

Article s-Sequences and Monomial Modules

Gioia Failla *,[†] and Paola Lea Staglianó [†]

Department DICEAM, University of Reggio Calabria, Loc. Feo di Vito, 89125 Reggio Calabria, Italy; paola.sta@virgilio.it

* Correspondence: gioia.failla@unirc.it

+ These authors contributed equally to this work.

Abstract: In this paper we study a monomial module *M* generated by an *s*-sequence and the main algebraic and homological invariants of the symmetric algebra of *M*. We show that the first syzygy module of a finitely generated module *M*, over any commutative Noetherian ring with unit, has a specific initial module with respect to an admissible order, provided *M* is generated by an *s*-sequence. Significant examples complement the results.

Keywords: symmetric algebra; monomial modules; Gröbner bases

MSC: 13C15; 13P10

1. Introduction

check for updates

Citation: Failla, G.; Staglianó, P.L. *s*-Sequences and Monomial Modules. *Mathematics* **2021**, *9*, 2659. https:// doi.org/10.3390/math9212659

Academic Editors: Alexei Kanel-Belov and Alexei Semenov

Received: 10 September 2021 Accepted: 18 October 2021 Published: 21 October 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). In this paper we consider finitely generated modules, over a Noetherian commutative ring with identity *R*, generated by an *s*-sequence, whose rank is greater or equal to one, that is the modules are not necessarily ideals.

In this direction, the modules that imitate the ideals are the direct sum modules $\oplus I_i e_i$, submodules of a free *R*-module with basis $\{e_i\}, i = 1, \ldots, n$, and I_i ideals of *R*. Since the main idea in the use of Gröbner bases is to reduce all problems to questions of monomial ideals, we study the monomial submodules $\oplus I_i e_i$, where all I_i are monomial ideals. Monomial modules were defined in [1] and were studied by many authors (see [2–7]). The aim of this paper is to investigate the symmetric algebra of a monomial module $M = \oplus I_i e_i$, a submodule of R^n , $R = K[x_1, \ldots, x_m]$, K a field, and I_1, \ldots, I_n monomial ideals of R, via the theory of s-sequences [8–10]. the In Section 2, we review basic concepts of the theory of s-sequences and results about the main algebraic and homological invariants of the symmetric algebra of a finitely generated graded *R*-module *M*, generated by an s-sequence, provided R is a standard graded K-algebra and the generators of Mare homogeneous sequence, or R is a polynomial ring in the field K. Then we introduce monomial modules and we recall several results and examples. After introducing a term order on the free module $M = I_i e_i$, $I_i \subset K[x_1, \ldots, x_m]$, which is induced by the order $x_1 < x_2 < \ldots < x_m < e_1 < \ldots < e_n$, we formulate sufficient conditions to be a monomial module *M* generated by an *s*-sequence. As an application, we consider the special class of squarefree monomial *S*-modules $M = \bigoplus I^{(i)}e_i$, where each $I^{(i)}$ is the $(t_i - 1)$ -th squarefree Veronese ideal of the polynomial ring $S^{(i)} = K[x_1^{(i)}, \dots, x_{t_i}^{(i)}], S = K[\underline{x}^{(1)}, \underline{x}^{(2)}, \dots, \underline{x}^{(n)}],$ $\underline{x}^{i} = \{x_{1}^{(i)}, x_{2}^{(i)}, \dots, x_{t_{i}}^{(i)}\}, 1 \leq i \leq n$. In Section 3, inspired by [8], we introduce an admissible term order on the free module \mathbb{R}^n , with basis $\{e_i\}$, $i = 1, \ldots, n$, such that $e_1 < e_2 < \ldots < e_n$, *R* a Noetherian ring with unit. We prove a remarkable result for the feature of the initial module, with respect to <, of the first syzygy module of a finitely generated *R*-module *M* generated by an *s*-sequence. Finally, we give an application to the first syzygy module of the class of mixed product ideals in two sets of variables [11,12], generated by an *s*-sequence [13–15].

Although the theory of *s*-sequences is defined in any field *K*, $char(K) = p \ge 0$, *p* a prime natural number, we fix the field $K = \mathbb{Q}$ if we use software CoCoA ([16]) to compute the Gröbner basis of the relation ideal of the symmetric algebra of a finitely generated $K[x_1, \ldots, x_m]$ -module and the related algebraic invariants.

2. s-Sequences and Monomial Modules

The notion of *s*-sequences was given first in [8]. Let *R* be a Noetherian ring and let *M* be a finitely generated *R*-module with generators f_1, f_2, \dots, f_n . We denote by (a_{ij}) , $i = 1, \dots, t, j = 1, \dots, n$, the presentation matrix of *M* and by $Sym_R(M) = \bigoplus_{i \ge 0} Sym_i(M)$ the symmetric algebra of *M*, $Sym_i(M)$ the *i*-th symmetric power of $Sym_R(M)$. Note that $Sym_R(M) = R[y_1, \dots, y_n]/J$, where $J = (g_1, \dots, g_t)$, and $g_i = \sum_{j=1}^n a_{ij}y_j$, $i = 1, \dots, t$. We consider a graded ring $S = R[y_1, \dots, y_n]$ by assigning to each variable y_i the degree 1 and to the elements of *R* the degree 0. Then *J* is a graded ideal of *S* and the natural epimorphism $S \rightarrow Sym_R(M)$ is a homomorphism of graded *R*-algebras. Now, we introduce a monomial order < on the monomials in y_1, \dots, y_n which is induced by the order on the variables $y_1 < y_2 < \ldots < y_n$. We call such an order an admissible order. For any polynomial $f \in R[y_1, \dots, y_n], f = \sum_{\alpha} a_{\alpha} y^{\alpha}$, we put $in(f) = a_{\alpha} y^{\alpha}$ where y^{α} is the largest monomial in f with $a_{\alpha} \neq 0$, and we set $in(J) = (in(f) : f \in J)$. For $i = 1, \dots, n$, we set $M_i = \sum_{j=1}^i Rf_j$, and let I_i be the colon ideal $M_{i-1} :< f_i >$. For convenience we put $I_0 = (0)$.

The colon ideals I_i are called annihilator ideals of the sequence f_1, \ldots, f_n . It easy to see that $(I_1y_1, I_2y_2, \ldots, I_ny_n) \subseteq in(J)$ and the two ideals coincide in degree 1.

Definition 1. The generators f_1, \ldots, f_n of M are called an s-sequence (with respect to an admissible order <) if $in(J) = (I_1y_1, I_2y_2, \ldots, I_ny_n)$. If in addition $I_1 \subset I_2 \subset \cdots \subset I_n$, then f_1, \ldots, f_n is called a strong s-sequence.

In the case *M* is generated by an *s*-sequence, the theory of *s*-sequences leads to computations of invariants of $Sym_R(M)$ quite efficiently, in particular the Krull dimension dim($Sym_R(M)$), the multiplicity $e(Sym_R(M))$, the Castelnuovo Mumford regularity $reg(Sym_R(M))$ and the $depth(Sym_R(M))$, with respect to the graded maximal ideal, in terms of the invariants of quotients of *R* by the annihilators ideals of *M* (for more details on the invariants, see [17]).

