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Abstract 

Static analysis of linear-elastic structures with uncertain parameters subjected to deterministic loads 

is addressed. The uncertain structural properties are modeled as interval variables with assigned 

lower bound and upper bound. A novel Interval Finite Element Method is formulated in the 

framework of the improved interval analysis via extra unitary interval, recently proposed to limit 

the conservatism affecting the classical interval analysis. The key idea of the novel method is to 

associate an extra unitary interval to each uncertain parameter in order to keep physical properties 

linked to the finite elements in both the assembly and solution phases. This allows one to reduce 

overestimation and perform standard assembly of the interval element matrices. The lower bound 

and upper bound of interval displacements and stresses are evaluated by applying two different 

strategies both based on the so-called Interval Rational Series Expansion for deriving the 

approximate explicit inverse of the interval global stiffness matrix. Numerical examples concerning 

2D and 3D structures with uncertain Young’s modulus are presented to demonstrate the accuracy 

and efficiency of the proposed procedure. 
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1. INTRODUCTION 

In practical engineering, the actual values of design parameters are always affected by some degree 

of uncertainty [1]. The ability to incorporate non-deterministic properties in numerical modeling is 

of great importance in order to allow realistic reliability assessment of engineering systems. 

Traditionally, probability theory is used to handle uncertainties affecting design parameters. 

Recently, criticism has arisen on the applicability of probabilistic approaches when available data 

are insufficient to define the probability density function (PDF) of the uncertain properties or when 

information is ambiguous, vague or imprecise [2]. In such situations, uncertainties can be quantified 

and processed using alternative approaches based on non-probabilistic concepts, such as convex 

models, interval model, fuzzy-set theory, etc. [3-6]. The interval model, originally developed from 

the classical interval analysis (CIA) [7,8], represents the uncertain parameters as interval variables 

with given lower bound (LB) and upper bound (UB). This model turns out to be a suitable tool 

when the range of variability of the uncertain parameters is known, while available information is 

insufficient to define the type of distribution within such range.  

Since the mid-1990s, the interval model of uncertainty has been applied in the context of finite 

element analysis giving rise to the so-called Interval Finite Element Method (IFEM). Several 

versions of the method have been developed with the purpose of finding sharp bounds of the 

solution. Most research in this area starts from the interval global equilibrium equations and focuses 

entirely on the approximation of the solution set, ignoring the shortcomings inherent in the 

assembly phase [2]. Rao and Berke [9] used a computationally intensive combinatorial approach to 

evaluate the bounds of the interval response. Many researchers developed perturbation-based 

approaches (see e.g. [10,11]) whose applicability is restricted to small widths of the uncertain 

parameters. McWilliam [12] proposed two methods to compute the bounds of structural response: a 

modified version of interval perturbation analysis and a procedure based on the assumption that the 

displacement surface is monotonic. Comparisons between the results of stochastic and interval 
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finite element analysis have also been performed [13,14]. Relying on the assumption of monotonic 

system output, Pownuk [15] proposed a sensitivity analysis method which gives a very good inner 

approximation of the exact solution set. For a general overview of the state-of-art and recent 

advances in interval finite element analysis, readers are referred to [2,16].  

The main challenge faced by researchers since the first development of the IFEM was the 

reduction of the overestimation of the interval solution range due to the so-called dependency 

phenomenon [7] which introduces conservatism not only in the solution phase, but also in the 

assembly of the system matrices [2]. The reason behind this phenomenon is the inability of the CIA 

to recognize multiple occurrences of the same interval variable which actually has a physical 

meaning in the context of the IFEM. The amount of overestimation increases with the width of 

interval uncertainties and the problem size often leading to totally useless results. To eliminate 

many sources of overestimation in interval-based finite element analysis, Muhanna and Mullen [17] 

developed the element-by-element (EBE) technique in which elements are kept disassembled and 

the Lagrange multiplier method is applied to ensure compatibility and equilibrium. Neumaier and 

Pownuk [18] proposed a method to compute accurate bounds of the displacements for high-

dimensional problems with large uncertainties, but applications are restricted to truss structures. 

In the literature, several improvements of the CIA have been introduced to limit conservatism 

such as: the affine arithmetic (AA) [19], the parameterized interval analysis (PIA) [20] and the 

improved interval analysis via extra unitary interval (IIA via EUI) [21]. Recently, an improvement 

of interval finite element analysis based on the AA has been proposed by Degrauwe et al. [22]. The 

PIA and the IIA via EUI have been specifically developed to perform interval structural analysis by 

taking into account dependencies between interval variables which actually represent physical 

properties of the structure. To this aim, the IIA via EUI introduces a particular unitary interval, the 

so-called EUI, which is associated to each interval variable and does not follow the rules of the CIA. 

A combination of the PIA and the IIA via EUI has been presented in [23]. 
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Another challenging issue to be faced in the context of interval-based finite element 

computations is to obtain sharp bounds of the secondary variables (stress) which suffer from 

additional overestimation with respect to the primary variables (displacements) [24]. To cope with 

this problem, various extensions of the EBE technique have been presented [25,26]. A significant 

reduction of the overestimation affecting the bounds of the axial forces in structures with interval 

axial stiffness has been achieved by Impollonia and Muscolino [27].  

Further, a limitation of the interval model lies in the intrinsic inability of the interval variables to 

represent the spatial variability of uncertainties. As known, assuming independent interval variables 

for each FE increases both the degree of variability of parameters and the computational effort. 

Current researches focus on the development of more realistic models of spatially variable interval 

uncertainties as continuous fields (see e.g. [28-31]). In particular, Moens et al. [28] first introduced 

the concept of interval field, recently extended by Muscolino et al. [29] in the context of the IIA via 

EUI. 

Though significant improvement in the field of interval-based finite element analysis has been 

achieved so far, in the authors’ opinion much research effort is still needed to efficiently deal with 

problems of engineering interest as well as to obtain reliable predictions of interval stresses, 

especially when large uncertainties are involved. 

The aim of the present study is to develop a novel IFEM able to provide accurate estimates of the 

bounds of both displacements and stresses for general structures (2D and 3D) with a large number 

of uncertain parameters even in the presence of relatively high degrees of uncertainty. Without loss 

of generality, attention is focused on structures made of linear-elastic isotropic material with 

uncertain Young’s modulus. In particular, Young’s moduli of selected subdomains, which may 

coincide or not with the FEs of the adopted mesh, are modeled as independent interval variables. 

The key idea of the proposed method is to handle interval variables by means of the IIA via EUI so 

that an EUI is associated to each uncertain parameter. Practically, the EUI links the uncertain 
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physical property to the pertinent FE. This allows one to keep track of the dependencies between 

interval uncertainties both in the assembly and solution stages of the FE procedure and thus reduce 

overestimation due to the dependency phenomenon. The interval global equilibrium equations of the 

FE modeled structure can be therefore obtained via standard assembly procedure. In order to 

evaluate the LB and UB of the interval response, an approximate explicit expression of the inverse 

of the interval global stiffness matrix of the structure is derived by means of the so-called Interval 

Rational Series Expansion (IRSE) [32-35]. The application of the IRSE first requires to express the 

interval stiffness matrix as sum of the nominal value plus an interval deviation given by a 

superposition of rank-one matrices. To enhance the computational efficiency of the IRSE within the 

FE context, in the present paper this task is accomplished by applying the spectral decomposition of 

the nominal stiffness matrix of the generic FE. Then, based on the knowledge of the approximate 

explicit inverse of the interval global stiffness matrix provided by the IRSE, two different 

approaches for evaluating the bounds of the interval displacements and stresses are proposed: the 

first one exploits the affine form expression of the IRSE truncated to first-order terms; the second 

strategy relies on the monotonic behavior of the solution which is predicted by studying the sign of 

response sensitivities with respect to the uncertain parameters.  

The paper is organized as follows: in Section 2, the fundamentals of the IIA via EUI are briefly 

summarized; Section 3 is devoted to the formulation of the novel IFEM based on the use of the IIA 

via EUI and the IRSE; in Sections 4 and 5, two different approaches for evaluating the bounds of 

the interval displacements and stresses are presented; Section 6 briefly describes the formulation of 

the method when regions larger than the single FE are assumed to exhibit independent variations of 

the interval Young’s moduli; finally, in Section 7, numerical applications are provided to 

demonstrate the accuracy and efficiency of the proposed method. 
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2. IMPROVED INTERVAL ANALYSIS VIA EXTRA UNITARY INTERVAL 

The interval model is a widely used non-probabilistic approach for handling uncertainties occurring 

in engineering problems. This model, originally developed from the interval analysis [7,8], 

describes the generic uncertain parameter as an interval variable with given lower bound (LB) and 

upper bound (UB). No information is given on the probability of occurrence of values between the 

LB and UB. 

Let  be the set of all real interval numbers and  ,I

i i i     an interval variable such that 

i i i    . The symbols i  and i  denote the LB and UB of the interval, respectively, while the 

apex I characterizes the interval variables. According to the classical interval analysis (CIA), the i-

th real interval variable  ,I

i i i    is characterized by the midpoint value (or mean), 0,i , and the 

deviation amplitude (or radius), i , given by:  

 0, mid ;      
2 2

I i i i i
i i i

   
  

 
     (1a,b) 

where  mid   is an operator yielding the midpoint of the interval quantity between curly brackets. 

