of dates in July 2018 was also added as 
additional information, as well as the optical-based 
biophysical variables fraction of green vegetation cover 
(fCOVER), the fraction of absorbed photosynthetically 
active radiation (fAPAR), and the leaf area index (LAI) 
calculated for the same month. The well-known 
Random Forests (RF) machine learning algorithm 
(Breiman, 2001) was applied for classification through 
the use of open-source and Python-based libraries (The 
Python Language Reference, 2021). One of the main 
problems in applying machine learning classification 
algorithms is choosing the optimal values of the model’s 
hyperparameters. In this direction, another original 
contribution of this study was to provide an open work-
flow in which a thorough grid search approach auto-
matically sets the optimal hyperparameters. The feature 
importance was performed during the RF classification 
process to evaluate each input variable’s contribution to 
the final mapping performance.

Study area

The study area (Figure 1) extends over the Serra de 
Monchique mountain range located in the southern 
region of Portugal, Algarve (37° 18ʹN; 08° 30ʹW). Part 
of the study area is a Special Area of Conservation 
(SAC) falling within the European Natura 2000 net-
work (Natura 2000 Site Code: PTCON0037). The terri-
tory is characterized by the typical heterogeneous and 
fragmented Mediterranean mountain landscape. The 
forest cover was mainly composed of Eucalyptus plan-
tations (Eucalyptus globulus, Labill. 1800), mixed 
Mediterranean indigenous deciduous forests (Quercus 
suber L., Quercus ilex L., and other secondary 
Mediterranean native species), and coniferous 
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plantations, composed by Pinus pinea L. and Pinus 
pinaster Aiton. A part of the autochthonous oak forest 
cover can be associated with the typical semi-natural 
landscape of the Iberian peninsula (dehesa and mon-
tado): woodlands and agro-forestry systems used for 
cork harvesting and grazing. A large part of the territory 
was covered by non-forest LULC classes represented by 
heathlands, sclerophyllous shrublands, pastures, bare 
soil, general uncultivated lands (e.g., derived from har-
vested forest plantations, agricultural and urban lands) 
(Sistema Nacional de Informação Geogrãfica, SNIG, 
2021).

Materials and methods

The implemented procedure (Figure 2) was carried 
out using different free and open-source software 
solutions, starting from download to the classification 
output and testing and exploiting their interoperabil-
ity. Most of the Sentinel images were unavailable on 
the official Copernicus Open Access Hub platform due 
to the Long-Term Access policy adopted by the ESA 
(Copernicus Long Term Archive Access, 2021). 
Therefore, we adopted other alternative ways to 
speed up the data download phase. The S1 images 
were downloaded using the Alaska Satellite Facility 
(ASF) interface (ASF, 2021), while the Google Earth 
Engine (GEE) Python API (Google Earth Engine 
Guides, 2021) was employed to pre-process and then 

download the S2 dataset. The data pre-processing for 
S1 was carried out using the Sentinel-1 Toolboxes 
implemented in the SNAP v.8.0.3 open-source soft-
ware (ESA SNAP Homepage, 2021) provided by ESA. 
The classification algorithms were processed using the 
modules integrated into the Scikit-learn Python 
library (Pedregosa et al., 2011).

Sentinel-1 dataset and pre-processing

The SAR dataset was composed of a time-series of S1- 
A/B ground range detected (GRD), acquired in inter-
ferometric wide (IW) mode, for each of the two avail-
able polarizations: co-polarized VV and cross-polarized 
VH. The time series comprised the period from April 
2017 to July 2018, immediately prior to the fire event of 
August 2018, and it was composed of 82 images deriv-
ing from both ascending (42 images) and descending 
(40 images) flight paths. In order to perform the InSAR 
analysis for coherence extraction, a total of six Single 
Look Complex (SLC) format images (three for ascend-
ing and three for descending flight path), presenting 
respective same orbit-path and covering the month of 
July 2018, were downloaded. This month was chosen as 
it was the closest to the fire event, and, presumably, the 
vegetation conditions were more consistent with those 
at the time of the event. The images were in IW mode, 
which contains both amplitude and phase information 
of the backscattered SAR signal.

Figure 1. Location of the study area in Portugal (left). Overview of the study area (right) using the Google Earth image as a 
basemap; the perimeter of the wildfire occurred in August 2018 is overlaid and marked in light blue.
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Sentinel-1 ground range detected (GRD) pre- 
processing
Concerning the GRD imagery, the application of the 
auto-downloaded orbit file and the thermal noise 
removal started the S1 pre-processing workflow. 
Subsequently, the images were first radiometric cali-
brated (β0) and then applied the radiometric terrain 
correction (RTC). The reduction of geometric and 
topographic errors was carried out by applying the 
radiometric terrain flattening and the terrain correc-
tion processes using the shuttle radar topography mis-
sion (SRTM) digital elevation model (DEM), 
characterized by a spatial sampling of 1 arc-second. 

The correction of topographical errors, in particular 
the ground flattening process, is an essential step to 
map the land cover because it reduces the error due to 
the difference in the structure and shape of the ground 
surface and, therefore, in the backscatter values 
(Mendes et al., 2019; Small, 2011).

The bilinear interpolation resampling method was 
used for both DEM and output image resampling. All 
the S1 images were stacked using the product geoloca-
tion as the initial offset method. Since the speckle 
noise is an impactful error for land cover mapping 
purposes (Lapini et al., 2020), a multitemporal Lee 
filter (Quegan et al., 2000; Santoso et al., 2015) with a 

Figure 2. The workflow of the implemented procedure, based on free and open-source software and Sentinel-1 (S1) and Sentinel-2 
(S2) time-series imagery.
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5 × 5 pixel window size was applied, followed by a 
backscatter time (monthly) averaging (BTA). This last 
step further improves the image signal concerning 
speckle noise and minimizes the effects of environ-
mental and seasonal variables (Lapini et al., 2020; De 
Luca et al., 2021a).

