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Abstract: This paper presents an eddy current approach for testing, estimating, and classifying CFRP
plate sub-surface defects, mainly due to delamination, through specific 2D magnetic induction field
amplitude maps. These maps, showing marked fuzziness content, require the development of a
procedure based on a fuzzy approach being efficiently classified. Since similar defects produce similar
maps, we propose a method based on innovative fuzzy similarity formulations. This procedure can
collect maps similar to each other in particular defect classes. In addition, a low-cost analysis system,
including the probe, has been implemented in hardware. The developed tool can detect and evaluate
the extent of surface defects with the same performance as a hardware tool of higher specifications,
and it could be fruitfully employed by airline companies to maintain aircraft in compliance with
safety standards.

Keywords: carbon fiber-reinforced plate; delamination; classification; fuzzy similarity; finite element
method; eddy currents

1. Introduction

During the last decade, the aviation industry has paid a great deal of attention to
improving aircraft’s safety already at the design stage, coupling a low structural weight
with a high tolerance to damage [1–3]. Accordingly, new classes of advanced composite ma-
terials have been increasingly exploited for this aim. Among these, carbon fiber-reinforced
polymers (CFRPs) play a crucial role. CFRPs are thermosetting plastics or resins, resistant
and light, reinforced with carbon nanotube fibers [4,5]. Although expensive to produce,
CFRPs are intensively used in the aviation industry, where a high strength to weight and
stiffness ratio is required [6]. In addition, they offer excellent mechanical behavior (also due
to the orientation of fibers) with a considerable tolerance to damage [7] and good resistance
to corrosion [8]. However, during manufacturing or in service, CFRPs are susceptible to de-
lamination, so they suffer from low off-axis electrical conductivity that causes the heating of
the material [9]. An additional cause of CFPR delamination is the remarkable ability of these
composites to absorb the energy of the impacts [5,9]. In addition, the loading–unloading
cycles during the flights of the aircraft do not prevent the occurrence of this dangerous
phenomenon, which, if neglected, leads to structural collapse [10]. Non-Destructive Testing
(NDT) is the set of tests and surveys conducted using approaches that do not require the
destruction or removal of samples from the specimen under examination and are aimed
at the search and identification of defects [11,12]. The NDT methodologies are various,
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and each of them is suitable, by characteristics or type of instrumentation, to be used
effectively in different situations, depending on the characteristics of the product to be
analyzed. Among them are the penetrating liquids aimed at ascertaining discontinuities
that emerge on the surface to be examined [13,14]. The control is mainly carried out on
metallic materials. However, the technique can also be used on other materials (as long
as they are inert to the liquid itself and not excessively porous) [15,16]. The penetration
of the liquid into the material occurs by capillarity, making it easy to inspect surfaces
that are difficult to access [15,16]. However, the ability of a liquid to penetrate into the
surface cavities essentially depends on some factors, such as the configuration of the cavity,
the surface tension, the wetting power and the contact angle of the liquid [16]. Ultrasonic
techniques are based on the propagation of elastic waves through the object to be examined
and monitoring the transmitted signal or the reflected/diffracted signal. The techniques
have good versatility but present shortcomings as regards the reconstruction of the shape
of a defect [9,17,18]. The eddy current (ECs) method is highly versatile as it allows any
application that can be correlated to the variations in the chemical–physical characteristics
of any conductor [15,19]. In other words, even the slightest inhomogeneity of a material
can be detected through the test coil, whether geometric, electrical or magnetic variations
determine it [20]. Therefore, by adapting the method to each specific case, checks can
be carried out to detect inhomogeneities associated with the geometry of the material,
such as cracks, deformations, inclusions, thickness variations, oxidations, thicknesses of
non-conductive coatings on a conductive basis or of conductive coatings based on different
conductivity and variations associated with the permeability of the material by measuring
the intensity of the magnetic fields [21–23]. Because of the anisotropic behavior of the
CFRPs’ conductivity due to the delaminations, the conventional NDT techniques fail to
quickly detect defects when applied to these composites [24,25]. However, only the leading
airline companies have the equipment and technical staff able to carry out the needed ECs
tests, while the others rely on specific software, usually based on the finite element method
(FEM), to accomplish this task. Starting from these premises, the aim of the paper is twofold.
Firstly, we investigate how CFRP defect detection and characterization using a numerical
approach based on the FEM comes close to its defect detection and characterization by
measurements. It is worth noting that, for obtaining a realistic defect characterization, it is
necessary to consider the anisotropic behavior of the electrical conductivity of the CRFC
composite due to the deformation of its carbon fibers. Secondly, we aim to develop an inno-
vative procedure based on fuzzy similarity to classify delamination defects in CFRP plates.
The fundamental reason that a fuzzy classifier based on similarity computations has been
designed is that “defects similar to each other (in location and shape)” produce “fuzzy ECs
maps also similar to each other”. Thus, the need arises to structure mathematical functions
with a reduced computational load that evaluate the degree of similarity (or, equivalently,
proximity) between fuzzy images. In this paper, fuzzy similarity functions satisfying this
fundamental requirement have been used. Moreover, they satisfy the mathematical ax-
ioms of fuzzy measures and evaluate to what extent one fuzzy image approaches another.
The paper is organized as follows: in Section 2, an appropriate characterization of the
CFRPs’ electrical conductivity σ is given. From the knowledge of the angular orientation
of the CFRP fibers, it is possible to quantify the electrical conductivity, which agrees with
the experimental tests published in the literature, allowing us to overcome the limitations
already highlighted in the recent past [25–27]. In the same section, a high-frequency eddy
currents (ECs) model of the complete physical system, consisting of the probe and the
CFRP plate under test, is derived. The existence and uniqueness of the solution of this
model is also discussed. The model has been programmed and numerically solved by
exploiting the COMSOL® Multiphysics environment. A suitable mesh composed of tetra-
hedral elements has been exploited to avoid the computation of dangerous ghost solutions.
In Section 3, we report the results for the numerical 2D ECs maps on CFRP plates and the
measured ones. Measurements have been conducted at the NDT&E Laboratory, DICEAM
Department, “Mediterranea” University (Italy), by using a purposely manufactured probe.
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Since similar defects produce similar EC maps, several classes have been realized and
numerically simulated. Specifically, all the EC maps obtained with the same type of defect
have been collected together. In Section 4, we introduce our fuzzy similarity approach to
defect classification. Considering that the EC maps, both numerical and experimental ones,
are affected by uncertainties and/or inaccuracies, an innovative and adaptive fuzzy image
fusion procedure is also discussed. It allows us to obtain a single image for each class to
represent that class. The reliability of the FEM approach for the detection (and estimation
of the entity) of any defects present in CFRP plates was confirmed using this procedure.
In Section 5, a one-to-one correspondence between the EC maps representative of each class
of numerical maps on the EC maps representative of each class of experimental maps has
been demonstrated. To evaluate the performance of the aforementioned approach, an EC
map (with an unknown defect) has been compared with all EC maps representing the
remaining classes. It seems appropriate to underline that the association of a defect with a
particular class of defects is translated in terms of classification by developing an innovative
fuzzy classifier based on calculations of FSs. This is because similar defects produce EC
maps that are entirely similar to each other, so the problem of associating a defect with a
specific class of defects results in the quantification of the measure of proximity (similarity)
between EC maps. The performance thus obtained is notable. Finally, in Section 6, some
conclusions are drawn.