Proposition 1 ([8] (Proposition 2.4, Proposition 2.6)). Let M be a graded R-module, R a standard graded algebra, generated by a homogeneous s-sequence f_1, \ldots, f_n , where f_1, \ldots, f_n have the same degree, with annihilator graded ideals I_1, \ldots, I_n . Then

$$d := \dim(Sym_R(M)) = \max_{\substack{0 \le r \le n, \\ 1 \le i_1 < \dots < i_r \le n}} \{\dim(R/(I_{i_1} + \dots + I_{i_r})) + r\};$$
$$e(Sym_R(M)) = \sum_{\substack{0 \le r \le n, \\ 1 \le i_1 < \dots < i_r \le n, \\ \dim(R/(I_{i_1} + \dots + I_{i_r})) = d - r}} e(R/(I_{i_1} + \dots + I_{i_r})).$$

When f_1, \ldots, f_n is a strong s-sequence, then

$$d = \max_{0 \le r \le n} \{\dim(R/I_r) + r\};$$
$$(Sym_R(M)) = \sum_{\substack{0 \le r \le n, \\ \dim(R/I_r) = d - r}} e(R/I_r).$$

If $R = K[x_1, ..., x_m]$ and $f_1, f_2, ..., f_n$ is a strong s-sequence:

е

$$reg(Sym_R(M)) \leq max\{reg(I_i): i = 1, \ldots, n\};$$

 $depth(Sym_R(M)) \geq \min\{depth(R/I_i) + i : i = 0, 1, \dots, n\}.$

We recall fundamental results on monomial sequences.

Consider $R = K[x_1, x_2, ..., x_m]$, where K is a field, and let $I = (f_1, ..., f_n)$ be, where $f_1, ..., f_n$ are monomials. Set $f_{ij} = \frac{f_i}{\gcd(f_i, f_j)}$, $i \neq j$. Then J is generated by $g_{ij} := f_{ij}y_j - f_{ji}y_i$, $1 \leq i < j \leq n$, and the annihilator ideals of the sequence $f_1, ..., f_n$ are the ideals $I_i = (f_{1i}, f_{2i}, ..., f_{(i-1)i})$. As a consequence, a monomial sequence is an s-sequence if and only if the set $\{g_{ij}, 1 \leq i < j \leq n\}$, is a Gröbner basis for J for any term order on the monomials of $R[y_1, ..., y_n]$ which extends an admissible term order on the monomials in the y_i . Let us now fix such a term order.

Proposition 2 ([8] (Proposition 1.7)). Let $I = (f_1, \ldots, f_n) \subset K[x_1, x_2, \ldots, x_m]$ be a monomial ideal. Suppose that for all $i, j, k, l \in \{1, \ldots, n\}$, with $i < j, k < l, i \neq k$ and $j \neq l$, we have $gcd(f_{ij}, f_{kl}) = 1$. Then f_1, \ldots, f_n is an s-sequence.

Now let $R = K[x_1, x_2, ..., x_m]$ be and let F be the finite free R-module $F = Re_1 \oplus ... \oplus Re_n$ with basis $e_1, ..., e_n$. We refer to [1] (Ch.15, 15.2) for definitions and results on monomial modules.

Definition 2. An element $m \in F$ is a monomial if m has the form ue_i , for some i, where u is a monomial of R. A submodule $U \subset F$ is a monomial module if it is generated by monomials of F.

One can observe that if *U* be a submodule of the free *R*-module $F = \bigoplus_{i=1}^{n} Re_i$, then *U* is a monomial module if and only if for each *i* there exists a monomial ideal I_i such that $U = I_1e_1 \oplus I_2e_2 \oplus \ldots \oplus I_ne_n$. In particular, *U* is finitely generated.

Theorem 1. Let $M = \bigoplus_{i=1}^{n} I_i e_i$ be a monomial *R*-module, $M_i = I_i e_i$, $I_i = (m_{i1}, \ldots, m_{ir_i})$, a monomial ideal of $R = K[x_1, \ldots, x_n]$ then

(i) $Syz_1(M_i) \cong Syz_1(I_i)$,

(ii) $Syz_1(M) \cong Syz_1(I_1) \oplus Syz_1(I_2) \oplus \ldots \oplus Syz_1(I_n),$

Proof. (i) Write $M_i = \langle m_{i1}e_i, \ldots, m_{ir_i}e_i \rangle$ and let

$$0 \to Syz_1(M_i) \to R^{r_i} \to M_i \to 0 \tag{1}$$

be a presentation of M_i . Consider the *R*-linear homomorphism $R^{r_i} \to M_i$ such that $g_i \to m_{ij}e_i$, $R^{r_i} = Rg_1 \oplus \ldots \oplus Rg_{r_i}$, and a syzygy of M_i , $a \in R^{r_i}$, $a = (\lambda_{i1}, \ldots, \lambda_{ir_i})$. Then

$$\sum_{j=1}^{r_i} \lambda_{ij} m_{ij} = 0,$$

and a is a syzygy of I_i .

(ii) It follows by (i). \Box

Let *M* be a monomial *R*-module defined as in Theorem 1. We will prove a criterion for a monomial module to be generated by an *s*-sequence. Set

$$m_{ij,lk} = \frac{m_{ij}}{gcd(m_{ij}, m_{lk})}, \qquad m_{ij} \in I_i, m_{lk} \in I_l,$$
$$1 \le i, j \le n, \quad 1 \le j \le r_i, \quad 1 \le k \le r_l.$$

Theorem 2. Let $M = \bigoplus_{i=1}^{n} I_i e_i$ be a monomial module, $I_i = (m_{i1}, \ldots, m_{ir_i})$, $i = 1, \ldots, n$. Suppose $gcd(m_{ij,ik}, m_{tu,tv}) = 1$, j < k, u < v, with i = t and $j \neq u$, $k \neq v$ or with $i \neq t$ and $1 \leq j, k \leq r_i, 1 \leq u, v \leq r_t$. Then M is generated by the s-sequence $m_{11}e_1, \ldots, m_{1r_1}e_1, \ldots, m_{n1}e_n, \ldots, m_{nr_n}e_n$. **Proof.** For each i = 1, ..., n, $Syz_1(M_i)$ is generated by the binomials:

$$m_{ij,ik}g_{ik} - m_{ik,ij}g_{ij}$$

since *i* is fixed, $1 \le j, k \le r_i$, being g_{ik}, g_{ij} the free basis of R^{r_i} . Thanks to the hypothesis, we have $gcd(m_{ij,ik}, m_{iu,iv}) = 1, j < k, u < v, j \neq u, k \neq v, \forall i = 1, ..., n$, and we conclude, by Proposition 2, that M_i is generated by an *s*-sequence.

