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Abstract: The present study aimed to investigate the impact on nutritional and functional properties
of dried kiwifruit (Actinidia chinensis cv. Sungold) slices during conservation for 120 days in sealed
containers in the dark at 25 ◦C. For this purpose, kiwifruits slices were dried at two different
temperatures, 40 and 55 ◦C, for 30 and 25 h, respectively. Fresh and dried kiwi slices were analyzed
for their pH, activity water, total solid soluble (TSS), color, titratable acidity, total phenols (TPC)
and flavonoids content (TFC), organic acids, and radical scavenging activities. Analysis carried out
on the dehydrated samples showed a good aptitude of kiwi material towards the drying process.
Particularly, it has been observed that the drying treatment at low temperature helped to preserve the
nutraceutical properties of the fruits. In fact, samples treated at 40 ◦C (KLT) showed at day 0 (T0) the
highest TPC and TFC with values of 979.42 Gallic Acid Equivalents (GAE)/100 g of dried weight
(dw) and 281.84 mg catechin equivalents (CTE)/100 g dw even if compared with fresh kiwi slices
sample (FKF). Moreover, KLT also exhibited the highest values of antioxidant activity (1657 mmol
Trolox/100 g dw). After 120 days storage, all dried samples showed a high ascorbic acid content
(429–339 mg/100 g dw fruits) and only a slight variation of physicochemical parameters. Textural
Parameters (hardness, springiness, cohesiveness, gumminess, and chewiness), apart from resilience
results, showed significant differences between kiwifruit dried at 55 ◦C and at 50 ◦C (KLT and KHT,
respectively). Color and aroma intensity were the main sensory descriptors with higher scores.

Keywords: hot air drying; drying quality; antioxidant activity; phenolic compounds; texture;
organic acids

1. Introduction

Kiwi is a fruit native to China. At the end of the 20th century, it arrived in Europe
and found diffusion especially in Italy, which today represents one of the largest exporters
together with New Zealand [1].

The most cultivated kiwifruits belong to the Actinidia deliciosa cv. Hayward species.
However, an increase in the consumption of golden-fleshed kiwifruit (Actinidia chinensis
spp.) has recently been observed. These fruits have bright yellow pulp surrounded by a
glabrous bronze skin. This fruit differs from the Hayward kiwi as it has a sweet flavor and
a tropical taste [2,3]. Gold kiwis are consumed fresh without removing the covering peel,
either in the form of juice or as ingredients in various recipes, both sweet and savory [3].
Kiwifruits are rich in vitamin C, E, polyphenols and flavonoids, iron, potassium, and
fiber [4–7]. Numerous studies have shown that the content of bioactive compounds in
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these fruits means that their consumption helps prevent pathologies such as diabetes,
cardiovascular diseases, and cancer [8].

Kiwifruits are classified as climacteric fruits, which means that it continues to ripen
even post-harvest. This probably determines a rather short shelf life, in addition to its
high moisture content (~80%). The quality of the fruit depends on numerous factors:
growing area, climatic and cultivation conditions, stage of ripeness at harvest, and storage
conditions [9].

Mild technologies are able to maintain the freshness of the food product, including
its organoleptic properties, and, at the same time, to prolong its shelf life [10]. Moreover,
these technologies, including low temperature operating processes, are advantageous for
maintaining adequate levels of micronutrients [11,12].

Dehydration is one of the best fruit preservation methods [13]. In Italy, this practice is
widely applied to sliced plums, apricots, and apples. Dehydrated fruit is characterized by
interesting health properties and ease of use compared to the fresh product [14,15].

The market size for snacks rich in vitamins, dietary fibers, and minerals has grown
significantly in the last 5 years. The global dried fruit snacks market is expected to grow with
a compound annual growth rate (CAGR) of about 7.1% during the period 2023–2030 [16].
In this context, the dried kiwifruit market size is estimated to grow with a CAGR of 5.9%
during the period 2022–2027 [17].

Several research works investigated the impact of different drying methodologies on
kiwifruits slices by applying convective, microwave, and freeze-drying processes [5,18–34].
However, all the works concern the Hayward cv. except Diamante et al. [29], who evaluated
the impact of drying process (60, 80, and 100 ◦C with air velocity of 0.20 m/s at ambient
humidity) on Hayward and Sungold kiwifruit slices.

