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Abstract 

This paper deals with the evaluation of the lower and upper bounds of the natural frequencies of 

structures with uncertain-but-bounded parameters. The solution of the generalized interval 

eigenvalue problem is pursued by taking into account the actual variability and dependencies of 

uncertain structural parameters affecting the mass and stiffness matrices. To this aim, interval 

uncertainties are handled by applying the improved interval analysis via extra unitary interval 

(EUI), recently introduced by the first two authors. By associating an EUI to each uncertain-but-

bounded parameter, the cases of mass and stiffness matrices affected by fully disjoint, completely or 

partially coincident uncertainties are considered. Then, based on sensitivity analysis, it is shown that 

the bounds of the interval eigenvalues can be evaluated as solution of two appropriate deterministic 

eigenvalue problems without requiring any combinatorial procedure. If the eigenvalues are 

monotonic functions of the uncertain parameters, then the exact bounds are obtained. The accuracy 

of the proposed method is demonstrated by numerical results concerning truss and beam structures 

with material and/or geometrical uncertainties. 
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1. INTRODUCTION 

The evaluation of the natural frequencies and the corresponding mode shapes plays a crucial role in 

vibration analysis since it provides a great deal of information concerning the dynamic 

characteristics of a system. Within a deterministic setting, this task is accomplished by solving the 

generalized eigenvalue problem which involves the mass and stiffness matrices of the structure. 

Changes of inertial and stiffness properties due to uncertainties inherent in any design process may 

affect to a large extent the vibration characteristics of a structural system. It is, therefore, of primary 

interest for design purposes to estimate the effects of geometrical and/or material uncertainties on 

the natural frequencies. Such uncertainties are commonly described within a probabilistic 

framework by using the random variable or random field concept. However, in the last decades, the 

so-called non-probabilistic approaches, such as convex model, fuzzy sets or interval model [1], have 

increasingly spread as alternative tools for handling uncertainties arising in engineering problems. 

The interval model, stemming from the interval analysis [2,3], is widely used when only the range 

of variability of non-deterministic properties is known but available data are insufficient to make 

reliable assumptions on the joint probability density function.  

If the uncertain parameters are modeled as interval variables, the mass and stiffness matrices of 

the structure turn out to be interval matrices and the eigenvalue analysis leads to the so-called 

generalized or standard interval eigenvalue problems. The solution of these problems is a very 

difficult task since it consists in the evaluation of all possible eigenvalues and eigenvectors as the 

interval stiffness and mass matrices vary between their bounds. In practice, the objective is the 

determination of the narrowest intervals enclosing all possible eigenproperties, say the evaluation of 

the bounds of the eigenvalue and associated eigenvector for each eigensolution.  

The solution of the interval eigenvalue problem has attracted much research attention in the last 

decades. Rohn [4] studied the generalized interval eigenvalue problem and derived formulas for the 

interval eigenvalues of a symmetric interval matrix with an error matrix of rank one. Based on the 
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invariance properties of the characteristic vector entries, Deif [5] developed a method for the 

solution of the standard interval eigenvalue problem. The application of this method is limited by 

the lack of an efficient criterion for judging the invariance of signs of the eigenvectors components 

under interval matrix operations before computing interval eigenvalues. Under the assumption that 

the deviation amplitudes of the mass and stiffness matrices are positive semi-definite, Qiu et al. [6] 

proposed a procedure for the solution of the generalized interval eigenvalue problem which leads to 

two deterministic eigenvalue problems involving the bounds of the mass and stiffness matrices. The 

effectiveness of this method has been assessed by comparison with Deif’s solution in the simplest 

case of fully disjoint mass and stiffness uncertainties. Following a similar reasoning, Elishakoff [7] 

proposed a procedure for finding the range of eigenvalues due to uncertain elastic moduli and mass 

density by using the upper and lower stiffness and mass matrices. A perturbation method for the 

solution of the generalized interval eigenproblem has been developed by Qiu et al. [8] by viewing 

the deviation amplitudes of the mass and stiffness matrices as perturbations around the nominal 

values of the interval matrix pair. The procedure is applicable for small deviation amplitudes and 

has been validated only in the case of fully disjoint mass and stiffness uncertainties. Qiu et al. [9] 

introduced the Eigenvalue Inclusion Principle (EIP) which leads to the solution of two deterministic 

eigenvalue problems as well. If the mass and stiffness are affected by different uncertainties, the 

exact bounds are obtained. In general, this approach is accurate and efficient but it does not provide 

a physically consistent treatment of uncertainties affecting simultaneously the stiffness and mass 

matrices. Furthermore, the EIP is applicable only when the matrix pairs can be expressed by the 

non-negative decomposition. Based on a previously developed interval finite element method, 

Modares et al. [10] proved that, in the presence of any physically allowable uncertainty in the 

structural stiffness, the solutions of two deterministic eigenvalue problems are sufficient to obtain 

the exact bounds of the system’s fundamental frequencies without resorting to any combinatorial 

solution procedure. Gao [11] proposed the interval factor method to investigate the effects of 

geometrical and material interval uncertainties on the natural frequencies and mode shapes of truss 
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structures. Despite its simplicity, the method provides physically inconsistent results such as the 

independency of natural frequencies and mode shapes on the uncertainty of cross-sectional areas 

and Young’s moduli, respectively. Furthermore, the dispersion of the interval eigenproperties 

around their midpoint values turns out to be unexpectedly independent of the mode order. Several 

perturbation-based (see e.g. [12-15]) or iterative procedures (see e.g. [16-19]) for the evaluation of 

the interval eigenvalue bounds have been also developed in the last decades. An evolution strategy 

for computing eigenvalue bounds of interval matrices has been presented by Yuan et al. [20]. In an 

attempt to take into account the dependencies of the uncertain parameters entering the mass and 

stiffness matrices, recently an approach based on a modified affine arithmetic has been proposed 

[21]. Besides the involved solution procedure, a common drawback of the aforementioned 

approaches is that their accuracy is assessed only for simple examples with fully disjoint mass and 

stiffness uncertainties. 

The aim of this paper is to propose an efficient method for the solution of the generalized 

interval eigenvalue problem, able to overcome the limitations of available procedures discussed 

above. The key idea is to seek the bounds of the eigenvalues taking into account the actual influence 

of uncertainties on the mass and stiffness matrices and their dependencies. In other words, rather 

than tackling the problem from a merely mathematical point of view, the proposed procedure seeks 

a solution consistent with the physical behaviour of the structure. Interval uncertainties are handled 

following the improved interval analysis via extra unitary interval [22,23]. All possible situations 

occurring in real engineering problems, where uncertainties affecting the mass and stiffness 

matrices may be fully disjoint, completely or partially coincident, are examined. In each of these 

cases, a preliminary sensitivity analysis is performed in order to investigate the behaviour of the 

eigenvalues as functions of the uncertain parameters [1,24]. Based on the information provided by 

the eigenvalue sensitivities, the combinations of the extreme values of the uncertain parameters 

corresponding to the bounds of the eigenvalues are determined. Hence, the eigenvalue bounds can 
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be evaluated as solution of two appropriate deterministic eigenvalue problems without any 

combinatorial procedure. This ensures substantial computational advantages over the vertex method 

[25] which yields the exact bounds of monotonic eigenvalues at the expense of the onerous solution 

of as many deterministic eigenvalue problems as are the combinations of the extreme values of the 

uncertain structural parameters.  

The accuracy of the proposed procedure is demonstrated by analysing two truss structures and a 

FE modeled cantilever beam in the three cases of mass and stiffness matrices affected by fully 

disjoint, completely coincident and partially coincident uncertainties. It is demonstrated that the 

proposed estimates of the eigenvalue bounds are exact as long as the eigenvalues are monotonic 

functions of the uncertain parameters. 