Now, suppose i < t. If T_{ik} and T_{tv} are the variables that correspond to g_{ik} and g_{tv} , then $T_{ik} \neq T_{tv}$. We have $gcd(m_{ij,ik}T_{ik}, m_{tu,tv}T_{tv}) = gcd(m_{ij,ik}, m_{tu,tv}) = 1$ by hypothesis. In conclusion, the *S*-pair $S(b_{ijk}, b_{tuv})$ reduces to zero, where $b_{ijk} = m_{ij,ik}T_{ik} - m_{ik,ij}T_{ij}$ and $b_{tuv} = m_{tu,tv}T_{tv} - m_{tv,tu}T_{tu}$. Then the assertion follows. \Box

Example 1. Let $M = I_1e_1 \oplus I_2e_2$, $I_1 = (x^2, y^2, z)$ and $I_2 = (z^2, zy)$ be ideals of K[x, y, z]. We have $m_{11,12} = m_{11,13} = x^2, m_{12,13} = y^2, m_{21,22} = z$. Since $gcd(m_{11,12}, m_{12,13}) = gcd(m_{11,12}, m_{21,22}) = gcd(m_{11,13}, m_{21,22}) = 1$, then M is generated by the s-sequence $x^2e_1, y^2e_1, ze_1, z^2e_2, zye_2$.

The next example considers a monomial module *M* not generated by an *s*-sequence, even if each addend is generated by an *s*-sequence.

Example 2. Let $M = (x, y)e_1 \oplus (x, y)e_2$ be, $I_1 = I_2 = (x, y)$ ideals of R = K[x, y]. Write $Sym_R(M) = R[T_1, T_2, T_3, T_4]/J$, where $J = (yT_1 - xT_2, yT_3 - xT_4)$ We compute the S-pair $S(yT_1 - xT_2, yT_3 - xT_4) = -y(T_1T_4 - T_2T_3)$, with $T_4 > T_3 > T_2 > T_1$. If $T_1T_4 > T_2T_3$, $in_{<}J = (xT_2, xT_4, yT_1T_4)$ and if $T_1T_4 < T_2T_3$, $in_{<}J = (xT_2, xT_4, yT_2T_3)$. In any case, J does not have a Gröbner basis which is linear in the variables T_i .

Now we quote a statement on computation of the annihilator ideals of $M = \bigoplus_{i=1}^{n} I_i e_i$, that is to say the annihilator ideals of the generating sequence of M

 $m_{11}e_1, m_{12}e_1, \ldots, m_{1r_1}e_1, m_{21}e_2, \ldots, m_{2r_2}e_2, \ldots, m_{n1}e_n, \ldots, m_{nr_n}e_n.$

Proposition 3. Let $K_{i1}, K_{i2}, \ldots, K_{ir_i}$ be the annihilator ideals of $M_i = I_i e_i$, Set $J_1, \ldots, J_{r_1}, J_{r_1+1}, J_{r_1+2}, \ldots, J_{r_1+r_2}, J_{r_1+r_2+1}, \ldots, J_{r_1+r_2+\ldots+r_n}$ the annihilator ideals of the sequence. Then we have:

$$J_{1} = K_{11} = (0), J_{2} = K_{12}, \dots, J_{r_{1}} = K_{1r_{1}}, J_{r_{1}+1} = K_{21} = (0), J_{r_{1}+2} = K_{22}, \dots, J_{r_{1}+r_{2}} = K_{2r_{2}}, \dots, J_{r_{1}+r_{2}+\dots+r_{n-1}+1} = K_{n1} = (0), J_{r_{1}+r_{2}+\dots+r_{n-1}+2} = K_{n2}, \dots, J_{r_{1}+r_{2}+\dots+r_{n}} = K_{nr_{n}}.$$

Proof. An elementary computation gives:

$$\langle 0 \rangle : \langle m_{11}e_1 \rangle = K_{11} = (0)$$

$$\langle m_{11}e_1 \rangle : \langle m_{12}e_1 \rangle = K_{12}$$

$$\langle m_{11}e_1, m_{12}e_1 \rangle : \langle m_{13}e_1 \rangle = K_{13}$$

.....

$$\langle m_{11}e_1, m_{12}e_2, \dots, m_{1r_{1-1}}e_1 \rangle : \langle m_{1r_1}e_1 \rangle = K_{1r_1}$$

 $\langle m_{11}e_1, m_{12}e_1, \dots, m_{1r_{1-1}}e_1, m_{1r_1}e_1 \rangle : \langle m_{21}e_2 \rangle = I_1e_1 : \langle m_{21}e_2 \rangle + (0) : \langle m_{21}e_2 \rangle =$ $= (0) + K_{21} = (0)$ $\langle m_{11}e_1, m_{12}e_1, \dots, m_{1r_{1-1}}e_1, m_{1r_1}e_1, m_{21}e_2 \rangle : \langle m_{22}e_2 \rangle = \langle I_1e_1, m_{21}e_2 \rangle : \langle m_{22}e_2 \rangle =$ $= I_1e_1 : \langle m_{22}e_2 \rangle + K_{22} = (0) + K_{22} = K_{22}.$ The proof goes on by a routine computation. \Box

Example 3. Let $M = I_1e_1 \oplus I_2e_2$ be a monomial module on R = K[x, y, z], where $I_1 = (x^2, y^2, xy), I_2 = (z^2, zy)$. Then M is generated by the s-sequence $x^2e_1, y^2e_1, xye_1, z^2e_2, zye_2$ with $x < y < z < e_1 < e_2$. The s-sequence has the following annihilator ideals:

$$J_{1} = \langle 0 \rangle : \langle x^{2}e_{1} \rangle = K_{11} = (0)$$

$$J_{2} = \langle x^{2}e_{1} \rangle : \langle y^{2}e_{1} \rangle = K_{12} = (x^{2})$$

$$J_{3} = \langle x^{2}e_{1}, y^{2}e_{1} \rangle : \langle xye_{1} \rangle = K_{13} = (x,y)$$

$$J_{4} = \langle x^{2}e_{1}, y^{2}e_{1}, xye_{1} \rangle : \langle z^{2}e_{2} \rangle = K_{21} = (0)$$

$$J_{5} = \langle x^{2}e_{1}, y^{2}e_{1}, xye_{1}, z^{2}e_{2} \rangle : \langle zye_{2} \rangle = (0) + K_{22} = (z)$$

By Proposition 1, we have $\dim(Sym_R(M)) = 5$. The maximum of the dimensions is obtained by dim $(R/(J_1 + J_2 + J_3 + J_4 + J_5)) + 5 = \dim(R/((x^2) + (x, y) + (z))) + 5 = 5$. For the multiplicity, we have $e(Sym_R(M)) = e(R/(J_1 + J_4)) + e(R/(J_1 + J_2 + J_3 + J_4))$ $(+J_5)$ = 1, since $e(R/(J_1 + J_4)) = e(K[x, y, z]) = 1$ and $e(R/(J_1 + J_2 + J_3 + J_4 + J_5)) = 1$ e(K) = 0. Concerning the depth and the Castelnuovo regularity, since it results $Sym_R(M) = R[T_1, T_2, T_3, T_4, T_5]/J = R[T_1, T_2, T_3, T_4, T_5]/(xT_2 - yT_3, yT_1 - xT_3, yT_4 - zT_5),$ we compute $depth(Sym_R(M)) = 5$ and $reg(Sym_R(M)) = 3$ using software CoCoA ([16]).