In the context of engineering applications, the main drawback of the CIA is the overestimation of 

the interval solution due to the so-called dependency phenomenon which often leads to useless 

results for design purpose. This phenomenon occurs when an expression contains multiple instances 

of one or more interval variables and stems from the inability of the CIA to keep track of the 

dependency between interval variables throughout calculations. To limit the conservatism due to the 

dependency phenomenon, recently the improved interval analysis via extra unitary interval (IIA via 

EUI) has been proposed [21]. This approach relies on the introduction of the so-called EUI, 

 ˆ 1, 1I

ie    , which is different from the classical unitary interval (CUI),  1, 1Ie    , since it 

does not follow the rules of the CIA [21].  

The IIA via EUI assumes the following affine form definition for the i -th interval variable I

i : 
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0,
ˆ .I I

i i i ie      (2) 

It is worth emphasizing that the subscript i means that the EUI, ˆ I

ie , is associated to the i-th 

interval variable. By associating a different EUI to each interval variable, dependencies can be duly 

taken into account throughout calculations and the overestimation due to the dependency 

phenomenon can be drastically limited.  

In the framework of interval symbolism, a generic interval-valued function f  and a generic 

interval-valued matrix function A  of the interval vector 
I

α  will be denoted in equivalent form, 

respectively, as: 

 

 

( ) ( ), , ;

( ) ( ), , .

I I I

I I I

f f f   

   

α α α α α α

A A α A α α α α α
  (3a,b) 

 

3. NOVEL INTERVAL FINITE ELEMENT METHOD 

3.1 Formulation of the interval global equilibrium equations 

Let us consider a continuous body made of linear-elastic isotropic material which occupies the 

volume V  bounded by the surface S  in its undeformed state. The body is subjected to volume 

forces ( )b x  in V  and surface forces ( )t x  on the loaded (or free) portion tS  of the boundary surface 

S , with T

1 2 3[ ]x x xx  denoting the position vector of a generic point referred to a Cartesian 

coordinate system 1 2 3( , , )O x x x ; the displacements ( )u x  are imposed on the constrained portion uS  

of S . The loads act by hypothesis in a quasi-static manner and infinitesimal displacements are 

considered. Without loss of generality, all input parameters are assumed to be known 

deterministically, except Young’s modulus of the material which is treated as an uncertain 

parameter in the context of the interval model of uncertainty. 
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Let the volume V  of the body be subdivided into eN  finite elements (FEs). As customary in 

IFEM formulations, Young’s modulus of each FE is modeled as an interval variable, i.e.: 

 ( ) ( ) ( )

0( ) 1 ,          ( 1,2, , )i I i I e

i iE E i N     (4) 

where [ , ]I

i     is the dimensionless fluctuation around the nominal value ( )

0

iE , 

represented by a symmetric interval variable, i.e. characterized by a zero midpoint value 
0, 0i  . 

Following the IIA via EUI (see Eq. (2)), the dimensionless fluctuation I

i  is herein expressed as: 

ˆI I

i i ie    (5) 

where ˆ [ 1, 1]I

ie     is the EUI defined in the previous section. In order to guarantee always positive 

values of the uncertain Young’s modulus, the deviation amplitude of I

i  must satisfy the condition 

1i  . Spatial variability of the uncertain elastic modulus is handled under the limit assumption 

that the fluctuations I

i  vary independently. In this respect, it is worth emphasizing that an EUI is 

associated to each uncertain Young’s modulus and therefore to each FE. This allows one to link the 

physical properties to the FEs and limit the overestimation due to the dependency phenomenon 

which typically affects both the assembly and solution phases of IFEMs based on the CIA. In order 

to obtain a more realistic description as well as a reduction of the computational effort, a different 

mesh can be adopted to describe the spatial variability of Young’s modulus, i.e. the volume V  can 

be subdivided into r eN N  subdomains characterized by interval elastic moduli (see Eq. (4)) 

exhibiting independent variations caused for instance by different degradation, exposure or 

heterogeneity of the material. Under this assumption, the present formulation associates an EUI to 

each subdomain, as outlined in detail in Section 6. 

Taking into account Eqs. (4) and (5), the elastic matrix of the i -th FE can be expressed as: 

 ( ) ( )

0
ˆ( ) 1i I I i

i i ie   E E  (6) 
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where ( )

0

i
E  is the elastic matrix of the FE with nominal Young’s modulus ( )

0

iE . 

Uncertainty affecting the elastic modulus of the material propagates to the response of the solid 

which turns out to be described by interval quantities. Specifically, following the standard 

displacement-based FE formulation, the interval displacement field within the i -th FE can be 

approximated as follows: 

( ) ( ) ( )( ; ) ( ) ( )i I i i Iu x N x d   (7) 

where  , eNI      is the interval vector collecting the dimensionless fluctuations I

i , (

( )1,2, , ei N ), of Young’s moduli of the eN  FEs; 
( )( )i

N x  denotes the shape-function matrix; 

( )( )i I
d   is the nodal displacement vector of the i -th FE which depends on the interval variables 

I

i . 

Strain-displacement equations yield the following expression of the interval strain field within 

the i -th FE:  

( ) ( ) ( )( ; ) ( ) ( )i I i i Ix B x d    (8) 

where 
( )( )i

B x  is the strain-displacement matrix. Finally, upon replacing Eqs. (6) and (8) into the 

linear-elastic constitutive equations, the interval stress field can be expressed as follows:  

 ( ) ( ) ( ) ( ) ( ) ( )

0
ˆ( ; ) ( ) ( ; ) 1 ( ) ( ).i I i I i I I i i i I

i i ie    x E x E B x d      (9) 

In analogy to the standard displacement-based FEM, Eqs. (7)-(9) express the interval 

displacement, strain and stress fields within the i -th FE as interpolation of the nodal displacements 

( )( )i I
d  . Notice that the interval stresses, collected into the vector 

( )( ; )i I
x  , depend on the 

uncertain parameters both through the nodal displacements 
( )( )i I

d   and the elastic matrix 
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( )( ).i I

iE  This circumstance makes the interval stress field more sensitive to the dependency 

phenomenon than the displacement field.  

The stiffness matrix of the i -th FE is an interval matrix formally analogous to the one pertaining 

to the deterministic FE, i.e.: 

( )

( ) ( )T ( ) ( ) ( )( ) ( ) ( ) ( )d .
i

i I i i I i i

i i

V

V  k B x E B x  (10) 

Upon replacing the definition (6) of the interval elastic matrix, the previous equation can be 

recast as: 

 ( ) ( )

0
ˆ( ) 1i I I i

i i ie   k k  (11) 

where the matrix 
( )( )i I

ik , depending only on the i -th interval variable, 
I

i , and, therefore on the i

-th EUI, is conveniently expressed as the result of a fluctuation around the nominal stiffness matrix 

( ) ( )

0 ( )i i

i 


0
k k


, given by: 

( )

( ) ( )T ( ) ( ) ( )

0 0( ) ( )d
i

i i i i i

V

V k B x E B x  (12) 

( )

0

i
E  being the nominal elastic matrix. 

Under the assumed hypothesis of deterministic applied loads, the element force vector is not 

affected by uncertainties, i.e.: 

( ) ( )

( ) ( )T ( ) ( )T ( )( ) ( )d ( ) ( )d .
i i

t

i i i i i

V S

V S  f N x b x N x t x  (13) 

One of the main features of the proposed IFEM is that standard assembly procedure can be 

carried out. Indeed, by applying the IIA via EUI, an EUI is associated to the stiffness matrix of each 

FE (see Eq.(11)). During the assembly phase, this allows one to keep track of the dependencies 

between interval parameters representing FE physical properties and thus counteract one of the 
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main sources of overestimation affecting IFEMs. For the sake of simplicity, it is assumed that the 

interval element stiffness matrices and the force vectors are referred to the global coordinate 

system, so that no coordinate transformation is needed. Then, as in the standard FEM, the nodal 

displacement vector of the i -th FE, 
( )( )i I

d  , can be related to the global nodal displacements 

collected into the interval vector ( )I
U   as:  

( ) ( )( ) ( )i I i Id L U   (14) 

where 
( )i

L  is a Boolean matrix defined so as to take into account the boundary conditions. Then, the 

assembly procedure yields the following set of linear interval equations governing the equilibrium 

of the FE model: 

( ) ( )I I K U F   (15) 

where  

( )T ( ) ( )

1

( ) ( )
eN

I I i i I i

i

i




 K K L k L  (16) 

and 

( )T ( )

1

eN
i i

i

F L f  (17) 

are the interval global stiffness matrix and the nodal force vector, respectively.  

Taking into account Eq.(11), the interval global stiffness matrix can be rewritten as sum of the 

nominal value plus an interval deviation, i.e.: 

( )T ( ) ( )

0 0

1

ˆ
eN

I i i i I

i i

i

e


  K K L k L  (18) 
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where 0 ( )
α=0

K K α  and 
( ) ( )

0 ( )i i

i 


0
k k


 are the global and element nominal stiffness matrices, 

respectively. Notice that the interval deviation is given by the superposition of the contributions of 

the eN  uncertain parameters which are identified by the associated EUIs. 

As already mentioned, the novel IFEM is formulated under the assumption that all input data 

except Young’s modulus of the material are deterministic. In this regard, it is worth remarking that 

an expression of the interval global stiffness matrix analogous to that in Eq. (18) can be reasonably 

adopted also when geometrical uncertainties are considered. Indeed, if the element stiffness matrix 

is not proportional to the uncertain parameter (e.g. length of a truss or beam element, thickness of a 

bending plate element), the interval global stiffness matrix can be approximated according to Eq. 

(18) by applying a variable transformation and retaining just linear dependency on the uncertain 

parameters [23]. 