 

2. PROBLEM FORMULATION 

2.1 Interval uncertainty modeling via Extra Unitary Interval 

The present study focuses on eigenvalue analysis of linear undamped structural systems with 

uncertain parameters, such as material and geometrical properties, affecting the mass and stiffness 

matrices. Within a non-probabilistic framework, uncertainties are represented as closed real interval 

numbers according to the so-called interval model. This model, mainly based on the interval 

analysis [2,3], turns out to be a very useful tool to carry out engineering analyses when only the 

range of variability of the uncertain parameters is available.  

Denoting by  the set of all closed real interval numbers, let  ,I r=     be a bounded 

set-interval vector of real numbers such that     . The apex I means interval variable, while 

the symbols   and   denote the lower bound (LB) and upper bound (UB) vectors. According to 

the classical interval arithmetic, the i-th real interval variable  ,I

i i i  =  is characterized by the 

midpoint value (or mean), 0,i  , and the deviation amplitude (or radius), 
i , given by:  
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( ) ( )0,

1 1
;     .

2 2
i i i i i i     =  =+ −  (1a,b) 

The real numbers  ,I

i i i i    = , collected into the vector  ,I =    , are here assumed 

to represent the dimensionless fluctuations of the uncertain structural parameters.  

Following the improved interval analysis via extra unitary interval [22,23], the i -th interval 

parameter 
I
i  is here defined in the following affine form: 

0,
ˆI I

i i i ie  = +  (2) 

where ˆ [ 1, 1]I
ie − + , ( 1,2, , )i r= , is the extra unitary interval (EUI) associated with 

I
i  which 

satisfies the following properties: 

( )    

  ( )

( )  

2

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ0; 1,1 ; / 1,1 ;

ˆ ˆ ˆ ˆ ˆ1, 1 ,   ; ;  

ˆ ˆ ˆ 1,1 .

I I I I I I I

i i i i i i i

I I I I I

i j i i i i i i i

I I I

i i i i i i i i i

e e e e e e e

e e i j x e y e x y e

x e y e x y e x y

− =  = = =

 = − +   = 

 = =

 (3a-f) 

In these equations, [1,1] 1=  is the so-called unitary thin interval. It is useful to remember that a 

thin interval occurs when x x=  and it is defined as [ , ]Ix x x , so that x .  

In structural engineering problems, the dimensionless fluctuations of the uncertain-but-bounded 

parameters around their nominal values can be reasonably modeled as symmetric intervals, i.e. 

 ,I

i i i  =  with 
i i = − . Under this assumption, since 

0, 0i =  and 
i i i   = − = , Eq. (2) 

reduces to: 

ˆ .I I

i i ie =   (4) 

Furthermore, to assure physically meaningful values of the uncertain structural properties, the 

deviation amplitudes 
i  should satisfy the conditions 1i  , with the symbol •  denoting 

absolute value. For instance, if the uncertain Young’s modulus of the i -th structural element is 
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expressed as ( )0,
ˆ1I I

i i i iE E e= + , with 0,iE  denoting the nominal value, the fluctuation i

  defined 

by Eq. (4) must satisfy the conditions 1i   to yield always positive values of the interval 

material property. 

According to interval symbolism, a generic interval-valued function f  and a generic interval-

valued matrix function A  of the interval vector I  will be denoted in equivalent form, respectively 

as: 

 

 

( ) ( ), , ;

( ) ( ), , .

I I I

I I I

f f f   =

   =A A A

     

     
 (5a,b) 

 

2.2 Generalized interval eigenvalue problem 

The vibration analysis of a n − DOFs undamped linear discretized structure with r  uncertain-but-

bounded parameters leads to the so-called generalized interval eigenvalue problem: 

 ( ) ( ) ( ) ( ) ( ),   , ,     ( 1,2, , )I

j j j n=  = =K M            (6) 

where ( )I I K K  and ( )I I M M  are the n n  stiffness and mass matrices of the structural 

system which are functions of the dimensionless uncertain parameters collected into the interval 

vector I r ; 
2( ) ( )I I

j j =    is the j − th squared interval natural frequency and ( )I

j   is 

the associated eigenvector.  

According to the classical interval algebra, the interval stiffness and mass matrices satisfy the 

following relationships: 

 

 

( ) , ( )  ;

( ) , ( )  

I

ij ij ij

I

ij ij ij

k k k

m m m

 = =   

 = =   

 

 

K K K K

M M M M

 (7a,b) 
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where 0,ij ij ijk k k= −  and 0,ij ij ijk k k= + , 0,ij ij ijm m m= −  and 0,ij ij ijm m m= + , are the bounds of 

the ( ,i j )-th element evaluated according to Eqs. (1a,b). In the previous equations,  ( ) ( )PS    

means “the set of matrices ( )S  such that the proposition ( )P   holds”. In vibration problems, 

IK K  and IM M  are symmetric positive definite matrices.  

The solution of the generalized interval eigenvalue problem is a non-trivial task since it involves 

the evaluation of all possible eigenvalues satisfying Eq. (6) as the matrices ( )IM  and ( )IK  

assume all possible values inside the intervals (7a,b). The solutions constitute a complicated region 

in the real number field . Therefore, the objective is to evaluate for each eigensolution the 

narrowest interval enclosing all possible eigenvalues satisfying Eq. (6), i.e.: 

 2( ) ( ) , ,      ,I

j j j j    = =  =        (8) 

where j  and j , ( 1,2, , )j n=  , are the LB and UB of the j − th interval eigenvalue.  

The eigenvectors associated with the interval eigenvalues are also affected by the uncertainties 

and turn out to be bounded by interval vectors ( )I

j j   . Since the main concern for design 

purposes is the variation of the natural frequencies due to structural parameter fluctuations, attention 

is focused herein on the evaluation of the bounds of the interval eigenvalues. 

If the eigenvalues are monotonic functions of the uncertain parameters  ,I

i i i i    = , 

( 1,2, , )i r= , then the exact values of the LB and UB, j  and j  , ( 1,2, , )j n= , can be obtained 

by applying the vertex method [25]. Indeed, the bounds of the interval eigenvalues occur at the 

extreme points of the uncertain parameter vector I r . The application of the vertex method 

involves the solution of 2r  deterministic eigenvalue problems, as many as are the possible 

combinations of the bounds of the interval uncertainties, and the subsequent evaluation of the 

maximum and minimum eigenvalue for each eigensolution. Such a combinatorial procedure 

becomes prohibitive as the number of uncertain parameters increases. Some approximate methods 
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available in the literature enable to efficiently replace the combinatorial procedure by the solution of 

two deterministic eigenvalue problems (see e.g. [7-10]). The main limitation of such methods lies in 

the inability to take into account dependencies between mass and stiffness uncertainties according 

to the actual variability of structural properties in real engineering problems.  

 

3. PROPOSED PROCEDURE FOR EVALUATING EIGENVALUE BOUNDS  

The aim of this study is to propose an efficient procedure for evaluating the bounds of the interval 

natural frequencies able to take into account the dependencies between uncertain parameters and 

their actual variability in real structural systems. For this purpose, based on their influence on the 

structural matrices, the uncertain parameters are subdivided into three groups: 1) uncertainties 

affecting only the stiffness matrix, such as the Young’s moduli of the material, denoted by ,

I

K i , 

( 1,2, , )Ki r= ; 2) uncertainties affecting only the mass matrix, such as lumped masses in 

discretized structures or mass density, denoted by ,

I

M i , ( 1, 2, , )K K K Mi r r r r= + + + ; 3) 

uncertainties affecting simultaneously the stiffness and mass matrices, such as the cross-sectional 

areas or lengths of the structural elements, denoted by 

,

I

KM i , ( 1, 2, , )K M K M K M KMi r r r r r r r= + + + + + + . Based on the above classification, the interval 

vector 
I  of order 

K M KMr r r r= + +  listing the uncertain parameters can be partitioned as follows: 

.
T

I I I I

K M KM
 =       (9) 

Following the improved interval analysis via EUI [22,23], the elements of the sub-vectors I

K , I

M  

and I

KM  can be expressed as 

, , , , , , , , ,
ˆ ˆ ˆ;    ;    I I I I I I

K i K i K i M i M i M i KM i KM i KM ie e e     =  =  =   (10a-c) 
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where 
,

ˆI

K ie , 
,

ˆI

M ie  and 
,

ˆI

KM ie  are the EUIs associated with the three types of uncertainties introduced 

above, while ,K i , ,M i  and ,KM i  are the corresponding deviation amplitudes (see Eq. (1b)). 