We conclude the section yielding a class of monomial modules that would be of large interest in combinatorics, considering that they involve monomial squarefree ideals. Let $S = K[\underline{x}^{(1)}, \underline{x}^{(2)}, \dots, \underline{x}^{(n)}]$ be a polynomial ring in *n* sets of variables $\underline{x}^i = \{x_1^{(i)}, x_2^{(i)}, \dots, x_{t_i}^{(i)}\}$ $1 \le i \le n$. Let I_s be the monomial ideal of S generated by all squarefree monomials of degree s (the s-th squarefree Veronese ideal of S). Consider the squarefree monomial ideal $I_{t_i-1}^{(i)}$, i = 1, ..., n, of $S^{(i)} = K[\underline{x}^{(i)}]$ generated by all squarefree monomials of degree $t_i - 1$ (the $(t_i - 1)$ -th squarefree Veronese ideal) as a monomial ideal of *S*.

Theorem 3. The monomial module $M = \bigoplus_{i=1}^{n} I_{t_i-1}^{(i)} e_i$ on $S = K[\underline{x}^{(1)}, \underline{x}^{(2)}, \dots, \underline{x}^{(n)}]$ is generated by an s-sequence.

Proof. It is known that for each *i*, $I_{t_i-1}^{(i)}$ is generated by an *s*-sequence ([14] (Theorem 2.3)), being generated by t_i squarefree monomials in $t_i - 1$ variables in the polynomial ring in t_i variables and that condition 1) of [14] (Theorem 1.3.2.) is satisfied. The ideals $I_{t_i-1}^{(i)}$ and $I_{t_i-1}^{(j)}$, for any $i \neq j, i, j = 1, ..., n$, are generated in 2 disjoint sets of variables, then the condition of Theorem 2 is easily verified. \Box

The invariants of $Sym_S(M)$ depend on the invariants of each addend of *M*.

Theorem 4. Let $M = \bigoplus_{i=1}^{n} I_{t_i-1}^{(i)} e_i$ be and let $Sym_S(M)$ be its symmetric algebra. Then: $\begin{array}{ll} (1) & \dim_{S}(Sym_{S}(M)) = \sum_{i=1}^{n} t_{i} + n = \sum_{i=1}^{n} \dim_{S^{(i)}}(Sym_{S^{(i)}}(M_{i})) \\ (2) & depth(Sym_{S}(M)) = \sum_{i=1}^{n} t_{i} + n = \sum_{i=1}^{n} depth_{S^{(i)}}(Sym_{S^{(i)}}(M_{i})) \\ (3) & e(Sym_{S}(M)) = \sum_{j=1}^{\sum_{i=1}^{t} n-1} {\sum_{j=1}^{t} (\sum_{j=1}^{t} n)} + 2 \\ (4) & reg(Sym_{S}(M)) = \sum_{i=1}^{n} t_{i} - n \end{array}$

Proof. We consider an admissible term order on the monomials of $S[T_1^{(1)}, \ldots, T_{t_n}^{(n)}]$ such that $x_i^l < T_1^{(1)} < T_2^{(1)} < \ldots < T_{t_n}^{(n)}$.

(1) The annihilators ideals of the module $M_i = I_{t_i-1}^{(i)} e_i$ are the annihilators ideals $J_j^{(i)}$ of the sequence generating $I_{t_i-1}^{(i)}$, in the lexicographic order, for each $i = 1, ..., n, j = 1, ..., t_i$. By [14] (Proposition 3.1), we have $J_1^{(i)} = (0)$, $J_2^{(i)} = (x_{t_i-1}^{(i)})$, $J_3^{(i)} = (x_{t_i-2}^{(i)})$, ..., $J_{t_i}^{(i)} = (x_1^{(i)})$. Then, if *J* is the relation ideal of $Sym_S(M)$, we have:

$$in_{<}(J) = (x_{t_{1}-1}^{(1)}T_{2}^{(1)}, x_{t_{1}-2}^{(1)}T_{3}^{(1)}, \dots, x_{1}^{(1)}T_{t_{1}}^{(1)}, \dots, x_{t_{n}-1}^{(n)}T_{2}^{(n)},$$
$$x_{t_{n}-2}^{(n)}T_{3}^{(n)}, \dots, x_{1}^{(n)}T_{t_{n}}^{(n)})$$

and it is generated by a regular sequence. We obtain

$$\dim_{\mathcal{S}}(Sym_{\mathcal{S}}(M)) = \sum_{i=1}^{n} t_i + \sum_{i=1}^{n} t_i - \left(\sum_{i=1}^{n} t_i - n\right) = \sum_{i=1}^{n} t_i + n.$$

(2) Since $depth(Sym_S(M)) \leq \dim_S(Sym_S(M)) = \sum_{i=1}^n t_i + n$ and $depth(Sym_S(M)) \geq depth(S[T_1^{(1)}, \ldots, T_{t_1}^{(1)}, \ldots, T_{t_n}^{(n)}]/in_{<}(J)) = \sum_{i=1}^n t_i + n$, the equality follows. (3) In the following, we often use methods and tools of [14] (Theorem 3.6). For each *i*,

 $1 \le i \le n$, with $S^{(i)} = K[\underline{x}^{(i)}]$, we have

$$e(Sym_{S^{(i)}}(I^{(i)}_{t_i-1}e_i)) = \sum_{1 \le i_1 < \dots < i_r \le t_i} e\left(S^{(i)} / (J^{(i)}_{i_1}, \dots, J^{(i)}_{i_r})\right)$$

with dim $\left(S^{(i)}/(J^{(i)}_{i_1},\ldots,J^{(i)}_{i_r})\right) = d-r, d = \dim(Sym_{S^{(i)}}(I^{(i)}_{t_i-1}e_i)) = t_i + 1 \text{ and } 1 \le r \le t_i,$ being $J_{i_1}^{(i)}, \ldots, J_{t_i}^{(i)}$ the annihilators ideals of $I_{t_i-1}^{(i)}$. It results, by the structure of the annihilators ideals, $H^{(i)} = (J_{i_1}^{(i)}, \ldots, J_{i_r}^{(i)}) = (x_{i_1}^{(i)}, \ldots, x_{i_r}^{(i)})$. Put $H = (H^{(1)}, H^{(2)}, \ldots, H^{(n)}) = (x_{i_1}^{(1)}, \ldots, x_{i_r}^{(1)}, x_{i_1}^{(2)}, \ldots, x_{i_r}^{(2)}, \ldots, x_{i_r}^{(n)})$. Then e(S/H) = 1 since S/H is a polynomial ring on a field k. Let

$$d' = \dim(S/(J_{i_1}^{(i)}, \dots, J_{i_r}^{(i)})) = \sum_{i=1}^n t_i + n - r, 1 \le i \le n, 1 \le r \le \sum_{i=1}^n t_i,$$

then $e(Sym_S(M))$ is given by the sum of the following addends:

$$e(S/(0)) = 1$$

for r = 1, $d' = \sum_{i=1}^{n} t_i + n - 1$.