3.2 Approximate explicit solution by Interval Rational Series Expansion  

The solution set of the interval global equilibrium equations (15),  , contains all possible solutions 

obtained as the uncertain parameters range over their intervals, i.e.: 

 ( ) ( ) ,  n I    U K U F     (19) 

where n  is the order of the global displacement vector ( )U  . The set   usually is not an interval 

vector and does not need to be convex [17]. The interval stiffness matrix 
I

K  is regular, that is each 

matrix 
I

K K  is non-singular [36]. The regularity of the matrix 
I

K  guarantees that the solution 

set is bounded. However, the exact evaluation of the solution set is very difficult since, typically, it 

is described by a complicated region in the output space. To circumvent this difficulty, in the 

framework of interval analysis, it is common practice to seek the interval displacement vector 
I

U , 

containing the solution set  , which has the narrowest interval components. Thus, the aim is the 

evaluation of the LB and UB of the interval displacement vector 
I

U , say ( )U   and ( )U  . In this 
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context, the knowledge of the explicit inverse of the interval stiffness matrix 
I

K  plays a crucial 

role. Recently, the so-called Interval Rational Series Expansion (IRSE) [32-35] has been derived as 

a modified explicit form of the Neumann series for evaluating the approximate inverse of an 

interval matrix with small rank- r  modifications. The first step to apply the IRSE is the 

decomposition of the interval stiffness matrix as sum of the nominal value plus an interval deviation 

given by a superposition of rank-one matrices. For this purpose, several strategies can be applied 

(see, e.g. [32-35]). In the present study, the spectral decomposition of the nominal element stiffness 

matrix is exploited, which yields: 

( ) ( ) ( )T

0

1 1

ˆ
e iN p

I I

i i i i i

i

e 
 

  K K v v  (20) 

where 

( ) ( )T ( ).i

i iv L   (21) 

In the previous equations, ( )

i  and ( )

i  denote the -th eigenvalue and the associated eigenvector 

of the nominal stiffness matrix ( )

0

i
k  of the i -th FE, solutions of the following eigenproblem: 

( ) ( ) ( ) ( )

0      ( 1, , ;  1, , )i

i i i e ii N p  k    (22) 

such that  

( ) ( ) ( ) ( )T

0

1

.
ip

i

i i i


k        (23) 

Notice that only ip n  eigenvalues are different from zero, as many as are the deformation modes 

of the i -th FE. For instance, for a bar type FE only one eigenvalue is different from zero since the 

element is characterized by one deformation mode; a beam type FE has two deformation modes so 

that the solution of the eigenproblem (22) gives two non-zero eigenvalues. Thus, according to Eq. 

(20), the spectral decomposition allows one to express the interval deviation of the global stiffness 

matrix 
I

K  with respect to the nominal value 0K  as superposition of e iN p  matrices 

( ) ( ) ( )T ˆI

i i i i ie v v  of rank one, where ip  depends on the type of FE employed in the mesh. 
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By applying the IRSE, the following approximate explicit expression of the inverse of the 

interval stiffness matrix, 
I

K , is obtained:  

 
1

( )
1

( ) ( ) ( )T 1

0 0 ( )
1 1 1 1

( ) ( )

( )

ˆ
ˆ

ˆ1

ˆ ˆ
                                                                   

1

e i e iN p N p I
I I i i i

i i i i i iI
i i i i i i

q I I

i j i j i j

q

j

e
e

e d

e e

 
 

 

   








   

  
     

  

 




 K K v v K D

1 1 1 1 ˆ

je e i
pN N p

ij q ij qI
i j q j j jq

j i

d
e d   






 D

 (24) 

where 

( )T 1 ( ) 1 ( ) ( )T 1

0 0 0

( )T 1 ( ) 1 ( ) ( )T 1

0 0 0

;     ;

;   .

i i i i i i

q q

ij q i j ij q i j

d

d

  

  





v K v D = K v v K

v K v D = K v v K
 (25a-d) 

Equation (24) holds if and only if the conditions 
( ) <1i i id   are satisfied [34]. Such conditions 

do not imply additional limitations on the deviation amplitudes <1i  of the uncertain elastic 

moduli. Notice that the IRSE (24) keeps track of the dependencies between interval Young’s moduli 

by means of the EUIs which are associated to each uncertain parameter. 

It is worth mentioning that Eq. (24) differs from the approximate explicit expressions of the 

inverse of the interval stiffness matrix derived in previous papers by applying the IRSE [32-35] just 

for the use of the spectral decomposition of the nominal stiffness matrix of the FEs (see Eq. (20)). 

Such decomposition allows one to enhance the computational efficiency of the IRSE for the 

following main reasons: i) the number of series terms depends on the number of non-zero 

eigenvalues ip n  regardless of the size of the structure, namely it does not depend on the number 

of degrees-of-freedom (DOFs); ii) when a uniform mesh is adopted, only one eigenproblem (see Eq. 

(22)) needs to be solved. 

For small degrees of uncertainty, as those commonly occurring in engineering practice, say 

1i  , the IRSE in Eq.(24) can be reasonably truncated to first-order terms obtaining the 

following formula: 
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 
1

( )
1

( ) ( ) ( )T 1

0 0 ( )
1 1 1 1

ˆ
ˆ

ˆ1

e i e iN p N p I
I I i i i

i i i i i iI
i i i i i i

e
e

e d

 
 

 






   

  
     

  
 K K v v K D  (26) 

which will be referred to in the sequel as IRSE-1.  

As will be outlined in details next, in view of the evaluation of the bounds of the interval 

response, the IRSE-1 can be conveniently rewritten as follows: 

   
1

1

0 0,

1 1

ˆ 
e iN p

I I

i i i i

i

a a e




 

   K K D  (27) 

where 0,ia  and ia  are the midpoint and deviation amplitude of the generic term of the double 

summation in Eq. (26) rewritten in affine form, given by: 

 

   

2
( ) ( )

0, 2 2
( ) ( )

;      .
1 1

i i i i i
i i

i i i i i i

d
a a

d d

   

   

 
  

   
 (28a,b) 

The argument i  of the functions 0,ia  and ia  is omitted for conciseness. It is worth 

remarking that the EUIs appearing in Eq. (27) are still associated to each uncertain parameter. 

 

4. BOUNDS OF THE SOLUTION: APPROACH BASED ON THE AFFINE FORM 

4.1 Bounds of interval displacements 

The evaluation of the approximate inverse of the interval stiffness matrix by the IRSE allows one to 

derive the interval global displacement vector 
I

U  in approximate explicit form. In particular, if the 

deviation amplitudes of the uncertain parameters satisfy the conditions 1i  , the IRSE-1 (27) 

leads to express 
I

U  as sum of the midpoint value plus an interval deviation. i.e.: 

     
1

( ) mid ( ) +dev ( )I I I I I


  U U K F U U    (29) 

where  
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 

 

1

0 0,

1 1

1 1 1

mid ;

ˆ ˆdev

e i

e i e

N p
I

i i

i

N p N
I I I

i i i i i

i i

a

a e e



 

  

 

   



 

U K F D F

U D F R

 (30a,b) 

with  

1

.
ip

i i ia


  R D F  (31) 

In Eq. (29),  dev   is an operator which yields the interval deviation of the quantity between curly 

brackets. By inspection of Eq. (30b), it is observed that the IRSE-1 enables to express the interval 

deviation of the displacement vector as superposition of the contributions of the eN  uncertain 

parameters each one identified by a different EUI.  

Based on Eq. (29) and applying the IIA via EUI, the following approximate explicit expressions 

of the LB and UB of the interval displacement vector 
I

U  are obtained: 

 

 

( ) mid ( );    

( ) mid ( )

I

I

  

  

U U U

U U U

 

 

 (32a,b) 

where  

1 1 1

( )
e e iN N p

i i i

i i

a
  

    U R D F  (33) 

is the deviation amplitude of I
U  and the symbol | |  denotes absolute value component wise. 

Once the bounds of the interval nodal displacements are known, the LB and UB of the 

displacement field within the generic FE can be determined based on Eqs. (7) and (14), as in the 

standard FEM. 
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4.2 Bounds of interval stresses 

By applying the IRSE, the interval stress field (9) within the i -th FE, 
( )( ; )i I

x  , can be expressed 

in approximate explicit form as well. Specifically, taking into account Eq. (14) and evaluating 

 
1

I I


U K F  by means of the IRSE-1 (see Eq.(27)), Eq. (9) yields: 

   

   

1
( ) ( ) ( ) ( )

0

( ) 1

0 0 0,

1 1

ˆ( ; ) 1 ( )

ˆ ˆ                1 ( )  
e i

i I I i i i I

i i

N p
I i I

i i j j j j

j

e

e a a e









 

  

 
      

 


x E B x L K F

C x K D F

 

 (34) 

where 

( ) ( ) ( ) ( )

0 0( ) ( ) .i i i iC x E B x L  (35) 

Equation (34) holds under the assumption of small deviation amplitudes of the uncertain 

parameters, say 1i  . 

