s-Sequences and Monomial Modules

Gioia Failla *, ${ }^{\text {t }}$ and Paola Lea Staglianó ${ }^{\text {+(D) }}$
Department DICEAM, University of Reggio Calabria, Loc. Feo di Vito, 89125 Reggio Calabria, Italy; paola.sta@virgilio.it
* Correspondence: gioia.failla@unirc.it
\dagger These authors contributed equally to this work.

Citation: Failla, G.; Staglianó, P.L. s-Sequences and Monomial Modules. Mathematics 2021, 9, 2659. https:/ / doi.org/10.3390/math9212659

Academic Editors: Alexei
Kanel-Belov and Alexei Semenov

Received: 10 September 2021
Accepted: 18 October 2021
Published: 21 October 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/ / creativecommons.org/licenses/by/ 4.0/).

Abstract

In this paper we study a monomial module M generated by an s-sequence and the main algebraic and homological invariants of the symmetric algebra of M. We show that the first syzygy module of a finitely generated module M, over any commutative Noetherian ring with unit, has a specific initial module with respect to an admissible order, provided M is generated by an s-sequence. Significant examples complement the results.

Keywords: symmetric algebra; monomial modules; Gröbner bases
MSC: 13C15; 13P10

1. Introduction

In this paper we consider finitely generated modules, over a Noetherian commutative ring with identity R, generated by an s-sequence, whose rank is greater or equal to one, that is the modules are not necessarily ideals.

In this direction, the modules that imitate the ideals are the direct sum modules $\oplus I_{i} e_{i}$, submodules of a free R-module with basis $\left\{e_{i}\right\}, i=1, \ldots, n$, and I_{i} ideals of R. Since the main idea in the use of Gröbner bases is to reduce all problems to questions of monomial ideals, we study the monomial submodules $\oplus I_{i} e_{i}$, where all I_{i} are monomial ideals. Monomial modules were defined in [1] and were studied by many authors (see [2-7]). The aim of this paper is to investigate the symmetric algebra of a monomial module $M=\oplus I_{i} e_{i}$, a submodule of $R^{n}, R=K\left[x_{1}, \ldots, x_{m}\right]$, K a field, and I_{1}, \ldots, I_{n} monomial ideals of R, via the theory of s-sequences [8-10]. the In Section 2, we review basic concepts of the theory of s-sequences and results about the main algebraic and homological invariants of the symmetric algebra of a finitely generated graded R-module M, generated by an s-sequence, provided R is a standard graded K-algebra and the generators of M are homogeneous sequence, or R is a polynomial ring in the field K. Then we introduce monomial modules and we recall several results and examples. After introducing a term order on the free module $M=I_{i} e_{i}, I_{i} \subset K\left[x_{1}, \ldots, x_{m}\right]$, which is induced by the order $x_{1}<x_{2}<\ldots<x_{m}<e_{1}<\ldots<e_{n}$, we formulate sufficient conditions to be a monomial module M generated by an s-sequence. As an application, we consider the special class of squarefree monomial S-modules $M=\oplus I^{(i)} e_{i}$, where each $I^{(i)}$ is the $\left(t_{i}-1\right)$-th squarefree Veronese ideal of the polynomial ring $S^{(i)}=K\left[x_{1}^{(i)}, \ldots, x_{t_{i}}^{(i)}\right], S=K\left[\underline{x}^{(1)}, \underline{x}^{(2)}, \ldots, \underline{x}^{(n)}\right]$, $\underline{x}^{i}=\left\{x_{1}^{(i)}, x_{2}^{(i)}, \ldots, x_{t_{i}}^{(i)}\right\}, 1 \leq i \leq n$. In Section 3, inspired by [8], we introduce an admissible term order on the free module R^{n}, with basis $\left\{e_{i}\right\}, i=1, \ldots, n$, such that $e_{1}<e_{2}<\ldots<e_{n}$, R a Noetherian ring with unit. We prove a remarkable result for the feature of the initial module, with respect to $<$, of the first syzygy module of a finitely generated R-module M generated by an s-sequence. Finally, we give an application to the first syzygy module of the class of mixed product ideals in two sets of variables [11,12], generated by an s-sequence [13-15].

Although the theory of s-sequences is defined in any field $K, \operatorname{char}(K)=p \geq 0, p$ a prime natural number, we fix the field $K=\mathbb{Q}$ if we use software CoCoA ([16]) to compute the Gröbner basis of the relation ideal of the symmetric algebra of a finitely generated $K\left[x_{1}, \ldots, x_{m}\right]$-module and the related algebraic invariants.

2. s-Sequences and Monomial Modules

The notion of s-sequences was given first in [8]. Let R be a Noetherian ring and let M be a finitely generated R-module with generators $f_{1}, f_{2}, \cdots, f_{n}$. We denote by $\left(a_{i j}\right)$, $i=1, \ldots, t, j=1, \ldots, n$, the presentation matrix of M and $\operatorname{by~}_{\operatorname{Sym}}^{R}$ ($\left.M\right)=\oplus_{i \geq 0} \operatorname{Sym}_{i}(M)$ the symmetric algebra of $M, \operatorname{Sym}_{i}(M)$ the i-th symmetric power of $\operatorname{Sym}_{R}(M)$. Note that $\operatorname{Sym}_{R}(M)=R\left[y_{1}, \ldots, y_{n}\right] / J$, where $J=\left(g_{1}, \ldots, g_{t}\right)$, and $g_{i}=\sum_{j=1}^{n} a_{i j} y_{j}, i=1, \ldots, t$. We consider a graded ring $S=R\left[y_{1}, \ldots, y_{n}\right]$ by assigning to each variable y_{i} the degree 1 and to the elements of R the degree 0 . Then J is a graded ideal of S and the natural epimorphism $S \rightarrow \operatorname{Sym}_{R}(M)$ is a homomorphism of graded R-algebras. Now, we introduce a monomial order $<$ on the monomials in y_{1}, \ldots, y_{n} which is induced by the order on the variables $y_{1}<y_{2}<\ldots<y_{n}$. We call such an order an admissible order. For any polynomial $f \in R\left[y_{1}, \ldots, y_{n}\right], f=\sum_{\alpha} a_{\alpha} y^{\alpha}$, we put $\operatorname{in}(f)=a_{\alpha} y^{\alpha}$ where y^{α} is the largest monomial in f with $a_{\alpha} \neq 0$, and we set $\operatorname{in}(J)=(\operatorname{in}(f): f \in J)$. For $i=1, \ldots, n$, we set $M_{i}=\sum_{j=1}^{i} R f_{j}$, and let I_{i} be the colon ideal $\left.M_{i-1}:<f_{i}\right\rangle$. For convenience we put $I_{0}=(0)$.

The colon ideals I_{i} are called annihilator ideals of the sequence f_{1}, \ldots, f_{n}. It easy to see that $\left(I_{1} y_{1}, I_{2} y_{2}, \ldots, I_{n} y_{n}\right) \subseteq \operatorname{in}(J)$ and the two ideals coincide in degree 1 .

Definition 1. The generators f_{1}, \ldots, f_{n} of M are called an s-sequence (with respect to an admissible order $<$) if in $(J)=\left(I_{1} y_{1}, I_{2} y_{2}, \ldots, I_{n} y_{n}\right)$.

If in addition $I_{1} \subset I_{2} \subset \cdots \subset I_{n}$, then f_{1}, \ldots, f_{n} is called a strong s-sequence.
In the case M is generated by an s-sequence, the theory of s-sequences leads to computations of invariants of $\operatorname{Sym}_{R}(M)$ quite efficiently, in particular the Krull dimension $\operatorname{dim}\left(\operatorname{Sym}_{R}(M)\right)$, the multiplicity $e\left(\operatorname{Sym}_{R}(M)\right)$, the Castelnuovo Mumford regularity $\operatorname{reg}\left(\operatorname{Sym}_{R}(M)\right)$ and the depth $\left(\operatorname{Sym}_{R}(M)\right)$, with respect to the graded maximal ideal, in terms of the invariants of quotients of R by the annihilators ideals of M (for more details on the invariants, see [17]).