Sentinel-1 SLC InSAR pre-processing
For each of the two S1 platforms (A and B), all the pair 
combinations of the three SLC images were subjected 
to TOPS InSAR processing. Before applying the cor-
egistration (Back-Geocoding) and Network Enhanced 
Spectral Diversity (NESD) optimization for each cor-
egistered S1pair, we split the single images (TOPS- 
Split) and added the auto-downloaded orbit file. 
Then, we extracted the coherence information, char-
acterized by a range value from 0 (minimum coher-
ence) to 1 (maximum coherence). A final terrain 
correction was applied, using the 1 arc-second digital 
elevation model (DEM) derived from the Shuttle 
Radar Topography Mission (SRTM; Farr et al., 
2007), where the pixel spacing was resampled to 
10 m x10 m. The three coherence maps resulting for 
each of the two flight paths were averaged to reduce 
the speckle noise, obtaining one coherence map for 
ascending and one for descending paths.

Sentinel-2 dataset and pre-processing

The optical S2 Level-2A (Bottom-Of-Atmosphere, 
BOA) multispectral time-series was composed of 64 
images, considering the same time period of the S1 
dataset (April 2017 – July 2018). Subsequently, a 
monthly average for each band was performed, while 
a pixel size resampling of 10 m x10m was performed 
semi-automatically by the system during the down-
load step by setting the scale parameter (pixel 
resampled size = 10) and the projection system 
(EPSG: 32,629), using the default nearest neighbor 
resampling algorithm. Each single-date image was 
masked by clouds before this last step, which gener-
ated an image for each month and each band from 
April 2017 to August 2018 (as the final SAR dataset). 
In this case, we used the S2-Cloud Probability product 
available in the GEE data catalog as a mask image up- 
sampled to 10 m spatial resolution. The cloud prob-
ability mask product is created with the Sentinel2- 
cloud-detector package (s2cloudless; ”Sentinel Hub’s 
cloud detector repository,” 2021) for automated pixel- 
based cloud detection and it is based on the LightGBM 
machine learning library (LightGBM documentation, 
2021), developed by Sentinel Hub’s research team 
(Sentinel Hub Homepage, 2021). Each pixel contains 
a value between 0 and 100, representing the probabil-
ity that the pixel is cloudy. Higher values are more 

likely to represent dense clouds or highly reflective 
surfaces but may omit less dense clouds. Lower values, 
although able to detect all clouds, could increase the 
risk that medium-high reflective surfaces could be 
mistaken for clouds (false positives). For our purpose, 
the value of 10 was considered the pixel’s threshold 
value, greater than which a pixel is considered as a 
cloud. No-data values replaced the masked pixels of 
S2, filled by applying a temporal-linear interpolation 
between consecutive images. Water surfaces were also 
masked since three static water bodies characterized 
the study area (Barragem de Odelouca, Barragem do 
Funcho, and Barragem do Arade), and these were not 
targeted LCLUs. Effectively, the stable spectral features 
of the water surfaces, characterized by a significant 
absorption of most of the NIR wavelength radiation 
(Donchyts et al., 2016; Gao, 1996; Schwatke et al., 
2019), made it simple to detect them by masking pixels 
of the S2 B8 band image (Jul2018) using the thresh-
old <0.09.

Layers creation

Sentinel-1 image layers creation
From the resulted monthly BTA image layers, two 
dual-polarimetric SAR indices, adapted for the S1 
sensor, were computed (eq. 1–2; Nasirzadehdizaji et 
al., 2019; Nicolau et al., 2021). 

RVIt ¼ 4 � BTA VHt= BTA VVt þ BTA VHtð Þ (1) 

RFDIt¼ BTAVVt � BTAVHtð Þ= BTAVVtþBTAVHtð Þ

(2) 

Where t represents one of the months constituting the 
time-series (from April 2017 to July 2018). The final 
SAR dataset used in the classification process was 
composed of the BTAVV, BTAVH, RVI, RFDI time- 
series, and the two coherence maps (ascending and 
descending) for July 2018.

It is expected that the SAR vegetation indices 
potentially improve the discrimination of land cover 
because of the combination of VH polarization, 
related to the scattering elements of the canopy, and 
the VV polarization, sensitive to the topographic and 
morphological caratheristics of the ground (Nicolau et 
al., 2021).

Sentinel-2 image layers creation
The 10 m and original 20 m (resampled to 10 m as in 
Section 3.2) spatial resolution bands (Drusch et al., 
2012; ESA Sentinel Homepage, 2021), constituting 
the monthly S2 time-series, were used to compute 
four vegetation indices (eq. 3–5). 

NDVIt ¼ B8t � B4tð Þ= B8t þ B4tð Þ (3) 
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NBRt ¼ B8t � B12tð Þ= B8t þ B12tð Þ (4) 

NDREt ¼ B6t � B5tð Þ= B6t þ B5tð Þ (5) 

Moreover, three additional biophysical variables were 
automatically computed for July 2018 using the SNAP 
toolbox biophysical variables processor: LAI, fCOVER, 
and fAPAR. The criterion of this month’s choice for 
biophysical variables estimation was the same as that 
already explained for the InSAR analysis. The quantita-
tive-qualitative conditions of the vegetations should be 
more similar to those at the time of the event (occurred 
in August 2018). These biophysical variables have been 
found helpful in integrating the information of the 
interferometric coherence considering their direct cor-
relation with the structural characteristics of the vegeta-
tion canopy (Ghosh et al., 2020). The final S2 dataset 
resulted was composed of all the 10 m resampled bands, 
the relative four vegetation indices for each month, and 
the three biophysical variables referred to only July 
2018. The three biophysical variables calculated for 
July 2018 were clipped on the same area and stacked to 
the S1 dataset (Section 3.3.1) using the latter dataset as 
the master extent (S1+ S2).