Without loss of generality, it is assumed that each of the three interval sub-vectors I

K , I

M  and 

I

KM  collects the dimensionless fluctuations of a given property in the whole structure. For 

instance, I

K  may be the vector listing the dimensionless fluctuations of the Young’s moduli of the 

material in different structural elements. Obviously, in the most general case, more than three 

properties of a structural system may exhibit fluctuations.  

If the eigenvalues are monotonic functions of the uncertain parameters, their exact bounds, 
j  

and 
j , ( 1,2, , )j n= , can be evaluated by applying the vertex method which involves the 

solution of 2r  deterministic eigenvalue problems, as many as are the combinations of the bounds of 

the uncertain parameters. The proposed procedure avoids the onerous solution of 2r  deterministic 

eigenvalue problems by performing a preliminary sensitivity analysis of the eigenvalues. After 

some algebra, the sensitivity of the j -th eigenvalue with respect to the i -th uncertain parameter can 

be expressed as [1,24]: 

, 0, 0, 0, 0, 0,

( )
,    ( 1,2, , ;   1,2, , ).

j

j T T

i j i j j j i j

i

s j n i r





=


= = − = =





   

0

K M  (11) 

In the previous equation, 
0, j  and 

0, j  are the j -th eigenvalue and eigenvector of the nominal 

system, solutions of the following eigenvalue problem: 

0 0, 0, 0 0, ,      ( 1,2, , )j j j j n= = K M  (12) 

where 

0 0( ) ; ( )
= =

= =
 

 
0 0

K K M M  (13a,b) 
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are the stiffness and mass matrices of the structure with nominal values of the uncertain parameters, 

i.e.  = 0 . Furthermore, in Eq. (11) 
iK  and 

iM  denote n n  matrices given by: 

( ) ( )
; ,    ( 1,2, , ).i i

i i

i r
 

= =

 
= = =

 
 

 

0 0

K M
K M  (14a,b) 

As known, the sensitivity defined in Eq. (11) gives information about the change of the j -th 

eigenvalue due to a variation of the i -th structural parameter 
i  with respect to the nominal value. 

Specifically, within a small range around  = 0 , if 
, 0

j is  , then the j-th eigenvalue is an 

increasing function of the parameter i ; conversely, if 
, 0

j is  , then the j-th eigenvalue is a 

decreasing function of the parameter i . Based on the knowledge of the sensitivities 
,j is

 

( 1,2, , )i r= , the combinations of the extreme values of the uncertain parameters corresponding to 

the bounds of the j -th eigenvalue can be found as follows: 

(UB) (LB)

, , ,

(UB) (LB)

, , ,

if  0,   then  ,   ;

if  0,   then  ,   ,    ( 1,2, , ;   1,2, , ).

j

j

i j i i j i i

i j i i j i i

s

s j n i r





   

   

 = =

 = = = =
 (15a,b) 

Taking into account the partition of the vector   in Eq. (9), the previous parameters are 

collected into the following vectors of order r : 

(UB) (UB) (UB) (UB) (LB) (LB) (LB) (LB)

, , , , , ,;    ,    ( 1,2, ).
T T

j K j M j KM j j K j M j KM j j n   = = =            (16a,b) 

Then, the bounds of the eigenvalues can be evaluated solving the following two deterministic 

eigenvalue problems: 

( ) ( ) ( ) ( )(LB) (LB) (UB) (UB); ,    ( 1,2, ).j j j j j j j j j j j n = = =       K M K M  (17a,b) 

To cover the most common situations occurring in structural analysis, three different cases will 

be examined where the uncertain parameters affecting the mass and stiffness matrices are assumed: 

i) fully disjoint (e.g. Young’s moduli and mass density); ii) completely coincident (e.g. cross-
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sectional areas or lengths); iii) partially coincident (e.g. Young’s moduli, mass density and cross-

sectional areas or lengths).  

 

3.1 Mass and stiffness matrices affected by fully disjoint uncertainties (CASE I) 

Case I concerns structural systems whose stiffness and mass matrices are affected by fully disjoint 

uncertain parameters. As a typical example, consider the case of structures with uncertain Young’s 

modulus and mass density of the material. 

Under this assumption, the vector (9) collecting the uncertain parameters reduces 

to
T

I I I

K M
 =     , and the mass and stiffness matrices turn out to be functions of fully disjoint 

parameters, say ( )I I

K=Κ Κ   and ( )I I

M=Μ Μ  . Furthermore, it can be readily verified that the 

sensitivities of the eigenvalues with respect to the stiffness parameters are given by: 

, 0, 0,

,

( ) ( )
,    ( 1,2, , ;   1,2, , ).

j

j j T

i j i j K

i K i

s j n i r

 

 
= =

 
= = = = =

 
 

 
 

0 0

K  (18) 

Similarly, the sensitivities of the eigenvalues with respect to the parameters affecting only the 

mass matrix take the following form: 

, 0, 0, 0,

,

( ) ( )
   ( 1,2, , ;   1, 2, , ).

j

j j T

i j j i j K K K M

i M i

s j n i r r r r

 


 
= =

 
= = = − = = + + +

 
 

 
 

0 0

M  (19) 

Taking into account that the matrices 
iK  and 

iM  (see Eq. (14a,b)) are positive semi-definite and 

that 
0, j  are the eigenvectors of the nominal structure, the combinations of the extreme values of the 

uncertain parameters giving the bounds of the eigenvalues can be determined as: 
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(UB) (UB) (LB) (LB)

0, 0, , , , , , , , ,

,

(UB) (UB) (LB) (LB)

0, 0, 0, , , , , , , , ,

,

( )
0 ,   ,   ( 1, 2, , );

( )
0 ,   ,   

                

j T

j i j j i K j i K i j i K j i K i K

K i

j T

j j i j j i M j i M i j i M j i M i

M i

i r


     



      



=

=


  = = = = =




−   = = = =








=  


=  

0

0

K

M

                                                                              ( 1, 2, , ).K K K Mi r r r r= + + +

  (20a,b) 

Based on the information given by the preliminary sensitivity analysis, within a small range 

around 0 = , all eigenvalues turn out to be monotonic increasing and decreasing functions of the 

parameters 
,K i  and 

,M i  affecting only the stiffness and mass matrix, respectively. 

Collecting the combinations of the extreme values of the uncertain parameters into the following 

vectors: 

   (UB) (UB) (UB) (LB) (LB) (LB)

, , , ,;    ,    ( 1,2, , ),
T TT T

j K j M j K M j K j M j K M j n   = = = = =              

 (21a,b) 

the bounds of the eigenvalues ( )j  , ( 1,2, , )j n= , with 
T

I I I

K M
  =      , can be evaluated 

solving the following two deterministic eigenvalue problems: 

( ) ( ) ; ( ) ( ) .
jK j M j K j j M j = =       K M K M  (22a,b) 

Notice that the first eigenproblem is defined setting 
,

ˆ 1I

K ie = − , ( 1,2, , Ki r= ) and 
,

ˆ 1I

M ie = + , 

( 1, 2, , )K K K Mi r r r r= + + + . Conversely, in the definition of the second eigenvalue problem, 

providing the UB of the eigenvalues, the stiffness and mass uncertainties are set simultaneously at 

their UB and LB, respectively, namely 
,

ˆ 1I

K ie = + , ( 1,2, , Ki r= ) and 
,

ˆ 1I

M ie = − , 

( 1, 2, , )K K K Mi r r r r= + + + . Finally, it is observed that such combinations of the extreme values of 

the uncertain parameters give the bounds of the eigenvalues for all eigensolutions. 