Proposition 1 ([8] (Proposition 2.4, Proposition 2.6)). Let M be a graded R-module, R a standard graded algebra, generated by a homogeneous s-sequence f_{1}, \ldots, f_{n}, where f_{1}, \ldots, f_{n} have the same degree, with annihilator graded ideals I_{1}, \ldots, I_{n}. Then

$$
\begin{aligned}
& d:= \operatorname{dim}\left(\operatorname{Sym}_{R}(M)\right)= \\
& \max _{\substack{0 \leq r \leq n, 1 \leq i_{1}<\ldots<i_{r} \leq n}}\left\{\operatorname{dim}\left(R /\left(I_{i_{1}}+\ldots+I_{i_{r}}\right)\right)+r\right\} ; \\
& \sum_{\substack{0 \leq r \leq n, \operatorname{din}\left(\mathbb{R} \leq i_{1}<\ldots<i_{r} \leq n, \operatorname{din}\left(L_{1}+\ldots+i_{r}\right)=d-r\right.}} e\left(R /\left(I_{i_{1}}+\ldots+I_{i_{r}}\right)\right) .
\end{aligned}
$$

When f_{1}, \ldots, f_{n} is a strong s-sequence, then

$$
\begin{gathered}
d=\max _{0 \leq r \leq n}\left\{\operatorname{dim}\left(R / I_{r}\right)+r\right\} ; \\
e\left(\operatorname{Sym}_{R}(M)\right)=\sum_{\substack{0 \leq r \leq n, \operatorname{dim}\left(\mathbb{R} / I_{r}\right)=d-r}} e\left(R / I_{r}\right) .
\end{gathered}
$$

If $R=K\left[x_{1}, \ldots, x_{m}\right]$ and $f_{1}, f_{2}, \ldots, f_{n}$ is a strong s-sequence:

$$
\begin{gathered}
\operatorname{reg}\left(\operatorname{Sym}_{R}(M)\right) \leq \max \left\{\operatorname{reg}\left(I_{i}\right): i=1, \ldots, n\right\} \\
\operatorname{depth}\left(\operatorname{Sym}_{R}(M)\right) \geq \min \left\{\operatorname{depth}\left(R / I_{i}\right)+i: i=0,1, \ldots, n\right\} .
\end{gathered}
$$

We recall fundamental results on monomial sequences.
Consider $R=K\left[x_{1}, x_{2}, \ldots, x_{m}\right]$, where K is a field, and let $I=\left(f_{1}, \ldots, f_{n}\right)$ be, where f_{1}, \ldots, f_{n} are monomials. Set $f_{i j}=\frac{f_{i}}{\operatorname{gcd}\left(f_{i}, f_{j}\right)}, i \neq j$. Then J is generated by $g_{i j}:=f_{i j} y_{j}-$ $f_{j i} y_{i}, 1 \leq i<j \leq n$, and the annihilator ideals of the sequence f_{1}, \ldots, f_{n} are the ideals $I_{i}=\left(f_{1 i}, f_{2 i}, \ldots, f_{(i-1) i}\right)$. As a consequence, a monomial sequence is an s-sequence if and only if the set $\left\{g_{i j}, 1 \leq i<j \leq n\right\}$, is a Gröbner basis for J for any term order on the monomials of $R\left[y_{1}, \ldots, y_{n}\right]$ which extends an admissible term order on the monomials in the y_{i}. Let us now fix such a term order.

Proposition 2 ([8] (Proposition 1.7)). Let $I=\left(f_{1}, \ldots, f_{n}\right) \subset K\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ be a monomial ideal. Suppose that for all $i, j, k, l \in\{1, \ldots, n\}$, with $i<j, k<l, i \neq k$ and $j \neq l$, we have $\operatorname{gcd}\left(f_{i j}, f_{k l}\right)=1$. Then f_{1}, \ldots, f_{n} is an s-sequence.

Now let $R=K\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ be and let F be the finite free R-module $F=R e_{1} \oplus$ $\ldots \oplus R e_{n}$ with basis e_{1}, \ldots, e_{n}. We refer to [1] (Ch.15, 15.2) for definitions and results on monomial modules.

Definition 2. An element $m \in F$ is a monomial if m has the form $u e_{i}$, for some i, where u is a monomial of R. A submodule $U \subset F$ is a monomial module if it is generated by monomials of F.

One can observe that if U be a submodule of the free R-module $F=\oplus_{i=1}^{n} R e_{i}$, then U is a monomial module if and only if for each i there exists a monomial ideal I_{i} such that $U=I_{1} e_{1} \oplus I_{2} e_{2} \oplus \ldots \oplus I_{n} e_{n}$. In particular, U is finitely generated.

Theorem 1. Let $M=\oplus_{i=1}^{n} I_{i} e_{i}$ be a monomial R-module, $M_{i}=I_{i} e_{i}, I_{i}=\left(m_{i 1}, \ldots, m_{i r_{i}}\right)$, a monomial ideal of $R=K\left[x_{1}, \ldots, x_{n}\right]$ then
(i) $\quad \operatorname{Syz} z_{1}\left(M_{i}\right) \cong \operatorname{Syz} z_{1}\left(I_{i}\right)$,
(ii) $\quad \operatorname{Syz}_{1}(M) \cong \operatorname{Syz}_{1}\left(I_{1}\right) \oplus \operatorname{Syz} z_{1}\left(I_{2}\right) \oplus \ldots \oplus \operatorname{Syz} z_{1}\left(I_{n}\right)$,

Proof. (i) Write $M_{i}=\left\langle m_{i 1} e_{i}, \ldots, m_{i r_{i}} e_{i}\right\rangle$ and let

$$
\begin{equation*}
0 \rightarrow S y z_{1}\left(M_{i}\right) \rightarrow \quad R^{r_{i}} \rightarrow M_{i} \quad \rightarrow 0 \tag{1}
\end{equation*}
$$

be a presentation of M_{i}. Consider the R-linear homomorphism $R^{r_{i}} \rightarrow M_{i}$ such that $g_{j} \rightarrow m_{i j} e_{i}, R^{r_{i}}=R g_{1} \oplus \ldots \oplus R g_{r_{i}}$, and a syzygy of $M_{i}, a \in R^{r_{i}}, a=\left(\lambda_{i 1}, \ldots, \lambda_{i r_{i}}\right)$. Then

$$
\sum_{j=1}^{r_{i}} \lambda_{i j} m_{i j}=0
$$

and a is a syzygy of I_{i}.
(ii) It follows by (i).

Let M be a monomial R-module defined as in Theorem 1 . We will prove a criterion for a monomial module to be generated by an s-sequence. Set

$$
\begin{gathered}
m_{i j, l k}=\frac{m_{i j}}{g c d\left(m_{i j}, m_{l k}\right)}, \quad m_{i j} \in I_{i}, m_{l k} \in I_{l} \\
1 \leq i, j \leq n, \quad 1 \leq j \leq r_{i}, \quad 1 \leq k \leq r_{l}
\end{gathered}
$$

Theorem 2. Let $M=\oplus_{i=1}^{n} I_{i} e_{i}$ be a monomial module, $I_{i}=\left(m_{i 1}, \ldots, m_{i r_{i}}\right), i=1, \ldots, n$. Suppose $\operatorname{gcd}\left(m_{i j, i k}, m_{t u, t v}\right)=1, j<k, u<v$, with $i=t$ and $j \neq u, k \neq v$ or with $i \neq t$ and $1 \leq j, k \leq r_{i}, 1 \leq u, v \leq r_{t}$. Then M is generated by the s-sequence $m_{11} e_{1}, \ldots, m_{1 r_{1}} e_{1}, \ldots$, $m_{n 1} e_{n}, \ldots, m_{n r_{n}} e_{n}$.

Proof. For each $i=1, \ldots, n, S y z_{1}\left(M_{i}\right)$ is generated by the binomials:

$$
m_{i j, i k} g_{i k}-m_{i k, i j} g_{i j}
$$

since i is fixed, $1 \leq j, k \leq r_{i}$, being $g_{i k}, g_{i j}$ the free basis of $R^{r_{i}}$. Thanks to the hypothesis, we have $g c d\left(m_{i j, i k}, m_{i u, i v}\right)=1, j<k, u<v, j \neq u, k \neq v, \forall i=1, \ldots, n$, and we conclude, by Proposition 2, that M_{i} is generated by an s-sequence.