Image classification

Supervised pixel-based image classification of forest 
cover was carried out using the RF algorithm 
(Breiman, 2001; Cutler et al., 2007). This, based on a 
set of decision trees, is a machine learning model widely 
used in land cover mapping, forest classification and the 
estimation of other forest structural parameters (Ghosh 
et al., 2020; Li et al., 2020; De Luca et al., 2019; Morin et 
al., 2019; Numbisi et al., 2019; Praticò et al., 2021). The 
RF algorithm was performed using the RFClassifier 
function from the Scikit-learn Python library package. 
In this study, the optimal RF hyperparameters were set 
using an exhaustive grid search approach implemented 
in Scikit-learn (GridSearchCV), based on a cross-valida-
tion analysis between all the possible combinations of a 
given set of hyperparameters values (Table 1) and for a 
given training input set.

The image classification has been implemented 
according to the following seven LULC classes: 
Eucalyptus, Euc; Pinus, Pin; Autochthonous Forest, 
AuFor; Soil; Pasture and/or Shrubs, Past/Shr; Urban, 
Urbe; Agriculture, Agri. The training pixels were 
selected on 950 regions of interest (ROIs) with a 
square size of 4 × 4 pixels. The ROIs, scattered over 
the entire study area and with a balanced distribution 
among the seven LULC classes (Euc, 298; Pin, 78; 
AuFor, 131; Soil, 95; Past/Shr, 240; Urbe, 52; Agri, 
56), were manually drawn by visual interpretation 
supported by the use of Google Earth very high-reso-
lution satellite images (Google Earth Homepage, 
2021).

Numerous scholars (Kattenborn et al., 2019; Nicolau 
et al., 2021; Zhang et al., 2019) stated that training data 
for land use classification could be based on high-reso-
lution imagery instead of field observations, allowing to 
achieve comparable results a saving time and costs, and 
adequate representativeness of the full range of envir-
onmental characteristics present in those large portions 
of territory, which are more challenging to catch by 
punctual field observations.

Accuracy assessment

The accuracy assessment of the classified map was per-
formed using a validation dataset formed by 658 ROIs of 
different random sizes (from 1 × 1 to 20 × 15 pixels) 
drawn with the same criteria used for training ROIs and 
balancedly distributed among the seven classes. The 
confusion matrix was implemented and, following the 
calculation of the producer’s and user’s accuracies 
(Congalton & Green, 2019), the single-class F-score (F- 
scorei; eq. 6) and the multi-class F-score (F-scoreM; eq. 7; 
Modica et al., 2021; Sokolova & Lapalme, 2009) were 
computed. The F-scorei was calculated from the produ-
cer’s and user’s accuracies, representing the harmonic 
mean (De Luca et al., 2021b; Modica et al., 2021).. 

F � scorei ¼ 2 � producer0si � user0sið Þ=

producer0si þ user0sið Þ (6) 

where i represents the single class.

Table 1. Set of parameters values tested and combined for exhaustive grid search-based optimization. The name and the 
definition of each parameter are the original ones reported in the RFclassifier module user guide.

Parameter name Values set Description

n_estimators 100, 650, 1200, 1750, 2300, 2850, 3400, 3950, 4500, 5050, 5600, 6150, 6700, 
7250, 7800, 8350, 8900, 9450, 10,000

The number of trees in the RF model

max_depth 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 300, 500, 800, 1000 The maximum depth of the tree
min_samples_split 2, 5, 10 The minimum number of samples required to 

split an internal node
min_samples_leaf 1, 2, 4 The minimum number of samples required to 

be at a leaf node
max_features “auto”, “None”, “log2” The number of features to consider when 

looking for the best split
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The F-scoreM was calculated using the multi-class 
producer’sM (eq. 8) and user’sM (eq. 9) metrics, derived 
averaging the respective single-class producer’s and 
user’s accuracies for all the classes and expressed as: 

F � scoreM ¼ 2 � producer0sM � user0sMð Þ=

producer0si þ user0sið Þ (7) 

producersM ¼ ð
X

i¼1
producersiÞ=n (8) 

usersM ¼ ð
X

i¼1
usersiÞ=n (9) 

where n represents the total number of classes.

Dataset combinations results comparison

In addition to the integrated S1+ S2 dataset (main 
target of this study), the entire classification process 
and subsequent accuracy assessment was applied 
using each of the two single optical and SAR datasets, 
in order to compare the results and evaluate how 
effectively the integration of the two types of informa-
tion can improve the outcomes. The optimal RF para-
meter values and the feature importance were also 
computed for each S1 and S2 datasets.

Results

Table 2 shows the hyperparameters set for the RF 
algorithm using the exhaustive grid search optimiza-
tion approach. The parameter optimization was car-
ried out for each of the three dataset combination: the 
integrated SAR and optical (S1+ S2), the SAR (S1) and 
the optical (S2). Among the tested ones, the values 
resulted as optimal were: 1200 (S1+ S2, S2) for the 
number of trees; 110 (S1+ S2, S2) and 800 (S1) the 
maximum depth of a tree; the default values 2, 1, and 
“auto” (S1+ S2, S1, S2) resulted for the min_samples_s-
plit, min_samples_leaf and the max_features, respec-
tively. The value “auto” implies that the maximum 
number of features considered equals the square root 
of the total number of features. The initial out-of-bag 
(OOB) error, expressing a predicted accuracy perfor-
mance estimated by the RF model during the training 
step, resulted in 98.13% (S1+ S2), 88.98% (S1) and 
97.40% (S2) using the respective optimized hyperpara-
meters set.