It is worth observing that the interval stress field 
( )( ; )i I

x   within the i -th FE is more affected 

by the dependency phenomenon than the interval displacement vector 
I

U  due to the double 

occurrence of the EUI, ˆ I

ie , associated to the i -th uncertain parameter (see Eq. (34)). In order to limit 

the overestimation of the interval stress field range, Eq. (34) is rewritten in the following form: 

 ( ) ( ) 1

0 0 0,

1 1 1

ˆ ˆ ˆ( ; ) 1 ( )
e i eN p N

i I I i I I

i i j j i i j j

j j
j i

e a e e 

  


 
      
 
  

 x C x K F D F R R   (36) 

where the contribution of the i -th uncertain parameter is isolated from the remaining ones and iR  

is given by Eq.(31). Based on Eq. (36) and applying the IIA via EUI, let us define the following pair 

of interval vectors: 

   

   

( ) ( ) ( )

0 0

1

( ) ( ) ( )

0 0

1

ˆ ˆ( ; ) 1 ( ) mid ( ) ;

ˆ ˆ( ; ) 1 ( ) mid ( )

e

e

N
i I I i I I i

i i i i i j

j
j i

N
i I I i I I i

i i i i i j

j
j i

e e

e e

 

 











 
 

       
 
 

 
 

       
 
 





x C x U R C x R

x C x U R C x R





 (37a,b) 
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where the superscripts are related to the sign minus or plus before the summation within curly 

brackets and the definition (30a) of the midpoint value of the interval displacement vector 
I

U  has 

been taken into account. It can be readily verified, that if Young’s modulus of the i -th FE is 

deterministic, i.e. ˆ 0I

ie  , Eqs.(37a,b) yield the LB and UB of the interval stress vector 
( )( ; )i I

x  , 

respectively. Then, taking into account that the interval vectors in Eqs. (37a,b) depend on a single 

interval parameter, say ˆI I

i i ie   , the LB and UB of the h -th interval stress component within 

the i -th FE, 
( )( ; )i I

h x  , can be evaluated as follows: 

       

       

( ) ( ) ( ) ( )

ˆ

( ) ( ) ( ) ( )

ˆ

( ; ) min ; min ; , ; ;

( ; ) max ; max ; , ; .

I I
i i i i

I I
i i i i

i i I i i

h h i h i h i
e

i i I i i

h h i h i h i
e

  

  

      

      

  

 

  

 

   

   

x x x x

x x x x





 (38a,b) 

Notice that, since the stress field is a monotonic function of the i -th uncertain parameter 

ˆI I

i i ie   , just two combinations corresponding to the endpoints of ˆ I

ie , i.e. i i    and 

i i   , need to be explored in order to evaluate the LB and UB of ( )( ; )i I

h x  . 

The knowledge of the bounds of the interval nodal stresses enables to the determine the LB and 

UB of the stress field within each FE following standard post-processing rules, i.e. by applying Eqs. 

(9) and (14). 

 

5. BOUNDS OF THE SOLUTION: SENSITIVITY BASED APPROACH  

5.1 Bounds of interval displacements 

The procedure for the evaluation of the bounds of the interval displacements and stresses outlined in 

the previous section relies on the use of the IRSE-1 rewritten in affine form (see Eq. (27)). As 

already mentioned, the IRSE-1 is accurate as long as small degrees of uncertainty are considered, 

i.e. 1i  . If the interval parameters exhibit large deviation amplitudes, then higher-order terms 

of the IRSE need to be retained. Besides the increase of computational effort, a main drawback 
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associated to the inclusion of higher-order terms is the additional overestimation of the interval 

solution range due to the dependency phenomenon. To cope with this problem, in the present study, 

the LB and UB of the interval response are evaluated by performing a preliminary sensitivity 

analysis which enables to predict the monotonic behaviour with respect to the uncertain parameters.  

The IRSE (24) with an arbitrary number of series terms provides the interval displacement vector 

I
U  as an approximate explicit function of the eN  uncertain parameters ˆI I

i i ie   , 

( 1,2, , )ei N , i.e.: 

 

 

( ) ( )( )
1

1

0 ( ) ( )
1 1 1 1 1 1

1 2

1 1

     , , , .

je i e e i

e

q I IpN p N N pI
i j i jI I i i

i ij q ij qI q I
i i j qi i i j j jq

j i

I I I

N

d
d d

    

   

  




     



       





 U K F K D D F

U

 (39) 

By direct differentiation of the previous equation, the vector collecting sensitivities of the 

displacements to the i -th uncertain parameter can be derived in the following explicit form: 

( )

,

1

( )
,    ( 1,2, , ).

ip

i i i e

i

i N
 


   


U

0

U
s D F




 (40) 

As known, the j -th component, ,jU is , of the sensitivity vector, ,iU
s , defined in Eq. (40) gives 

information about the change of the displacement ( )jU   due to a variation of the i -th structural 

parameter i  with respect to the nominal value. Specifically, within a small range around  0 , 

( )jU   is an increasing or decreasing function of the parameter i  depending on whether , 0
jU is   

or , 0
jU is  , respectively. Then, based on the knowledge of the sensitivities ,jU is  ( 1,2, , )ei N , 

the combinations of the extreme values of the uncertain parameters providing the LB and UB of the 

j -th displacement component 
I

jU , denoted by 
(LB)

,j i  and 
(UB)

,j i , respectively, can be determined as 

follows: 



20 
 

(UB) (LB)

, , ,

(UB) (LB)

, , ,

if   0,    then   ,    ;

if   0,    then   ,    ,    ( 1,2, , ;   1,2, , ).

j

j

U i j i i j i i

U i j i i j i i e

s

s j n i N

   

   

  

    

 (41a,b) 

The parameters (LB)

,j i  and (UB)

,j i  can be collected into the following vectors: 

T
(LB) (LB) (LB) (LB)

,1 ,2 ,

T
(UB) (UB) (UB) (UB)

,1 ,2 ,

;     

,    ( 1,2, , ).

e

e

j j j j N

j j j j N j n

  

  

   

   





 (42a,b) 

Then, the LB and UB of the interval displacement component I

jU  can be evaluated in 

approximate explicit form by replacing the above defined combinations of the uncertain parameters 

into Eq. (39) where the desired number of series terms is retained, i.e.: 

   (LB) (UB);     ,     ( 1,2, , ).j j j j j jU U U U j n     (43a,b) 

It is worth mentioning that, once the equilibrium equations (15) are assembled taking advantage 

of the IIA via EUI, the main difference between the proposed approach and other methods based on 

sensitivity analysis (see e.g. [15,37]) lies in the use of the IRSE which yields the bounds of the 

solution in approximate explicit form and provides substantial computational advantages. Indeed, 

the proposed approach evaluates the LB and UB of the j-th displacement component according to 

Eqs. (43a,b) by replacing the parameters (LB)

,j i  and (UB)

,j i  into the explicit expression of the solution 

(39) given by the IRSE instead of performing the numerical inversion of the stiffness matrix for 

(LB)

j   and 
(UB)

j  . Furthermore, sign sensitivities can be analyzed taking advantage of the 

explicit expressions of response sensitivities given by Eq. (40). Though this procedure is more 

computationally demanding than the one based on the affine form (see Section 4), it enables to 

retain higher-order terms of the IRSE which are needed in the presence of larger deviation 

amplitudes of the uncertain parameters. In this regard, it has to be observed that the computational 

efficiency of the proposed IFEM can be greatly enhanced by performing a preliminary sensitivity 
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analysis [33] which allows one to identify the least influential uncertain parameters and then neglect 

the associated contributions in the IRSE. 

 

5.2 Bounds of interval stresses 

The sensitivity based approach can also be applied to evaluate the bounds of the interval stresses 

when higher-order terms of the IRSE (24) are retained. In this case, the interval stress vector (9) 

within the i -th FE is approximated by the following explicit function of the uncertain parameters 

ˆI I

i i ie   , ( 1,2, , )ei N : 

 
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( ) ( ) 1

0 0 ( )
1 1
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e i

je e i

e

N p I
i I I i i i

i i iI
i i i i

q I IpN N p
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 
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   
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






x C x K D

D F x

 



 (44) 

 

where ( )

0 ( )i
C x  is the matrix defined in Eq.(35). 

By direct differentiation of the previous equation, the vector collecting sensitivities of the stress 

components to the j -th uncertain parameter can be derived in the following explicit form: 

( )

( )

( )
( ) 1 ( )

0 0,
1

( )
( ) ( )

0,
1

( ; )
( ) ( ) ,     ( 1,2, , );

( ; )
( ) ( ) ,                 ( 1,2, , ).
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

 
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  
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x
s x C x K D F

x
s x C x D F









 

 

 (45a,b) 

By analysing the sign of sensitivities defined in Eqs. (45a,b), the change of the stress 

components due to a variation of the j -th structural parameter j  with respect to the nominal 

value can be predicted. Specifically, within a small range around  0 , the h -th stress component 

at the position x  within the i -th FE,  ( ) ;i

h x  , turns out to be an increasing or decreasing function 

of the parameter j  depending on whether ( ) ,
( ) 0i

h j
s


x  or ( ) ,
( ) 0i

h j
s


x , respectively. Based on 
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the knowledge of the sensitivities ( ) ,
( )i

h j
s


x , the combinations of the extreme values of the uncertain 

parameters providing the LB and UB of the h -th stress component ( )( ; )i I

h x   within the i -th FE, 

denoted by 
(LB)

, ,i h j  and 
(UB)

, ,i h j , respectively, can be determined as follows: 

( )

( )

(UB) (LB)

, , , ,,

(UB) (LB)

, , , ,,

if   ( ) 0,    then   ,    ;

if   ( ) 0,    then   ,    ,    ( 1,2, , ;   1,2, , )

i
h

i
h

i h j j i h j jj

i h j j i h j j s ej

s

s h n j N





   

   

  

    

x

x
 (46a,b) 

where sn  denotes the number of stress components. The parameters 
(LB)

, ,i h j  and 
(UB)

, ,i h j  defined in 

Eqs. (46a,b) can be collected into the following vectors: 

T
(LB) (LB) (LB) (LB)

, , ,1 , ,2 , ,

T
(UB) (UB) (UB) (UB)

, , ,1 , ,2 , ,

;     

,    ( 1,2, , ;   1,2, , ).

e

e

i h i h i h i h N

i h i h i h i h N s eh n i N
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   

    





 (47a,b) 

Then, the LB and UB of the interval stress component  ( ) ;i I

h x   can be derived in approximate 

explicit form by replacing the above defined combinations of the uncertain parameters into Eq. (44), 

where the desired number of series terms is retained, i.e.: 

 

 

( ) ( ) (LB)

,

( ) ( ) (UB)

,

( ; ) ; ;    

( ; ) ; ,   ( 1,2, , ;   1,2, , ).

i i

h h i h

i i

h h i h s eh n i N

 

 


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x x

x x

 

 

 (48a,b) 

Notice that the sensitivity based procedure may be computationally onerous since the vectors 

defined in Eqs. (47a,b) need to be determined for each stress component and each FE. However, the 

method enables to retain higher-order terms in the IRSE and proves to be very useful when the 

bounds of the stress at a selected point are of interest.  