$$\sum_{j=2}^{\sum t_i} e(S/J_j^{(i)}) = \underbrace{1 + \ldots + 1}_{\sum t_i - n}$$

for r = 2, $d' = \sum_{i=1}^{n} t_i + n - 2$.

$$\sum_{2 \le k_1 \le t_k, 2 \le l_1 \le t_l} e(S/(J_{k_1}^{(k)}, J_{l_1}^{(l)})) = \underbrace{1 + \dots + 1}_{(\sum_{l=1}^{t_i - n})}$$

for r = 3, $d' = \sum_{i=1}^{n} t_i + n - 3$, $1 \le k, l \le n$

$$\sum_{2 \le k_1 \le t_k, 2 \le l_1 \le t_l, 2 \le m_1 \le t_m} e(S/(J_{k_1}^{(k)}, J_{l_1}^{(l)}, J_{m_1}^{(m)})) = \underbrace{1 + \ldots + 1}_{(\Sigma^{t_l - m})}$$

for r = 4, $d' = \sum t_i + n - 4$, $1 \le k, l, m \le n$

$$\sum_{2 \le u_1 < \dots < u_r \le t_1, \dots, 2 \le s_1 < \dots < s_r \le t_n} e(S/(J_{u_1}^{(1)}, \dots, J_{u_r}^{(1)}, \dots, J_{s_1}^{(n)}, \dots, J_{s_r}^{(n)}) = \underbrace{1 + \dots + 1}_{(\sum_{t_i - n - 1}^{t_i - n})}$$

for $r = \sum t_i - 1$, d' = n + 1.

$$e\left(S/(J_2^{(1)},\ldots,J_{t_1}^{(1)},J_2^{(2)},\ldots,J_{t_2}^{(2)},J_2^{(n)},\ldots,J_{t_n}^{(2)})\right) = 1$$

for $r = \sum_{i=1}^{n} t_i$, d' = n. Thus,

$$e(Sym_S(M)) = \sum_{j=1}^{\sum t_i - n - 1} {\binom{\sum t_i - n}{j}} + 2.$$

(4) $reg(Sym_S(M)) = reg(S[\underline{T}^{(1)}, ..., \underline{T}^{(n)}]/J) \le reg(S[\underline{T}^{(1)}, ..., \underline{T}^{(n)}]/in_<(J)), \underline{T}^{(i)} = \{T_1^{(i)} ... T_{t_i}^{(i)}\}, \text{ for } 1 \le i \le n. \text{ The ideal}$

$$in_{<}(J) = (x_{t_1-1}^{(1)}T_2^{(1)}, \dots, x_1^{(1)}T_{t_1}^{(1)}, x_{t_2-1}^{(2)}T_2^{(2)}, \dots, x_1^{(2)}T_{t_2}^{(1)}, \dots, x_{t_n-1}^{(n)}T_2^{(n)}, \dots, x_1^{(n)}T_{t_n}^{(n)})$$

is generated by a regular sequence of length $\sum t_i - n$ of monomials of degree 2. The ring $S[\underline{T}^{(1)}, \ldots, \underline{T}^{(n)}]/in_{<}(J)$ has a resolution of length $\sum_{i=1}^{n} t_i - n$, equal to the number of generators of $in_{<}(J)$, given by the Koszul complex of $in_{<}(J)$. Then $reg(Sym_S(M)) \leq \sum_{i=1}^{n} t_i - n$. Since *J* is Cohen-Macaulay and

$$\dim(Sym_{S}(M)) = \sum_{i=1}^{n} t_{i} + n, \dim S[\underline{T}^{(1)}, \dots, \underline{T}^{(n)}] / J = \sum_{i=1}^{n} t_{i} + \sum_{i=1}^{n} t_{i} - ht(J),$$

then $ht(J) = grad(J) = 2\sum_{i=1}^{n} t_i - (\sum_{i=1}^{n} t_i + n) = \sum_{i=1}^{n} t_i - n$. Since *J* is a graded ideal [17] (Proposition 1.5.12), we can choose the regular sequence in *J* inside the binomials of degree two generating *J*. So the Koszul complex on the regular sequence gives a 2-linear resolution of *J*. It follows

$$reg(S[\underline{T}^{(1)},\ldots,\underline{T}^{(n)}]/J) \ge 2\left(\sum_{i=1}^n t_i - n\right) - \left(\sum_{i=1}^n t_i - n\right) = \sum_{i=1}^n t_i - n.$$

The equality follows. \Box

3. Groebner Bases of Syzygy Modules and s-Sequences

Let *R* be a Noetherian commutative ring with unit. Let *N* be a finitely generated *R*-module submodule of a free *R*-module $R^n = Re_1 \oplus ... \oplus Re_n$, $N = Rg_1 + ... + Rg_m$, $g_i = a_{i1}e_1 + ... + a_{in}e_n$, i = 1, ..., m. Consider an order on the standard vectors $e_1, ..., e_n$ of R^n such that $e_n > ... > e_1$. We may view *N* as a graded module by assigning to each vector e_i the degree 1 and to the elements of *R* the degree 0. For any vector $h \in Re_1 + ... Re_n$, $h = \sum_{i=1}^n a_i e_i$, we put $in(h) = a_j e_j$, where e_j is the largest vector in *h* with $a_j \neq 0$. Such an order will be called admissible. Set $in(N) = \langle in(h), h \in N \rangle$. We say that $g_1, ..., g_m$ is a initial basis for *N* if $in(N) = \langle K_1e_1, ..., K_ne_n \rangle = \oplus K_ie_i$, where K_i are ideals of *R*.

Take $N = Syz_1(M)$ the first syzygy module of a finitely generated *R*-module *M*. We have:

Theorem 5. Let M be a finitely R-module generated by an s-sequence f_1, \ldots, f_n and let $N = Syz_1(M)$. Then $in(N) = \langle I_1e_1, \ldots, I_ne_n \rangle$, where I_1, \ldots, I_n are the annihilator ideals of the sequence f_1, \ldots, f_n .