Now, suppose $i<t$. If $T_{i k}$ and $T_{t v}$ are the variables that correspond to $g_{i k}$ and $g_{t v}$, then $T_{i k} \neq T_{t v}$. We have $g c d\left(m_{i j, i k} T_{i k}, m_{t u, t v} T_{t v}\right)=\operatorname{gcd}\left(m_{i j, i k}, m_{t u, t v}\right)=1$ by hypothesis. In conclusion, the S-pair $S\left(b_{i j k}, b_{t u v}\right)$ reduces to zero, where $b_{i j k}=m_{i j, i k} T_{i k}-m_{i k, i j} T_{i j}$ and $b_{t u v}=m_{t u, t v} T_{t v}-m_{t v, t u} T_{t u}$. Then the assertion follows.

Example 1. Let $M=I_{1} e_{1} \oplus I_{2} e_{2}, I_{1}=\left(x^{2}, y^{2}, z\right)$ and $I_{2}=\left(z^{2}, z y\right)$ be ideals of $K[x, y, z]$. We have $m_{11,12}=m_{11,13}=x^{2}, m_{12,13}=y^{2}, m_{21,22}=z$. Since $\operatorname{gcd}\left(m_{11,12}, m_{12,13}\right)=$ $\operatorname{gcd}\left(m_{11,12}, m_{21,22}\right)=\operatorname{gcd}\left(m_{11,13}, m_{21,22}\right)=1$, then M is generated by the s-sequence $x^{2} e_{1}, y^{2} e_{1}, z e_{1}, z^{2} e_{2}, z y e_{2}$.

The next example considers a monomial module M not generated by an s-sequence, even if each addend is generated by an s-sequence.

Example 2. Let $M=(x, y) e_{1} \oplus(x, y) e_{2}$ be, $I_{1}=I_{2}=(x, y)$ ideals of $R=K[x, y]$. Write $\operatorname{Sym}_{R}(M)=R\left[T_{1}, T_{2}, T_{3}, T_{4}\right] / J$, where $J=\left(y T_{1}-x T_{2}, y T_{3}-x T_{4}\right)$ We compute the S-pair $S\left(y T_{1}-x T_{2}, y T_{3}-x T_{4}\right)=-y\left(T_{1} T_{4}-T_{2} T_{3}\right)$, with $T_{4}>T_{3}>T_{2}>T_{1}$. If $T_{1} T_{4}>T_{2} T_{3}$, in ${ }^{\prime} J=\left(x T_{2}, x T_{4}, y T_{1} T_{4}\right)$ and if $T_{1} T_{4}<T_{2} T_{3}$, in $L J=\left(x T_{2}, x T_{4}, y T_{2} T_{3}\right)$. In any case, J does not have a Gröbner basis which is linear in the variables T_{i}.

Now we quote a statement on computation of the annihilator ideals of $M=\oplus_{i=1}^{n} I_{i} e_{i}$, that is to say the annihilator ideals of the generating sequence of M

$$
m_{11} e_{1}, m_{12} e_{1}, \ldots, m_{1 r_{1}} e_{1}, m_{21} e_{2}, \ldots, m_{2 r_{2}} e_{2}, \ldots, m_{n 1} e_{n, \ldots,} m_{n r_{n}} e_{n}
$$

Proposition 3. Let $K_{i 1}, K_{i 2}, \ldots, K_{i r_{i}}$ be the annihilator ideals of $M_{i}=I_{i} e_{i}$, Set $J_{1}, \ldots, J_{r_{1},}, J_{r_{1}+1}$, $J_{r_{1}+2}, \ldots, J_{r_{1}+r_{2}}, J_{r_{1}+r_{2}+1}, \ldots, J_{r_{1}+r_{2}+\ldots+r_{n}}$ the annihilator ideals of the sequence. Then we have:

$$
\begin{gathered}
J_{1}=K_{11}=(0), J_{2}=K_{12}, \ldots, J_{r_{1}}=K_{1 r_{1}}, J_{r_{1}+1}=K_{21}=(0), J_{r_{1}+2}=K_{22}, \ldots, \\
J_{r_{1}+r_{2}}=K_{2 r_{2}}, \ldots, J_{r_{1}+r_{2}+\ldots+r_{n-1}+1}=K_{n 1}=(0), J_{r_{1}+r_{2}+\ldots+r_{n-1}+2}=K_{n 2}, \\
\ldots, J_{r_{1}+r_{2}+\ldots+r_{n}}=K_{n r_{n}} .
\end{gathered}
$$

Proof. An elementary computation gives:

$$
\begin{gathered}
\langle 0\rangle:\left\langle m_{11} e_{1}\right\rangle=K_{11}=(0) \\
\left\langle m_{11} e_{1}\right\rangle:\left\langle m_{12} e_{1}\right\rangle=K_{12} \\
\left\langle m_{11} e_{1}, m_{12} e_{1}\right\rangle:\left\langle m_{13} e_{1}\right\rangle=K_{13} \\
\ldots \ldots \ldots \\
\left\langle m_{11} e_{1}, m_{12} e_{2}, \ldots, m_{1 r_{1-1}} e_{1}\right\rangle:\left\langle m_{1 r_{1}} e_{1}\right\rangle=K_{1 r_{1}} \\
\left\langle m_{11} e_{1}, m_{12} e_{1}, \ldots, m_{1 r_{1-1}} e_{1}, m_{1 r_{1}} e_{1}\right\rangle:\left\langle m_{21} e_{2}\right\rangle=I_{1} e_{1}:\left\langle m_{21} e_{2}\right\rangle+(0):\left\langle m_{21} e_{2}\right\rangle= \\
=(0)+K_{21}=(0) \\
\left\langle m_{11} e_{1}, m_{12} e_{1}, \ldots, m_{1 r_{1-1}} e_{1}, m_{1 r_{1}} e_{1}, m_{21} e_{2}\right\rangle:\left\langle m_{22} e_{2}\right\rangle=\left\langle I_{1} e_{1}, m_{21} e_{2}\right\rangle:\left\langle m_{22} e_{2}\right\rangle= \\
=I_{1} e_{1}:\left\langle m_{22} e_{2}\right\rangle+K_{22}=(0)+K_{22}=K_{22} .
\end{gathered}
$$

The proof goes on by a routine computation.
Example 3. Let $M=I_{1} e_{1} \oplus I_{2} e_{2}$ be a monomial module on $R=K[x, y, z]$, where $I_{1}=\left(x^{2}, y^{2}, x y\right), I_{2}=\left(z^{2}, z y\right)$.Then M is generated by the s-sequence $x^{2} e_{1}, y^{2} e_{1}, x y e_{1}, z^{2} e_{2}, z y e_{2}$ with $x<y<z<e_{1}<e_{2}$. The s-sequence has the following annihilator ideals:

$$
\begin{array}{r}
J_{1}=\langle 0\rangle:\left\langle x^{2} e_{1}\right\rangle=K_{11}=(0) \\
J_{2}=\left\langle x^{2} e_{1}\right\rangle:\left\langle y^{2} e_{1}\right\rangle=K_{12}=\left(x^{2}\right) \\
J_{3}=\left\langle x^{2} e_{1}, y^{2} e_{1}\right\rangle:\left\langle x y e_{1}\right\rangle=K_{13}=(x, y) \\
J_{4}=\left\langle x^{2} e_{1}, y^{2} e_{1}, x y e_{1}\right\rangle:\left\langle z^{2} e_{2}\right\rangle=K_{21}=(0) \\
J_{5}=\left\langle x^{2} e_{1}, y^{2} e_{1}, x y e_{1}, z^{2} e_{2}\right\rangle:\left\langle z y e_{2}\right\rangle=(0)+K_{22}=(z)
\end{array}
$$

By Proposition 1, we have $\operatorname{dim}\left(\operatorname{Sym}_{R}(M)\right)=5$. The maximum of the dimensions is obtained by $\operatorname{dim}\left(R /\left(J_{1}+J_{2}+J_{3}+J_{4}+J_{5}\right)\right)+5=\operatorname{dim}\left(R /\left(\left(x^{2}\right)+(x, y)+(z)\right)+5=5\right.$. For the multiplicity, we have $e\left(\operatorname{Sym}_{R}(M)\right)=e\left(R /\left(J_{1}+J_{4}\right)\right)+e\left(R /\left(J_{1}+J_{2}+J_{3}+J_{4}\right.\right.$ $\left.\left.+J_{5}\right)\right)=1$, since $e\left(R /\left(J_{1}+J_{4}\right)\right)=e(K[x, y, z])=1$ and $e\left(R /\left(J_{1}+J_{2}+J_{3}+J_{4}+J_{5}\right)\right)=$ $e(K)=0$. Concerning the depth and the Castelnuovo regularity, since it results $\operatorname{Sym}_{R}(M)=R\left[T_{1}, T_{2}, T_{3}, T_{4}, T_{5}\right] / J=R\left[T_{1}, T_{2}, T_{3}, T_{4}, T_{5}\right] /\left(x T_{2}-y T_{3}, y T_{1}-x T_{3}, y T_{4}-z T_{5}\right)$, we compute $\operatorname{depth}\left(\operatorname{Sym}_{R}(M)\right)=5$ and $\operatorname{reg}\left(\operatorname{Sym}_{R}(M)\right)=3$ using software CoCoA ([16]).