As will be shown through numerical results, the LB and UB of the eigenvalues obtained as 

solution of the eigenvalue problems in Eqs. (22a,b) are always coincident with those provided by 
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the vertex method. Furthermore, if only stiffness uncertainties are present, the proposed approach 

reduces to the one developed by Modares et al. [10]. In this connection, the present method turns 

out to be more general than the procedure proposed in Ref [10] which is applicable to structures 

involving uncertain stiffness properties only.  

 

3.2 Mass and stiffness matrices affected by the same uncertainties (CASE II) 

Case II refers to structures with uncertain-but-bounded parameters affecting simultaneously the 

stiffness and mass matrices. This circumstance occurs, for instance, when the cross-sectional areas 

or the lengths of the structural elements are uncertain. In this case, the interval vector (9) collecting 

the uncertain parameters reduces to I I

KM=  , and the mass and stiffness matrices are functions of 

the same parameters, i.e.: 

( );I I

KM=Κ Κ    ( ).I I

KM=Μ Μ    (23a,b) 

The eigenvalue sensitivities take the general expression in Eq. (11), i.e.: 

0, 0, 0, 0, 0,

,

( ) ( )
,  ( 1,2, , ;   1,2, , ).

j j T T

j i j j j i j KM

i KM i

j n i r r
 


 

= =

 
= − = = 

 
 

 
=    

0 0

K M   (24) 

Hence, the combinations of the extreme values of the uncertain parameters giving the bounds of 

the eigenvalues can be determined as: 

(UB) (UB) (LB) (LB)

, , , , , , , ,

,

(UB) (UB) (LB) (LB)

, , , , , , , ,

,

( )
if  0   then  ;    ;

( )
if  0   then  ;    ,

                 

j

j i KM j i KM i j i KM j i KM i

KM i

j

j i KM j i KM i j i KM j i KM i

KM i


     




     



=

=

 
 = = = =





 = = = =











0

0

                                            ( 1,2, , ;   1,2, , ). KMj n i r r= = 

  (25a,b) 

The bounds of the eigenvalues ( )j  , ( 1,2, , )j n= , with I I

KM =   , can be evaluated as 

solution of the following two deterministic eigenproblems: 
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( ) ( ) ( ) ( )(LB) (LB) (UB) (UB)

, , , ,; .KM j j j KM j j KM j j j KM j j = =       K M K M  (26a,b) 

Notice that, according to the philosophy of the improved interval analysis via EUI [22,23], the 

above eigenvalue problems are defined assuming the same combination of the extreme values of the 

uncertain parameters in the evaluation of the mass and stiffness matrices, say the EUIs 

,ˆ [ 1, 1]I
KM ie = − +  are set simultaneously at their lower or upper bounds. Specifically, for each 

eigensolution, the matrices ( )(LB)

,KM jK  and ( )(UB)
,KM jK  are associated with the matrices ( )(LB)

,KM jM  

and ( )(UB)
,KM jM , respectively. It follows that Eqs. (26a,b) allow to overcome the inconsistency 

inherent in the EIP [9], which provides the eigenvalue bounds as solution of two deterministic 

eigenproblems derived setting the interval parameters I

KM  at opposite extremes when evaluating 

the stiffness and mass matrices, despite they always represent the same physical properties.  

The proposed approach is much more efficient than the vertex method from a computational 

point of view. Indeed, to evaluate the bounds of the n  eigenvalues, it requires the evaluation of 

n r  sensitivities (see Eqs. (24)) and the solution of 2 n  eigenvalue problems (see Eqs.(26a,b)), 

while the vertex method involves the solution of 2r
 eigenvalue problems. 

Finally, it is worth emphasizing that Eqs. (26a,b) yield the exact bounds only if the eigenvalues 

are monotonic functions of the uncertain parameters 
,KM i . 

 

3.3 Mass and stiffness matrices affected by partially coincident uncertainties (CASE III) 

Case III concerns the general problem of structures with partially coincident uncertain-but-bounded 

parameters affecting the stiffness and mass matrices. In this case, the interval vector collecting the 

uncertain parameters is defined as in Eq.(9), so that: 

( , )I I I

K KM=Κ Κ   ;  ( , ).I I I

M KM=M M    (27a,b) 
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Equations (20a,b) have shown that, due to the positive semi-definiteness of the matrices 
iK  and 

iM , within a small range around 0 = , the eigenvalues are monotonic increasing and decreasing 

functions of the parameters ,K i  and ,M i , respectively. Thus, the combinations of the extreme 

values of fully disjoint stiffness and mass uncertain parameters to be considered in the evaluation of 

the eigenvalue bounds are those given in Eqs. (21a,b). Similarly, the sensitivities of the eigenvalues 

with respect to the parameters 
,KM i  defined by Eq.(24), herein rewritten for the sake of clarity, 

allow to determine the combinations of the extreme values of such parameters corresponding to the 

bounds of the eigenvalues:  

(UB) (UB) (LB) (LB)

0, 0, 0, 0, 0, , , , , , , , ,

,

(UB) (UB)

0, 0, 0, 0, 0, , , , ,

,

( )
if  0  then  ;   ;

( )
if  0  then  ;   

j T T

j i j j j i j j i KM j i KM i j i KM j i KM i

KM i

j T T

j i j j j i j j i KM j i KM i

KM i


      




    



=

=


−  = = = =




−  = =








=    


=    

0

0

K M

K M (LB) (LB)

, , , , ,    

                                                   ( 1,2, , ;   1, 2, , ).

j i KM j i KM i

K M K M K M KMj n i r r r r r r r r

 







= =


= = + + + + + + + 

   

 (28a,b) 

Based on the previous sensitivity information, the bounds of the eigenvalues ( )j  , 

( 1,2, , )j n= , with 
T

I I I I

K M KM
  =       , can be evaluated solving the following two 

deterministic eigenvalue problems: 

( ) ( ) ( ) ( )(LB) (LB) (UB) (UB);j j j j j j j j j j = =       K M K M  (29a,b) 

where 

(UB) (UB) (UB) (UB) (UB)

, , , ,

(LB) (LB) (LB) (LB) (LB)

, , , ,

   

,    ( 1,2, ).

T T

j K j M j KM j K M KM j

T T

j K j M j KM j K M KM j j n

   = =   

   = = =   

      

      

 (30a,b) 
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Notice that, according to the philosophy of the improved interval analysis via EUI [22,23], the EUIs 

,ˆI
KM ie  must take the same value in the evaluation of the mass and stiffness matrices, while the EUIs 

,ˆI
K ie  and ,ˆI

M ie  associated with fully disjoint uncertainties vary independently. Furthermore, it is 

observed, that the combinations of the extreme values of the uncertain parameters 
,K i  and 

,M i  

affecting only the stiffness and mass matrices, respectively, are the same for all eigenvalues and are 

known a priori on account of the properties of the matrices iK  and 
iM . Conversely, the vectors 

(UB)

,KM j  and (LB)

,KM j , in general, are different for each eigensolution since their definition results from 

sensitivity analysis. It follows that the computational effort is the same as that required in CASE II 

examined in the previous section. 

If 
KM = 0 , the uncertain parameters turn out to be fully disjoint and CASE I is recovered (see 

Eqs. (22a,b)). Similarly, if 
K = 0  and 

M = 0 , the mass and stiffness matrices are affected by the 

same uncertain parameters and the deterministic eigenproblems (29a,b) reduce to those obtained in 

CASE II (see Eqs. (26a,b)). 