Proof. Let us introduce an admissible order in $\mathbb{R}^n = \bigoplus_{i=1}^n \mathbb{R}e_i$, with $e_1 < e_2 < \ldots < e_n$. Then $in_<(N) = < in_<(f), f \in N > = < K_1e_1, \ldots, K_ne_n >$, with K_j ideals of \mathbb{R} . Passing to the symmetric algebras $Sym_R(M)$, the relation ideal J is generated linearly in the variables T_j , j = 1, ..., n, corresponding to the vectors $e_1 < e_2 < ... < e_n$, with the order $T_1 < T_2 < ... < T_n$, and $in_<(J) = (I_1T_1, ..., I_nT_n)$. Let G(J) be the finite set of linear forms in $T_1, T_2, ..., T_n$, which generate J and such that $in_<(J) = (in_< f, f \in G(J))$ and let $\tilde{G}(J) = G(N)$ be the set of generators \tilde{f} of $N = Syz_1(M)$ corresponding to f under the substitution $T_i \rightarrow e_i$, i = 1, ..., n. Then we have $in_<(N) = \langle in_<(\tilde{f}), \tilde{f} \in G(N) \rangle$. We deduce that $K_i = I_i$ for j = 1, ..., n. Hence the assertion follows. \Box

Example 4. Let $I = (X^2, Y^2, XY)$ be an ideal of R = K[X, Y]. The relation ideal J of $Sym_R(I)$ is $J = (XT_3 - YT_1, YT_3 - XT_2)$. The Gröbner basis of J is $G(J) = \{XT_3 - YT_1, YT_3 - XT_2, X^2T_2 - Y^2T_1\}$ which is linear in the variables T_1, T_2, T_3 and I is generated by the s-sequence X^2, Y^2, XY . Consider $Syz_1(I) = \langle Xe_3 - Ye_1, Ye_3 - Xe_2 \rangle$. Then $\tilde{G}(J) = G(N) = \{Xe_3 - Ye_1, Ye_3 - Xe_2, X^2e_2 - Y^2e_1\}$ and $in_{\langle J \rangle} = ((X^2)T_2, (X, Y)T_3), in_{\langle N \rangle} = \langle (X^2)e_2, (X, Y)e_3 \rangle$.

Notice that X^2 , XY, Y^2 is not an s-sequence for I. In fact, in such case, the relation ideal is $J = (XT_2 - YT_2, YT_2 - XT_3)$ and $G(J) = \{XT_2 - YT_1, YT_2 - XT_3, X^2T_3 - Y^2T_1, T_2^2 - T_1T_3\}$ not linear in the variables T_1, T_2, T_3 , in both cases $T^2 > T_1T_3$ or $T_1T_3 > T^2$. We have $G(N) = \{Xe_2 - Ye_1, Ye_2 - Xe_3, X^2e_3 - Y^2e_1\}$, but the generators of G(N) are not obtained by the substitution of T_i with e_i , in the elements of the Gröbner basis of J.

Now, let $R = K[X_1, ..., X_t]$ be a polynomial ring over the field K, and let < be a term order on the monomials of $R^n = K[X_1, ..., X_t]e_1 \oplus ... \oplus K[X_1, ..., X_t]e_n$ with $e_1 < ... < e_n$ and $X_j < e_i$, for all i and j. The excellent book of D. Eisenbud ([1] (Ch.15,15.2)) covers all background for free modules on polynomial rings and Gröbner bases for their submodules. It is easy to prove:

- 1. For any Gröbner basis *G* of *N* (with respect to the order <) that exists finite, we have $in(N) = \langle in(f), f \in G \rangle$.
- 2. If *M* is a monomial module, $in_{<}(M) = in(M)$.

Now we recall the definition of monomial mixed product ideals which were first introduced in [11], since some classes of such ideals are generated by an *s*-sequence. To be precise, in the polynomial ring $R = K[X_1, ..., X_n; Y_1, ..., Y_m]$ in two set of variables on a field *K*, the squarefree monomial ideals $I_k J_r + I_s J_t$, with k + r = s + t, are called ideals of mixed products, where I_k (resp. J_r) is the squarefree ideal of $K[X_1, ..., X_n]$ (resp. $K[Y_1, ..., Y_m]$) generated by all squarefree monomials of degree *k*(resp. degree *r*). In the same way I_s and J_t are defined. Setting $I_0 = J_0 = R$, in [14] we find the following classification:

- 1. $I_k + J_k, 1 \le k \le \inf\{n, m\}$
- 2. $I_k J_r, 1 \le k \le n, 1 \le r \le m$
- 3. $I_k J_r + I_{k+1} J_{r-1}, 1 \le k \le n, 2 \le r \le m$
- 4. $J_r + I_s J_t$, with r = s + t, $1 \le s \le n$, $1 \le r \le m$, $t \ge 1$
- 5. $I_k J_r + I_s J_t$, with k + r = s + t, $1 \le k \le n$, $1 \le r \le m$

Theorem 6 ([14] (Theorem 2.8, Theorem 2.11, Theorem 2.14)). Let the ideal L_i be one of the following mixed product ideals

- $1. \quad L_1 = I_{n-1}J_m$
- $2. \quad L_2 = I_n J_{m-1}$
- 3. $L_3 = I_1 J_m$
- 4. $L_4 = I_n J_1$
- 5. $L_5 = I_n J_{m-1} + I_{n-1} J_m$
- 6. $L_6 = I_n J_1 + J_m, n+1 = m.$

Then L_i *is generated by an s-sequence.*

We premise the following:

Proposition 4. Let I_{n-1} be the Veronese squarefree (n-1)-th ideal of $R = K[X_1, ..., X_n]$. Let $N = Syz(I_{n-1})$ and G be the Gröbner basis of N. Then

1.
$$G = \{X_n e_1 - X_{n-1} e_2, X_{n-1} e_2 - X_{n-2} e_3, \dots, X_2 e_{n-1} - X_1 e_n\}$$

2.
$$in_{<} N = (X_{n-1}) e_2 \oplus (X_{n-2}) e_3 \oplus \dots \oplus (X_1) e_n \cong$$

$$\underbrace{R(n) \oplus R(n) \oplus \dots \oplus R(n)}_{(n-1)-times} as graded R-modules.$$

3. $in_{<}N$ is generated by a s-sequence.