We conclude the section yielding a class of monomial modules that would be of large interest in combinatorics, considering that they involve monomial squarefree ideals. Let $S=K\left[\underline{x}^{(1)}, \underline{x}^{(2)}, \ldots, \underline{x}^{(n)}\right]$ be a polynomial ring in n sets of variables $\underline{x}^{i}=\left\{x_{1}^{(i)}, x_{2}^{(i)}, \ldots, x_{t_{i}}^{(i)}\right\}$, $1 \leq i \leq n$. Let I_{s} be the monomial ideal of S generated by all squarefree monomials of degree s (the s-th squarefree Veronese ideal of S). Consider the squarefree monomial ideal $I_{t_{i}-1}^{(i)}, i=1, \ldots, n$, of $S^{(i)}=K\left[\underline{x}^{(i)}\right]$ generated by all squarefree monomials of degree $t_{i}-1$ (the $\left(t_{i}-1\right)$-th squarefree Veronese ideal) as a monomial ideal of S.

Theorem 3. The monomial module $M=\oplus_{i=1}^{n} I_{t_{i}-1}^{(i)} e_{i}$ on $S=K\left[\underline{x}^{(1)}, \underline{x}^{(2)}, \ldots, \underline{x}^{(n)}\right]$ is generated by an s-sequence.

Proof. It is known that for each $i, I_{t_{i}-1}^{(i)}$ is generated by an s-sequence ([14] (Theorem 2.3)), being generated by t_{i} squarefree monomials in $t_{i}-1$ variables in the polynomial ring in t_{i} variables and that condition 1) of [14] (Theorem 1.3.2.) is satisfied. The ideals $I_{t_{i}-1}^{(i)}$ and $I_{t_{j}-1}^{(j)}$, for any $i \neq j, i, j=1, \ldots, n$, are generated in 2 disjoint sets of variables, then the condition of Theorem 2 is easily verified.

The invariants of $\operatorname{Sym}_{S}(M)$ depend on the invariants of each addend of M.
Theorem 4. Let $M=\oplus_{i=1}^{n} I_{t_{i}-1}^{(i)} e_{i}$ be and let $\operatorname{Sym}_{S}(M)$ be its symmetric algebra. Then:
(1) $\operatorname{dim}_{S}\left(\operatorname{Sym}_{S}(M)\right)=\sum_{i=1}^{n} t_{i}+n=\sum_{i=1}^{n} \operatorname{dim}_{S^{(i)}}\left(\operatorname{Sym}_{S^{(i)}}\left(M_{i}\right)\right)$
(2) $\operatorname{depth}\left(\operatorname{Sym}_{S}(M)\right)=\sum_{i=1}^{n} t_{i}+n=\sum_{i=1}^{n} \operatorname{depth}_{S^{(i)}}\left(\operatorname{Sym}_{\mathcal{S}^{(i)}}\left(M_{i}\right)\right)$
(3) $e\left(\operatorname{Sym}_{S}(M)\right)=\sum_{j=1}^{\sum t_{i}-n-1}\binom{\sum t_{i}-n}{j}+2$
$\operatorname{reg}\left(\operatorname{Sym}_{S}(M)\right)=\sum_{i=1}^{n} t_{i}-n$
Proof. We consider an admissible term order on the monomials of $S\left[T_{1}^{(1)}, \ldots, T_{t_{n}}^{(n)}\right]$ such that $x_{j}^{l}<T_{1}^{(1)}<T_{2}^{(1)}<\ldots<T_{t_{n}}^{(n)}$.
(1) The annihilators ideals of the module $M_{i}=I_{t_{i}-1}^{(i)} e_{i}$ are the annihilators ideals $J_{j}^{(i)}$ of the sequence generating $I_{t_{i}-1}^{(i)}$, in the lexicographic order, for each $i=1, \ldots, n, j=1, \ldots, t_{i}$.

By [14] (Proposition 3.1), we have $J_{1}^{(i)}=(0), J_{2}^{(i)}=\left(x_{t_{i}-1}^{(i)}\right), J_{3}^{(i)}=\left(x_{t_{i}-2}^{(i)}\right), \ldots, J_{t_{i}}^{(i)}=\left(x_{1}^{(i)}\right)$.
Then, if J is the relation ideal of $\operatorname{Sym}_{S}(M)$, we have:

$$
\begin{gathered}
i n_{<}(J)=\left(x_{t_{1}-1}^{(1)} T_{2}^{(1)}, x_{t_{1}-2}^{(1)} T_{3}^{(1)}, \ldots, x_{1}^{(1)} T_{t_{1}}^{(1)}, \ldots, x_{t_{n}-1}^{(n)} T_{2}^{(n)},\right. \\
\left.x_{t_{n}-2}^{(n)} T_{3}^{(n)}, \ldots, x_{1}^{(n)} T_{t_{n}}^{(n)}\right)
\end{gathered}
$$

and it is generated by a regular sequence. We obtain

$$
\operatorname{dim}_{S}\left(\operatorname{Sym}_{S}(M)\right)=\sum_{i=1}^{n} t_{i}+\sum_{i=1}^{n} t_{i}-\left(\sum_{i=1}^{n} t_{i}-n\right)=\sum_{i=1}^{n} t_{i}+n
$$

(2) Since $\operatorname{depth}\left(\operatorname{Sym}_{S}(M)\right) \leq \operatorname{dim}_{S}\left(\operatorname{Sym}_{S}(M)\right)=\sum_{i=1}^{n} t_{i}+n$ and $\operatorname{depth}\left(\operatorname{Sym}_{S}(M)\right) \geq$ $\operatorname{depth}\left(S\left[T_{1}^{(1)}, \ldots, T_{t_{1}}^{(1)}, \ldots, T_{1}^{(n)}, \ldots, T_{t_{n}}^{(n)}\right] /\right.$ in $\left._{<}(J)\right)=\sum_{i=1}^{n} t_{i}+n$, the equality follows.
(3) In the following, we often use methods and tools of [14] (Theorem 3.6). For each i, $1 \leq i \leq n$, with $S^{(i)}=K\left[\underline{x}^{(i)}\right]$, we have

$$
e\left(\operatorname{Sym}_{S^{(i)}}\left(I_{t_{i}-1}^{(i)} e_{i}\right)\right)=\sum_{1 \leq i_{1}<\ldots<i_{r} \leq t_{i}} e\left(S^{(i)} /\left(J_{i_{1}}^{(i)}, \ldots, J_{i_{r}}^{(i)}\right)\right)
$$