The efficiency of the proposed approach lies in the capability of predicting the combinations of 

the extreme values of the uncertain parameters corresponding to the bounds of the eigenvalues 

based on the information given by sensitivity analysis along with the physical meaning of 

uncertainties. In particular, the cases examined above have shown that eigenvalue sensitivities 

actually need to be computed only for uncertainties affecting simultaneously the stiffness and mass 

matrices, say for geometrical uncertainties. The proposed solution is exact as long as the 

eigenvalues are monotonic functions of the uncertain parameters. 

 

4. NUMERICAL APPLICATIONS 

Three examples concerning truss structures of different complexity and a FE modeled cantilever 

beam are presented. The accuracy of the proposed procedure is assessed for the three cases of fully 
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disjoint, completely coincident and partially coincident mass and stiffness uncertainties discussed 

above. For validation purposes, the proposed estimates of the LB and UB of the eigenvalues are 

contrasted with those provided by the vertex method. If the eigenvalues are monotonic functions of 

the uncertain parameters, the proposed approach yields the same results of the vertex method. 

In the various cases, the influence of the uncertain parameters on the eigenvalues is scrutinized 

by evaluating the so-called coefficient of interval uncertainty, 
j

C , defined as the ratio between the 

deviation amplitude and the midpoint value, i.e.: 

0,

,      ( 1,2, , ).
j

j j j

j j j

C j n

  

  

 −
= = =

+
 (31) 

The coefficient of interval uncertainty, 
j

C , provides a measure of the dispersion of the interval 

eigenvalues 
I

j  around their midpoint value 0, j .  

 

4.1 Example 1: 2-bar truss structure 

The first example concerns the 2-bar truss structure depicted in Figure 1. The following geometrical 

and mechanical properties are assumed for the nominal structure: cross-sectional areas and Young’s 

moduli of the bars 4 2
0, 0 5 10  miA A −= =   and 8 2

0, 0 2.1 10  kN/miE E= =   ( 1,2)i = , respectively; 

nominal lengths of the bars 0,1 2L L=  and 0,2 2L L=  with 3 mL =  (see Figure 1); material mass 

density 3
0 7800 kg/m = ; nominal mass lumped at node 2 0 1000 kgm = . 

In view of the system simplicity, closed-form expressions of the two eigenvalues of the structure 

in terms of the uncertain structural parameters, 1 1( ) =   and 2 2 ( ) =  , here omitted for 

conciseness, can be derived. Then, the exact LB and UB of the eigenvalues can be readily obtained 

as the minimum and maximum of the functions 1 1( ) =   and 2 2 ( ) =   under the 

constraint  ,I =    . In Table 1, the proposed estimates of the coefficient of interval 
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uncertainty of the two eigenvalues are contrasted with the exact ones provided by the optimization 

procedure for the 2-bar truss with different uncertain parameters covering the three cases examined 

in Section 3. The optimization procedure has demonstrated that, for this simple example, in all the 

cases listed in Table 1, the exact bounds of the eigenvalues occur for the combination of the 

extreme values of the uncertain parameters predicted by the proposed approach. The same results 

can be obtained by applying the vertex method which requires 2r  eigenvalue analyses.  

For instance, when the Young’s moduli of the two bars and the lumped mass at node 2 are 

modeled as intervals (CASE I), say 
0 ,

ˆ(1 )I I

i E iE E e= + , ( 1,2i = ), and 
2 0

ˆ(1 )I I

mm m e= +  with   

denoting the dimensionless deviation amplitude common to all parameters, and 
,

ˆI

E ie  and ˆI

me  the 

associated EUIs, the exact eigenvalue bounds are obtained solving the eigenvalue problems in Eqs. 

(22a,b).  

If only the cross-sectional areas of the two bars are uncertain-but-bounded, say 

0 ,
ˆ(1 )I I

i A iA A e= + , ( 1,2i = ), the mass and stiffness matrices are affected by the same parameters 

(CASE II). As shown in Figure 2, within the interval [ 0.3, 0.3]− + , the eigenvalues are monotonic 

increasing functions of the uncertain cross-sectional areas and the condition in Eq. (25a) is satisfied. 

Therefore, the exact bounds are those predicted by Eqs. (26a,b) where (LB)

,KM j KM=   and 

(UB)

,KM j KM=  , ( 1,2j = ), namely 
,

ˆ 1I

A ie = −  and 
,

ˆ 1I

A ie = + , ( 1,2i = ), respectively.  

Conversely, when the lengths of the two bars are modeled as interval parameters, 

0, ,
ˆ(1 )I I

i i L iL L e= + , ( 1,2i = ), the exact bounds of the eigenvalues are obtained as solution of the 

eigenvalue problems in Eqs. (26a,b) where (LB)

,KM j KM=   and (UB)

,KM j KM=  , ( 1,2j = ) namely 

,
ˆ 1I

L ie = +  and 
,

ˆ 1I

L ie = − , ( 1,2i = ), respectively. Indeed, as shown in Figure 3, within the interval 

[ 0.3, 0.3]− + , the eigenvalues are monotonic decreasing functions of the uncertain lengths of the 



20 
 

bars and the condition in Eq.(25b) is satisfied. Indeed, it can be readily verified that the conditions 

0, 0, 0T

j i j  K  and 
0, 0, 0T

j i j  M  hold for any eigensolution. 

Finally, in the most general case involving uncertain Young’s moduli, cross-sectional areas, 

lengths and lumped mass, the exact eigenvalue bounds are provided by the eigenvalue problems in 

Eqs. (29a,b) setting: 
,

ˆ 1I

E ie = + , 
,

ˆ 1I

A ie = + , 
,

ˆ 1I

L ie = − , ( 1,2i = ), and ˆ 1I

me = −  to find the UB; 
,

ˆ 1I

E ie = − , 

,
ˆ 1I

A ie = − , 
,

ˆ 1I

L ie = + , ( 1,2i = ), and ˆ 1I

me = +  to evaluate the LB.  

By inspection of Table 1, it is observed that the dispersion around the midpoint values is the 

same for the two eigenvalues. To demonstrate the accuracy of the proposed method, the results 

reported in Table 1 are obtained considering large deviation amplitudes of the uncertain parameters, 

say 0.3 = , which lead to a very large dispersion of the eigenvalues unlikely to occur in 

engineering practice. 

 

4.2 Example 2: 27-bar truss structure 

Let us consider the 27-bar truss structure shown in Figure 4. The nominal structure is characterized 

by the following geometrical and mechanical properties: cross-sectional areas and Young’s moduli 

of the bars 4 2
0, 0 5 10  miA A −= =   and 8 2

0, 0 2.1 10  kN/miE E= =   ( 1,2, ,27)i = , respectively; 

nominal lengths of the bars 0,iL  ( 1,2, ,27)i =  specified in Figure 4 where 3 mL = ; material mass 

density 3
0 7800 kg/m = . Furthermore, each node possesses a nominal lumped mass 0 1000 kgm = . 