This work aimed to highlight, for the first time, the impact on nutritional and functional
properties of dried Sungold cv. kiwifruit slices during conservation for 120 days in sealed
containers in the dark at 25 ◦C. For this purpose, kiwifruits slices were dried at two different
temperatures, 40 and 55 ◦C, for 30 and 25 h, respectively.

Chemical-physical parameters, total phenols, flavonoids and ascorbic acid contents,
radical scavenging potential, sensory, and texture analysis were assessed.

2. Materials and Methods
2.1. Dried Kiwifruit Preparation

Kiwifruits (Actinidia chinensis cv. Sungold) were obtained from a farm in Montalto
Uffugo (Cosenza, Italy) in February 2023. Homogeneous (per caliber) kiwifruit samples
(15 kg) were washed with a sodium hypochlorite solution, then peeled and cut vertically to
their axis into 7 mm thick cylindrical slices using a mechanical cutter (Figure 1).
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Figure 1. Kiwifruits cut into slices and distributed into trays in a single layer.

The drying process was carried out in a convective dryer (model “Scirocco”, Società
Italiana Essiccatoi, Milan, Italy) set at two different temperatures: 40 ◦C and 55 ◦C.

The kiwi slices were distributed in trays in a single layer and immediately dried in a
tangential air flow cabin equipped with automatic devices for controlling the temperature
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and humidity of the air. The air flows tangentially to the fruit (1840 m3/h), while a
recycling system allows the exhaust gases to be mixed with fresh air. The air speed was
1.19 m/s, while the relative humidity was 77%. These parameters were monitored by using
a microprocessor controller. The fresh air was recycled by a fan powered by a motor.

The process was carried out until a final humidity of ~20% compared to the initial one
was reached, i.e., for 30 and 25 h for 40 and 55 ◦C, respectively.

Kiwi slices dried at 40 ◦C for 30 h were identified as KLT whereas slices dried at
55 ◦C for 25 h were identified as KHT. Dried kiwifruit slices (KHT and KLT) were stored
in sealed containers (Figure 2) in the dark at 25 ◦C and analyzed after 0, 30-, 60-, 90, and
120-days storage.
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Figure 2. Kiwi dried samples stored in sealed containers at (a) 40 ◦C (KLT) and (b) 55 ◦C (KHT).

2.2. Preparation of Extracts

For determination of chemical parameters, kiwifruits were homogenised in a blender
(Electrolux E4CB1-6ST, Stockholm, Sweden) then 5 g of the sample were added to 50 mL
of distilled water and centrifuged using Nüve NF 1200R (Saracalar Kümeevleri, Ankara,
Turkey) (5000 rpm, swing-out rotor 160 mm, for 10 min). Supernatant solution was filtered
through Whatman no. 1 filter paper and analyzed.

For the estimation of total phenols (TPC) and flavonoids (TFC), homogenized ki-
wifruits (5 g) were added to 25 mL of a methanol: water (80:20, v:v) solution and then
centrifuged at 5000 rpm for 10 min according to the method of Sicari et al. [35]. Supernatant
collected was filtered through syringe filters (Ch 0.45 µm Chromafil RC-45/25) and used
for the for subsequent analyses.

2.3. Physico-Chemical and Colorimetric Analysis

The moisture content was determined following AOAC procedure [36]. Kiwifruits
were accurately weighed before and after oven drying (Binder WTC, Tutlingen, Germany)
until reaching the constant weight.

Titratable acidity (TA) was measured according to the AOAC method and expressed
as g of citric acid/100 g dw whereas pH measurement was performed by using a pH meter
Crison GLP-21 (Crison Instrument, Barcelona, Spain). Water activity (aw) was measured
using an Aqualab LITE hygrometer (Decagon Devices Inc., Washington, DC, USA) [37,38].

A digital refractometer PR-201α (Atago, Milan, Italy) was used for total solid soluble
content (TSS). Results were expressed as ◦Brix.