with $\operatorname{dim}\left(S^{(i)} /\left(J_{i_{1}}^{(i)}, \ldots, J_{i_{r}}^{(i)}\right)\right)=d-r, d=\operatorname{dim}\left(\operatorname{Sym}_{S^{(i)}}\left(I_{t_{i}-1}^{(i)} e_{i}\right)\right)=t_{i}+1$ and $1 \leq r \leq t_{i}$, being $J_{i_{1}}^{(i)}, \ldots, J_{t_{i}}^{(i)}$ the annihilators ideals of $I_{t_{i}-1}^{(i)}$. It results, by the structure of the annihilators ideals, $H^{(i)}=\left(J_{i_{1}}^{(i)}, \ldots, J_{i_{r}}^{(i)}\right)=\left(x_{i_{1}}^{(i)}, \ldots, x_{i_{r}}^{(i)}\right)$. Put $H=\left(H^{(1)}, H^{(2)}, \ldots, H^{(n)}\right)=$ $\left(x_{i_{1}}^{(1)}, \ldots, x_{i_{r}}^{(1)}, x_{i_{1}}^{(2)}, \ldots, x_{i_{r}}^{(2)}, \ldots, x_{i_{1}}^{(n)}, \ldots, x_{i_{r}}^{(n)}\right)$. Then $e(S / H)=1$ since S / H is a polinomial ring on a field k. Let

$$
d^{\prime}=\operatorname{dim}\left(S /\left(J_{i_{1}}^{(i)}, \ldots, J_{i_{r}}^{(i)}\right)\right)=\sum_{i=1}^{n} t_{i}+n-r, 1 \leq i \leq n, 1 \leq r \leq \sum_{i=1}^{n} t_{i}
$$

then $e\left(\operatorname{Sym}_{S}(M)\right)$ is given by the sum of the following addends:

$$
e(S /(0))=1
$$

for $r=1, d^{\prime}=\sum_{i=1}^{n} t_{i}+n-1$.

$$
\sum_{j=2}^{\sum t_{i}} e\left(S / J_{j}^{(i)}\right)=\underbrace{1+\ldots+1}_{\sum t_{i}-n}
$$

for $r=2, d^{\prime}=\sum_{i=1}^{n} t_{i}+n-2$.

$$
\sum_{2 \leq k_{1} \leq t_{k}, 2 \leq l_{1} \leq t_{l}} e\left(S /\left(J_{k_{1}}^{(k)}, J_{l_{1}}^{(l)}\right)\right)=\underbrace{1+\ldots+1}_{\binom{t_{i}-n}{2}}
$$

for $r=3, d^{\prime}=\sum_{i=1}^{n} t_{i}+n-3,1 \leq k, l \leq n$

$$
\sum_{2 \leq k_{1} \leq t_{k}, 2 \leq l_{1} \leq t_{l}, 2 \leq m_{1} \leq t_{m}} e\left(S /\left(J_{k_{1}}^{(k)}, J_{l_{1}}^{(l)}, J_{m_{1}}^{(m)}\right)\right)=\underbrace{1+\ldots+1}_{\binom{t_{i}-n}{3}}
$$

for $r=4, d^{\prime}=\sum t_{i}+n-4,1 \leq k, l, m \leq n$

$$
\begin{aligned}
& \quad \sum_{2 \leq u_{1}<\cdots<u_{r} \leq t_{1}, \ldots, 2 \leq s_{1}<\cdots<s_{r} \leq t_{n}} e(S /\left(J_{u_{1}}^{(1)}, \ldots, J_{u_{r}}^{(1)}, \ldots, J_{s_{1}}^{(n)}, \ldots, J_{s_{r}}^{(n)}\right)=\underbrace{1+\ldots+1}_{\substack{\sum t_{i}-n \\
\sum_{i}-n-1}} \\
& \text { for } r=\sum t_{i}-1, d^{\prime}=n+1 . \\
& \qquad e\left(S /\left(J_{2}^{(1)}, \ldots, J_{t_{1}}^{(1)}, J_{2}^{(2)}, \ldots, J_{t_{2}}^{(2)}, J_{2}^{(n)}, \ldots, J_{t_{n}}^{(2)}\right)\right)=1 \\
& \text { for } r=\sum_{i=1}^{n} t_{i}, d^{\prime}=n . \text { Thus, }
\end{aligned}
$$

$$
e\left(\operatorname{Sym}_{S}(M)\right)=\sum_{j=1}^{\sum t_{i}-n-1}\binom{\sum t_{i}-n}{j}+2
$$

(4) $\operatorname{reg}\left(\operatorname{Sym}_{S}(M)\right)=\operatorname{reg}\left(S\left[\underline{T}^{(1)}, \ldots, \underline{T}^{(n)}\right] / J\right) \leq \operatorname{reg}\left(S\left[\underline{T}^{(1)}, \ldots, \underline{T}^{(n)}\right] / \operatorname{in}<(J)\right), \underline{T}^{(i)}=$ $\left\{T_{1}^{(i)} \ldots T_{t_{i}}^{(i)}\right\}$, for $1 \leq i \leq n$. The ideal

$$
\operatorname{in}_{<}(J)=\left(x_{t_{1}-1}^{(1)} T_{2}^{(1)}, \ldots, x_{1}^{(1)} T_{t_{1}}^{(1)}, x_{t_{2}-1}^{(2)} T_{2}^{(2)}, \ldots, x_{1}^{(2)} T_{t_{2}}^{(1)}, \ldots x_{t_{n}-1}^{(n)} T_{2}^{(n)}, \ldots, x_{1}^{(n)} T_{t_{n}}^{(n)}\right)
$$

is generated by a regular sequence of length $\sum t_{i}-n$ of monomials of degree 2 . The ring $S\left[\underline{T}^{(1)}, \ldots, \underline{T}^{(n)}\right] /$ in $_{<}(J)$ has a resolution of length $\sum_{i=1}^{n} t_{i}-n$, equal to the number of generators of $i n_{<}(J)$, given by the Koszul complex of $i n_{<}(J)$. Then $\operatorname{reg}\left(\operatorname{Sym}_{S}(M)\right) \leq$ $\sum_{i=1}^{n} t_{i}-n$. Since J is Cohen-Macaulay and

$$
\operatorname{dim}\left(\operatorname{Sym}_{S}(M)\right)=\sum_{i=1}^{n} t_{i}+n, \operatorname{dim} S\left[\underline{T}^{(1)}, \ldots, \underline{T}^{(n)}\right] / J=\sum_{i=1}^{n} t_{i}+\sum_{i=1}^{n} t_{i}-h t(J)
$$

then $h t(J)=\operatorname{grad}(J)=2 \sum_{i=1}^{n} t_{i}-\left(\sum_{i=1}^{n} t_{i}+n\right)=\sum_{i=1}^{n} t_{i}-n$. Since J is a graded ideal [17] (Proposition 1.5.12), we can choose the regular sequence in J inside the binomials of degree two generating J. So the Koszul complex on the regular sequence gives a 2-linear resolution of J. It follows

$$
\operatorname{reg}\left(S\left[\underline{T}^{(1)}, \ldots, \underline{T}^{(n)}\right] / J\right) \geq 2\left(\sum_{i=1}^{n} t_{i}-n\right)-\left(\sum_{i=1}^{n} t_{i}-n\right)=\sum_{i=1}^{n} t_{i}-n
$$

The equality follows.

3. Groebner Bases of Syzygy Modules and s-Sequences

Let R be a Noetherian commutative ring with unit. Let N be a finitely generated R-module submodule of a free R-module $R^{n}=R e_{1} \oplus \ldots \oplus R e_{n}, N=R g_{1}+\ldots+R g_{m}$, $g_{i}=a_{i 1} e_{1}+\ldots a_{i n} e_{n}, i=1, \ldots, m$. Consider an order on the standard vectors e_{1}, \ldots, e_{n} of R^{n} such that $e_{n}>\ldots>e_{1}$. We may view N as a graded module by assigning to each vector e_{i} the degree 1 and to the elements of R the degree 0 . For any vector $h \in R e_{1}+\ldots R e_{n}$, $h=\sum_{i=1}^{n} a_{i} e_{i}$, we put $\operatorname{in}(h)=a_{j} e_{j}$, where e_{j} is the largest vector in h with $a_{j} \neq 0$. Such an order will be called admissible. Set $\operatorname{in}(N)=<\operatorname{in}(h), h \in N>$. We say that g_{1}, \ldots, g_{m} is a initial basis for N if $\operatorname{in}(N)=<K_{1} e_{1}, \ldots, K_{n} e_{n}>=\oplus K_{i} e_{i}$, where K_{j} are ideals of R.