Proof. Let < be an admissible term order introduced on the monomials of $\mathbb{R}^n = \oplus \mathbb{R}e_i$, with $X_1 < X_2 < \ldots < X_n < e_1 < e_2 < \ldots < e_n$, $\mathbb{R} = K[X_1, \ldots, X_n]$. The ideal $I_{n-1} = (X_1 \cdots X_{n-1}, \ldots, X_2 \cdots X_{n-1}X_n)$ is generated by an *s*-sequence ([14] (Theorem 2.3)), then

$$in_{<}(J)=(K_{2}T_{2},\ldots,K_{n}T_{n}),$$

where *J* is the relation ideal of $Sym_R(I_{n-1})$ and $K_i = (X_{n-i+1}), i = 2, ..., n$, are the annihilator ideals of I_{n-1} (See [14] (Proposition 3.1)). Let $N = Syz_1(I_{n-1})$ be. Then $N = \langle X_n e_1 - X_{n-1} e_2, X_{n-1} e_2 - X_{n-2} e_3, ..., X_2 e_{n-1}, X_2 e_{n-1} - X_1 e_n \rangle$ is generated by a Gröbner basis, being *J* generated by a Gröbner basis, $J = (X_n T_1 - X_{n-1} T_2, X_{n-1} T_2 - X_{n-2} T_3, ..., X_2 T_{n-1}, X_2 T_{n-1} - X_1 T_n)$, with $X_1 < X_2 < ... < X_n < T_1 < T_2 < ... < T_n$ ([13] (Theorem 2.13)) and

$$in_{<}N = <(X_{n-1})e_2, (X_{n-2})e_3, \dots, (X_1)e_n >$$

and it is trivially generated by an *s*-sequence or it follows by Theorem 2. \Box

For each L_i , i = 1, ..., 6, as in Theorem 6, we assume that $f_1 < f_2 < ... < f_{s_i}$ in the lexicografic order and $X_1 < X_2 < ... < X_n < Y_1 < Y_2 < ... < Y_m$ in the ring $R = K[X_1, ..., X_n; Y_1, ..., Y_m]$.

Theorem 7. Let $N_i = Syz(L_i)$ be the first syzygy module of L_i defined in Theorem 6 and let $G(N_i)$ be the Gröbner basis of N_i . Then we have:

1.
$$G(N_1) = \{X_n e_1 - X_{n-1} e_2, X_{n-1} e_2 - X_{n-2} e_3, \dots, X_2 e_{n-1} - X_1 e_n\}$$
 and
 $in_{<}(N_1) = K_2 e_2 \oplus \dots \oplus K_n e_n, K_i = (X_{n-i+1}), i = 2, \dots, n$

2.
$$G(N_2) = \{Y_m e_1 - Y_{m-1} e_2, Y_{m-1} e_2 - Y_{m-2} e_3, \dots, Y_2 e_{m-1} - Y_1 e_m\}$$
 and

$$in_{<}(N_{2}) = K_{2}e_{2} \oplus \ldots \oplus K_{m}e_{m}, K_{i} = (Y_{m-i+1}), i = 2, \ldots, m$$

3.
$$G(N_3) = \{X_1e_2 - X_2e_1, X_2e_3 - X_3e_2, \dots, X_{n-1}e_n - X_ne_{n-1}\}$$
 and

$$in_{<}(N_3) = K_2 e_2 \oplus \ldots \oplus K_n e_n, K_i = (X_1, \ldots, X_{i-1}), i = 2, \ldots, n$$

4.
$$G(N_4) = \{Y_1e_2 - Y_2e_1, Y_2e_3 - Y_3e_2, \dots, Y_{m-1}e_m - Y_me_{m-1}\}$$

$$in_{<}(N_4) = K_2 e_2 \oplus \ldots \oplus K_m e_m, K_i = (Y_1, \ldots, Y_{i-1}), i = 2, \ldots, m$$

5.
$$G(N_5) = \{Y_m e_1 - Y_{m-1} e_2, \dots, Y_2 e_{m-1} - Y_1 e_m, Y_1 e_m - X_n e_{m+1}, X_n e_{m+1} - X_{n-1} e_{m+2}, \dots, X_2 e_{m+n-1} - X_1 e_{m+n}\}$$

and
$$in_{\leq}(N_5) = K_2 e_2 \oplus \ldots \oplus K_m e_m \oplus K_{m+1} e_{m+1} \oplus \ldots \oplus K_{m+n} e_{m+n}$$

with $K_i = (Y_{m-i+1}), i = 2, ..., m$, and $K_i = (X_{n+m-i+1}), i = m+1, ..., m+n$

6. $G(N_6) = \{Y_1e_2 - Y_2e_1, Y_2e_3 - Y_3e_2, \dots, Y_{m-1}e_m - Y_me_{m-1}, (X_1 \cdots X_n)e_{m+1} - (Y_2 \cdots Y_m)e_1\}$ and

$$in_{<}(N_{6}) = K_{2}e_{2} \oplus \ldots \oplus K_{m}e_{m} \oplus (X_{1} \cdots X_{n})e_{m+1}, K_{i} = (Y_{1}, \ldots, Y_{i-1}), i = 2, \ldots, m.$$

Proof. For each i = 1, ..., 6, the relation ideal J_i of $Sym_R(L_i)$ is generated by a Gröbner basis G(J), then we apply Theorem 5 and we obtain the Gröbner basis $G(N_i)$, by the substitution of the vector e_i to the variable T_i in the forms of the set $G(J_i)$. For the structure of $in_<(N_i)$, i = 1, ..., 6, we have:

1. The ideal $I_{n-1}J_m$ has annihilator ideals $K_i = (X_{n-i+1}), i = 2, ..., n$ (See [14] (Proposition 3.3)). Then

$$in_{<}N_{1} = <(X_{n-1})e_{2}, (X_{n-2})e_{3}, \dots, (X_{1})e_{n} > = (X_{n-1})e_{2} \oplus (X_{n-2})e_{3} \oplus \dots \oplus (X_{1})e_{n} \cong$$
$$\cong \underbrace{R(m+n) \oplus \dots \oplus R(m+n)}_{(n-1)-\text{times}}$$

as graded *R*-modules.

- 2. In this case the the annihilator ideals of $I_n J_{m-1}$ are $K_i = (Y_{m-i+1}), i = 2, ..., m$. The proof is analogue to the case of $I_{n-1}J_m$.
- 3. The ideal $I_1J_m = (X_1, \ldots, X_n)(Y_1 \cdots Y_m)$ is generated by an *s*-sequence and $in_<(J) = (K_2T_2, \ldots, K_nT_n)$, where $K_i = (X_1, \ldots, X_{i-1}), i = 2, \ldots, n$, are the annihilator ideals (See [13] (Proposition 3.7)). Let $N_3 = Syz_1(I_1J_m)$ be. Then

$$in_{<}N_{3} = <(X_{1})e_{2}, (X_{1}, X_{2})e_{3}, \dots, (X_{1}, \dots, X_{n-1})e_{n} > \cong \bigoplus_{i=2}^{n} K_{i}(m+2)$$

as graded *R*-modules.

4. The annihilator ideals of $I_n J_1$ are $K_i = (Y_1, \dots, Y_{i-1}), i = 2, \dots, m$ (See [13] (Proposition 3.7)). The proof is analogue to the case of $I_1 J_m$ and $in_< N_4 \cong \bigoplus_{i=2}^m K_i(n+1)$

as graded *R*-modules.

5. The annihilator ideals of $I_n J_{m-1} + I_{n-1} J_m$ are $K_i = (Y_{m-i+1})$ for i = 2, ..., m and $K_i = (X_{n+m-i+1})$ for i = m+1, ..., m+n by [13] (Proposition 3.11). The assertion follows and we have

$$in_{<}N_{5} = \bigoplus_{i=2}^{m+n} K_{i}e_{i} \cong \underbrace{R(m+n-1) \oplus \ldots \oplus R(m+n)}_{(m+n)-\text{times}}$$

as graded *R*-modules.