Figure 3 (top) shows the land cover map resulted 
from the RF classification process applied to the S1 
+ S2 dataset and covering the entire study area. They 
are also magnified (bottom) three sample areas show-
ing the details of the obtained classification. The total 
surface occupied by forest classes resulting from the 
classification equals 673.59 km2 (excluding water sur-
face that accounts for 9.81 km2).

The resulted distribution among the forest classes 
showed in Figure 3 (pie chart) is 139.13 km2 for 
Eucalyptus, 11.13 km2 for Pinus, 29.71 km2 for 
Autochthonous Forest. The classes corresponding to 
the unforested surfaces present an area equal to 344.77 
for Pasture/Shrubs, 79.26 km2 for Soil, 64.80 for 
Agriculture km2, 6.79 km2 for Urban.

The Gini feature importance carried out from the 
RF process for each dataset combination tested (S1 
+ S2, S1 and S2), which expresses the influence of 
each data layer on the algorithm prediction, is 
reported in Figure 4. The top and bottom graphs 
respectively show the first fifteen layers with the high-
est importance, and the last fifteen layer bands 
describing the lowest importance values. The NBR 
index achieved the highest values of importance 
0.0184 (S1+ S2) and 0.0220 (S2) (Nov 2017), 0.0180 
(S1+ S2) and 0.0194 (S2) (Dec 2017), and 0.0151 (S1 
+ S2) and 0.0188 (S2) (Oct 2017), interspersed with the 
NIR band B8AJul2018 (0.0182, S1+ S2; 0.0203, S2) and 
the NDREOct2017 (0.0155, S1+ S2; 0.0166, S2). 
Observing the S1+ S2 plot, follow the NDVIJun2018 

(0.0149), B8Jul2017 (0.0143), and the two biophysical 
variables fCOVER (0.0127) and fAPAR (0.0125). The 
cross- and co-polarized coherence image layers for 
ascending flight path, deriving from InSAR analysis, 
are present among the first fifteen layer bands that 
reached the highest importance, with 0.0117 and 
0.0115, respectively. These are the layers that reached 
the highest importance when the single S1 dataset was 
used, with 0.0540 and 0.0479 respectively, together to 
the descending part of cross- (0.0436) and co-polar-
ized (0.0286) coherence. The other optical layers 
represented were the NDVIJul2017 (0.0124, S1+ S2; 
0.0142, S2), B7Jul2018 (0.0124, S1+ S2; 0.0138, S2), 
B8Jul2018 (0.0120, S1+ S2; 0.0), B12Jul2017 (0.0115, S1 
+ S2; 0.0149, S2), NDREMay2018 (0.0134, S1+ S2), 
B8AJul2017 (0.0133, S1+ S2; 0.0144, S2), B7Jul2018 

(0.0129, S1+ S2; 0.0138, S2), NDREJan2018 (0.0125, S1 
+ S2). Concerning SAR layers, these are represented 
among the first fifteen only when the single S1 dataset 
is used: BTA_VHJun2018 (0.02478), RVIJul2018 (0.0244), 
BTA_VHJul2018 (0.0226), RFDI Jul2018 (0.0223), 
BTA_VH Feb2018 (0.0217), RVI Jun2018 (0.0202), 
BTA_VH Jan2018 (0.0199), RFDI Jun2018 (0.0197), 
BTA_VH May2018 (0.0194), BTA_VH Oct2018 (0.0187), 
BTA_VH Dec2018 (0.0182). On the other end of the 
feature importance ranking, the BTA_VVApr2018 

expressed the lowest level of importance for both S1 
+ S2 and S1 datasets (0.0 and 0.0112), followed by the 
B3May2018 (0.001, S1+ S2) that represent the last layer 
when the single S2 is used. Using both the datasets,the 
B11Apr2018, B2May2018 and B3Apr2018 reached a level of 
importance lower than 0.0012; the B4Dec2017, 
B6Apr2018, BTA_VVMay2018, B11Oct2017, B5May2018 

lower than 0.0013; the B2May2018, B2Apr2018, 
B7Apr2018, B11Aug2017 and the B5Apr2018 equal to 
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0.0013. The feature importance ranking for S2 resulted 
to be quite consistent with this order. Observing the S1 
plot, RVIMar2018,

BTA_VVJan2018, RFDISep2017, RFDIMar2018, 
RFDIOct2017, show importance values less than 0.012; 
RVIOct2017

RVINov2017, RFDIApr2018, BTA_VHJul2017, 
RFDIAug2017, RFDINov2017, less than 0.013.

The accuracy level of the land cover map was 
assessed for each class deriving the producer’s and 
user’s metrics and their harmonic mean (F-score) 
from the confusion matrix showed in Figure 5.

Considering the integrated S1+ S2 dataset, the produ-
cer’s accuracy reached values of 89.51% (Eucalyptus), 
91.65% (Authocthnous Forest), 92.22% (Pinus), 76.30% 
(Soil), 96.72% (Pasture/Shrubs), 94.46% (Agriculture) 
and 98.98% (Urban). Th user’s accuracy values were 
97.75% (Eucalyptus), 70.32% (Authocthonous Forest), 
88.68% (Pinus), 93.02% (Soil), 94.64% (Pasture/Shrubs), 
89.81% (Agriculture) and 92.70% (Urban). Considering 
the F-scorei for each class, the values reached are 93.45% 
(Eucalyptus), 79.58% (Authocthonous Forest), 90.41% 
(Pinus), 95.67% (Pas/Shr).