 

6. INDEPENDENT UNCERTAINTIES OVER SELECTED REGIONS 

Allowing independent variations of Young’s moduli of the FEs may be disadvantageous for the 

following main reasons: overestimation of the actual uncertainty, mesh-dependency of the solution 
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and increase of the computational effort. The proposed IFEM enables to overcome these drawbacks 

by adopting two different meshes to describe the spatial variability of the uncertain property and the 

structural behaviour. To this aim, let us subdivide the body into r eN N  regions or subdomains 

exhibiting independent variations of the interval Young’s modulus, 
( )

0
ˆ( ) (1 )j I I

j j jE E e    , 

1,2, , rj N , with the j -th region including 
( )j

eN  FEs. The collection of such regions is herein 

referred to as “uncertainty mesh”. A finer uncertainty mesh implies independent variations of the 

elastic modulus at more closely spaced locations and therefore a higher degree of variability over 

the body domain. Obviously, the formulation of the IFEM developed in the previous sections 

assuming r eN N  (and 
( ) 1j

eN  ) still applies. For the sake of clarity, in the sequel just the basic 

formulas are specialized to the case of uncertainty mesh consisting of r eN N  regions.  

By applying the decomposition described in Section 3.2, the interval global stiffness matrix can 

be still expressed as sum of the nominal value plus a superposition of rank-one matrices, i.e.: 

( )

( ) ( ) ( )T

0

1 1 1

ˆ

j
e ir N pN

I I

j j i i i

j i

e 
  

   K K v v  (49) 

where an EUI is linked to each subdomain with uncertain Young’s modulus. Specifically, the j -th 

EUI, ˆ I

je , is associated to all the 
( )j

eN  FEs belonging to the j -th region with interval elastic 

modulus 
( )

0
ˆ( ) (1 )j I I

j j jE E e    .  

Taking into account Eq. (49) and performing simple manipulations of the IRSE-1 (26), the 

following affine form expression of the approximate inverse of the interval global stiffness matrix is 

obtained: 

   
( )

1
1 ( ) ( )

0 0,

1 1 1

ˆ 

j
e ir N pN

I j j I

i i j i

j i

a a e




  

   K K D  (50) 

where 
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;      .
1 1

i j i i jj j

i i

i j i i j i

d
a a

d d

   

   

 
  

   
 (51a,b) 

Notice that the EUIs in Eq. (50) are associated to the rN  regions with uncertain Young’s modulus, 

thus allowing one to keep track of dependencies between interval variables and reduce the 

overestimation. Furthermore, FE refinement does not alter the description of the spatial variability 

of uncertainty since the number r eN N  of the uncertain parameters over the entire structure is 

kept fixed. 

Equation (50) enables to express the interval displacement vector as sum of the midpoint value 

plus an interval deviation (see Eq.(29)) and then evaluate the LB and UB vectors in approximate 

explicit form by means of Eqs. (32a,b) where:  

 
( )

( )

1 ( )

0 0,

1 1 1

( )

1 1 1

mid ;

( ) .

j
e ir

j
e ir

N pN
I j

i i

j i

N pN
j

i i

i i

a

a



  

  

 

  





U K F D F

U D F

 (52a,b) 

 

7. NUMERICAL APPLICATIONS 

For validation purpose, three numerical examples concerning 2D and 3D FE modelled structures 

with uncertain Young’s modulus, are presented. 

The accuracy of the proposed IFEM is herein assessed by performing appropriate comparisons 

with the exact bounds of the response evaluated by applying a combinatorial procedure, known as 

vertex method, first introduced by Dong and Shah [38]. This method computes the LB and UB of 

the response quantity of interest as the minimum and maximum among the deterministic solutions 

pertaining to all possible combinations of the endpoints of the interval parameters, say 2 .eN
 

Obviously, this procedure is time-consuming and, unlike the proposed method, it becomes 

unfeasible when a large number of uncertain parameters is considered.  
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In cases involving a large number of uncertainties, the proposed method is validated by 

comparison with the solution computed by applying a sensitivity method (SM), conceptually 

analogous to the approach described in Section 5, which requires the following steps: 

i) evaluate the exact sensitivities of nodal displacements as: 

1

0 0 , 0 0

( ) ( ) ( )
,    ( 1,2, , );

I I I

i i e

i i i

i N
  



  

  
      

  
U

0 0 0

K U U
U K 0 s K K U

  

  
 (53) 

ii) based on Eqs. (41a,b), determine the vectors, (LB)

j  and (UB)

j , collecting the 

combinations of the endpoints of the uncertain parameters which give the LB and UB of 

j -th displacement component; 

iii) evaluate the bounds jU  and  jU  as the j -th component of the following vectors: 

       (LB) 1 (LB) (UB) 1 (UB); .j j j j

  U K F      U K F     (54a,b) 

A similar procedure can be adopted to compute the LB and UB of the stress components.  

Though more onerous from a computational point of view, the described method is more 

accurate than the sensitivity-based approach proposed in Section 5 which is affected by the 

approximation of the inverse of the interval stiffness matrix by means of the IRSE. 

 

 

7.1 Square plate with uncertain Young’s modulus: load condition 1 

First, the proposed IFEM is applied to a plane stress problem, i.e. a square plate under uniform 

traction (load condition 1 (LC1)) with uncertain Young’s modulus of the material (Figure 1). The 

following data are assumed: width and thickness of the plate 0.1 mL   and 0.001 mt  , 

respectively; nominal Young’s modulus 0 210 GPaE   and Poisson ratio 0.3  ; traction 

10 MPap  .  
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7.1.1 Independent uncertain Young’s modulus for each FE 

First, a uniform mesh consisting of 16eN   (Figure 1a) four-node 2D FEs is adopted. Young’s 

moduli of the FEs are modelled as interval variables 
( )

0
ˆ( ) (1 )i I I

i i iE E e   , where the same 

deviation amplitude i    , 1,2, , ei N , of the dimensionless fluctuations around the 

nominal value is assumed. Depending on the physical problem, the deviation amplitude may be 

different for the various uncertain parameters and its rigorous estimation should rely on available 

experimental data. In order to assess the capability of the IFEM based on the IIA via EUI to handle 

large fluctuations of the uncertain parameters, the deviation amplitude is set to 0.1   and 

0.2  , though material properties are commonly affected by smaller degrees of uncertainty. The 

nominal stiffness matrix of the four-node FE has 5ip   non-zero eigenvalues, as many as are the 

deformation modes of the element. The interval nodal displacements 
I

jyU  ( 1,2, ,20j  ) and 

interval stress components 
( )i I

jy  ( 1,2, ,4j  ; 
( )1,2, , ei N ) at the FE nodes, in the load 

direction are selected as response quantities of interest. The proposed bounds of the response are 

evaluated by applying both the IRSE-1 (see Section 4) and the IRSE truncated to second-order 

terms, which will be hereinafter referred to as IRSE-2. In the latter case, the sensitivity based 

procedure described in Section 5 is applied. The accuracy of the proposed IFEM is demonstrated by 

performing appropriate comparisons with the exact bounds of the response provided by the vertex 

method which requires 
162  deterministic analyses.  

Figure 2 displays the comparison between the proposed and exact LB and UB of the interval 

nodal displacements 
I

jyU  ( 1,2, ,20j  ) in the load direction evaluated for two different values of 

the deviation amplitude of the uncertain Young’s moduli, say 0.1   and 0.2  . Notice that 

the proposed bounds computed by applying the IRSE-1 are in good agreement with the exact ones 

even when the uncertainty level increases (see Figure 2b). Furthermore, as expected, when larger 
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deviation amplitudes of the uncertain parameters are considered, the region containing all possible 

values of the response becomes wider.  

To further assess the accuracy of the novel IFEM, in Figure 3 the absolute percentage errors, 

(%)
jyU

  and (%)
jyU , affecting the proposed estimates of the bounds of the interval nodal 

displacements 
I

jyU  ( 1,2, ,20j  ) obtained for 0.2   by applying both the IRSE-1 and the 

IRSE-2 are reported. It is observed that the absolute percentage errors associated with the IRSE-1 

are always less than 4% and thus acceptable from an engineering point of view. Furthermore, it can 

be seen that the IRSE-2, generally, yields a substantial improvement of the accuracy at the expense 

of a higher computational effort.  