2. The Numerical Model
2.1. Electrical Properties of CRFCs

In CFRP plates, the electrical conductivity, σ, shows an anisotropic behavior because
it depends on the orientation of its fibers [28,29]. Accordingly, it is represented by a ma-
trix. The matrix elements assume rather large values both along the fibers’ direction and
transversely to them [30], while we halve their values in the direction orthogonal to the
fiber plane. In what follows, with the symbols σl , σt and σcross−ply we will indicate the
conductivity along the fibers, transverse to them and orthogonal to the plane contain-
ing them, respectively. Usually, without the addition of particular chemical additives,
σl varies between 5 · 103 and 5 · 104 [S/m]; σt varies between 10 and 100 [S/m], while
σcross−ply ≈ 7600 [S/m]. Given the above, it is well known that the current density, J, can be
formulated in terms of the electrostatic field, E, as J = σ · E. If the reference axes are rotated
clockwise by an arbitrary angle θ with respect to the principal axes, the conductivity matrix
is no longer diagonal (Figure 1a). To obtain this relation, we use the approach exploited
in [29], which uses a simple rotation matrix:

(a) (b)

Figure 1. (a) Principal and reference axes. (b) The behavior of the conductivity matrix elements (6) as
a function of the θ angle.
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R =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (1)

so that J and E become
J′ = R · J E′ = R · E. (2)

Therefore, we have
J′ = σ′ · E′ (3)

where

σ′ =

σl 0 0
0 σt 0
0 0 σcross-ply

 (4)

and exploiting (2), (3) becomes R · J = σ′ ·R · E, from which J = R−1 · σ′ ·R · E, so that

σ = R−1 · σ′ ·R, (5)

achieving

σ =

σl cos2 θ + σt sin2 θ σt−σl
2 sin(2θ) 0

σt−σl
2 sin(2θ) σl sin2 θ + σt cos2 θ 0

0 0 σcross-ply

. (6)

As in [29], the matrix (6) is symmetric, becoming diagonal for θ = 0o and θ = 90o.
Moreover, the off-diagonal terms vanish when σl = σt (i.e., isotropic condition). Figure 1b
depicts the trend of each element in (6) as θ varies, thus highlighting trends analogous to
analytical/experimental evidence known in the literature [25].

2.2. Existence, Uniqueness and Treatment of Constraints of Irrotationality and Solenoidality of the
Numerical Model

Formally, the mathematical domain Ω ⊂ R3 is a bounded domain consisting of two
parts: ΩC, which represents the specimen to be analyzed, and ΩI , which represents its
complementary part (insulator) with σ = 0. For what follows, the geometry of both
ΩC and Ω can be considered arbitrary. For our considerations, we start from the two
curl Maxwell’s equations (where both permittivity, ε, and magnetic permeability, µ, are
assumed constant) [31]:

∇×H = J + ε
∂E
∂t

∇× E = −µ
∂H
∂t

in Ω (7)

in which ε is the electric permittivity and J is the current density: this latter term can be
read as

J = σ(E + v× µH) + Je (8)

where Je is the external current density on the exciting coil and v is the instantaneous

velocity derived from the Lorentz force. Assuming that E(x, t) = Re
[
E(x)ejωt

]
, H(x, t) =

Re
[
H(x)ejωt

]
, J(x, t) = Re

[
J(x)ejωt

]
and Je(x, t) = Re

[
Je(x)ejωt

]
(j is the imaginary unit),

where ω 6= 0 is the angular frequency, we have{
∇×H = σ(E + v× µH) + Je + jωεE in Ω
∇× E = −jωµH in Ω.

(9)

If Ω is a cavity realized with a perfect magnetic conductor (PMC), and n is the unit
outward normal vector on ∂Ω, then [31]

H× n = 0 on ∂Ω (10)
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while, for the case of a perfect electric conductor (PEC),

E× n = 0 on ∂Ω. (11)

The gauge conditions read as [31]{
∇ · E = 0 in ΩI

E · n = 0 on ∂Ω.
(12)

Remark 1. Other gauge conditions are necessary in a more general topology. In particular,
∫

Γj
E · n = 0 ∀j = 1, ..., pΓ∫

∑k
E · n = 0 ∀k = 1, ..., n∂Ω.

(13)

In (13), Γj are the connected components of the Γ interface between ΩI and ΩC; ∑k ⊂ ΩI

(∂ ∑k ⊂ ∂Ω) are the surfaces that cut singular loops on ∂Ω.

Remark 2. In an insulator, σ = 0, so E is not uniquely determined in that region (E+∇φ), where
φ is a scalar potential, which is still a solution) needing additional gauge conditions.

The time-harmonic Maxwell system (9), (10), (12) and (13) is well-posed and it can
be rewritten in terms of just H or just E [31,32]. The use of FEM with irrotationality
and solenoidality constraints is problematic, because it is not easy to construct a basis
of piecewise polynomials that satisfies these constraints. Exploiting scalar and vector
potentials, in the case of irrotationality, one can write

H = He +∇φ + ρ in ΩI (14)

where He is the external H and ∇×He = Je in ΩI ; He × n = 0 on ∂Ω, and ρ is a particular
harmonic field; meanwhile, in the case of solenoidality, εE = ∇ × A in ΩI . However,
concerning the scalar potential φ, one can write the following II-order equation

∇(µ∇φ) = −∇(µHe) in ΩI (15)

while, for the potential vector A, the following III-order equation is achieved

∇× (µ−1∇× (ε−1∇×A)) = −jωJe in ΩI (16)

which leads to a much more complicated problem. Therefore, in the case of solenoidality,
another solution must be found. To solve this problem, one could consider in (H|ΩC , φ|ΩI )

(14) (and similarly for the test functions v). Therefore, one can use edge FEMs in ΩC,
and nodal FEMs (scalar) in ΩI , but suitably connected on Γ [33,34]. The implementation
can be modified so as not to have to determine a basis of the space of the harmonic fields in
ΩI , but only simple nodal finite elements that have a unit jump through the surfaces that
“cut” the singular cycles on Γ. This procedure has the advantage of using the minimum
degrees of freedom (an “edge” vector in ΩC and a scalar in ΩI). However, it has the
disadvantage of requiring the preliminary calculation of He to request the detection of
cutting surfaces for singular cycles on Γ, and it does not determine E|ΩI . Another approach
is based on the idea of adding a penalty term to the variational equation [35]. It is shown
directly that one of its solutions satisfies the solenoidality constraint and therefore is a
solution to the eddy current problem. If ε is scalar and regular in ΩI , the approximation
with finite elements is standard: we use finite elements of edge type in ΩC and of nodal
type in ΩI , connecting them on Γ so that their tangential components are continuous. This
approach has the advantage of not requiring preliminary calculations and uses relatively
few degrees of freedom (an edge vector in ΩC and a nodal vector in ΩI), with cutting
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surfaces for singular loops on ∂Ω (this is always the case when determining E|ΩI for the
(10)). Moreover, if the solution has singularities in ΩI (reentrant angles), it cannot be further
approximated with nodal elements.