When one of the single dataset (S1 or S2) was tested, 
the producer’s accuracy achieved values of 74.83% and 
86.83% (S1 and S2) (Eucalyptus), 56.12% and 89.05% (S1 
and S2) (Authocthnous Forest), 62.04% and 91.17% (S1 
and S2) (Pinus), 46.10% and 76.60% (S1 and S2) (Soil), 
81.68% and 96.59% (S1 and S2) (Pasture/Shrubs), 90.25% 
and 94.70% (S1 and S2) (Agriculture) and 84.75% and 
88.22% (Urban). Th user’s accuracy values were 90.82% 
and 97.44 (S1 and S2) (Eucalyptus), 32.25% and 60.36% 
(S1 and S2) (Authocthonous Forest), 45.41% and 89.32 
(S1 and S2) (Pinus), 55.40% and 91.43% (S1 and S2) 
(Soil), 78.50% and 94.58% (S1 and S2) (Pasture/Shrubs), 
72.04% and 87.40% (S1 and S2) (Agriculture) and 86.26% 
and 85.75% (Urban). The single-class F-scorei values were 
82.05% and 91.83 (S1 and S2) (Eucalyptus), 40.96% and 
71.95% (S1 and S2) (Authocthonous Forest), 52.44% and 
91.17% (S1 and S2) (Pinus), 80.06% and 95.57% (S1 and 
S2) and (Pas/Shr).

The overall accuracy of the map, expressed by the 
F-scoreM is equal to 90.33% (S1+ S2), 68.23% (S1), 
87.80% (S2).

Discussion

The main objective of this study was to obtain a map of 
the forest cover of an area around the municipality of 
Monchique, in southern Portugal, where a high severe 
fire occurred in August 2018 (De Luca et al., 2021a, 
2021b). The vegetation cover mapping and, especially, 
the distinction between forest and non-forest vegetation 
before a disturbance event is a decisive purpose for 
improving the analysis of its effects on the ecosystem 
and their monitoring from the short to the long term 
(Chu & Guo, 2013). The integrated use of S1 and S2 
time-series for forest tree species classification was eval-
uated to deal with this aim. Several SAR vegetation 
indices (RVI, RFDI) and optical vegetation indices 
(NDVI, NFRE, NBR) were computed for each month 
of the time series and included. The coherence informa-
tion of the last month of the time series (July 2018) was 
calculated from the InSAR process and implemented as 
additional information for image classification. The 
classification approach was carried out by training the 
RF machine learning algorithm.

Accuracy and uncertainty

The good overall accuracy achieved by the integrated 
optical and SAR datasets in this approach, represented 
by an F-scoreM equal to 90.33%, is in line with the out-
comes obtained from other studies where the combina-
tion of optical and SAR data was used (Spracklen & 
Spracklen, 2021; Zhang et al., 2019). This value should 
have been higher considering that most of the single 
classes exceeded the 90% threshold of F-scorei, with the 
class relating to the pasture cover (Past/Shr) reaching the 
value of 95.67%. The lowest F-scorei value was obtained 
by the AuFor (79.58%). It was caused by the wrong 
classification of pixels belonging to the AuFor class as 
Eucalyptus cover. These errors of commission of the 
AuFor class are represented by an user’s accuracy equal 
to 70.32%, in contrast with the producer’s accuracy value, 
equal to 91.65% in the same class. However, it is notice-
able how the integration of the two sensors has improved 
the accuracy of this LULC class, considering that the F- 
scorei value for the optical single dataset was 71.95%. 
Probably, the origin of these errors relies on the combi-
nation of two main factors. First, the AuFor class com-
prises a mix of different Mediterranean broadleaved 
species, therefore not constituted by a specific and uni-
vocal spectral signature. Second, several isolated nuclei of 
Eucalyptus are scattered within the mixed 
Authocthonous forest. At the same time, within some 
gaps in the areas covered by Eucalyptus, there may be 

Table 2. The adopted Random forests (RF) parameters values 
for each dataset combination tested (integrated SAR and 
optical, S1+ S2; only SAR, S1; only optical, S2), set using the 
exhaustive grid search approach.

Parameter name Values set

S1+ S2 S1 S2
n_estimators 1200 1750 1200
max_depth 110 800 110
min_samples_split 2 2 2
min_samples_leaf 1 1 1
max_features “auto” (Square 

root of the 
total 

number of 
features)

“auto” (Square 
root of the 

total 
number of 
features)

“auto” (Square 
root of the 

total 
number of 
features)
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some small nucleus of species belonging to native vegeta-
tion, challenging to detect based on satellite imagery with 
10 m of spatial resolution. It has to be considered that 
this spatial resolution of the Sentinel sensors could 
involve errors and uncertainties in the classification out-
put to identify covers/crowns smaller than this dimen-
sion. Zhang et al. (2019) supposed that this could 
simultaneously conduct two opposite scenarios for each 

pixel: overestimation or underestimation/missing of the 
actual cover of smaller covers/trees. Furthermore, Zhang 
et al. (2019) pointed out some other elements that could 
cause uncertainty in its study, based on the classification 
of wooded areas using S1 and S2 data: the method of 
selection of training data, which may not be optimally 
representative of the actual conditions of the study area 
depending on their number and spatial distribution; a 