Ten kiwifruits were used for the CIELab color parameters determination (L, a*, and
b*) using a colorimeter (CR-400, Konica Minolta, Osaka, Japan). Fruits were measured on
three different points on the cut surface for a total of thirty measures for each treatment.
The Chroma (C), Hue angles range (h), ∆E, and browning index (BI) parameters were
calculated [35].
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2.4. Evolution of Organic Acids during Storage

Analysis of kiwifruit extracts was performed using a Knauer (Asi Advanced Scientific
Instruments, Berlin, Germany) system equipped with two pumps (Smartiline Pump 1000),
a Rheodyne injection valve (20 µL), and a photodiode array detector UV/VIS. Organic
acids was separated on a Knauer RP C18 column (250 mm × 4.6 mm, 5 µm) in isocratic
mode with a mobile phase of 0.2 M KH2PO4, a flow rate of 0.6 mL/min, and an injection
volume of 20 µL. Detection was carried out at 210 and 245 nm. External standard calibration
curves were used for the identification and quantification of organic acids. Five injections
were made for each calibration level. For the linear regression of the curves of external
calibration standards, R2 values were between 0.997 and 0.999. Data processing was carried
out with the support of Clarity Software 6.2 (Chromatography Station for MS Windows)
and results were expressed as mg 100/g dw.

2.5. Total Phenols and Flavonoids Content and Evaluation of Bioactive Compounds Evolution
during Storage

For the evaluation of TPC, kiwifruit extract was mixed with Folin–Ciocalteu reagent
and Na2CO3. Results were expressed as mg Gallic Acid Equivalents (GAE)/100 g of
dried weight (dw) [5]. The determination of TFC was conducted by using the procedure
previously described by Zhang et al. [9]. Results were expressed as mg catechin equivalents
(CTE)/100 g dw. The impact of drying processes applied to kiwifruits was investigated by
first order mathematic kinetic model as previously described [35].

2.6. Radical Scavenging Activity

The radical scavenging activity was assessed using two different in vitro assays: 1,1-
diphenyl-2-picryl hydrazine (DPPH) and 2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonate
(ABTS). The DPPH test was conducted following the procedure previously reported by
Brand-Williams et al. [39]. Briefly, DPPH methanol solution was added to the kiwifruit
extract. The absorbance was measured after 15 min at λ = 515 nm. Trolox was used as a
standard antioxidant and samples activity was expressed as mmol of Trolox/100 g dw.

The ABTS radical test was carried out as previously described [40]. Briefly, a solution
of ABTS radical was diluted (1:80) with ethanol to give an absorbance of 0.70 at λ = 734 nm.
An aliquot of extract was added to ABTS solution, and the absorbance was measured at
734 nm. Trolox was used as a standard antioxidant and samples activity was expressed as
mmol of Trolox/100 g dw.

2.7. Firmness and Texture Analysis

Texture Profile Analysis (TPA) rheological analyses were performed with a TA-XT Plus
Texture Analyzer (Stable Micro Systems Ltd., Godaming, UK) and computed with com-
panion software (Exponent 6.1.4.0, Stable Micro Systems Ltd., Godaming, UK (Figure S2).
Texture Profile Analysis test was performed using a 100 mm compression platen (P/100
compression platen probe, Stable Micro Systems Ltd., Godaming, UK probe on single
samples with the following operational parameters: pre-test speed: 1.50 mm/s; test speed:
1.50 mm/s; post-test speed: 5.00 mm/s; distance: 3.0 mm; trigger force: 5.0 g; data ac-
quisition rate: 200 pps. For each sample, ten repetitions were carried out. TPA textural
parameters (hardness, springiness, cohesiveness, gumminess, chewiness and resilience)
data were expressed as mean values; means were further analyzed by one-way ANOVA and
Tukey’s test, at 5% probability, using statistical software (IBM SPSS Statistics for Windows,
Version 20, IBM Corp., Armonk, NY, USA).

2.8. Sensorial Analysis

Quantitative descriptive sensory analysis (QDA) of samples was carried out by a
trained panel composed by 10 people (5 males, 5 females, 22–40 years old, regular con-
sumers of the product, recruited among students and staff of the “Mediterranea” University
of Reggio Calabria, Italy). Samples were served randomly in sensory booths in the Food
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Sensory laboratory of the “Mediterranea” University of Reggio Calabria. Judges rated sam-
ples on a 6-point structured scale for appearance, olfactory, taste, and textural descriptors
(Table 1). Minimum score (0) indicated the absence of the attribute, while 5 indicated a very
intense attribute.

Table 1. List of sensory descriptors for sample testing.