2.3. The High-Frequency Numerical Model

We have to use a different pair of vector and scalar potentials, A′ and φ′: taking into
account the Ampere equation, we have

µH = ∇×A′ in Ω. (17)

Moreover, from the second equation of (7), by (17), it follows that

∇× E +
∂

∂t
(∇×A′) = ∇×

(
E +

∂A′

∂t

)
= 0 (18)

from which

E = −∂A′

∂t
−∇φ′ = −jωA′ −∇φ′ (19)

so that both (17) and (19) represent the equations for the potentials.
From the first equation in (9), and considering both (17) and (19), one achieves

∇× µ−1(∇×A′) = (σ(−jωA′ −∇φ′) + v× (∇×A′)) + Je + ω2εA′ − jωε∇φ′ (20)

from which

∇× (µ−1∇×A′) + (jωσ−ω2ε)A′ + (σ + jωε)∇φ′ − σv× (∇×A′) = Je. (21)

Furthermore, assuming that ∇ · Je = 0, from (21), one achieves

∇ · [∇× (µ−1∇×A′) + (jωσ−ω2ε)A′ + (σ + jωε)∇φ′ − σv× (∇×A′)] = 0. (22)

On ∂Ω, we set the following boundary conditions. In particular, the magnetic insulation

A′ × n = 0 on ∂Ω (23)

derives from (10) by means of (17). Moreover, from (11), considering both (19) and (23), we
can write (−jωA′ −∇φ′)× n = −∇φ′ × n = 0, from which

φ′ = 0 on ∂Ω (24)

so that (22)–(24) represent the high-frequency EC model. The model was implemented in
COMSOL® Multiphysics, as described in Section 2.5.

Remark 3. In this work, Je has been set point-by-point exploiting the direction cosine trigonometric
formulation [36]

Je,x = − Je · ŷ√
x̂2 + ŷ2

, Je,y = − Je · x̂√
x̂2 + ŷ2

(25)

where x̂ and ŷ represent the coordinates of the outer points of the coil. Therefore,

Je =

(
I0

2π
√

x̂2 + ŷ2

)
hcoil , I0 = Imax sin(ωt), Imax = Ie f f

√
2 (26)

writing

cos α = − sin γ = − ŷ√
x̂2 + ŷ2

, sin α = cos γ =
x̂√

x̂2 + ŷ2
. (27)

For α and γ angle representation, see Figure 2a.
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(a) (b)

Figure 2. COMSOL® Multiphysics: (a) current density in the exciting coil and (b) EC distribution in
the specimen.

Remark 4. It is important to be sure that the model under study admits a solution and possibly
that the latter is unique. From an analytical point of view, model (22)–(24) has been studied in [33],
highlighting that it still admits a solution. This will allow us to apply numerical procedures to
obtain approximate solutions, which, obviously, will not represent ghost solutions.

2.4. FEM Mesh Generation and Its Quality Assessment

Since the geometry of the physical system is regular, it is appropriate to choose
tetrahedral finite elements, allowing us to have flow lines of the field on the edges parallel
to the edges of the system itself. Then, if V is the region occupied by the system, it is
considerable as the union of non-overlapping juxtaposed sub-regions, As (V = ∪s As,
As ∩ As′ = ∅, s 6= s′), on which to define the mesh and its elements. For the latter, let
V ⊂ R3 be a connected open set covered by a finite number of sets, Tk, in order that
V = ∪NT

k=1, Tk, where T = {Tk}, NT = ‖T ‖ and Tk ∩ Tk′ = ∅, k 6= k′. Tk are the mesh
elements (their sides and vertices are the edges and nodes, respectively). The size of T can
be quantified as [37,38]

h(Tk) = diameter{Tk} = sup
x,y∈Tk

||x− y|| (28)

from which the size h = maxTk∈T h(Tk). It is worth nothing that the more appropriate
approximation space is [39]

Vh = {v ∈ V; v|Tk
is a low degree polynomial}. (29)

T is admissible if ∀k 6= k′, Tk ∪ Tk′ is either empty or consists of a node or of an edge.
Finally, if h is quite small, Tk can be regular if there exists a constant B > 0 such that, ∀h,

max
T∈Th

= h(T){ρ(T)}−1 ≤ B (30)

where ρ(T) is the diameter of the inscribed circle in the finite element. To evaluate the mesh
quality, we will take advantage of some specific valuation indices. Among them, in this
work, we consider [38,39]:

1. The index of skewness, which evaluates how equilateral or equiangular the cells are (a
value of 0 indicates an equilateral element (best), and a value of 1 indicates an element
completely degenerate (worse)).

2. An innovative meshing procedure based on the Delaunay triangulation, which has
been exploited to obtain a robust mesh (avoiding errors due to the discrepancy with
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the boundary-boundary elements). The mesh is constructed so that the sphere circum-
scribed to each finite tetrahedral element inside is devoid of vertices. Furthermore, we
observe that the application of the Delaunay triangulation, in our case (non-convex
physical system), was carried out by imposing the edges defining the mesh.

2.5. The COMSOL® Multiphysics Implementation of the Numerical Model

The aforementioned high-frequency EC Model, together with the formulation for Je as
formulated in Remark 3, has been implemented by COMSOL® Multiphysics. An ad-hoc
probe, employed in the measurement campaign, has been designed using this software
and manufactured at the NDT&E Lab, DICEAM Department, “Mediterranea” University
of Reggio Calabria, Italy. The probe (Figure 3a) consists of two coaxial cylinders of ferrite,
inside which the exciting coil is located. Its geometric characteristics are listed in Table 1
according to the geometric parameters indicated in Figure 3b (which displays the vertical
section of the probe passing through the center of symmetry). The CFRP plate (size
70 mm × 40 mm × 30 mm) has been modeled with three parallelepipeds superimposed
to represent three different layers of the same material (Figure 4). Remarkably, the layers’
orientation has been fixed so that the three superimposed layers form a reticulate with
the greatest possible mechanical resistance. This procedure ensures a good simulation of
the production techniques of CFRP products for the avionics industry (molding of flat
laminates or automated deposition techniques [1]). Moreover, a cylindrical sub-superficial
defect due to delamination has been simulated in the plate. Its radius varies from 0.1 mm
to 1 mm by 0.1 mm as a step (typical defects on aircraft structural elements).