Figure 3. Land cover map resulted from the Random Forests (RF) classification applied to the S1+ S2 dataset and referred to the 
entire study area (top); three exemplary square areas (500 m side) showing the details of the obtained classification (bottom). On 
the right, the surface distribution (%) of the land use/land cover (LULC) classes resulted from RF classification (pie chart). LULC 
classes definition: Eucalyptus (Euc), Pinus (Pin), Autochthonous Forest (AuFor), Soil, Pasture and/or Shrubs (Past/Shr), Urban (Urbe), 
Agriculture (Agri).
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temporal miss-match between the interpreted Google 
Earth VHR data and Sentinel images; the presence of 
flooding, residual clouds, and shadows; other distur-
bances (e.g., fire, deforestation, etc.) that could affect 
the spectral signatures. Another source of errors could 
derive from edge pixels between different land classes 
(Lapini et al., 2020). However, this does not spoil the 
excellent effectiveness of these data, considering the small 
extent of these errors on the final accuracy values and, 
above all, the free availability of the images and software 
to process them. In fact, the precision obtained in the 
classification of areas not covered by forest is to be 
considered optimal, despite the complexity of the cover 
background that composes it (crops, orchards, towns, 
pastures, shrubs, grasses, soil, rock, etc.). On the other 
hand, this result was expected since the use of interfero-
metric coherence is strongly correlated with the 

structural characteristics of forest arboreal vegetation 
(Ghosh et al., 2020; Siqueira, 2019). Aspect demonstrated 
by the relevance resulting from the feature importance 
analysis of this data.

Coherence

As the tree canopy height is a dendrometric measure 
describing the vegetation structure and it is a signifi-
cant indicator of the aboveground biomass of forest 
areas (Ghosh et al., 2020), in this study, we empirically 
exploited the geometric relationship between the 
InSAR coherence and the forest stand height as addi-
tional information to discriminate the forest cover. 
Through the InSAR analysis, it is possible to use the 
phase information of the SAR signal to characterize 
the topography and height of the Earth’s surface and 

Figure 4. The figure shows the feature importance (Gini importance) expressed by the first fifteen image layers with the highest 
importance (left column) and by the last fifteen image layers with the lowest importance (right column), calculated for each 
dataset combination tested (integrated SAR and optical, S1+ S2; only SAR, S1; only optical, S2).
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the objects present on it. Phase decorrelation, with 
consequent loss of coherence values, occurs where 
the surfaces’ conditions change during the two 
moments of acquisition of the pair of interferometric 
images. The relationship between this decorrelation 
and the height of the forest surface is based on the 
empirical assumption that as the height of the trees 
increases, the volume and quantity of canopy 
increases, causing greater decorrelation. Therefore, a 
decrease in coherence could indicate an increase in 
canopy height (Ghosh et al., 2020; Perko et al., 2011; 

Siqueira, 2019). In this study, although the time gap 
was not large between the two acquisition dates of the 
SAR SLC images the average of the three coherence 
layers for each of the two flight paths was used to 
reduce the adverse effects of decorrelation. When 
observations are made at different times, the targets 
within a SAR resolution cell (e.g., small branches and 
leaves) may have moved, causing an error in measur-
ing the trigonometric gaze angle and, therefore, a 
reduction in the interferometric coherence (Siqueira, 
2019). The use of shorter wavelength SARs (X-band, 

Figure 5. The confusion matrix resulted from the accuracy assessment process and relative single-class User’s and Producer’s 
accuracies (upper). The bottom reported the single-class F-scorei and the multi-class Producer’sM, User’sM and F-scoreM accuracy 
metrics. LULC classes definition: Eucalyptus (Euc), Pinus (Pin), Autochthonous Forest (AuFor), Soil, Pasture and/or Shrubs (Past/Shr), 
Urban (Urbe), Agriculture (Agri).
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C-band) involves a higher temporal decorrelation due 
to interaction with smaller objects, even for a time 
interval of just one day (Ghosh et al., 2020). 
Concerning the coherence information in this study, 
the two polarizations resulted equally influent in the 
dataset classification. About this aspect conflicting 
testimonies were found in literature: Ghosh et al. 
(2020) used only the co-polarized (VV) coherence 
information for forest stand height estimation due 
the higher noise produced by the volumetric effect of 
canopy scatter elements on cross-polarized SAR sig-
nal; on the other hand, Siqueira (2019) affirms that the 
cross-polarized coherence signature is in general more 
appropriate for characterizing forest structure as it is 
more correlated to the multiple volume scattering of 
vegetation canopy.

Optical and SAR layer integration; feature 
importance

In this study, temporal spectral signatures for each 
optical band were exploited as a valuable expression of 
the seasonal phenological and photosynthetic activity 
variations. In particular, the use of optical vegetation 
indices is essential in the phenological discrimination 
and observation of the different types of forest vegeta-
tion, such as Mediterranean evergreen conifers and 
deciduous forests (Aragones et al., 2019). However, 
the temporal spectral signature may also have limita-
tions. Although their efficiency is proven, in Grabska et 
al. (2019), it is reported that the species-specific char-
acteristics do not only and uniquely influence the spec-
tral reflectance, but often there are intra-specific 
variations in reflectance caused by the age of the trees, 
by states of stress or disease, or by local site conditions 
such as level of coverage, the effects of the surface 
texture of the roof and the resulting shadow effects, 
the type of soil present which in conditions of sparse 
foliage contributes to the reflected signal. These factors 
can cause as much significant deviations of the typical 
spectral signature values as to create overlaps between 
species and make it difficult for classifiers to discrimi-
nate. Vegetation indices improve these aspects, better 
characterizing the species-specific temporal dynamics 
of the various forest cover types. Aragones et al. (2019) 
used the NDVI time-series to characterize the pheno-
logical changes of five Mediterranean Pinus species for 
species discrimination. They observed how the index is 
subject to a significant decrease during the summer 
drought. Zhang et al. (2019), focusing on a savanna 
ecosystem, encountered such high differences in 
NDVI time signatures between woody and non- 
woody as to allow their distinction.