Category Descriptor Definition

Appearance Color intensity Overall product color intensity
Homogeneity Product shape perception

Olfactory Aroma intensity Overall product typical flavor intensity
Taste Sweet Overall product sweetness intensity

Acid Overall product acidity intensity
Bitter Overall product bitterness intensity

Texture Elasticity Springiness feeling intensity
Adhesiveness Mouth adhesivity feeling intensity
Firmness Structural firmness feeling intensity

2.9. Statistical Analysis

All experiments were performed in triplicate. The effects of the treatment methods
and storage time were evaluated by statistical analysis of variance (one-way ANOVA)
using IBM SPSS Statistics software (version 21.0, IBM, Armonk, NY, USA). All data were
presented as mean values and standard deviations (n = 3). Tukey’s multiple range test was
used to evaluate differences among values, and the statistical significance was defined as
p < 0.05.

3. Results and Discussion
3.1. Quality Parameters

Two different drying temperatures were applied in this study and compared with
fresh kiwi fruits to evaluate the impact of processing on dried kiwifruit slices. One (40 ◦C)
should allow greater retention of bioactive compounds, while the other (55 ◦C) was selected
to increase the non-enzymatic browning reaction and study its effects on the levels of
polyphenols, flavonoids, and antioxidant properties.

FKF showed a penetrometer resistance of 120.92 N and a sugar content of 14.50 ◦Brix.
The moisture content of the fresh kiwifruit (FKF) was 81.35% g/100 g (wb), which was

close to the values reported by Kaya et al. [14] and by Simal et al. [26], which were 81% and
82% wb, respectively.

The dried samples all showed moisture contents under 20%, established as the end
point of drying, according to conservation criteria, since this value allowed good preserva-
tion while still maintaining good final physical and chemical properties [41].

Furthermore, as the temperature increased, the moisture content diminished, and the
samples became more dehydrated.

The TSS are represented by sugars, acids, vitamins, some minerals, and other soluble
solids, and are essential indicators of sensory quality. Kiwi slices samples were analyzed
fresh (FKF) and after the drying process at 40 (KLT) and 55 ◦C (KHT), respectively.

Table 2 shows the values relating to aw, pH, TSS, TA, and BI. The aw of dried kiwifruits
slices was significantly reduced compared to the fresh sample, with values of 0.99, 0.45,
and 0.50 for FKF, KLT, and KHT, respectively. The aw of both KLT and KHT samples was
significantly reduced in comparison with the FKF, thus allowing the preservation of the
food, since low values of aw no microbial, chemical, and enzymatic reactions occur [26].
Our results resulted in agreement with those found in literature for fresh kiwi [9,25,41].
In particular, Correia et al. [25] applied temperatures from 50 to 80 ◦C to kiwifruits (cv.
Hayward) and found aw in the range 0.75–0.66 for 50 and 80 ◦C, respectively, and a moisture
content from 19.89 and 10.01 for the same applied treatment. It is interesting to note that in
our case. even at lower temperature (40 ◦C), the aw is lower (0.45).
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Table 2. Chemical properties of kiwi slices after drying at different temperatures.

Days Storage Moisture
(wb) aw pH TSS (◦Brix)

TA
(g Citric

Acid/100 g dw)
BI

FKF

T0 81.35 ± 2.32 0.99 ± 0.00 3.19 ± 0.04 14.50 ± 0.08 1.51 ± 0.00

KLT

T0 22.12 ± 0.23 0.45 ± 0.01 c 3.56 ± 0.01 b 2.43 ± 0.06 b 0.74 ± 0.01 e 50.57 ± 9.48

T30 22.09 ± 1.02 0.40 ± 0.00 d 3.56 ± 0.01 b 4.87 ± 0.12 a 0.75 ± 0.01 a 56.20 ± 14.38

T60 22.15 ± 1.25 0.47 ± 0.00 b 3.51 ± 0.00 b 4.37 ± 0.23 a 0.68 ± 0.00 b 55.07 ± 13.40

T90 22.21 ± 0.98 0.47 ± 0.00 b 3.56 ± 0.02 b 4.80 ± 0.00 a 0.63 ± 0.03 c 49.88 ± 10.20

T120 23.02 ± 2.06 0.52 ± 0.00 a 3.70 ± 0.06 a 4.27 ± 0.46 a 0.58 ± 0.00 d 49.92 ± 10.62

Sign. ns ** ** ** ** ns

KHT

T0 19.21 ± 2.34 0.50 ± 0.00 ab 3.52 ± 0.01 ab 5.38 ± 0.03 a 0.76 ± 0.07 b 57.09 ± 8.11

T30 19.16 ± 1.98 0.44 ± 0.00 c 3.54 ± 0.01 a 3.5 ± 0.00 e 0.69 ± 0.00 b 55.00 ± 10.54