Take $N=S y z_{1}(M)$ the first syzygy module of a finitely generated R-module M. We have:

Theorem 5. Let M be a finitely R-module generated by an s-sequence f_{1}, \ldots, f_{n} and let $N=\operatorname{Syz}_{1}(M)$. Then $\operatorname{in}(N)=<I_{1} e_{1}, \ldots, I_{n} e_{n}>$, where I_{1}, \ldots, I_{n} are the annihilator ideals of the sequence f_{1}, \ldots, f_{n}.

Proof. Let us introduce an admissible order in $R^{n}=\oplus_{i=1}^{n} R e_{i}$, with $e_{1}<e_{2}<\ldots<e_{n}$. Then $\operatorname{in}_{<}(N)=<\operatorname{in}_{<}(f), f \in N>=<K_{1} e_{1}, \ldots, K_{n} e_{n}>$, with K_{j} ideals of R. Passing to the symmetric algebras $\operatorname{Sym}_{R}(M)$, the relation ideal J is generated linearly in the variables
$T_{j}, j=1, \ldots, n$, corresponding to the vectors $e_{1}<e_{2}<\ldots<e_{n}$, with the order $T_{1}<$ $T_{2}<\ldots<T_{n}$, and $i_{<}(J)=\left(I_{1} T_{1}, \ldots, I_{n} T_{n}\right)$. Let $G(J)$ be the finite set of linear forms in $T_{1}, T_{2}, \ldots, T_{n}$, which generate J and such that $\operatorname{in}_{<}(J)=\left(i n_{<} f, f \in G(J)\right)$ and let $\tilde{G}(J)=$ $G(N)$ be the set of generators \tilde{f} of $N=S y z_{1}(M)$ corresponding to f under the substitution $T_{i} \rightarrow e_{i}, i=1, \ldots, n$. Then we have $\operatorname{in}_{<}(N)=<\operatorname{in}(\tilde{f}), \tilde{f} \in G(N)>$. We deduce that $K_{j}=I_{j}$ for $j=1, \ldots, n$. Hence the assertion follows.

Example 4. Let $I=\left(X^{2}, Y^{2}, X Y\right)$ be an ideal of $R=K[X, Y]$. The relation ideal J of $\operatorname{Sym}_{R}(I)$ is $J=\left(X T_{3}-Y T_{1}, Y T_{3}-X T_{2}\right)$. The Gröbner basis of J is $G(J)=\left\{X T_{3}-Y T_{1}, Y T_{3}-\right.$ $\left.X T_{2}, X^{2} T_{2}-Y^{2} T_{1}\right\}$ which is linear in the variables T_{1}, T_{2}, T_{3} and I is generated by the s-sequence $X^{2}, Y^{2}, X Y$. Consider $S y z_{1}(I)=<X e_{3}-Y e_{1}, Y e_{3}-X e_{2}>$. Then $\tilde{G}(J)=G(N)=\left\{X e_{3}-\right.$ $\left.Y e_{1}, Y e_{3}-X e_{2}, X^{2} e_{2}-Y^{2} e_{1}\right\}$ and $n_{<} J=\left(\left(X^{2}\right) T_{2},(X, Y) T_{3}\right)$, in $<(N)=<\left(X^{2}\right) e_{2},(X, Y) e_{3}>$.

Notice that $X^{2}, X Y, Y^{2}$ is not an s-sequence for I. In fact, in such case, the relation ideal is $J=\left(X T_{2}-Y T_{2}, Y T_{2}-X T_{3}\right)$ and $G(J)=\left\{X T_{2}-Y T_{1}, Y T_{2}-X T_{3}, X^{2} T_{3}-Y^{2} T_{1}, T_{2}^{2}-\right.$ $\left.T_{1} T_{3}\right\}$ not linear in the variables T_{1}, T_{2}, T_{3}, in both cases $T^{2}>T_{1} T_{3}$ or $T_{1} T_{3}>T^{2}$. We have $G(N)=\left\{X e_{2}-Y e_{1}, Y e_{2}-X e_{3}, X^{2} e_{3}-Y^{2} e_{1}\right\}$, but the generators of $G(N)$ are not obtained by the substitution of T_{i} with e_{i}, in the elements of the Gröbner basis of J.

Now, let $R=K\left[X_{1}, \ldots, X_{t}\right]$ be a polynomial ring over the field K, and let $<$ be a term order on the monomials of $R^{n}=K\left[X_{1}, \ldots, X_{t}\right] e_{1} \oplus \ldots \oplus K\left[X_{1}, \ldots, X_{t}\right] e_{n}$ with $e_{1}<\ldots<e_{n}$ and $X_{j}<e_{i}$, for all i and j. The excellent book of D. Eisenbud ([1] (Ch.15,15.2)) covers all background for free modules on polynomial rings and Gröbner bases for their submodules. It is easy to prove:

1. For any Gröbner basis G of N (with respect to the order $<$) that exists finite, we have $\operatorname{in}(N)=<\operatorname{in}(f), f \in G>$.
2. If M is a monomial module, $\operatorname{in}_{<}(M)=\operatorname{in}(M)$.

Now we recall the definition of monomial mixed product ideals which were first introduced in [11], since some classes of such ideals are generated by an s-sequence. To be precise, in the polynomial ring $R=K\left[X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{m}\right]$ in two set of variables on a field K, the squarefree monomial ideals $I_{k} J_{r}+I_{s} J_{t}$, with $k+r=s+t$, are called ideals of mixed products, where I_{k} (resp. J_{r}) is the squarefree ideal of $K\left[X_{1}, \ldots, X_{n}\right]$ (resp. $K\left[Y_{1}, \ldots, Y_{m}\right]$) generated by all squarefree monomials of degree k (resp. degree r). In the same way I_{s} and J_{t} are defined. Setting $I_{0}=J_{0}=R$, in [14] we find the following classification:

1. $I_{k}+J_{k}, 1 \leq k \leq \inf \{n, m\}$
2. $I_{k} J_{r}, 1 \leq k \leq n, 1 \leq r \leq m$
3. $I_{k} J_{r}+I_{k+1} J_{r-1}, 1 \leq k \leq n, 2 \leq r \leq m$
4. $\quad J_{r}+I_{s} J_{t}$, with $r=s+t, 1 \leq s \leq n, 1 \leq r \leq m, t \geq 1$
5. $\quad I_{k} J_{r}+I_{s} J_{t}$, with $k+r=s+t, 1 \leq k \leq n, 1 \leq r \leq m$

Theorem 6 ([14] (Theorem 2.8, Theorem 2.11, Theorem 2.14)). Let the ideal L_{i} be one of the following mixed product ideals

1. $L_{1}=I_{n-1} J_{m}$
2. $L_{2}=I_{n} J_{m-1}$
3. $L_{3}=I_{1} J_{m}$
4. $L_{4}=I_{n} J_{1}$
5. $\quad L_{5}=I_{n} J_{m-1}+I_{n-1} J_{m}$
6. $\quad L_{6}=I_{n} J_{1}+J_{m}, n+1=m$.

Then L_{i} is generated by an s-sequence.
We premise the following:

Proposition 4. Let I_{n-1} be the Veronese squarefree $(n-1)$-th ideal of $R=K\left[X_{1}, \ldots, X_{n}\right]$. Let $N=\operatorname{Syz}\left(I_{n-1}\right)$ and G be the Gröbner basis of N. Then

1. $G=\left\{X_{n} e_{1}-X_{n-1} e_{2}, X_{n-1} e_{2}-X_{n-2} e_{3}, \ldots, X_{2} e_{n-1}-X_{1} e_{n}\right\}$
2. $\quad i n_{<} N=\left(X_{n-1}\right) e_{2} \oplus\left(X_{n-2}\right) e_{3} \oplus \ldots \oplus\left(X_{1}\right) e_{n} \cong$

$$
\underbrace{R(n) \oplus R(n) \oplus \ldots \oplus R(n)}_{(n-1) \text {-times }} \text { as graded } R \text {-modules. }
$$

3. $i n_{<} N$ is generated by a s-sequence.