Both the proposed IFEM and the vertex method have been implemented in MATLAB and run on 

a PC with Intel
®
 Core

TM
 i7-2630QM CPU at 2.00 GHz and 4.00 GB RAM. The comparison 

between run-times has shown that the novel IFEM is much more efficient than the combinatorial 

procedure and its performance rapidly improves as the number of uncertain parameters increases. In 

particular, for the selected case study involving 16eN   uncertainties, the proposed IFEM based on 

the use of the IRSE-1 proves to be 324 times faster than the vertex method. 

In order to quantify the propagation of Young’s modulus uncertainty to the response of the plate, 

the so-called coefficient of interval uncertainty (c.i.u.) 

 
c.i.u.[ ]=

mid

jy jy jyI

jy I
jy jyjy

U U U
U

U UU

 



 (55) 

is evaluated. This coefficient provides a measure of the dispersion of the response around the 

midpoint value. Figure 4 shows the comparison between the coefficient of interval uncertainty of 

the nodal displacements 
I

jyU  ( 1,2, ,20j  ) provided by the IRSE-1 and the exact one for two 

different degrees of uncertainty, say 0.1   and 0.2  . As expected, the dispersion of the 
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response around the midpoint value increases as larger deviation amplitudes of the uncertain 

Young’s moduli are considered and is different for the various DOFs. In particular, it can be noticed 

that the displacements of the nodes lying on the free edges ( 1,5,6,10,11,15,16,20j  ) are more 

affected by uncertainty than those of the inner nodes ( 2,3,4,7,8,9,12,13,14,17,18,19j  ) located at 

the same distance from the fixed edge, with the largest dispersion over the whole plate pertaining to 

nodes 1 and 5. Furthermore, it is worth observing that the propagation of uncertainty implies an 

amplification for almost all DOFs. This result demonstrates the need of incorporating uncertainty in 

structural analysis in order to obtain reliable predictions of structural behavior. 

Figure 5 and 6 display the LB and UB of the interval stress component in the load direction 
( )i I

jy  

( 1,2, ,4j  ; 12,16i  ) evaluated at the four nodes of FEs 12 and 16 (see Figure 1a), respectively, 

for 0.1   and 0.2  . Notice that the proposed bounds, obtained by applying the IRSE-1, are 

in good agreement with the exact ones. The same level of accuracy is achieved for the bounds of the 

stress at the nodes of the remaining FEs, herein omitted for conciseness. To further scrutinize the 

accuracy of the novel IFEM, in Tables 1 and 2 the absolute percentage errors, ( ) (%)i
jy

  and ( ) (%)i
jy



, affecting the LB and UB of the interval stress component ( )i I

jy  ( 1,2, ,4j  ; 12,16i  ) provided 

by both the IRSE-1 and IRSE-2 are listed. By inspection of these tables, it is inferred that the 

accuracy of the proposed IFEM does not worsen when stress variables are considered. Furthermore, 

it is observed that the IRSE-2, generally, allows a substantial reduction of the absolute percentage 

errors affecting the proposed estimates of stress bounds.  

In order to investigate the influence of the FE mesh on the accuracy of the proposed IFEM, the 

plate under study is analyzed considering a uniform mesh consisting of 64eN   four-node 2D FEs. 

Since the vertex method requires 
642  deterministic analyses of the plate, the SM is applied for 

validation purpose. Furthermore, in order to compare the solutions pertaining to the two meshes 
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with 16eN   and 64eN   FEs, the displacement components in the load direction of the nodes 

numbered in Figure 1a are considered as response quantities of interest, i.e. 
I

jyU  ( 1,2, ,20j  ). 

In Figure 7, the proposed bounds of the interval nodal displacements 
I

jyU  ( 1,2, ,20j  ) 

produced by the IRSE-1 considering the refined mesh with 64eN   FEs are contrasted with those 

pertaining to the coarse mesh with 16eN   FEs for two different levels of uncertainty, say 

0.1   and 0.2  . Notice that the refined mesh yields a slightly wider region of the nodal 

displacements due to higher variability of Young’s modulus. Similar comparisons on the stress 

bounds, omitted for conciseness, as expected, have shown a more appreciable influence of the mesh 

size. Figure 8 displays the absolute percentage errors, (%)
jyU

  and (%)
jyU , affecting the proposed 

LB and UB of the interval nodal displacements 
I

jyU  ( 1,2, ,20j  ) provided by the IRSE-1 

compared to those given by the SM for 0.1   and 0.2  . As expected, the accuracy worsens 

when the degree of uncertainty increases. Furthermore, it is observed that the percentage errors are 

comparable to those obtained for the coarse mesh with 16eN   FEs (see Figure 3). Based on these 

results, it may be concluded that the proposed IFEM is not affected by the overestimation of the 

solution range with the increase of the number of uncertain parameters which is a common 

drawback of interval-based methods. 

 

7.1.2 Independent uncertain Young’s moduli over selected regions 

Let us assume now that the square plate under uniform traction is subdivided into four regions with 

independent interval Young’s moduli, say 4rN   (see Figure 1b). Figure 9 displays the bounds of 

the interval nodal displacements 
I

jyU  ( 1,2, ,20j  ) provided by the IRSE-1 for 0.1   and two 

different FE meshes, that is 16eN   and 64eN  . It can be observed that the bounds are less 
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influenced by the FE mesh than those obtained assuming 
r eN N  (see Figure 7) since the 

description of the spatial variability of uncertainty is kept unaltered ( 4rN  ). Furthermore, the 

absolute percentage errors affecting the proposed bounds of displacements compared to those 

provided by the vertex method, herein omitted for conciseness, are less than 0.6%  for both the 

meshes with 16eN   and 64eN  . Finally, Figure 10 displays the comparison between the 

coefficients of interval uncertainty of the nodal displacements 
I

jyU  ( 1,2, ,20j  ) provided by the 

IRSE-1 for 4rN   and r eN N , considering also in this case two different FE meshes with 

16eN   and 64eN  . As expected, when 4rN   regions with uncertain Young’s modulus are 

assumed, the dispersion of the response around the midpoint value is almost independent of the FE 

mesh. Conversely, when the same mesh is adopted to describe both the spatial variability of 

uncertainty and the behavior of the structure ( r eN N ), the dispersion increases with the number of 

FEs and is obviously larger than that pertaining to the plate with 4rN   uncertain Young’s moduli 

since e rN N . Furthermore, when 4rN  , consistently with the physical problem, the effects of 

uncertainty on the various DOFs are related to the node location, as if a sort of symmetry were 

restored, i.e. the displacements of the inner nodes ( 2,3,4,7,8,9,12,13,14,17,18,19j  ) exhibit 

almost the same dispersion which is lower than that of external node displacements (

1,5,6,10,11,15,16,20j  ) at the same distance from the fixed edge. These results demonstrate the 

capability of the proposed IFEM to accurately predict the interval response whatever mesh is 

adopted to describe the spatial variability of the uncertain property. This remarkable feature is due 

to the use of the EUI which is kept linked to each uncertain parameter throughout the solution 

procedure.  
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7.2 Square plate with uncertain Young’s modulus: load condition 2 

Let us consider now the same square plate with uncertain Young’s modulus analyzed in the 

previous section, subjected to the load condition 2 (LC2) shown in Figure 11, where 20 MPap  . 

The analysis is carried out adopting a non-uniform mesh consisting of 64eN   four-node FEs (see 

Figure 11a). Two different meshes are considered for the uncertain material property: the first one 

coincides with the FE mesh ( 64r eN N  ), so that each EF exhibits independent variations of 

Young’s modulus (see Figure 11b); the second mesh consists of 4rN   regions with 

( )

0
ˆ( ) (1 )j I I

j j jE E e    , ( 1,2,3,4)j  , as shown in Figure 11b. In both cases, the deviation 

amplitude of the uncertain parameters is set to 0.1  . Attention is focused on the interval 

displacements 
I

jyU  ( 1,2, ,21j  ) of the nodes highlighted in Figure 11a. In order to apply the 

proposed procedure, the eigenvalues and eigenvectors of the nominal stiffness matrix of each FE 

with different dimensions are first evaluated. 

Figure 12 displays the proposed bounds of the nodal displacements 
I

jyU  ( 1,2, ,21j  ) 

computed by applying the IRSE-1 for the two uncertainty meshes 64r eN N   (Figure 12a) and 

4rN   (Figure 12b) compared with the bounds provided by the SM and the vertex method, 

respectively. It can be observed that the proposed method yields accurate predictions of the interval 

response also when a non-uniform FE mesh is used. Indeed, the percentage errors affecting the 

proposed estimates of the displacement bounds, omitted for conciseness, are always less than 1.2%  

for 64r eN N   and 0.6%  for 4rN  . 

The effect of the uncertainty mesh can be clearly detected by inspection of Figure 13 where the 

coefficients of interval uncertainty of the nodal displacements 
I

jyU  ( 1,2, ,21j  ) provided by the 

IRSE-1 for 64r eN N   and 4rN   are reported. As expected, assuming independent variations 

of Young’s modulus of each FE leads to higher dispersion of the response around the midpoint 
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value than that pertaining to the plate with independent uncertainties over 4rN   regions. Indeed, 

in the latter case, each realization of the uncertain material property exhibits a smaller variability 

over the plate domain. Furthermore, as observed in the previous example, the uncertainty mesh with 

4rN   regions leads to a sort of symmetry in the propagation of uncertainty since the 

displacements of the inner nodes ( 2, ,6,9,, ,13,16, ,20j  ) exhibit the same dispersion which 

is smaller than that of the external nodes ( 1,7,8,14,15,21j  ) located at the same distance from the 

fixed edge. 