T60 19.13 ± 0.78 0.44 ± 0.00 c 3.37 ± 0.02 c 5.17 ± 0.06 b 0.93 ± 0.04 a 57.22 ± 10.21

T90 19.27 ± 2.32 0.51 ± 0.00 a 3.44 ± 0.00 cd 4.03 ± 0.05 d 0.73 ± 0.04 b 46.29 ± 8.91

T120 19.87 ± 1.36 0.49 ± 0.00 b 3.46 ± 0.05 c 4.30 ± 0.00 c 0.72 ± 0.00 b 51.19 ± 10.91

Sign. ns ** ** ** ** ns

Fresh kiwifruits (FKF) and kiwifruit slices dried at 40 ◦C (KLT) and 55 ◦C (KHT). Data were expressed by
means ± standard deviation (n = 3). Statistical analysis ANOVA were followed by Tukey’s test which were
used to evaluate any differences at the same time of analysis. Result followed by letters are significant. ns: not
significant; ** p ≤ 0.01.

The pH values increased slightly after the drying treatment (from 3.19 to 3.56 and
3.52 for FKF, KLT, and KHT, respectively). A similar trend was also found for TA, where
values of 1.51, 0.74, and 0.76 g/100 g for FKF, KLT, and KHT, respectively, were recorded.

Food color represents one of the parameters for choosing one food rather than another
one even before taste, hence the need to study the impact of processing on colorimetric
parameters. Table 3 shows the CIELab color coordinates for dried kiwifruit slices (KHT and
KLT). The coordinates for FKF were approximately 58.57, 1.19, and 15.34 for brightness (L),
green (a*), and yellow (b*), respectively. Generally, higher C and h values were evidenced
in dried samples with values of 24.18, and 1.48 vs. 20.17, and 1.41 for KHT and KLT,
respectively (Table S1). The L parameter appeared to increase slightly with drying at
55 ◦C, while at 40 ◦C it remained similar to the value found for FKF sample. Conversely,
a* parameter tended to increase, thus indicating that the intensity of the green color was
reduced with the drying process regardless of the applied temperature. This finding
could be related to non-enzymatic browning phenomena, which make the kiwifruit slices
greenish as the drying temperature increases. As regards the b*, it was observed that the
drying process caused an increase of this parameter compared to the KFK with values
of 23.45 and 15.34 for KHT and FKF, respectively. This may also be linked to the effect
of high temperature on proteins and carbohydrates (Maillard reaction). With regard to
the h parameter, a slight decrease was observed during storage independently by the
temperature applied in drying process. Previously, Maskan [28] reported that drying
process changed L, a*, and b*, causing a color shift towards the darker region. Among hot
air, microwave (MW), and hot air-MW finish drying, the h parameter was more influenced
by MW drying process.
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Table 3. Color coordinates of kiwi slices after drying at different temperatures.

Days
Storage FKF KLT KHT

L a* b* L a* b* L a* b*

T0 58.57 ± 4.37 1.19 ± 0.78 15.34 ± 3.07 55.19 ± 2.85 7.45 ± 1.71 b 18.74 ± 3.82 59.46 ± 3.74 ab 7.09 ± 1.86 23.11 ± 3.60

T30 57.07 ± 4.29 8.61 ± 2.28 ab 20.88 ± 5.11 57.19 ± 3.88 b 6.54 ± 1.21 21.69 ± 4.92

T60 56.65 ± 3.78 9.04 ± 2.53 a 20.29 ± 5.26 60.18 ± 3.85 a 7.14 ± 1.24 23.54 ± 4.95

T90 55.60 ± 4.23 7.94 ± 1.86 ab 18.28 ± 3.76 58.75 ± 3.58 ab 7.39 ± 0.97 22.41 ± 4.25

T120 56.06 ± 4.12 7.99 ± 1.82 ab 18.41 ± 3.85 57.87 ± 4.56 ab 6.89 ± 1.50 20.39 ± 5.13

Sign. ns * ns * ns ns

Fresh kiwifruits (FKF), kiwifruit slices dried at 40 ◦C (KLT) and 55 ◦C (KHT). Data were expressed by
means ± standard deviation (n = 3). Statistical analysis ANOVA were followed by Tukey’s test which were
used to evaluate any differences at the same time of analysis. Result followed by letters are significant. ns: not
significant. * p ≤ 0.05.