Table 1. Geometric characteristics of both the coil and the E-shaped core.

Coil E-Shaped Core

External Diameter: 6 mm F: 4 mm
Internal Diameter: 4 mm E: 8 mm

Height: 2 mm A: 11 mm
Number of Turns: 20 B: 5.25 mm

Lift-Off: 0.005 mm D: 3.5 mm
D′: 1.5 mm

H: 2 mm

(a) (b)

Figure 3. (a) Probe configuration and (b) a section view.
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Figure 4. CFRP plate simulated by COMSOL® Multiphysics (the three parallelepipeds superimposed
represent three different layers).

3. The EC Maps: Synthetic Generation and Experimental Measurements
3.1. Numerical Simulations

The CFRP plates (with dimensions 7 cm × 7 cm × 3 cm) characterized by sub-
superficial circular defects, with increasing radius, from R = 0.1 mm to R = 1 mm,
by steps of 0.1 mm, located in their center, were implemented and simulated. Each plate
was investigated by moving the probe over a narrow area of the plate containing the defect
as if it were mounted on a handling device. COMSOL® Multiphysics simulations were
conducted exploiting a mesh composed of 18,322 volume elements, 13,896 surface elements
and 15,831 nodes. The mesh quality parameters have been evaluated, thus verifying the
mesh’s good quality. For each defect, several simulations were carried out as a function
of the variation of the excitation current, Iexc = 100 mA, and the excitation frequency,
fexc = 1 MHz. Each defect collects a certain number of EC maps belonging to the identify-
ing class of that given defect. In particular, each EC map thus obtained concerns maps of |B|
obtained near the defect, scanning the plate step-by-step along with the two predominant
orthogonal directions. Finally, a class of EC maps sampled on a defect-free plate was created
(Class ND). Figure 5a,b show typical FEM maps of |B| in proximity to two sub-surface
circular defects of radius 0.1 mm and 0.6 mm, respectively. The first map barely displays
the defect’s presence, while the second one displays the defect more clearly. It is worth
noting that any EC map can be affected by uncertainties and/or inaccuracies, making it
necessary to fuzzily preprocess its information content, transforming any EC map into
a particular fuzzy set. A fuzzy set can be considered a point in a specific n-dimensional
functional space. The distance between two fuzzy sets, fuzzily, quantifies the distance
between these points in that space. Since a generic fuzzified EC map represents a fuzzy set,
a distance between two EC maps represents how close one map is to another. However,
since the same defect produces very similar EC maps, it appears adequate to collect such
EC maps in classes of defects, “converging” all the EC maps about that given class into a
single EC map that is representative of that given class. If an EC map represents the class of
EC maps with a particular defect, then the distance between them fuzzily quantifies their
similarity. Furthermore, if the FSs also represent distances between points in a specific
functional space, the presence (and the extent) of a defect in a CRFP plate can also be
evaluated through the decrease in the FSs concerning the class of EC maps relating to
defect-free plates. Table 2 displays the 11 classes designed, while Figures 2a and 6a depict
the current density distribution in the exciting coil and the EC distribution in the CFRP
plate. Finally, 200 EC maps were constructed as a verification database by submitting CFRP
plates with 200 known (but hypothesized unknown) defects.

Remark 5. The EC maps thus numerically constructed could be used by low-cost airlines if they
were "very similar" to the EC maps obtained through a measurement campaign.
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(a) (b)

Figure 5. Reconstruction of the |B|map by COMSOL® Multiphysics of the CFRP plate area including
(a) the defect (R = 0.1 mm) and (b) the defect (R = 0.6 mm).

(a) (b)

Figure 6. (a) The probe, mounted on a handling system to scan the CFRP plate, and (b) its construc-
tion details.

Table 2. Characteristics of the classes of defects obtained by COMSOL® Multiphysics.

Class Radius Number of EC Maps

Class #1 0.1 mm 324
Class #2 0.2 mm 332
Class #3 0.3 mm 350
Class #4 0.4 mm 326
Class #5 0.5 mm 329
Class #6 0.6 mm 327
Class #7 0.7 mm 326
Class #8 0.8 mm 329
Class #9 0.9 mm 333
Class #10 1 mm 334
Class ND without defects 342
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3.2. The Campaign of Measurements

The ad-hoc manufactured probe has been checked and calibrated by means of stan-
dard CFRP plates, as per current legislation. In particular, the production of CFRP plates
has been divided into three fundamental steps: preheating, forming and cooling. Each
stage is subject to phenomena related to processing parameters and material properties.
During the molding process, the prepeg layer of the material is heated to a temperature
able to melt the polymeric matrix, also used to follow the deformation induced by the
molding process of the material under pressure. However, phenomena of degradation
of the polymeric matrix and deconsolidation of already consolidated prepregs can occur
during heating, caused by the high temperatures used and by thermo-oxidative reactions
that can affect the polymeric matrix when the process takes place in a non-inert atmosphere.
The degradation phenomena induce morphological changes within the matrix, which affect
the processability and properties of the composite. On the other hand, the phenomenon
of deconsolidation creates voids inside the composite that must be reabsorbed during
the forming phase under pressure. Once the material has reached the molding temper-
ature, the molding phase takes place by applying the molding pressure to promote the
compaction and consolidation of the three layers that make up the composite. Finally,
the cooling phase occurs, during which internal stresses could develop due to thermal and
morphological contractions (heterogeneous, anisotropic and thermoviscoelastic materials).
For the production of the plates, an automatic hot plate press has been used, suitable for
the molding of re-formed thermoplastics in the form of prepreg. Figures 6b and 7a show
the probe mounted on a step-by-step handling system to scan the CFRP plates, specially
designed and built to reduce the lift-off noise.

A large number of CFRP plates were built at the Structures Lab of “Mediterranea”
University of Reggio Calabria, Italy. As implemented in COMSOL® Multiphysics, cylindri-
cal defects were created on each plate. In addition, large specimen surface areas were left
free of defects so that the EC investigation could also be carried out on these. A number of
experiments were carried out with different values of both excitation frequency fexc and
excitation current Ie f f . Figure 10a,b visualize the experimental EC s maps of CFRP plates
with R = 0.1 mm and R = 0.6 mm, respectively. Table 3 reports the composition of each
class of defects obtained through the experimental measurement campaign. In addition,
a database of 200 EC maps of known defects was created.

(a) (b)

Figure 7. (a) The manufactured probe, mounted on a handling system to scan the CFRP plate; (b) its
construction details.

Remark 6. It is worth noting that in the present work, an array of sensors was not used to
carry out the experimental measurement campaign. Instead, a single sensor moving on the plate
was used through a step-by-step movement system. This system allowed us, on the one hand,
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to significantly reduce the construction costs of the sensors and, on the other, to avoid the use of
image fusion techniques.