 

7.3 3D cantilever beam with uncertain Young’s modulus 

The third example concerns a 3D cantilever beam with uncertain Young’s modulus of the material 

(Figure 14) subjected to two point loads 100 kNF   at the free end. The beam has length 5 mL   

and rectangular cross-section with width 0.25 mb   and thickness 0.5 mh  . The nominal 

Young’s modulus and Poisson ratio of the material are selected as 0 20 GPaE   and 0.3  , 

respectively. The beam is discretized into 320eN   eight-node brick elements resulting in a FE 

model with 1800 DOFs. Young’s modulus of each FE is modelled as an interval variable 

( )

0
ˆ( ) (1 )i I I

i i iE E e    with i    , 1,2, , ei N . The number of non-zero eigenvalues of 

the nominal stiffness matrix of the eight-node brick FE is 18ip  , as many as are the deformation 

modes of the element. The proposed IFEM is applied to evaluate the bounds of the interval 

displacement components, I

jyU  ( 1,2, ,20j  ), along the y -axis of twenty selected nodes shown 

in Figure 14. The LB and UB of the interval stress component 
(165) I

j xz  ( 1,2, ,8j  ) at the nodes of 

FE 165 highlighted in Figure 14 are also computed. The proposed approach based on the use of the 

affine form of the IRSE-1 (see Section 4) is applied for evaluating both displacement and stress 

bounds. Due to the large number of uncertain parameters involved ( 320eN  ), the evaluation of the 
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exact solution by means of the vertex method is unfeasible. Hence, the accuracy of the proposed 

method is assessed by comparison with the results provided by the SM.  

In Figure 15, the proposed LB and UB of the selected nodal displacements, I

jyU  ( 1,2, ,20j  ), 

evaluated by applying the IRSE-1 for 0.1   and 0.2   are contrasted with the bounds 

provided by the SM. A very good agreement is observed even when the degree of uncertainty 

increases, despite the large number of uncertain parameters involved. As expected, the region of the 

interval displacements widens when larger deviation amplitudes of the uncertain parameters are 

considered. The absolute percentage errors affecting the proposed estimates of the displacement 

bounds for 0.1   and 0.2   when compared with those given by the SM, herein omitted for 

conciseness, are less than 1% and 4%, respectively, for all the selected DOFs.  

Figure 16 displays the estimates of the coefficient of interval uncertainty of the selected nodal 

displacements provided by the IRSE-1 and the SM for two different degrees of uncertainty, say 

0.1   and 0.2  . It can be seen that the dispersion of the interval response of the cantilever 

beam around the midpoint value increases with the deviation amplitude of the uncertain parameters 

and involves amplification of input uncertainty for all the considered DOFs. In particular, the 

coefficient of interval uncertainty slightly increases moving towards the free end, with node 20 

exhibiting the largest dispersion around the midpoint value. 

Finally, in Figure 17 the LB and UB of the interval stress component (165) I

j xz  ( 1,2, ,8j  ) at the 

eight nodes of FE 165 (see Figure 14) for 0.1   and 0.2   are reported. The comparison 

between the proposed estimates obtained by applying the IRSE-1 and the SM solution shows a very 

good agreement even for 0.2  . 

The presented numerical results demonstrate the capability of the proposed IFEM to handle a 

large number of uncertain parameters and accurately predict the bounds of both displacements and 

stresses even for a 3D FE model. In particular, it is worth emphasizing that for the selected 
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examples, the IRSE-1 produces sufficiently accurate results for uncertainty levels ( 0.2  ) which 

are unlikely to be exceed in real engineering problems. 

 

8. CONCLUSIONS 

A novel Interval Finite Element Method (IFEM) for the static analysis of linear structures with 

uncertain parameters has been presented. The key idea of the method is to model the uncertain 

parameters as interval variables handled by means of the improved interval analysis via extra 

unitary interval (IIA via EUI), recently introduced in the literature to reduce the overestimation 

affecting the classical interval analysis. This approach associates a particular unitary interval, the 

so-called EUI, to each uncertain parameter thus enabling to keep track of dependencies between 

interval variables in both the assembly and solution stages of the finite element procedure. The 

bounds of the interval response in terms of displacements and stresses are derived in approximate 

closed-form by applying the so-called Interval Rational Series Expansion (IRSE) which provides an 

approximate explicit expression of the inverse of the interval stiffness matrix.  

Numerical results concerning both 2D and 3D structures with uncertain Young’s modulus of the 

material have been presented. The accuracy and efficiency of the presented procedure have been 

demonstrated by performing appropriate comparisons with the exact bounds of the response 

provided by a combinatorial method when feasible. 

Some remarkable advantages of the novel IFEM are the following: i) the main steps are the same 

as those characterizing the standard FEM (i.e. derivation of element properties, assembly, solution 

and post-processing); ii) the lower bound and upper bound of the interval response are derived in 

approximate explicit form; iii) the method provides very accurate estimates of the bounds of both 

primary (displacements) and secondary (stresses) variables even for large degrees of uncertainty; iv) 

the accuracy is not affected by the mesh size; v) different meshes can be adopted to describe the 
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behaviour of the structure and the spatial variability of the uncertain properties; vi) the analysis of 

large-size structures with several uncertain parameters can be handled.  

The aforementioned features make the proposed IFEM a powerful tool to assess structural safety 

in the context of worst case analysis. Furthermore, the results provided by the IFEM are particularly 

valuable in early design stages when available data on the uncertain parameters are insufficient to 

justify a computationally intensive probabilistic analysis. Future developments will focus on the 

representation of the uncertain properties as interval fields in the context of the proposed IFEM 

based on the IIA via EUI. 
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FIGURE CAPTIONS 

Figure 1. Square plate with uncertain Young’s modulus under load condition 1 (LC1): a) FE mesh 

coincident with uncertainty mesh, i.e. e rN N ; b) alternative uncertainty mesh consisting of 

4rN   regions. 

Figure 2. LB and UB of the nodal displacements in the load direction of the plate (LC1) with 

uncertain Young’s moduli  ( ) ( )

0
ˆ( ) 1i I i I

i iE E e    , 1,2, ,16i  , for a) 0.1   and b) 

0.2  : comparison between the proposed bounds obtained applying the IRSE-1 and the exact 

ones. 

Figure 3. Absolute percentage errors affecting the proposed LB (a) and UB (b) of the nodal 

displacements in the load direction of the plate (LC1) with uncertain Young’s moduli 

 ( ) ( )

0
ˆ( ) 1i I i I

i iE E e    , 1,2, ,16i  , obtained by applying the IRSE-1 and IRSE-2 ( 0.2  ). 

Figure 4. Coefficient of interval uncertainty of the nodal displacements in the load direction of the 

plate (LC1) with uncertain Young’s moduli  ( ) ( )

0
ˆ( ) 1i I i I

i iE E e    , 1,2, ,16i  : comparison 

between the exact and proposed estimates obtained by applying the IRSE-1 for 0.1   and 

0.2  . 

Figure 5. LB and UB of the stress component in the load direction evaluated at the nodes of FE 12 

of the plate (LC1) with uncertain Young’s moduli  ( ) ( )

0
ˆ( ) 1i I i I

i iE E e    , 1,2, ,16i  , for a) 

0.1   and b) 0.2  : comparison between the proposed bounds obtained applying the IRSE-

1 and the exact ones. 

Figure 6. LB and UB of the stress component in the load direction evaluated at the nodes of FE 16 

of the plate (LC1) with uncertain Young’s moduli  ( ) ( )

0
ˆ( ) 1i I i I

i iE E e    , 1,2, ,16i  , for a) 

0.1   and b) 0.2  : comparison between the proposed bounds obtained applying the IRSE-

1 and the exact ones. 

Figure 7. Proposed LB and UB of the nodal displacements in the load direction of the plate (LC1) 

with uncertain Young’s moduli  ( ) ( )

0
ˆ( ) 1i I i I

i iE E e    , 1,2, , ei N , provided by the IRSE-1 

for a) 0.1   and b) 0.2  : comparison between the results pertaining to two different 

meshes with 16eN   and 64eN   FEs. 

Figure 8. Absolute percentage errors affecting the proposed LB (a) and UB (b) of the nodal 

displacements in the load direction of the plate (LC1) with uncertain Young’s moduli 

 ( ) ( )

0
ˆ( ) 1i I i I

i iE E e    , 1,2, ,64i  , obtained by applying the IRSE-1 for 0.1   and 

0.2  . 
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Figure 9. LB and UB of the nodal displacements in the load direction of the plate (LC1) with 

4rN   regions with uncertain Young’s moduli  ( ) ( )

0
ˆ( ) 1i I i I

i iE E e    , 1,2,3,4i  , ( 0.1  ): 

comparison between the estimates provided by the IRSE-1 for two different FE meshes with 

16eN   and 64eN  . 

Figure 10. Coefficient of interval uncertainty of the nodal displacements in the load direction of the 

plate (LC1) with uncertain Young’s moduli provided by the IRSE-1 for different FE ( eN ) and 

uncertainty ( rN ) meshes ( 0.1  ). 

Figure 11. Square plate with uncertain Young’s modulus under load condition 2 (LC2): a) FE mesh 

coincident with uncertainty mesh, i.e. e rN N ; b) alternative uncertainty mesh consisting of 

4rN   regions. 