 

4.2.1 Uncertain Young’s moduli and lumped masses (CASE I) 

To validate the proposed method in the case of fully disjoint mass and stiffness uncertainties, it is 

assumed that the Young’s moduli of nine bars and the masses lumped at nine nodes are described 

by interval variables, say: 0 ,ˆ(1 )
I I
i E iE E e= + , ( 16,17, ,24i = ); 0 ,ˆ(1 )

I I
j m jm m e= + , 
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( 4,5, ,12)j = , where   is the dimensionless deviation amplitude common to all uncertain 

parameters, while ,ˆI
E ie  and ,ˆI

m je  are the EUIs associated with each interval variable. According to 

the proposed approach, taking into account that the Young’s moduli and lumped masses enter the 

stiffness and mass matrices, respectively, the LB and UB of the eigenvalues are evaluated as 

solution of the deterministic eigenvalue problems in Eqs. (22a,b) obtained setting ,ˆ 1
I
E ie = − , 

,ˆ 1
I
m je = +  and ,ˆ 1

I
E ie = + , ,ˆ 1

I
m je = − , ( 16,17, ,24i = ; 4,5, ,12j = ) respectively. In Table 2, the 

proposed estimates of the bounds of the first five eigenvalues along with the exact ones obtained by 

the vertex method for 0.3 =  are reported. Notice that, when the stiffness and mass matrices are 

affected by different uncertainties, the proposed method yields the exact LB and UB of the 

eigenvalues even for large uncertainty levels satisfying the condition 1  . It is worth 

emphasizing that the vertex method is much more time consuming than the proposed procedure 

since it requires the solution of 
18

2  deterministic eigenproblems.  

The influence of the uncertain parameters on the first five eigenvalues can be detected from 

Figure 5 where the coefficients of interval uncertainty for three different values of the deviation 

amplitude   of the uncertain parameters are displayed. As expected, the dispersion of the 

eigenvalues around their midpoint value increases as larger uncertainty levels are considered and it 

is different for the various modes. Furthermore, it is observed that the effect of uncertainties is such 

that the coefficient of interval uncertainty of the eigenvalues is larger than the one of the uncertain 

parameters which implies a larger dispersion. 

 

4.2.2 Uncertain cross-sectional areas of the diagonal bars (CASE II) 

The case of mass and stiffness matrices affected by the same parameters is first examined assuming 

that the cross-sectional areas of the diagonal bars of the truss structure are modeled as intervals, 
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say 0 ,ˆ(1 )
I I
i A iA A e= + , ( 16,17 ,27i = ), where   is the dimensionless deviation amplitude 

common to all bars and ,ˆI
A ie  are the corresponding EUIs.  

Focusing the attention on the first five eigensolutions, sensitivity analysis shows that, at least 

within a small range around  = 0 , all eigenvalues are monotonic increasing functions of the 

uncertain cross-sectional areas, say Eq. (25a) is always satisfied, except in the following cases: the 

second eigenvalue 
2

I  is a monotonic decreasing function of the parameters 17
I

A  and 22
I

A ; the third 

eigenvalue 
3

I  is a monotonic decreasing function of the parameters 16
I

A  and 23
I

A . Based on this 

information, the bounds of the eigenvalues I

j  can be evaluated by solving the deterministic 

eigenvalue problems in Eqs.(26a,b) with the appropriate definition of the vectors (LB)

,KM j  and (UB)

,KM j . 

Table 3 shows that the proposed LB and UB of the first five eigenvalues for 0.1 =  are the 

same as those provided by the vertex method. Very small differences between the proposed and the 

vertex solutions may occur for larger uncertainties which actually imply unrealistic deviations of the 

geometrical properties in practical engineering applications. In general, the proposed estimates of 

the eigenvalue bounds are different from those obtained by applying the vertex method when the 

eigenvalues are not monotonic functions of some uncertain parameters, as may happen when 

geometrical uncertainties are considered. 

To gain further insight into the influence of the uncertain geometrical properties on the interval 

eigenvalues, in Figure 6, the proposed coefficients of interval uncertainty of the first five 

eigenvalues for three values of   are plotted. Notice that in this case the dispersion of the 

eigenvalues is smaller than the one of the uncertain structural parameters. 
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4.2.3 Uncertain lengths of the diagonal bars (CASE II) 

To further validate the accuracy of the proposed method in the case of mass and stiffness matrices 

affected by the same uncertain parameters, the lengths of the diagonal bars are modeled as intervals, 

say 0, ,ˆ(1 )
I I
i i L iL L e= + , ( 16,17, ,27i = ), where   is the dimensionless deviation amplitude 

common to all bars and ,ˆI
L ie  are the corresponding EUIs.  

Performing a preliminary sensitivity analysis, it is readily found that the condition in (25b) is 

always satisfied, namely all eigenvalues are monotonic decreasing functions of the uncertain 

lengths. Indeed, the conditions 
0, 0, 0T

j i j  K  and 
0, 0, 0T

j i j  M  hold for all eigensolutions. 

Therefore, the bounds of the eigenvalues can be evaluated by solving the deterministic eigenvalue 

problems in Eqs.(26a,b) where (LB)

,KM j KM=   and (UB)

,KM j KM=  , say ,ˆ 1
I
L ie = +  and ,ˆ 1

I
L ie = − , 

( 16,17, ,27)i = , respectively, in both the mass and stiffness matrices, for all eigensolutions.  

In Table 4, the LB and UB of the first five eigenvalues obtained by the proposed procedure along 

with those provided by the vertex method for 0.1 =  are reported. It can be seen that the 

deterministic eigenvalue problems in Eqs.(26a,b) yield exactly the same results obtained by 

performing 
12

2  eigenvalue analyses according to the vertex method. This means that, for each 

eigensolution, the exact LB and UB of the eigenvalues can be obtained considering only two 

combinations of the uncertain lengths corresponding to ,ˆ 1
I
L ie = +  and ,ˆ 1

I
L ie = − , ( 16,17, ,27i = ). 

Numerical investigations, herein omitted for conciseness, have demonstrated that the same accuracy 

is obtained also for arbitrarily large deviation amplitude of the uncertain lengths 1   which 

however are unrealistic in practical engineering problems. 

The influence of the uncertain parameters on the first five eigenvalues is scrutinized by 

evaluating the coefficient of interval uncertainty which is plotted in Figure 7 for the first five modes 

considering three different values of the deviation amplitude  . As expected, the uncertain 

lengths of the bars have a different influence on the various eigenvalues. Like in the case of 
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uncertain cross-sectional areas of the diagonal bars, the dispersion of the interval eigenvalues 

around the midpoint value is smaller than that pertaining to the uncertain parameters. This means 

that uncertainty in the input parameters is not amplified by the structural system.  

Finally, Figure 8 displays the comparison between the proposed bounds of the first two 

eigenvalues versus the dimensionless deviation amplitude   in the presence of uncertain cross-

sectional areas (see Section 4.2.2) and lengths of the diagonal bars. In both cases, the proposed 

estimates of the LB and UB of the eigenvalues are the same as those given by the vertex method. 

Furthermore, as expected, the width of the eigenvalue regions increases with the uncertainty level. 

It is also observed that, although the coefficients of interval uncertainty are almost the same (see 

Figures 6 and 7), the bounds of the first two eigenvalues pertaining to the truss with uncertain cross-

sectional areas and bar lengths of the diagonal bars are quite different. 

 

4.2.4 Uncertain Young’s moduli, lengths and lumped masses (CASE III) 

Let us now assume that the following parameters are modeled as 

intervals:
0 ,

ˆ(1 )I I

i E iE E e= + , 14,15, ,19i = ; 
0, ,

ˆ(1 )I I

j j L jL L e= + , 20,21, ,25j = ; 

0 ,
ˆ(1 )I I

s m sm m e= + , 7,8, ,12s =  where   is the deviation amplitude common to all parameters 

and 
,

ˆI

E ie , 
,

ˆI

L je  and 
,

ˆI

m se  denote the associated EUIs. The Young’s moduli and lumped masses enter 

only the stiffness matrix and mass matrix, respectively, while the lengths of the bars affect both the 

mass and stiffness of the structure. It follows that the structural matrices are functions of partially 

coincident uncertain parameters as in CASE III examined in Section 3.3. As already mentioned in 

the previous section, all eigenvalues are monotonic decreasing functions of the bar lengths, namely 

the condition in Eq. (25b) is satisfied. Hence, the proposed bounds of the eigenvalues are obtained 

as solutions of the deterministic eigenvalue problems in Eqs. (29a,b) where 
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(UB)
T

j K M KM
 =       and (LB)

T

j K M KM
 =      , namely 

,
ˆ 1I

E ie = + , 
,

ˆ 1I

m se = − , 
,

ˆ 1I

L je = −  

and 
,

ˆ 1I

E ie = − , 
,

ˆ 1I

m se = + , 
,

ˆ 1I

L je = + , ( 14,15, ,19i = ; 7,8, ,12s = ; 20,21, ,25j = ), respectively.  