Table 3. Characteristics of the classes of defects obtained by the campaign of measurements.

Class Radius Number of EC Maps

Class #1 0.1 mm 198
Class #2 0.2 mm 172
Class #3 0.3 mm 156
Class #4 0.4 mm 164
Class #5 0.5 mm 149
Class #6 0.6 mm 151
Class #7 0.7 mm 157
Class #8 0.8 mm 181
Class #9 0.9 mm 177
Class #10 1 mm 182
Class ND without defects 200

Remark 7. From the simple observation of the maps obtained experimentally, an expert technician
can evaluate if a defect is present and possibly hypothesize its extent. However, suppose that an
expert is not available. In this case, it appears necessary to have a "real-time" tool capable of
quantifying how similar a map is to a map obtained from measurements on a plate affected by a
known defect. However, we observe that the EC maps could be affected by uncertainties and/or
inaccuracies, so it appears imperative to develop a tool based on fuzzy approaches.

4. Fuzzy Similarity-Based Approach for Defect Classification
4.1. Adaptive Fuzzification of the Maps and Fuzziness Assessment

This step consists of fuzzifying the M× N ECs maps (each of them indicated as EC).
If L indicates the gray level, let us associate with each pixel, (i, j), of EC, its related gray
level aij. Therefore, on EC, let us define a fuzzy membership function (FMF), indicated by
mEC(aij) : EC→ [0, 1], which formalizes how fuzzily aij ∈ EC. Obviously, if mEC(aij) = 1,
totally aij ∈ EC; if mEC(aij) = 0, then aij does not totally belong to EC. Thus, in the case
where mEC(aij) ∈ (0, 1), then aij partially belongs to EC. Indicating by F(EC) the fuzzified
image of EC (where each (i, j) is represented by mEC(aij)), in this work, we build a suitable
adaptive FMF exploiting the fuzziness minimization and contrast maximization criteria
using two fuzzifiers (both equal to 0.5) to evaluate the amount of fuzziness contained in
each EC. Thus, if aij is the gray level of EC, the adaptive FMF proposed can be formulated
as follows [40]:

m′EC(aij) =

(
1 +

(
max(aij)− aij

)
0.5

)0.5

, (31)

such that m′EC(aij) → 1 as aij → max(aij): in this way, the phenomenon of the maxi-
mum brightness is ensured. Moreover, from (31), one can easily obtain mEC(aij); in fact,
by stretching the contrast among the membership values [40], if 0 ≤ m′EC(aij) ≤ 0.5, it is
very easy to write

mEC(aij) =
(m′EC(aij))

2

0.5
; (32)

otherwise, if 0.5 ≤ m′EC(aij) ≤ 1,

mEC(aij) = 1−
(1−m′EC(aij))

2

0.5
(33)
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and aij is computable as

aij = max(aij)− 2
{
(mEC(aij))

2 − 1
}

. (34)

However, it is necessary to quantify the fuzziness content in each F(EC) (so that
the fuzzy approach here presented is applicable); thus, we exploit two indices of fuzzi-
ness, namely the fuzzy linear index, FLI, and fuzzy entropy index, FEI, formulated as
follows [40]:

FLI =
2
n

n

∑
i=1

n

∑
j=1

min(mEC(aij)(1−mEC(aij))) (35)

FEI =
1
n

n

∑
i=1

n

∑
j=1

min(−mEC(aij) log(mEC(aij))− (36)

−(1−mEC(aij)) log(1−mEC(aij)).

Remark 8. When fuzzing any image, the choice of FMS is fundamental as the performance of the
entire procedure depends on it. However, the choice of (31) as FMF guarantees the maximization of
contrast (i.e., highlight and differentiate any edges as much as possible). In the literature, there are
many FMF formulations that fulfil these requirements. However, the choice fell on (31), since it,
with the same high performance, is characterized by a reduced computational load.

The following important result yields [40].

Theorem 1. Let FLI and FEI be formulated as in (35) and (36), respectively. Therefore,

FLI ≤ 1; FEI ≤ 1. (37)

Remark 9. Obviously, if both FLI and FEI assume high values, this indicates high fuzziness in
the EC maps.

4.2. F(EC) Maps and Fuzzy Similarities

Let us consider two F(EC) maps, F(ECx) and F(ECy), where mECx (aij) and mECy(bij)
represent their pixels, respectively. F(ECx) and F(ECy) can be considered as two particular
fuzzy sets in a universe of discourse, U. On F(ECx)× F(ECy), we define the following
FS function

FS : F(ECx)× F(ECy)→ [0, 1]. (38)

Function (38) must be such as to guarantee the reflexivity properties (each map is
totally similar to itself), symmetry (if one map is similar to another, the opposite must
certainly apply with the same degree of confidence) and transitivity. Then, for the reflexivity
property to be valid, it must hold that ∀F(ECx) ∈ U:

FS(F(ECx), F(ECx)) = sup
F(ECx),F(ECy)∈U

FS(F(EC)x, F(EC)y) = 1. (39)

while, for the symmetry property (it does not depend on the order in which the maps
appear) to be valid,

FS(F(ECx), F(ECy)) = FS(F(ECy), F(ECx)). (40)

Concerning the transitivity, ∀F(ECx), F(ECy), F(ECz), such that

F(ECx) ⊂ F(ECy) ⊂ F(ECz), (41)
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it follows that
mECx (aij) ≤ mECy(bij) ≤ mECz(cij), (42)

in which aij, bij and cij represent the gray levels for ECx, ECy and ECz, respectively. There-
fore,

FS(F(ECx), F(ECy)) ≥ FS(F(ECx), F(ECz)) (43)

and
FS(F(ECy), F(ECz)) ≥ FS(F(ECx), F(ECz)). (44)

FS1 =
1
n

n

∑
i=1

n

∑
j=1

min(mECx (aij)−mECy(aij))

max(mECx (aij)−mECy(aij))
; (45)

FS2 =
1−∑n

i=1 ∑n
j=1 ‖mECx (aij)−mECy(aij)‖s

n
; (46)

FS3 = 1−
n

∑
i=1

n

∑
j=1

‖mECx (aij)−mECy(aij)‖s

mECx (aij) + mECy(aij)
; (47)

FS4 =
1

1 + ∑n
i=1 ∑n

j=1 ‖mECx (aij)−mECy(aij)‖s
; (48)

in which s ∈ {1, 2, ..., ∞} and n represents the number of samples of each EC map.

4.3. Defects in CFRP Plates and Class Constitution

Let us introduce the following definitions.

Definition 1. If Ã is the number of defects in CFRP plates, to each one, we can associate the EC
map F(Ik) of the ζth class, where ζ = 1, . . . , Ã.

Definition 2. If an unknown defect is located inside a CFRP plate, then F(Iunknown) indicates the
corresponding EC map.