However, the feature importance analysis shows 
that not all the spectral bands/indices contributed 
equally to the forest cover classification. Whether the 
integrated dataset or the single dataset is used, the 

feature importance shows the SWIR-based index 
(NBR), the red-edge-based (NDRE) and the B8A, B8, 
B7 and B12 bands as the most significant optical layers 
for RF prediction. This confirmed the findings of other 
studies concerning the high efficiency of the SWIR and 
red-edge bands for vegetation mapping (Grabska et 
al., 2019; Immitzer et al., 2016). The red-edge bands 
are more sensitive to the photosynthetic pigments 
(chlorophyll a and b) levels and their variations from 
the biophysical and biochemical points of view. In 
contrast, the SWIR wavelengths are sensitive to the 
water content of the surface, since their optical absor-
bance increases with the increase of water content. 
Spracklen and Spracklen (2021) observed how the 
SWIR-based indices were the most important in dis-
tinguish plantation from natural forest. This is prob-
ably due to the different water content in plant tissues, 
with a more significant presence in plantations with a 
high growth rate. Observing the feature importance of 
respect to the imagery’s seasonality, the autumn-win-
ter images seem to have most influenced the algorithm 
performance, followed by the summer months. In 
these periods, the phenological difference between 
species is higher, contributing to the discrimination 
of broadleaved species (Grabska et al., 2019). The 
fCOVER and fAPAR S2 biophysical variables also 
appeared among the most influential image layers. It 
should be considered that Ghosh et al. (2020), com-
bining the use of S1 coherence and S2 biophysical 
variables (LAI and fraction of vegetation cover, FVC) 
and modeling using the RF regressor, found an excel-
lent correlation with the canopy height. They con-
cluded that since coherence information could 
potentially be affected by any object on the Earth’s 
surface greater than the SAR wavelength, the biophy-
sical variables support this gap by indicating the pre-
sence and status of the vegetation cover, as well as by a 
proven direct correlation with the height of the 
canopy.

Cloud cover, which is the main obstacle in dealing 
with time-series of optical data, was effectively 
addressed in this study by applying the S2-Cloud 
Probability mask product available in GEE, based on 
an automated machine learning pixel-based cloud 
detection, followed by linear interpolation for filling 
the missing pixel values. Other errors could derive 
from discontinuities of time series due to cloud covers 
or other artifacts. In general, the gap-filling methods 
may impact the quality of the images at various levels. 
However, the consistency of these errors is relatively 
not relevant, and, generally, they do not weigh the 
statistical quality metrics, although they may be 
visually distinguishable (Inglada et al., 2017). If, on 
the one hand, the optical data require few and con-
solidated pre-processing steps, the SAR data are more 
complicated to manage during the processing and 
interpretation of the information due to various 

64 G. DE LUCA ET AL.



factors intrinsic to the characteristics of the signal/ 
sensor and their interaction with the characteristics 
of the affected surface (De Luca et al., 2021a; Tanase et 
al., 2020). In order to reduce speckle noise, both a 
monthly BTA and a speckle filter were applied. In 
fact, as Lapini et al. (2020) stated, although the multi-
temporal averaging inherently introduces a reduction 
in speckle-noise, a performance improvement was 
observed when a filter was applied, mainly if the time 
series consists of a relatively low number of images. 
Moreover, these authors pointed out how the execu-
tion of the backscatter temporal average of the whole 
SAR time series reduces seasonality effects (soil moist-
ures, presence/absence of leaves, trees water content, 
etc.) for forest classification purposes, preserving 
radiometric discrimination between classes.

Recently several other authors (Lasko, 2019; Lehmann 
et al., 2015; De Luca et al., 2021b; Morin et al., 2019; 
Spracklen & Spracklen, 2021; Stroppiana et al., 2015; 
Zhang et al., 2019) have demonstrated that the combined 
use of optical and SAR data optimize both usage poten-
tial, filling the gaps of each other’s and increasing the 
accuracy of the returned products. However, excluding 
the case of InSAR coherence already discussed, no SAR- 
derived images are present among the most significant, 
and a co-polarized BTA image achieved the lowest value 
of feature importance. This indicates that, in the present 
case, the information given by the time-series of the SAR 
data was not actually decisive in classifying the forest 
cover. This can be confirmed by comparing the accuracy 
values, where the integration of the two sensors resulted 
in an improved F-scoreM of only 2.53%, in line with what 
was stated by Chust et al. (2004) and Chatziantoniou et al. 
(2017). However, the accuracy improvements of more 
than 7% (F-scorei) found in some classes (e.g., Urbe), 
probable positive effect of the use of InSAR coherence 
on surfaces with lower decorrelation, should not be 
underestimated.

Concerning the SAR information, there are also much 
more pronounced limitations. Nicolau et al. (2021) 
demonstrated that classes with similar ground cover 
and similar backscatter have a lower separability potential 
than classes with distinct scattering mechanisms. Finally, 
he concluded that using dual-polarimetric SAR indices, 
relating the two different types of polarization (VV and 
VH), improved the spectral separability between classes. 
In the present study, we calculated the RVI and RFDI for 
each month, using the respective monthly BTA. The use 
of both polarizations, combined through dual-polari-
metric indices, integrates their respective information 
(De Luca et al., 2021a; Nicolau et al., 2021). The cross- 
polarized backscatter is more sensitive to the distribution 
of volume scatters of canopy elements (leaves, branches, 
etc.) than the co-polarized signal. The latter is more 
associated with the underlayer soil backscatter (Meyer, 
2019). Indeed, in the Mediterranean context, Lapini et al. 
(2020) better individuated the forest land cover when 

cross-polarization was used, even in a simple visual 
RGB SAR composite. Nevertheless, other authors such 
as Nicolau et al. (2021), using S1 time series for land cover 
classification, observed that the single polarization (VV 
or VH) did not achieve good results for multiple land 
cover classes classification. For this reason, besides the 
simple backscatter values (VV and VH), they used SAR 
indices such as the VV/VH ratio and the modified RFDI 
as additional spectral information to train the classifier.