For comparison purpose, in Table 5, the bounds of the first five eigenvalues obtained by the 

proposed procedure and the vertex method for 0.3 =  are reported. Notice that the deterministic 

eigenvalue problems in Eqs. (29a,b) yield the exact bounds of the eigenvalues even when 

unrealistically large variation of the geometrical parameters are considered. Also in this case, the 

numerical effort of the combinatorial procedure involving the solution of 182  eigenvalue problems 

can be drastically reduced by applying the proposed approach.  

To scrutinize the effect of the uncertain parameters on the interval eigenvalues, in Figure 9 the 

coefficients of interval uncertainty of the first five eigenvalues for three different deviation 

amplitudes   are plotted. As in the previous cases, the dispersion of the interval eigenvalues 

around their midpoint value increases with the uncertainty level and for some modes it is even 

larger than that pertaining to the uncertain input data thus revealing an amplification of the 

uncertainty itself. 

 

4.3 Example 3: FE modeled cantilever beam 

The last example concerns a cantilever Euler-Bernoulli beam discretized into 6en =  FEs (see 

Figure 10). The beam is characterized by the following geometrical and mechanical nominal 

properties: length 
0 3 mL L= = ; Young’s modulus 6 2

0 30 10  kN/mE =  ; rectangular cross-sectional 

area with width 
0 0.3 mb =  and height 

0 0.5 mh = ; material mass density 3
0 2500 kg/m = . Each 

Euler-Bernoulli type FE of length 0.5 miL =  has two DOFs at each node so that the discretized 

beam possesses 12n =  DOFs. The stiffness matrix and the consistent mass matrix of order n n  
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can be determined as explicit functions of the geometrical and mechanical properties based on the 

element matrices and performing standard assembly procedure.  

The proposed method is applied for evaluating the bounds of the first three interval eigenvalues 

of the beam in the three cases of fully disjoint, completely coincident and partially disjoint 

uncertainties. To this aim, the following uncertain parameters of the 6en =  FEs are considered: 

uncertain Young’s modulus and mass density, 0 ,
ˆ(1 )I I

i E iE E e= +  and 0 ,
ˆ(1 )I I

i ie  = +  , (CASE 

I); uncertain width of the cross-sectional area 0 ,
ˆ(1 )I I

i b ib b e= + , (CASE II); uncertain Young’s 

modulus, mass density and width of the cross-sectional area 0 ,
ˆ(1 )I I

i E iE E e= + , 

0 ,
ˆ(1 )I I

i ie  = +   and 0 ,
ˆ(1 )I I

i b ib b e= + , (CASE III). Without loss of generality, all uncertain 

parameters are assumed to exhibit the same deviation amplitude  .  

Numerical results omitted for brevity have shown that in CASE I, where the stiffness and mass 

matrices are affected by fully disjoint parameters, the deterministic eigenproblems in Eqs.(22a,b) 

give the exact solutions for any uncertainty level satisfying the restriction 1  . Indeed, as 

discussed in the previous section, the eigenvalues are monotonic increasing and decreasing 

functions of the parameters affecting only the stiffness (Young’s moduli) and mass matrix (mass 

densities), respectively.  

In CASE II, a preliminary sensitivity analysis is needed to predict the behavior of the 

eigenvalues as functions of the geometrical uncertainties I

ib , ( 1,2, , ei n= ). It can be verified that, 

within a small range around  = 0 , the first three eigenvalues are monotonic increasing functions of 

the parameters I

ib  except in the following cases: the first eigenvalue 
1

I  is a monotonic decreasing 

function of the parameters 
4

Ib , 
5

Ib  and 
6

Ib ; the second and third eigenvalues 
2

I  and 
3

I  are 

monotonic decreasing functions of the parameters 
2

Ib , 
3

Ib  and 
6

Ib . Then, the bounds of the 

eigenvalues I

j  can be evaluated by solving the deterministic eigenvalue problems in Eqs.(26a,b) 
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where the vectors (LB)

,KM j  and ( B)

,

U

KM j  are defined taking into account the information given by the 

sensitivity analysis. Table 6 shows that the LB and UB of the first three eigenvalues obtained by the 

proposed procedure for 0.1 =  are the same as those provided by the vertex method despite the 

latter requires 
6

2  deterministic eigenvalue analyses. It follows, that Eqs.(26a,b) yield the exact 

bounds of the first three eigenvalues. As in the previous examples, differences between the 

proposed and vertex solutions may occur for larger uncertainties which, however, correspond to 

unrealistic variations of the beam geometry. 

Finally, in CASE III, the LB and UB of the first three interval eigenvalues I

j  can be estimated 

by solving the eigenvalue problems in Eqs. (29a,b) where the combinations of the extreme values of 

the parameters I

ib  affecting both the stiffness and mass matrices are defined as in CASE II. Since 

CASE III includes both the previous cases and errors may occur only in the presence of uncertain 

geometrical parameters I

ib , the same accuracy of CASE II is achieved. 

Figure 11 shows the comparison between the coefficient of interval uncertainty of the first three 

interval eigenvalues in the three cases examined above for a deviation amplitude of the uncertain 

parameters 0.1 = . The proposed estimates are always coincident with those provided by the 

vertex method. Furthermore, it is observed that in CASE I, the uncertain parameters produce the 

same dispersion of the first three eigenvalues with respect to the nominal value. Conversely, in 

CASES II and III, uncertainties have a different influence on the first three eigenvalues.  

 

5. CONCLUSIONS 

An efficient procedure for the solution of the generalized interval eigenvalue problem arising in 

vibration analysis of linear undamped structures with uncertain-but-bounded parameters has been 

presented. The underlying idea is to properly take into account the actual variability and 

dependencies of uncertainties in real structural problems. This is accomplished by associating an 
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extra unitary interval to each uncertain parameter according to the so-called improved interval 

analysis. The use of the extra unitary interval enables to handle all possible situations occurring in 

real structural analysis where mass and stiffness uncertainties may be fully disjoint, completely or 

partially coincident. In all these cases, based on the information on the monotonic behaviour of the 

eigenvalues with respect to each uncertain parameter given by a preliminary sensitivity analysis, the 

bounds of the eigenvalues have been evaluated as solution of two appropriate deterministic 

eigenvalue problems.  

The salient features of the proposed procedure may be summarized as follows: i) the actual 

variability and dependencies of uncertainties arising in real structural problems are duly taken into 

account; ii) regardless of the type of uncertainties involved, the bounds of the eigenvalues are 

obtained as solution of two appropriate deterministic eigenvalue problems, thus allowing to perform 

the vibration analysis of real-sized structures; iii) as long as the eigenvalues are monotonic 

functions of the uncertain parameters, the proposed estimates of the bounds are exact despite no use 

is made of a combinatorial procedure. In particular, based on the definition of eigenvalue 

sensitivities it has been shown that the eigenvalues of a structural system are monotonic increasing 

and decreasing functions of the parameters affecting only the stiffness and mass matrices, 

respectively. Thus, for these types of uncertainties, the combinations of the extreme values 

providing the exact bounds of the eigenvalues are known a priori.  