No significant differences were recorded between L and C parameters measured at T0
and T120. However, ∆E value after 120 days of storage evidenced that samples treated at
higher temperature (KHT) had double ∆E compared to the KLT (3.16 vs. 1.08, respectively).
Our data on L parameters disagree with those reported by Diamante et al. [29], who
recorded a decrease of this parameter in gold kiwifruits. The L parameter in our fresh
sample (FKF) was 1.29-times greater than the data reported for the Hayward kiwi by
Correia et al. [25] (L = 45.34). Moreover, the impact of different temperatures on this
parameter resulted in an L variation from 47.45 to 52.43 at 50 and 80 ◦C, respectively. An
opposite trend was observed by Izli et al. [5], who found a reduction in the L parameter as
function of the temperature increase from 60 to 80 ◦C.

Previously, Zhang et al. [42] evaluated the shelf-life of fresh A. deliciosa kiwifruits for
80 days using different temperatures. Authors found an increase in ∆E parameter during
storage with values from 1.15 to 9.42 at 3 and 11 days, respectively, with kiwifruits under
dynamic temperature conditions (5 ◦C for 5 days → 20 ◦C).

No significant differences in the parameter a* were found between the two samples
dried at different temperatures and therefore in the red color of the matrix. An opposite
trend was observed by Simal et al. [27]. On the contrary, b* was highest in kiwifruits
dried at the highest temperature with values of 18.74 and 23.11 for KLT and KHT at T0,
respectively. In this case, our data disagree with those previously reported by other authors.
The different findings on color parameters between the studies could depend on the fact that
our operating temperature conditions are much milder than other experimental approaches
(40 and 55 ◦C vs. 60, 80, and 100 ◦C, respectively).

At T0, KHT showed the highest browning index (BI) value (57.09) whereas no signifi-
cant differences were recorded after 120 days storage (49.92 and 51.19 for KLT and KHT,
respectively) (Figure 3). Considering that the browning process of fruits and vegetables
is related to the concentration of phenolic compounds, the activity of polyphenol oxidase
(PPO), as well as the temperature, pH, and availability of oxygen in the tissues, it is conceiv-
able that the different trend of the BI, which occurred in dried samples, can be explained
through the different impact that temperature had on enzymatic reactions. In fact, at 40 ◦C,
the enzymatic reactions are slower than those that occur when the temperature is increased
to 55 ◦C [41].

As expected, the total color difference increases significantly with increasing tem-
perature from 40 to 55 ◦C, since higher temperatures favor browning reactions due to
polyphenol oxidase and the presence of oxygen [41].

The TSS values in the KLT samples show an increase from 2.43 to 2.47 ◦Brix at T0
and after T1210, while the values of TA decrease from 0.74 to 0.58 g citric acid/100 g dw.
Our data are in agreement with those found by Zhang et al. [42], where TSS increased
from approximately 9% to 15% while TA decreased from approximately 1.5% to 1.1%
during storage.
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Figure 3. Browning index (BI) evolution during storage of kiwifruit slices dried at 40 ◦C (KLT) and
55 ◦C (KHT).

3.2. Organic Acid Evolution during Storage

The organic acid values were determined by Ultra-High-Performance Liquid Chro-
matography (UHPLC). These compounds are important constituents in determining sen-
sory quality characteristics. In kiwi, during storage and ripening, the titratable acidity
undergoes slight modifications, often related to the place of cultivation [43,44]. Until now,
very little information is available on the relationships between organic acids and other
kiwi constituents and on the factors that influence them in the fruit [45]. Ascorbic, citric,
malic, tartaric, and oxalic acids were identified (Table 4). Among them, citric acid represents
the most abundant organic acid in FKF, with a value of 2215.47 mg/100 g dw, followed by
ascorbic acid (957.22 mg/100 g dw). A similar concentration was found for both malic and
tartaric acids (638.53, and 674.98 mg/100 g dw, respectively).

The analyses carried out on dried samples of kiwifruit slices evidenced that citric
acid concentration was higher KLT in comparison to KHT with value at T0 of 4664.67 and
2008.12 mg/100 g dw, respectively. An opposite trend was observed for oxalic acid that are
higher in KHT when compared to KLT (at T0 of 99.67 and 27.49 mg/100 g dw, respectively).