Definition 3. If no defect is present in the CFRP plate, F(IWithout Load) is the corresponding
EC map.

Since our aim is to associate an unknown defect with one of the known classes,
∀ı = 1, . . . , Ã, the following scalar quantities will be computed:

Quantity1 =
{

FS1(F(Iunknown), F(I1)), . . . , FS1(F(Iunknown), . . . F(In)), . . . , (49)

FS1(F(Iunknown), F(IÃ)), FS1(F(Iunknown), F(IWithout Load)
}

,

Quantity2 =
{

FS2(F(Iunknown), F(I1)), . . . , FS2(F(Iunknown), . . . F(In)), . . . , (50)

FS2(F(Iunknown), F(IÃ)), FS2(F(Iunknown), F(IWithout Load)
}

,

Quantity3 =
{

FS3(F(Iunknown), F(I1)), . . . , FS3(F(Iunknown), . . . F(In)), · · · (51)

, . . . , FS3(F(Iunknown), F(IÃ)), FS3(F(Iunknown), F(IWithout Load)
}

,

Quantity4 =
{

FS4(F(Iunknown), F(I1)), . . . , FS4(F(Iunknown), . . . F(In)), · · · (52)

, . . . , FS4(F(Iunknown), F(IÃ)), FS4(F(Iunknown), . . . F(IWithout Load)
}

.
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Therefore, it follows that FSs(F(Iunknown), F(In)), s = 1, 2, 3, 4 and ζ ∈ {1, . . . , Ã + 1}
give us the following quantification:

max
{

max{Quantity1}, max{Quantity2}, max{Quantity3}, max{Quantity4}
}

, (53)

thus establishing the link between the unknown defect and the possible class ζ.

4.4. Fuzzy Procedure for Construction of the EC Maps for Each Class of Defects

To obtain F(Ik), here, a fuzzy image fusion procedure utilizing all FSs formulations
is proposed and tested. In particular, if F(Ik

z1) and F(Ik
z1) are two EC maps belonging to

the generic class ζ, they will be subdivided into H non-overlapping sub-images, F(Ik
z1)h1

and F(Ik
z2)h2 , with h1, h2 ∈ T = {1, . . . , H}. Therefore, FSs(F(Ik

z1)1, F(Ik
z2)1) are com-

puted and, furthermore, let us consider F(Ik
z1)1 and F(Ik

z2)1 as the pair of sub-images in
order that

max
{

FSs(F(Ik
z1)1, F(Ik

z2)1)
}

. (54)

If F(Ik)1 is the shared part of F(Ik) in the sub-images F(Ik
z1)1 and F(Ik

z2)1, one can
set [40]

(F(Ik)1)i,j =
1

1 + 1

e
0.5

(
F(Ik

z1 )1)i,j+(F(Ik
z2 )1)i,j

) , (55)

such that ∀i, j ∈ F(Ik)1 it can be obtainable by sigmoidal evaluation on the arithmetic
average of the corresponding pixels of both F(Ik

z1)1 and F(Ik
z2)1. Obviously, the previous

computations must be repeated ∀h1, h2 ∈ T, thus achieving F(Ik) (i.e., the fuzzy image
associated with the kth class). Finally, the procedure must be repeated ∀k = 1, . . . , Ã + 1,
in order to obtain the fuzzy images associated with each class.

Remark 10. The main reason that a classifier based on FS computations has been developed is
that “similar defects” produce “fuzzy maps (2D fuzzy images) similar to each other”. Therefore, it
appeared necessary to find mathematical functions (with reduced computational load) to evaluate
the degree of closeness (similarity) between fuzzy images. The FS formulations used in this work,
in addition to satisfying this critical requirement, satisfy the mathematical axioms of the fuzzy
measure [9,41]. In other words, FS functions, in addition to quantifying the similarity between
fuzzy images, formally quantify “to what extent fuzzy images come close to each other”.

5. Results and Discussion

The fuzzy procedure proposed in this paper has been implemented on a machine with
an Intel Core 2 1.79 GHz CPU, using the MatLab® R2019a environment. The performance
of the fuzzy approach presented here was also evaluated through a comparison with the
performance obtained with both traditional fuzzy inference systems [40] and with a specific
classification algorithm based on fuzzy clustering and SOM maps. Appropriate FISs have
been implemented (using MatLab® Fuzzy Toolbox R2019a) according to the Mamdani and
Sugeno approach (thus favoring the automatic extraction of a fuzzy rules and inferences
bank by operating an appropriate tuning using the well-known ANFIS algorithm), where
the membership degrees are combined, exploiting a “product operator” as the T-norm
operator to produce weight values in the FIS [42]. The simplicity of this operator made it
possible not to increase the computational load of the proposed procedure (making it still
attractive for any real-time applications). Attempts to use more sophisticated T-norms did
not produce significant improvements in system performance, so we preferred to exploit a
well-established T-norm in the literature that provided highly competitive performance
despite its simplicity.
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Remark 11. However, it is worth underlining that, as a term of comparison, Sugeno-type fuzzy
inference systems have been developed with automatic extraction of the fuzzy rule bank, whose
performance has been improved by using the ANFIS algorithm (Adaptive Neuro-Fuzzy Inference
System). The use of the ANSIS procedure was made possible because the toolbox used the structures
of the Sugeno fuzzy system as if it were a neural network whose learning is managed by the
ANFIS procedure.

Furthermore, by using the Matlab® Toolbox Fuzzy Clustering, a variant of unsu-
pervised clustering, in which the defect classes represent the single clusters (outputs) by
associating each FS (similar to a point in the clusters-space) with the nearest cluster, has
been implemented. Finally, the comparison of the results was performed under the use
of SOM maps, which, through unsupervised learning, provide discrete maps of the [40]
input space. Through a competitive process, the input data participate in forming the 2D
map to classify the data automatically. For each EC map representing a class of defects
(including the class of maps relating to the absence of defects), both FLI and FLE, as in (35)
and (36), were computed. As shown by Figure 6a,b, the high fuzziness content justified the
use of the fuzzy evaluations. Table 4 shows the ranges of FLI and FEI obtained on both
the numerical and experimental maps. However, it should be noted that the increase in the
size of the defect does not necessarily correspond to an increase in the fuzziness content
both in the numerical and experimental fields.

Table 4. FLI and FEI ranges for classes of defects obtained by both COMSOL® Multiphysics and
experimental route.