6. The annihilator ideals of $I_n J_1 + J_m$ are $K_i = (Y_1, \ldots, Y_{i-1}), i = 2, \ldots, m$ (See [13] (Proposition 3.7)) and $K_{m+1} = (X_1 X_2 \cdots X_n)$, generated by the monomial $X_1 X_2 \cdots X_n$. The assertion follows and we have

$$in_{<}N_{6} \cong \bigoplus_{i=2}^{m} K_{i}e_{i} \oplus (X_{1}\cdots X_{n})e_{m+1} \cong \bigoplus_{i=2}^{m} K_{i}(n+2) \oplus R(m+n)$$

as graded R-modules.

Proposition 5. The modules $in_< N_1$, $in_< N_2$, $in_< N_5$ are generated by an s-sequence.

Proof. The assertion follows by Theorem 2. \Box

Theorem 8. The modules $in_{<}N_3$, $in_{<}N_4$ and $in_{<}N_6$ are not generated by an s-sequence.

Proof. Let $in_{<}N_3 = < (X_1)e_2, (X_1, X_2)e_3, ..., (X_1, ..., X_{n-1})e_n >$ be and with generating sequence $X_1e_2, X_1e_3, X_2e_3, X_1e_4, X_2e_4, X_3e_4, ..., X_{n-2}e_n, X_{n-1}e_n$. The corresponding symmetric algebra is

$$Sym_R(in_{<}N_3) = R[T_{12}, T_{13}, T_{23}, T_{14}, T_{24}, T_{34}, \dots, T_{(n-2)n}, T_{(n-1)n}]/J,$$

with $T_{12} < T_{13} < T_{23} < T_{14} < T_{24} < T_{34} < \ldots < T_{(n-2)n} < T_{(n-1)n}$. Consider the relations $g_1 = X_1 T_{23} - X_2 T_{13}$, $g_2 = X_1 T_{24} - X_2 T_{14}$ and the *S*-pair $S(g_1, g_2) = -X_2(T_{23}T_{14} - T_{24}T_{13})$. Then we have:

$$in_{<}J = (X_1T_{23}, X_1T_{24}, X_2T_{23}T_{14}, \ldots)$$
 if $T_{23}T_{14} > T_{24}T_{13}$

or

$$in_{<}J = (X_1T_{23}, X_1T_{24}, X_2T_{24}T_{13}, \ldots)$$
 if $T_{23}T_{14} < T_{24}T_{13}$

where < is a term order on all monomials in the variables X_i , T_{ik} .

Since all initial terms of *J* are of the form X_1T_{2j} , $3 \le j \le n$, the Gröbner basis of *J* is never linear in the variables T_{ik} .

The same argument can be applied to $in_{<}N_{4}$ and $in_{<}N_{6}$.

Author Contributions: Conceptualization, G.F. and P.L.S.; methodology, G.F. and P.L.S.; validation, G.F. and P.L.S.; formal analysis, G.F. and P.L.S.; investigation, G.F. and P.L.S.; resources, G.F. and P.L.S.; data curation, G.F. and P.L.S.; writing—original draft preparation, G.F. and P.L.S.; writing—review and editing, G.F. and P.L.S.; visualization, G.F. and P.L.S.; supervision, G.F. and P.L.S.; project administration, G.F. and P.L.S.; funding acquisition, G.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by COGITO project (PON 2014-2020), project code ARS01-00836

Acknowledgments: The author wishes to thank the anonymous referees for their comments and suggestions which helped to improve this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Eisenbud, D. Commutative Algebra with a View towards Algebraic Geometry; Springer: New York, NY, USA, 1995.
- Crupi, M.; Barbiera, M.L. Algebraic Properties of Universal Squarefree Lexsegment Ideals. *Algebra Colloq.* 2016, 23, 293–302. [CrossRef]
- Crupi, M.; Restuccia, G. Monomial Modules. In Proceedings of the V International Conference of Stochastic Geometry, Convex Bodies, Empirical Measures & Applications to Engineering, Medical and Earth Sciences, Mondello, Palermo, Italy, 6–11 September 2004; Rendiconti del Circolo Matematico di Palermo, Supplemento, Serie II; Volume 77, pp. 203–216.
- 4. Crupi, M.; Restuccia, G. Monomial Modules and graded betti numbers. Math. Notes 2009, 85, 690–702. [CrossRef]
- 5. Crupi, M.; Utano, R. Minimal resolutions of some monomial modules. Results Math. 2009, 55, 311–328. [CrossRef]
- 6. Ene, V.; Herzog, J. Groebner bases in Commutative algebra. In *Graduate Studies in Mathematics*; American Mathematical Society: Providence, RI, USA, 2012; Volume 130.
- Staglianò, P.L. Graded Modules on Commutative Noetherian Rings Generated by s-Sequences. Ph.D. Thesis, University of Messina, Messina, Italy, 2010.
- 8. Herzog, J.; Restuccia, G.; Tang, Z. s-Sequences and symmetric algebras. Manuscripta Math. 2001, 104, 479–501. [CrossRef]
- Restuccia, G.; Utano, R.; Tang, Z. On the Symmetric Algebra of the First Syzygy of a Graded Maximal Ideal. *Commun. Algebra* 2016, 44, 1110–1118. [CrossRef]
- 10. Restuccia, G.; Utano, R.; Tang, Z. On invariants of certain symmetric algebra. *Ann. Mat. Pura Appl.* **2018**, 197, 1923–1935. [CrossRef]
- 11. Restuccia, G.; Villareal, R.H. On the normality of monomial ideals of mixed products. *Comun. Algebra* 2001, *29*, 3571–3580. [CrossRef]
- 12. Villareal, R.H. Monomial algebras. In *Monographs and Textbooks in Pure and Applied Mathematics;* Marcel Dekker Inc.: New York, NY, USA, 2001; Volume 238.
- 13. La Barbiera, M.; Lahyane, M.; Restuccia, G. The Jacobian Dual of Certain Mixed Product Ideals*. *Algebra Colloq.* **2020**, *27*, 263–280. [CrossRef]
- 14. La Barbiera, M.; Restuccia, G. Mixed Product Ideals Generated by s-Sequences. Algebra Colloq. 2011, 18, 553–570. [CrossRef]
- 15. La Barbiera, M.; Restuccia, G. A note on the symmetric algebra of mixed products ideals generated by *s*-sequences. *Boll. Mat. Pura Appl.* **2014**, *VIII*, 53–60.

- 16. CoCoATeam, CoCoA: A system for doing Computations in Commutative Algebra. Available online: http://cocoa.dima.unige.it (accessed on 9 September 2021).
- 17. Bruns, W.; Herzog, H.J. Cohen-Macaulay rings. In *Cambridge Studies in Advanced Mathematics*; Cambridge University Press: Cambridge, UK, 1998; Volume 39.