Proof. Let $<$ be an admissible term order introduced on the monomials of $R^{n}=\oplus R e_{i}$, with $X_{1}<X_{2}<\ldots<X_{n}<e_{1}<e_{2}<\ldots<e_{n}, R=K\left[X_{1}, \ldots, X_{n}\right]$. The ideal $I_{n-1}=$ $\left(X_{1} \cdots X_{n-1}, \ldots, X_{2} \cdots X_{n-1} X_{n}\right)$ is generated by an s-sequence ([14] (Theorem 2.3)), then

$$
\operatorname{in}_{<}(J)=\left(K_{2} T_{2}, \ldots, K_{n} T_{n}\right),
$$

where J is the relation ideal of $\operatorname{Sym}_{R}\left(I_{n-1}\right)$ and $K_{i}=\left(X_{n-i+1}\right), i=2, \ldots, n$, are the annihilator ideals of I_{n-1} (See [14] (Proposition 3.1)). Let $N=S y z_{1}\left(I_{n-1}\right)$ be. Then $N=<X_{n} e_{1}-X_{n-1} e_{2}, X_{n-1} e_{2}-X_{n-2} e_{3}, \ldots, X_{2} e_{n-1}, X_{2} e_{n-1}-X_{1} e_{n}>$ is generated by a Gröbner basis, being J generated by a Gröbner basis, $J=\left(X_{n} T_{1}-X_{n-1} T_{2}, X_{n-1} T_{2}-\right.$ $\left.X_{n-2} T_{3}, \ldots, X_{2} T_{n-1}, X_{2} T_{n-1}-X_{1} T_{n}\right)$, with $X_{1}<X_{2}<\ldots<X_{n}<T_{1}<T_{2}<\ldots<$ T_{n} ([13] (Theorem 2.13)) and

$$
i^{2}<N=<\left(X_{n-1}\right) e_{2},\left(X_{n-2}\right) e_{3}, \ldots,\left(X_{1}\right) e_{n}>
$$

and it is trivially generated by an s-sequence or it follows by Theorem 2.
For each $L_{i}, i=1, \ldots, 6$, as in Theorem 6, we assume that $f_{1}<f_{2}<\ldots<f_{s_{i}}$ in the lexicografic order and $X_{1}<X_{2}<\ldots<X_{n}<Y_{1}<Y_{2}<\ldots<Y_{m}$ in the ring $R=K\left[X_{1}, \ldots X_{n} ; Y_{1}, \ldots, Y_{m}\right]$.

Theorem 7. Let $N_{i}=\operatorname{Syz}\left(L_{i}\right)$ be the first syzygy module of L_{i} defined in Theorem 6 and let $G\left(N_{i}\right)$ be the Gröbner basis of N_{i}. Then we have:

1. $G\left(N_{1}\right)=\left\{X_{n} e_{1}-X_{n-1} e_{2}, X_{n-1} e_{2}-X_{n-2} e_{3}, \ldots, X_{2} e_{n-1}-X_{1} e_{n}\right\}$ and

$$
\operatorname{in}_{<}\left(N_{1}\right)=K_{2} e_{2} \oplus \ldots \oplus K_{n} e_{n}, K_{i}=\left(X_{n-i+1}\right), i=2, \ldots, n
$$

2. $G\left(N_{2}\right)=\left\{Y_{m} e_{1}-Y_{m-1} e_{2}, Y_{m-1} e_{2}-Y_{m-2} e_{3}, \ldots, Y_{2} e_{m-1}-Y_{1} e_{m}\right\}$ and

$$
i n_{<}\left(N_{2}\right)=K_{2} e_{2} \oplus \ldots \oplus K_{m} e_{m}, K_{i}=\left(Y_{m-i+1}\right), i=2, \ldots, m
$$

3. $G\left(N_{3}\right)=\left\{X_{1} e_{2}-X_{2} e_{1}, X_{2} e_{3}-X_{3} e_{2}, \ldots, X_{n-1} e_{n}-X_{n} e_{n-1}\right\}$ and

$$
\operatorname{in}_{<}\left(N_{3}\right)=K_{2} e_{2} \oplus \ldots \oplus K_{n} e_{n}, K_{i}=\left(X_{1}, \ldots, X_{i-1}\right), i=2, \ldots, n
$$

4. $G\left(N_{4}\right)=\left\{Y_{1} e_{2}-Y_{2} e_{1}, Y_{2} e_{3}-Y_{3} e_{2}, \ldots, Y_{m-1} e_{m}-Y_{m} e_{m-1}\right\}$

$$
\operatorname{in}_{<}\left(N_{4}\right)=K_{2} e_{2} \oplus \ldots \oplus K_{m} e_{m}, K_{i}=\left(Y_{1}, \ldots, Y_{i-1}\right), i=2, \ldots, m
$$

5. $G\left(N_{5}\right)=\left\{Y_{m} e_{1}-Y_{m-1} e_{2}, \ldots, Y_{2} e_{m-1}-Y_{1} e_{m}, Y_{1} e_{m}-X_{n} e_{m+1}\right.$,
$\left.X_{n} e_{m+1}-X_{n-1} e_{m+2}, \ldots, X_{2} e_{m+n-1}-X_{1} e_{m+n}\right\}$

$$
\text { and } \operatorname{in}_{<}\left(N_{5}\right)=K_{2} e_{2} \oplus \ldots \oplus K_{m} e_{m} \oplus K_{m+1} e_{m+1} \oplus \ldots \oplus K_{m+n} e_{m+n}
$$

with $K_{i}=\left(Y_{m-i+1}\right), i=2, \ldots, m$, and $K_{i}=\left(X_{n+m-i+1}\right), i=m+1, \ldots, m+n$
6. $G\left(N_{6}\right)=\left\{Y_{1} e_{2}-Y_{2} e_{1}, Y_{2} e_{3}-Y_{3} e_{2}, \ldots, Y_{m-1} e_{m}-Y_{m} e_{m-1},\left(X_{1} \cdots X_{n}\right) e_{m+1}-\left(Y_{2} \cdots\right.\right.$ $\left.\left.Y_{m}\right) e_{1}\right\}$ and

$$
i n_{<}\left(N_{6}\right)=K_{2} e_{2} \oplus \ldots \oplus K_{m} e_{m} \oplus\left(X_{1} \cdots X_{n}\right) e_{m+1}, K_{i}=\left(Y_{1}, \ldots, Y_{i-1}\right), i=2, \ldots, m
$$

Proof. For each $i=1, \ldots, 6$, the relation ideal J_{i} of $\operatorname{Sym}_{R}\left(L_{i}\right)$ is generated by a Gröbner basis $G(J)$, then we apply Theorem 5 and we obtain the Gröbner basis $G\left(N_{i}\right)$, by the substitution of the vector e_{i} to the variable T_{i} in the forms of the set $G\left(J_{i}\right)$. For the structure of $\operatorname{in}_{<}\left(N_{i}\right), i=1, \ldots, 6$, we have:

1. The ideal $I_{n-1} J_{m}$ has annihilator ideals $K_{i}=\left(X_{n-i+1}\right), i=2, \ldots, n$ (See [14] (Proposition 3.3)). Then

$$
\begin{gathered}
\operatorname{in}_{<} N_{1}=<\left(X_{n-1}\right) e_{2},\left(X_{n-2}\right) e_{3}, \ldots,\left(X_{1}\right) e_{n}>=\left(X_{n-1}\right) e_{2} \oplus\left(X_{n-2}\right) e_{3} \oplus \ldots \oplus\left(X_{1}\right) e_{n} \cong \\
\cong \underbrace{R(m+n) \oplus \ldots \oplus R(m+n)}_{(n-1)-\text { times }}
\end{gathered}
$$

as graded R-modules.
2. In this case the the annihilator ideals of $I_{n} J_{m-1}$ are $K_{i}=\left(Y_{m-i+1}\right), i=2, \ldots, m$. The proof is analogue to the case of $I_{n-1} J_{m}$.
3. The ideal $I_{1} J_{m}=\left(X_{1}, \ldots, X_{n}\right)\left(Y_{1} \cdots Y_{m}\right)$ is generated by an s-sequence and $i_{<}(J)=$ $\left(K_{2} T_{2}, \ldots, K_{n} T_{n}\right)$, where $K_{i}=\left(X_{1}, \ldots, X_{i-1}\right), i=2, \ldots, n$, are the annihilator ideals (See [13] (Proposition 3.7)). Let $N_{3}=S y z_{1}\left(I_{1} J_{m}\right)$ be. Then