Class FLI FEI FLI FEI
(num. EC Maps) (num. EC Maps) (exp. EC Maps) (exp. EC Maps)

Class 1 0.871 ÷ 0.921 0.911 ÷ 0.937 0.873 ÷ 0.891 0.914 ÷ 0.925
Class 2 0.872 ÷ 0.899 0.862 ÷ 0.892 0.851 ÷ 0.864 0.865 ÷ 0.881
Class 3 0.838 ÷ 0.854 0.875 ÷ 0.893 0.805 ÷ 0.841 0.879 ÷ 0.897
Class 4 0.932 ÷ 0.949 0.918 ÷ 0.935 0.989 ÷ 0.925 0.904 ÷ 0.923
Class 5 0.925 ÷ 0.956 0.989 ÷ 0.923 0.896 ÷ 0.923 0.887 ÷ 0.914
Class 6 0.958 ÷ 0.975 0.939 ÷ 0.954 0.926 ÷ 0.944 0.925 ÷ 0.943
Class 7 0.941 ÷ 0.963 0.919 ÷ 0.979 0.911 ÷ 0.937 0.928 ÷ 0.955
Class 8 0.939 ÷ 0.952 0.926 ÷ 0.941 0.878 ÷ 0.933 0.901 ÷ 0.932
Class 9 0.977 ÷ 0.989 0.925 ÷ 0.944 0.949 ÷ 0.966 0.919 ÷ 0.932

Class 10 0.884 ÷ 0.914 0.861 ÷ 0.893 0.863 ÷ 0.887 0.879 ÷ 0.898
Class ND 0.954 ÷ 0.975 0.947 ÷ 0.966 0.923 ÷ 0.956 0.932 ÷ 0.955

Once the fuzziness of each EC map had been verified, the correspondence between
the numerical EC maps and the experimental EC maps representative of each class was
verified through the proposed fuzzy procedure. As can be seen from Tables 5–10, the
correspondence between the numerical and experimental EC maps representing each class
is evident (and it is even more evident from Figure 4, which exemplifies the correspondence
between the EC maps of five classes).
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Table 5. FS1, FS2, FS3 and FS4 values obtained by comparing the EC map of classes 1 and 2 with the
remaining classes (the values highlighted in bold refer to the best performances).

Class FS1 FS2 FS4 FS4 FS1 FS2 FS3 FS4

Class1 0.97 0.95 0.97 0.95 0.17 0.21 0.23 0.19
Class 2 0.44 0.39 0.29 0.41 0.98 0.94 0.91 0.90
Class 3 0.11 0.12 0.21 0.19 0.15 0.19 0.17 0.23
Class 4 0.18 0.24 0.31 0.14 0.13 0.18 0.14 0.17
Class 5 0.19 0.34 0.27 0.15 0.21 0.20 0.20 0.24
Class 6 0.14 0.14 0.19 0.18 0.18 0.17 0.16 0.11
Class 7 0.22 0.14 0.28 0.27 0.18 0.21 0.20 0.22
Class 8 0.19 0.18 0.18 0.24 0.22 0.24 0.26 0.33
Class 9 0.11 0.09 0.18 0.07 0.18 0.33 0.35 0.36

Class 10 0.19 0.30 0.31 0.34 0.19 0.18 0.31 0.27
Class ND 0.18 0.17 0.14 0.22 0.19 0.24 0.25 0.29

Table 6. FS1, FS2, FS3 and FS4 values obtained by comparing the EC maps of classes 3 and 4 with
the remaining classes (the values highlighted in bold refer to the best performances).

Class FS1 FS2 FS4 FS4 FS1 FS2 FS3 FS4

Class1 0.15 0.26 0.19 0.31 0.24 0.22 0.17 0.12
Class 2 0.21 0.17 0.19 0.14 0.29 0.36 0.24 0.11
Class 3 0.88 0.91 0.98 0.95 0.11 0.28 0.24 0.13
Class 4 0.21 0.23 033 0.19 0.88 0.91 0.90 0.87
Class 5 0.24 0.22 0.14 0.13 0.19 0.22 0.18 0.31
Class 6 0.22 0.12 0.24 0.19 0.15 0.17 0.22 0.21
Class 7 0.23 0.15 0.19 026 0.32 0.20 0.24 0.19
Class 8 0.18 0.17 0.16 0.25 0.23 0.25 0.29 0.30
Class 9 0.21 0.18 0.36 0.11 0.24 0.31 0.34 0.30

Class 10 0.11 0.24 0.14 0.12 0.22 0.29 0.37 0.14
Class ND 0.12 0.15 0.14 0.20 0.18 0.23 0.28 0.25

Table 7. FS1, FS2, FS3 and FS4 values obtained by comparing the EC maps of classes 5 and 6 with
the remaining classes (the values highlighted in bold refer to the best performances).

Class FS1 FS2 FS4 FS4 FS1 FS2 FS3 FS4

Class1 0.21 0.22 0.37 0.21 0.33 0.14 0.22 0.18
Class 2 0.13 0.15 0.19 0.24 0.33 0.32 0.41 0.11
Class 3 0.24 0.34 0.32 0.45 0.24 0.28 0.27 0.19
Class 4 0.25 0.32 021 0.43 0.29 0.21 0.16 0.31
Class 5 0.77 0.87 0.82 0.84 0.26 0.19 0.33 0.27
Class 6 0.23 0.32 0.45 0.24 0.88 0.86 0.90 0.91
Class 7 0.13 0.32 0.21 0.54 0.27 0.25 0.26 0.28
Class 8 0.23 0.43 0.32 0.23 0.23 0.25 0.27 0.25
Class 9 0.21 0.18 0.36 0.11 0.20 0.27 0.32 0.22

Class 10 0.13 0.13 0.23 0.25 0.21 0.27 0.35 0.12
Class ND 0.32 0.45 0.54 0.40 0.17 0.29 0.25 0.27
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Table 8. FS1, FS2, FS3 and FS4 values obtained by comparing the EC maps of classes 7 and 8 with
the remaining classes (the values highlighted in bold refer to the best performances).

Class FS1 FS2 FS4 FS4 FS1 FS2 FS3 FS4

Class1 0.19 0.11 0.18 0.20 0.24 0.19 0.22 0.29
Class 2 0.12 0.16 0.15 0.31 0.29 0.24 0.34 0.22
Class 3 0.18 0.23 0.21 0.33 0.18 0.14 0.11 0.11
Class 4 0.27 0.30 0.22 0.41 0.24 0.24 0.19 0.29
Class 5 0.21 0.17 0.13 0.12 0.13 0.18 0.24 0.227
Class 6 0.20 0.18 0.25 0.22 0.16 0.17 0.19 0.17
Class 7 0.99 0.96 0.95 0.90 0.18 0.19 0.15 0.17
Class 8 0.40 0.41 0.37 0.33 0.97 0.88 0.91 0.90
Class 9 0.22 0.17 0.34 0.14 0.20 0.24 0.35 0.24

Class 10 0.15 0.12 0.28 0.29 0.22 0.28 0.33 0.17
Class ND 0.39 0.47 0.57 0.45 0.18 0.27 0.31 0.24

By way of example, Figure 8 highlights the correspondence between numerical and
experimental Class 5. The proposed fuzzy procedure was also used to determine the classes
belonging to EC maps with any defects whose size was considered unknown (testing
datasets). As can be seen from Table 11, the classification performance of the proposed
procedure is comparable with the performance obtained with the soft computing techniques
used for comparison but which are characterized by a higher computational load (higher
CPU time). By way of example, Figure 9a,b show the classification of the EC maps in
Figures 6a and 10b, which, as was to be expected, both belong to class 6.