As mentioned above concerning coherence informa-
tion, the sensitivity of the SAR signal to the structure of 
forest vegetation also depends on the wavelength used. 
Shorter wavelengths, such as C-band (5 cm) and the X- 
band (3 cm), are more sensitive to the canopy surface 
characteristics because comparable with the dimensions 
of needles and leaves, and therefore more helpful in 
differentiating between coniferous and broad lives 
(Lapini et al., 2020). However, due to confusion with 
non-forest or secondary vegetation cover, misclassifica-
tion is encountered (Lapini et al., 2020; Nicolau et al., 
2021). Another factor to consider is the ease of saturation 
that the C-band has towards dense forest cover due to 
lower penetration capacities than longer wavelengths 
(Lapini et al., 2020; Meyer, 2019). Longer wavelengths 
(L-band and P-band) are proven to be better to estimate 
forest parameters (Morin et al., 2019), and therefore to 
better discriminate the forest vegetation (Lapini et al., 
2020). Lapini et al. (2020), using only SAR data, proved 
that combining more wavelengths (multi-frequency 
approach), coming from different sources, leads to the 
highest accuracy of forest cover map.

It is expected that the imminent (in 2022) launch of 
the BIOMASS mission (Le Toan et al., 2011), consisting 
of a P-band polarimetric SAR satellite, will further 
improve forests biomass estimations. This could also 
concern other aspects such as forest type classification 
and other forest parameters estimation. The future objec-
tive will be to evaluate these new data as integrative 
information of the already consolidated optical spectral 
response.

Meanwhile, the approach proposed in this study 
demonstrated the effective potential of the combined 
use of S1 and S2 imagery in classifying forest cover in a 
fragmented and heterogeneous Mediterranean land-
scape. The applicability of remote sensing in these con-
ditions has always been a complex task due to the 
anthropogenic influence on the landscape and the natural 
variability of plants structure and response to the climate- 
related typical events (e.g., summer aridity, higher fire 
severity, etc.; Lapini et al., 2020). The situation is wor-
sened by the topographic aspect of the study area. The 
roughness and irregular Earth’s surfaces are more com-
plicated to classify correctly than flat and homogeneous 
areas, mainly if SAR data are used, due to the effect of the 
slope exposure on both the sensor signal and on the 
characteristics of the vegetation cover (Inglada et al., 
2017).
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With this research, we demonstrated the reliability of 
our open workflow based on diverse free and open- 
source software to accurately map the forest cover, dis-
tinguishing the non-forest vegetation among the others 
LULC classes. Moreover, our workflow has been able to 
classify the vegetation cover more in-depth, discriminat-
ing between Eucalyptus, pine, and other forest types. 
This information could also be helpful in the framework 
of programmes aimed at long-term mapping and moni-
tor of natural (or semi-natural) and planted forest cover. 
Future analysis dealing with sustainable forest manage-
ment, habitat and biodiversity monitoring, carbon cycle 
estimation, and forest inventory could further exploit the 
reliability of our proposed research.

Conclusions

The forest and plant composition mapping is essen-
tial to analyze ecosystems’ quantitative and qualita-
tive characteristics to facilitate various monitoring 
applications of their state and condition. In this con-
text, remote sensing techniques and tools demon-
strated to be very efficient, especially with the 
advent of easily accessible and open-source solutions 
(data and software). This study explored the potential 
of the combined use of SAR Sentinel-1 SAR and 
optical Sentinel-2 band and indices time-series, inte-
grated the InSAR coherence measure and the optical 
biophysics variables to classify forest cover and dis-
criminate it from the surrounding non-forest land 
covers. A new cloud detection tool, provided by the 
Sentinel Hub team, was implemented to optimize the 
cloud masking, followed by a temporal linear inter-
polation for gaps filling. This allowed us to effectively 
manage one of the main problems encountered in the 
analysis of optical images. Among the layers that 
have had greater importance in obtaining good 
results are the NBR and NDRE, mainly from the 
autumn, and interferometric coherence. This study 
aimed to optimize a supervised classification proce-
dure for the quantitative and qualitative analysis of 
the forest vegetation cover in the Mediterranean 
region in the time period immediately prior to a 
wildfire occurred in August 2018. Obtaining a map 
of the vegetation cover, with a good level of accuracy 
achieved (> 90%), is a significant advantage to 
improve future monitoring and analysis of the study 
area and to be able to carry out an effective and more 
targeted management on specific ecosystems. This 
aspect is even more interesting if we consider that 
the approach presented by this study has been imple-
mented with the combination of free imagery and 
open-source software, proving the efficiency of the 
interoperability of the various web platforms and 
open-source libraries, from download to final process 

(GEE, ASF, ESA SNAP, Scikit-learn, etc.). The spatial 
resolution offered by these satellites, although allow-
ing classification at a good scale of detail, still does 
not allow the detection of small landscape elements, 
such as narrow roads and small patches of land cover, 
and still creates confusion where the land cover is not 
pure (e.g., commission errors were found where 
small nuclei of Eucalyptus settled in the autochtho-
nous forest vegetation). In the distinction and classi-
fication of vegetation cover, the contribution of C- 
band backscatter was found not to be as decisive as 
the InSAR coherence itself or some optical bands, as 
already observed in the literature. It is expected that 
the imminent launch of new SAR satellite platforms, 
such as the SAR L-band mission BIOMASS, will 
improve the contribution of this type of information. 
Future studies should test and validate the proposed 
approach on different Mediterranean study areas, 
equally contributing to the poor state of the art on 
the use of multisensor data LULC classification in 
this biome.The results obtained in this work will be 
fundamental to set up a more focused investigation 
on the integrated use of SAR and optical data for 
monitoring over time the study area so as to assess 
the ecosystems’ response to wildfires.
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