Numerical results concerning the eigenvalue analysis of two truss structures and a FE modeled 

cantilever beam have demonstrated the robustness and accuracy of the proposed procedure by 

comparison with the vertex method. Moreover, numerical investigations have demonstrated that the 

eigenvalues are significantly influenced by variations of geometrical and mechanical properties. In 

particular, different effects of uncertainties on the various modes have been detected. 
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Figure 1. 2-bar truss structure with interval parameters. 
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Figure 2. Plot of the (a) first and (b) second eigenvalues of the 2-bar truss versus the dimensionless 

fluctuations of the uncertain cross-sectional areas [ ],1 ,1 0.3,0.3I

A A
α α∈ = −  and 

[ ],2 ,2 0.3,0.3I

A A
α α∈ = − .  
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FIGURE 3 

 

 

 

 

 

 

 

 

 

Figure 3 . Plot of the (a) first and (b) second eigenvalues of the 2-bar truss versus the dimensionless 

fluctuations of the uncertain lengths [ ],1 ,1 0.3,0.3I

L L
α α∈ = −  and [ ],2 ,2 0.3,0.3I

L L
α α∈ = − .  
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Figure 4. Truss structure with interval parameters. 
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FIGURE 5 

 

 

 

Figure 5. Coefficient of interval uncertainty of the first five eigenvalues of the 27-bar truss for three 

different deviation amplitudes of the uncertain parameters (CASE I: 0 ,ˆ(1 )
I I

i E iE E eα= + ∆ , 

16,17, , 24i = … ; 0 ,ˆ(1 )
I I

j m jm m eα= + ∆ , 4,5, ,12j = … ): proposed estimates coincident with the 

vertex method solutions. 
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Figure 6. Proposed coefficient of interval uncertainty of the first five eigenvalues of the 27-bar truss 

for three different deviation amplitudes of the uncertain parameters (CASE II: 0 ,
ˆ(1 )I I

i A i
A A eα= + ∆ , 

16,17, , 27i = … ): proposed estimates coincident with the vertex method solutions. 
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FIGURE 7 

 

 

 

Figure 7. Coefficient of interval uncertainty of the first five eigenvalues of the 27-bar truss for three 

different deviation amplitudes of the uncertain parameters (CASE II: 0, ,ˆ(1 )
I I

i i L iL L eα= + ∆ , 

16,17, , 27i = … ): proposed estimates coincident with the vertex method solutions. 
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FIGURE 8 

 

 

 

 

 

 

Figure 8. Comparison between the (a) first and (b) second eigenvalues versus α∆  for the 27-bar 

truss with uncertain cross-sectional areas 0 ,
ˆ(1 )I I

i A i
A A eα= + ∆  and lengths 0 ,

ˆ(1 )I I

i L i
L L eα= + ∆  of the 

diagonal bars ( 16,17 , 27i = … ): proposed estimates coincident with the vertex method solutions. 
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Figure 9. Coefficient of interval uncertainty of the first five eigenvalues of the 27-bar truss for three 

different deviation amplitudes of the uncertain parameters (CASE III: 0 ,
ˆ(1 )I I

i E i
E E eα= + ∆ , 

14,15, ,19i = … ; 0, ,
ˆ(1 )I I

j j L j
L L eα= + ∆ , 20,21, , 25j = … ; 0 ,

ˆ(1 )I I

s m s
m m eα= + ∆ , 7,9, ,12s = … ): 

proposed estimates coincident with the vertex method solutions. 
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FIGURE 10 

 

 

 

Figure 10. FE modeled cantilever beam with interval parameters. 
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FIGURE 11 

 

 

Figure 11. Coefficient of interval uncertainty of the first three interval eigenvalues of the FE 

modeled cantilever beam with fully disjoint (CASE I), fully coincident (CASE II) and partially 

dependent (CASE III) uncertain parameters ( 0.1α∆ ==== ): proposed estimates coincident with the 

vertex method solutions. 
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Table. 1. Proposed and exact estimates of the coefficient of interval uncertainty of the eigenvalues 

of the 2-bar truss structure 

Uncertain parameters 

0.3   

Proposed Exact 

1
C  

2
C  

1
C  

2
C  

1 2 2, ,I I IE E m  (CASE I) 0.5460 0.5460 0.5460 0.5460 

1 2,I IA A  (CASE II) 0.2946 0.2946 0.2946 0.2946 

1 2,I IL L  (CASE II) 0.3053 0.3053 0.3053 0.3053 

2 ; , , ,  1,2I I I I

i i im E A L i   (CASE III) 0.8432 0.8432 0.8432 0.8432 

 

 

Table 1



 
 

Table. 2. Proposed and vertex estimates of the LB and UB of the first five eigenvalues of the 27-bar 

truss (CASE I: 0 ,ˆ(1 )
I I
i E iE E e  , 16,17, ,24i  ; 0 ,ˆ(1 )

I I
j m jm m e  , 4,5, ,12j  ) 

Mode j 

0.3   

Proposed Vertex 

j  j  j  j  

1 850.0677 1828.0729 850.0677 1828.0729 

2 6500.6504 12630.1009 6500.6504 12630.1009 

3 7769.2498 17255.2954 7769.2498 17255.2954 

4 21014.8905 45340.6585 21014.8905 45340.6585 

5 22485.9512 59380.7113 22485.9512 59380.7113 

 

 

Table 2



 
 

Table. 3. Proposed and vertex estimates of the LB and UB of the first five eigenvalues of the 27-bar 

truss (CASE II: 0 ,ˆ(1 )
I I
i A iA A e  , 16,17, ,27i  ) 

Mode j 

0.1   

Proposed Vertex 

j  j  j  j  

1 1163.6119 1254.8756 1163.6119 1254.8756 

2 8642.5472 8905.0102 8642.5472 8905.0102 

3 10440.5503 11846.0027 10440.5503 11846.0027 

4 30399.0633 31518.8968 30399.0633 31518.8968 

5 32241.0597 38153.2708 32241.0597 38153.2708 

 

 

Table 3



 
 

Table 4. Proposed and vertex estimates of the LB and UB of the first five eigenvalues of the 27-bar 

truss (CASE II: 0, ,ˆ(1 )
I I
i i L iL L e  , 16,17, ,27i  ) 

Mode j 

0.1   

Proposed Vertex 

j  j  j  j  

1 1165.2002 1262.9742 1165.2002 1262.9742 

2 8633.4062 8943.1691 8633.4062 8943.1691 

3 10474.4983 11955.0812 10474.4983 11955.0812 

4 30388.5339 31647.8782 30388.5339 31647.8782 

5 32425.7685 38591.2873 32425.7685 38591.2873 

 

Table 4



 
 

Table 5. Proposed and vertex estimates of the LB and UB of the first five eigenvalues of the 27-bar 

truss (CASE III: 0, ,
ˆ(1 )I I

i i E iE E e  , 14,15, ,19i  ; 0, ,
ˆ(1 )I I

j j L jL L e  , 20,21 ,25j  ; 

0, ,
ˆ(1 )I I

s s m sm m e  , 7,8, ,12s  ) 

Mode j 

0.3   

Proposed Vertex 

j  j  j  j  

1 866.4222 1830.5995 866.4222 1830.5995 

2 6707.3286 12198.6704 6707.3286 12198.6704 

3 8280.3216 15990.0442 8280.3216 15990.0442 

4 18816.8552 49945.9058 18816.8552 49945.9058 

5 23173.8337 53612.4145 23173.8337 53612.4145 

 

 

Table 5



 
 

Table. 6. Proposed and vertex estimates of the LB and UB of the first three eigenvalues of the FE 

modelled cantilever beam (CASE II: 0 ,ˆ(1 )
I I
i b ib b e  , 1,2, ,6i  ) 

Mode j 

0.1   

Proposed Vertex 

j  j  j  j  

1 31807.1793 45609.6314 31807.1793 45609.6314 

2 1372113.3990 1625864.4583 1372113.3990 1625864.4583 

3 11184143.9897 12520595.7158 11184143.9897 12520595.7158 

 

Table 6