Table 9. FS1, FS2, FS3 and FS4 values obtained by comparing the EC maps of classes 9 and 10 with
the remaining classes (the values highlighted in bold refer to the best performances).

Class FS1 FS2 FS4 FS4 FS1 FS2 FS3 FS4

Class1 0.21 0.19 0.30 0.24 0.27 0.23 0.21 0.18
Class 2 0.12 0.18 0.20 0.34 0.22 0.27 0.33 0.18
Class 3 0.17 0.25 0.30 0.34 0.28 0.24 0.22 0.27
Class 4 0.29 0.27 0.28 0.39 0.37 0.35 0.37 0.37
Class 5 0.29 0.27 0.21 0.24 0.23 0.18 0.24 0.227
Class 6 0.20 0.18 0.25 0.22 0.16 0.17 0.19 0.17
Class 7 0.26 0.29 0.26 0.33 0.24 0.18 0.16 0.22
Class 8 0.31 0.34 0.32 0.35 0.27 0.24 0.29 0.20
Class 9 0.91 0.94 0.95 0.93 0.16 0.25 0.24 0.19

Class 10 0.18 0.16 0.24 0.20 0.90 0.88 0.87 0.91
Class ND 0.21 0.12 0.40 0.35 0.25 0.21 0.37 0.27
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Table 10. FS1, FS2, FS3 and FS4 values obtained by comparing the EC maps of classes without defects
with the remaining classes (the values highlighted in bold refer to the best performances).

Class FS1 FS2 FS4 FS4

Class1 0.16 0.18 0.22 0.19
Class 2 0.15 0.17 0.29 0.27
Class 3 0.28 0.22 0.27 0.24
Class 4 0.20 0.19 0.22 0.18
Class 5 0.18 0.21 0.24 0.26
Class 6 0.17 0.19 0.22 0.21
Class 7 0.24 0.26 0.25 0.30
Class 8 0.19 0.17 0.17 0.18
Class 9 0.11 0.12 0.16 0.16

Class 10 0.22 0.20 0.23 0.27
Class ND 0.97 0.91 0.94 0.90

Figure 8. Example of correspondence between the numerical EC map representative of a class of
defects with the EC experimental map of the same class.

(a) (b)

Figure 9. Classification example related to the EC maps in Figures 6a and 10b from which it is easy to
deduce that the belonging class of the analyzed maps is the sixth.
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(a) (b)

Figure 10. Reconstruction of the |B|map by experimental campain on the CFRP plate area with (a) a
defect of radius R = 0.1 mm and (b) a defect of radius R = 0.6 mm.

Table 11. Numerical EC map classification performance: fuzzy proposed approach versus stan-
dard procedures.

Approach
CPU |B| |B|
TIME Numerical Experimental
(sec) Reconstruction Reconstruction

proposed approach 0.28 99.5% 99.8%
FIS-Mamdani 0.30 97.4% 97.9%

FIS-Sugeno 0.31 99.8% 99.9%
fuzzy k-means 1.22 98.6%. 99.2%

SOM 0.96 99.3% 99.4%

6. Conclusions

In this work, a comparison between the results provided by an FEM-based numer-
ical model about defects in CFRP plates and measurements was carried out. A realistic
characterization of the electrical conductivity was a critical point in obtaining accurate
numerical results. Furthermore, an innovative procedure, based on the concept of fuzzy
similarity, has been developed to classify delamination defects in CFRP plates. For this
aim, four innovative fuzzy similarity formulations were used to develop a procedure for
classifying defects produced by delamination in CFRP plates. The classification carried out
resulted from the observation that similar defects (in terms of location and entity) produce
fuzzily similar EC maps (fuzzified by appropriate fuzzy membership functions) grouping
maps produced with similar defects into defect classes. Therefore, the fuzziness content of
each map representative of each class (achieved by an innovative adaptive fuzzy image
fusion approach) has been evaluated by specific indices of fuzziness. Then, four fuzzy
similarity formulations have been exploited to classify unknown maps. The classification
of the numerically produced 2D maps was also confirmed experimentally by the hardware
implementation of the survey device designed via software, highlighting the reliability of
the FEM procedure used. The results obtained encourage future research, as the classifica-
tion performance obtained is utterly comparable to the performance obtained with the soft
computing techniques previously presented in the literature, which, computationally, are
more onerous. However, in this study, it was found that CFRP plates change their morphol-
ogy locally when subjected to dynamic operating loads. Consequently, in addition to the
variation in electrical conductivity, there is a strong variation in the magnetic permeability,
with the consequent need, on the one hand, to reformulate the analytical model and, on the
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other hand, to develop investigation tools capable of managing the inevitable increase in
uncertainties and/or inaccuracies that the experimental EC maps will manifest. Therefore,
greater attention must be paid to the choice of fuzzy similarity formulations in order to take
into account the dynamic effects mentioned above. Finally, it is worth noting that the work
presented in this paper also concerns the feasibility of designing a probe at our lab and its
performance for detecting defects in CFRP plates in order to classify their size. Since the
classification put in place is of a qualitative type, and since the results obtained in terms of
classification are more than satisfactory, we did not consider it necessary to use commercial
probes (with an evident increase in costs), deferring the necessary comparisons to future
developments of the research in progress, with comparison of the results obtained with
those that can be obtained by using commercial probes. To conclude, we point out that the
results provided by this study can constitute a background that allows the development
of a “real-time” tool capable of quantifying how similar a map is to a map obtained from
measurements on a CFRP plate affected by a known defect, which airline companies could
fruitfully employ to maintain aircraft in compliance with safety standards.
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Abbreviations

The following abbreviations are used in this manuscript:
CFRP Carbon Fiber-Reinforced Polymers
EC Eddy Current
FMF Fuzzy Membership Function
FS Fuzzy Similarity
PEC Perfect Electric Conductor
PMC Perfect Magnetic Conductor
σ Electrical Conductivity
σl Conductivity Along the Fibers
σt Conductivity Transversal the Fibers
σcross−ply Conductivity Orthogonal the Fibers
J Current Density
E Electrostatic Field
R Rotation Matrix
H Magnetic Field
µ Permeability of the Specimen
j Imaginary Unit
v Velocity
ω Angular Frequency
φ Scalar Potential
ρ Particular Harmonic Field
ε Permittivity of the Specimen
He External Magnetic Field
Je External Current Density
A Vector Potential
L Number of Gray Levels
aij Gray Level
mEC(aij) FMF
FLI Fuzzy Linear Index
FEI Fuzzy Entropy Index
F(EC) Fuzzified EC Map
FS Fuzzy Similarity
FIS Fuzzy Inference Systems
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