$$
\operatorname{in}_{<} N_{3}=<\left(X_{1}\right) e_{2},\left(X_{1}, X_{2}\right) e_{3}, \ldots,\left(X_{1}, \ldots, X_{n-1}\right) e_{n}>\cong \bigoplus_{i=2}^{n} K_{i}(m+2)
$$

as graded R-modules.
4. The annihilator ideals of $I_{n} J_{1}$ are $K_{i}=\left(Y_{1}, \ldots, Y_{i-1}\right), i=2, \ldots, m$ (See [13] (Proposition 3.7)). The proof is analogue to the case of $I_{1} J_{m}$ and $i n_{<} N_{4} \cong \bigoplus_{i=2}^{m} K_{i}(n+1)$ as graded R-modules.
5. The annihilator ideals of $I_{n} J_{m-1}+I_{n-1} J_{m}$ are $K_{i}=\left(Y_{m-i+1}\right)$ for $i=2, \ldots, m$ and $K_{i}=\left(X_{n+m-i+1}\right)$ for $i=m+1, \ldots, m+n$ by [13] (Proposition 3.11). The assertion follows and we have

$$
i n_{<} N_{5}=\bigoplus_{i=2}^{m+n} K_{i} e_{i} \cong \underbrace{R(m+n-1) \oplus \ldots \oplus R(m+n)}_{(m+n)-\text { times }}
$$

as graded R-modules.
6. The annihilator ideals of $I_{n} J_{1}+J_{m}$ are $K_{i}=\left(Y_{1}, \ldots, Y_{i-1}\right), i=2, \ldots, m$ (See [13] (Proposition 3.7)) and $K_{m+1}=\left(X_{1} X_{2} \cdots X_{n}\right)$, generated by the monomial $X_{1} X_{2} \cdots X_{n}$. The assertion follows and we have

$$
i n_{<} N_{6} \cong \bigoplus_{i=2}^{m} K_{i} e_{i} \oplus\left(X_{1} \cdots X_{n}\right) e_{m+1} \cong \bigoplus_{i=2}^{m} K_{i}(n+2) \oplus R(m+n)
$$

as graded R-modules.

Proposition 5. The modules $i n_{<} N_{1}, i n_{<} N_{2}, i n_{<} N_{5}$ are generated by an s-sequence.
Proof. The assertion follows by Theorem 2.
Theorem 8. The modules in $_{<} N_{3}, i n_{<} N_{4}$ and in N_{6} are not generated by an s-sequence.
Proof. Let in $N_{3}=<\left(X_{1}\right) e_{2},\left(X_{1}, X_{2}\right) e_{3}, \ldots,\left(X_{1}, \ldots, X_{n-1}\right) e_{n}>$ be and with generating sequence $X_{1} e_{2}, X_{1} e_{3}, X_{2} e_{3}, X_{1} e_{4}, X_{2} e_{4}, X_{3} e_{4}, \ldots, X_{n-2} e_{n}, X_{n-1} e_{n}$. The corresponding symmetric algebra is

$$
\operatorname{Sym}_{R}\left(\text { in }_{<} N_{3}\right)=R\left[T_{12}, T_{13}, T_{23}, T_{14}, T_{24}, T_{34}, \ldots T_{(n-2) n}, T_{(n-1) n}\right] / J,
$$

with $T_{12}<T_{13}<T_{23}<T_{14}<T_{24}<T_{34}<\ldots<T_{(n-2) n}<T_{(n-1) n}$. Consider the relations $g_{1}=X_{1} T_{23}-X_{2} T_{13}, g_{2}=X_{1} T_{24}-X_{2} T_{14}$ and the S-pair $S\left(g_{1}, g_{2}\right)=-X_{2}\left(T_{23} T_{14}-T_{24} T_{13}\right)$. Then we have:

$$
i_{<} J=\left(X_{1} T_{23}, X_{1} T_{24}, X_{2} T_{23} T_{14}, \ldots\right) \text { if } T_{23} T_{14}>T_{24} T_{13}
$$

or

$$
i n<J=\left(X_{1} T_{23}, X_{1} T_{24}, X_{2} T_{24} T_{13}, \ldots\right) \text { if } T_{23} T_{14}<T_{24} T_{13}
$$

where $<$ is a term order on all monomials in the variables $X_{i}, T_{j k}$.
Since all initial terms of J are of the form $X_{1} T_{2 j}, 3 \leq j \leq n$, the Gröbner basis of J is never linear in the variables $T_{j k}$.

The same argument can be applied to $i n_{<} N_{4}$ and $i n_{<} N_{6}$.

Author Contributions: Conceptualization, G.F. and P.L.S.; methodology, G.F. and P.L.S.; validation, G.F. and P.L.S.; formal analysis, G.F. and P.L.S.; investigation, G.F. and P.L.S.; resources, G.F. and P.L.S.; data curation, G.F. and P.L.S.; writing-original draft preparation, G.F. and P.L.S.; writingreview and editing, G.F. and P.L.S.; visualization, G.F. and P.L.S.; supervision, G.F. and P.L.S.; project administration, G.F. and P.L.S.; funding acquisition, G.F. All authors have read and agreed to the published version of the manuscript.
Funding: This research was funded by COGITO project (PON 2014-2020), project code ARS01-00836
Acknowledgments: The author wishes to thank the anonymous referees for their comments and suggestions which helped to improve this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Eisenbud, D. Commutative Algebra with a View towards Algebraic Geometry; Springer: New York, NY, USA, 1995.
2. Crupi, M.; Barbiera, M.L. Algebraic Properties of Universal Squarefree Lexsegment Ideals. Algebra Colloq. 2016, 23, 293-302. [CrossRef]
3. Crupi, M.; Restuccia, G. Monomial Modules. In Proceedings of the V International Conference of Stochastic Geometry, Convex Bodies, Empirical Measures \& Applications to Engineering, Medical and Earth Sciences, Mondello, Palermo, Italy, 6-11 September 2004; Rendiconti del Circolo Matematico di Palermo, Supplemento, Serie II; Volume 77, pp. 203-216.
4. Crupi, M.; Restuccia, G. Monomial Modules and graded betti numbers. Math. Notes 2009, 85, 690-702. [CrossRef]
5. Crupi, M.; Utano, R. Minimal resolutions of some monomial modules. Results Math. 2009, 55, 311-328. [CrossRef]
6. Ene, V.; Herzog, J. Groebner bases in Commutative algebra. In Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2012; Volume 130.
7. Staglianò, P.L. Graded Modules on Commutative Noetherian Rings Generated by s-Sequences. Ph.D. Thesis, University of Messina, Messina, Italy, 2010.
8. Herzog, J.; Restuccia, G.; Tang, Z. s-Sequences and symmetric algebras. Manuscripta Math. 2001, 104, 479-501. [CrossRef]
9. Restuccia, G.; Utano, R.; Tang, Z. On the Symmetric Algebra of the First Syzygy of a Graded Maximal Ideal. Commun. Algebra 2016, 44, 1110-1118. [CrossRef]
10. Restuccia, G.; Utano, R.; Tang, Z. On invariants of certain symmetric algebra. Ann. Mat. Pura Appl. 2018, 197, 1923-1935. [CrossRef]
11. Restuccia, G.; Villareal, R.H. On the normality of monomial ideals of mixed products. Comun. Algebra 2001, 29, 3571-3580. [CrossRef]
12. Villareal, R.H. Monomial algebras. In Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Inc.: New York, NY, USA, 2001; Volume 238.
13. La Barbiera, M.; Lahyane, M.; Restuccia, G. The Jacobian Dual of Certain Mixed Product Ideals*. Algebra Colloq. 2020, 27, 263-280. [CrossRef]
14. La Barbiera, M.; Restuccia, G. Mixed Product Ideals Generated by s-Sequences. Algebra Colloq. 2011, 18, 553-570. [CrossRef]
15. La Barbiera, M.; Restuccia, G. A note on the symmetric algebra of mixed products ideals generated by s-sequences. Boll. Mat. Pura Appl. 2014, VIII, 53-60.
16. CoCoATeam, CoCoA: A system for doing Computations in Commutative Algebra. Available online: http:/ / cocoa.dima.unige.it (accessed on 9 September 2021).
17. Bruns, W.; Herzog, H.J. Cohen-Macaulay rings. In Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 1998; Volume 39.