Figure 12. LB and UB of the selected nodal displacements in the load direction of the plate (LC2) 

discretized into 64eN   FEs with a) 64r eN N   and b) 4rN   regions with uncertain Young’s 

moduli: comparison between the estimates provided by the IRSE-1 and the bounds obtained 

applying the SM and the vertex method, respectively ( 0.1  ). 

Figure 13. Coefficient of interval uncertainty of the selected nodal displacements in the load 

direction of the plate (LC2) discretized into 64eN   FEs provided by the IRSE-1 considering 

64r eN N   and 4rN   regions with uncertain Young’s moduli ( 0.1  ). 

Figure 14. 3D cantilever beam with uncertain Young’s modulus under two point loads. 

Figure 15. LB and UB of twenty selected nodal displacements of the cantilever beam with 

uncertain Young’s moduli  ( ) ( )

0
ˆ( ) 1i I i I

i iE E e    , 1,2, ,320i  , for a) 0.1   and b) 

0.2  : comparison between the proposed bounds obtained applying the IRSE-1 and the ones 

provided by the SM. 

Figure 16. Coefficient of interval uncertainty of twenty selected nodal displacements of the 

cantilever beam with uncertain Young’s moduli  ( ) ( )

0
ˆ( ) 1i I i I

i iE E e    , 1,2, ,320i  : 

comparison between the proposed estimates obtained by applying the IRSE-1 and the ones provided 

by the SM for 0.1   and 0.2  . 

Figure 17. LB and UB of the stress component 
(165) I

j xz  evaluated at the nodes of FE 165 of the 

cantilever beam with uncertain Young’s moduli  ( ) ( )

0
ˆ( ) 1i I i I

i iE E e    , 1,2, ,320i  , for: a) 

0.1   and b) 0.2  : comparison between the proposed bounds obtained applying the IRSE-

1 and the ones provided by the SM. 

Figure 18. Dr. Alba Sofi. 

Figure 19. Eng. Eugenia Romeo. 
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TABLE CAPTIONS 

Table 1. Absolute percentage errors affecting the proposed estimates of the bounds of the stress 

component in the load direction evaluated at the nodes of FE 12 of the plate (LC1) with uncertain 

Young’s moduli  ( ) ( )

0
ˆ( ) 1i I i I

i iE E e    , 1,2, ,16i  , by applying the IRSE-1 and IRSE-2 (

0.2  ). 

 

Table 2. Absolute percentage errors affecting the proposed estimates of the bounds of the stress  

component in the load direction evaluated at the nodes of FE 16 of the plate (LC1) with uncertain 

Young’s moduli  ( ) ( )

0
ˆ( ) 1i I i I

i iE E e    , 1,2, ,16i  , by applying the IRSE-1 and IRSE-2 (

0.2  ). 
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Figure 1. Square plate with uncertain Young’s modulus under load condition 1 (LC1): a) FE mesh 

coincident with uncertainty mesh, i.e. e rN N ; b) alternative uncertainty mesh consisting of 

4rN   regions. 
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Figure 2. LB and UB of the nodal displacements in the load direction of the plate (LC1) with 

uncertain Young’s moduli  ( ) ( )
0 ˆ( ) 1i I i I

i iE E e    , 1,2, ,16i   , for a) 0.1   and b) 

0.2  : comparison between the proposed bounds obtained applying the IRSE-1 and the exact 
ones. 
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FIGURE 3 

 

 

 

 

 

Figure 3. Absolute percentage errors affecting the proposed LB (a) and UB (b) of the nodal 
displacements in the load direction of the plate (LC1) with uncertain Young’s moduli 

 ( ) ( )
0 ˆ( ) 1i I i I

i iE E e    , 1,2, ,16i   , obtained by applying the IRSE-1 and IRSE-2 ( 0.2  ). 
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FIGURE 4 

 

 

 

Figure 4. Coefficient of interval uncertainty of the nodal displacements in the load direction of the 

plate (LC1) with uncertain Young’s moduli  ( ) ( )
0 ˆ( ) 1i I i I

i iE E e    , 1,2, ,16i   : comparison 

between the exact and proposed estimates obtained by applying the IRSE-1 for 0.1   and 
0.2  . 
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FIGURE 5 

 

 

 

 

 

Figure 5. LB and UB of the stress component in the load direction evaluated at the nodes of FE 12 

of the plate (LC1) with uncertain Young’s moduli  ( ) ( )
0 ˆ( ) 1i I i I

i iE E e    , 1,2, ,16i   , for a) 

0.1   and b) 0.2  : comparison between the proposed bounds obtained applying the IRSE-
1 and the exact ones. 

 

UB

LB  = 0.1

1 2 3 4
j

8

9

10

11

12

 j
y(1

2)
 I
 [

M
P

a]

IRSE-1
Exact

FE 12

 = 0.2

1 2 3 4
j

6

8

10

12

14

 j
y(1

2)
 I
 [

M
P

a]

IRSE-1
Exact

UB

LB

FE 12

)a

)b



FIGURE 6 

 

 

 

 

 

 

Figure 6. LB and UB of the stress component in the load direction evaluated at the nodes of FE 16 

of the plate (LC1) with uncertain Young’s moduli  ( ) ( )
0 ˆ( ) 1i I i I

i iE E e    , 1,2, ,16i   , for a) 

0.1   and b) 0.2  : comparison between the proposed bounds obtained applying the IRSE-1 
and the exact ones. 
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FIGURE 7 

 

 

 

 

 

 

Figure 7. Proposed LB and UB of the nodal displacements in the load direction of the plate (LC1) 

with uncertain Young’s moduli  ( ) ( )
0 ˆ( ) 1i I i I

i iE E e    , 1,2, , ei N  , provided by the IRSE-1 

for a) 0.1   and b) 0.2  : comparison between the results pertaining to two different 

meshes with 16eN   and 64eN   FEs. 
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FIGURE 8 

 

 

 

 

 

Figure 8. Absolute percentage errors affecting the proposed LB (a) and UB (b) of the nodal 
displacements in the load direction of the plate (LC1) with uncertain Young’s moduli 

 ( ) ( )
0 ˆ( ) 1i I i I

i iE E e   , 1,2, ,64i   , obtained by applying the IRSE-1 for 0.1   and 

0.2  . 
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FIGURE 9 
 

 
 

Figure 9. LB and UB of the nodal displacements in the load direction of the plate (LC1) with 

4rN   regions with uncertain Young’s moduli  ( ) ( )
0 ˆ( ) 1i I i I

i iE E e    , 1,2,3,4i  , ( 0.1  ): 

comparison between the estimates provided by the IRSE-1 for two different FE meshes with 

16eN   and 64eN  . 
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FIGURE 10 
 

 

Figure 10. Coefficient of interval uncertainty of the nodal displacements in the load direction of the 

plate (LC1) with uncertain Young’s moduli provided by the IRSE-1 for different FE ( eN ) and 

uncertainty ( rN ) meshes ( 0.1  ). 
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Figure 11. Square plate with uncertain Young’s modulus under load condition 2 (LC2): a) FE mesh 

coincident with uncertainty mesh, i.e. e rN N ; b) alternative uncertainty mesh consisting of 

4rN   regions. 
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Figure 12. LB and UB of the selected nodal displacements in the load direction of the plate (LC2) 

discretized into 64eN   FEs with a) 64r eN N   and b) 4rN   regions with uncertain Young’s 

moduli: comparison between the estimates provided by the IRSE-1 and the bounds obtained 
applying the SM and the vertex method, respectively ( 0.1  ). 
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FIGURE 13 
 

 

Figure 13. Coefficient of interval uncertainty of the selected nodal displacements in the load 

direction of the plate (LC2) discretized into 64eN   FEs provided by the IRSE-1 considering 

64r eN N   and 4rN   regions with uncertain Young’s moduli ( 0.1  ). 
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Figure 14. 3D cantilever beam with uncertain Young’s modulus under two point loads. 

 



FIGURE 15 

 

 

   

 

       

 

Figure 15. LB and UB of twenty selected nodal displacements of the cantilever beam with 

uncertain Young’s moduli  ( ) ( )
0 ˆ( ) 1i I i I

i iE E e   , 1,2, ,320i   , for a) 0.1   and b) 

0.2  : comparison between the proposed bounds obtained applying the IRSE-1 and the ones 
provided by the SM. 
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FIGURE 16 

 

 

 

Figure 16. Coefficient of interval uncertainty of twenty selected nodal displacements of the 

cantilever beam with uncertain Young’s moduli  ( ) ( )
0 ˆ( ) 1i I i I

i iE E e    , 1,2, ,320i   : 

comparison between the proposed estimates obtained by applying the IRSE-1 and the ones provided 
by the SM for 0.1   and 0.2  . 
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FIGURE 17 

 

 

 

 

 

Figure 17. LB and UB of the stress component (165) I
j xz  evaluated at the nodes of FE 165 of the 

cantilever beam with uncertain Young’s moduli  ( ) ( )
0 ˆ( ) 1i I i I

i iE E e   , 1,2, ,320i   , for: a) 

0.1   and b) 0.2  : comparison between the proposed bounds obtained applying the IRSE-
1 and the ones provided by the SM. 
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FIGURE 18 

 

 

 

 

Figure 18. Dr. Alba Sofi 
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Figure 19. Eng. Eugenia Romeo 
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Figure 1. Square plate with uncertain Young’s modulus under load condition 1 (LC1): a) FE mesh 


coincident with uncertainty mesh, i.e. e rN N ; b) alternative uncertainty mesh consisting of 


4rN   regions. 
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