The quality of the dried kiwi slices was also evaluated by monitoring the ascorbic acid
content according to the storage period. Ascorbic acid exerts a series of positive effects
on human health, including reduction of incidence of cancer, high blood pressure, tissue
regeneration, etc. [46].

As expected, the ascorbic acid content decreases with increasing drying temperature,
with values of 954.22, 1009.74, and 444.95 mg/100 g dw for FKF, KLT and KHT, respectively.
This evidence agrees with those found previously by Vega-Galvez et al. [47] and Santos
and Silva [48], who demonstrated how the loss of ascorbic acid due to the application of
high temperatures can be associated with the ascorbic acid thermo-sensitivity character and
the easily degradable structure that undergoes oxidation to dehydroascorbic acid [30,31].
However, a loss of ascorbic acid can also be observed at lower temperatures such as 40 ◦C,
but for more prolonged exposures.

Our data are in agreement with Kaya et al. [30], who found a retention of ascorbic
acid of 117.65 and 27.47 mg/100 g for kiwi slices dehydrated at 35 and 65 ◦C, respectively.
In contrast, Diamante et al. [29] did not evidence significant changes in the ascorbic acid
content of fresh and dried green and gold kiwifruits when the drying procedure was
conducted at 60 and 80 ◦C. However, if the temperature rises to 100 ◦C, an approximately
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19% loss of ascorbic acid content was observed in both green and gold kiwifruits. These
differences may be accounted for by the different drying time (12 h) for the study of Kaya
et al. [30] work and about 6 h in this last case. Previously, Tepe et al. [31] reported a loss of
ascorbic acid in kiwifruits of −57.27, −59.90, and −64.22% at 60, 70, and 80 ◦C, respectively.
A higher loss was found by Correia et al. [25], who reported values in the range of −76,
and −82% at the end of the drying process carried out at 60 and 80 ◦C, respectively. A
significant reduction in ascorbic acid content also occurred as an effect of storage and this
was more pronounced for the KLT sample than for KHT with an estimated percentage loss
of −66.33 and −13.63%, respectively, after 120 days of storage.

Table 4. Evolution of organic acids in analyzed dried kiwifruit slices during storage for 120 days.

Days Storage Ascorbic Acid
(mg/100 g dw)

Citric Acid
(mg/100 g dw)

Malic Acid
(mg/100 g dw)

Oxalic Acid
(mg/100 g dw)

Tartaric Acid
(mg/100 g dw)

FKF

T0 957.22 ± 5.70 2215.47 ± 4.02 638.53 ± 5.06 62.96 ± 0.82 674.98 ± 2.38

KLT

T0 1009.74 ± 5.11 a 4664.67 ± 5.13 d 390.45 ± 0.59 a 27.49 ± 0.59 a 508.54 ± 0.85 a

T30 924.98 ± 3.93 b 3621.49 ± 3.97 e 385.64 ± 1.23 b 27.14 ± 2.14 a 441.33 ± 1.58 b

T60 363.54 ± 2.11 c 1217.32 ± 5.49 b 230.60 ± 0.91 c 1.23 ± 0.11 b 302.42 ± 0.51 c

T90 352.06 ± 2.72 cd 845.98 ± 1.86 c 40.22 ± 1.12 d nd 32.59 ± 2.71 d

T120 339.94 ± 1.03 e 886.74 ± 5.52 a 28.87 ± 0.53 d nd nd

Sign. ** ** ** ** **

KHT

T0 444.95 ± 3.52 a 2008.12 ± 5.65 a 341.21 ± 7.37 a 99.67 ± 0.80 a 526.99 ± 2.46 a

T30 427.30 ± 7.51 a 1967.13 ± 10.30 b 327.39 ± 1.99 b 28.37 ± 0.84 b 472.39 ± 2.64 bc

T60 428.88 ± 1.97 b 1335.82 ± 4.23 c 274.16 ± 3.00 c 31.79 ± 3.75 b 355.87 ± 1.01 abc

T90 419.78 ± 2.96 a 124.35 ± 0.38 d 30.56 ± 2.31 d 32.77 ± 1.98 b 118.98 ± 1.59 c

T120 384.29 ± 6.56 c 90.88 ± 1.89 e 20.58 ± 0.47 d 1.99 ± 0.19 c 49.64 ± 3.37 bc

Sign. ** ** ** ** **

Fresh kiwifruits (FKF), kiwifruit slices dried at 40 ◦C (KLT) and 55 ◦C (KHT). Data were expressed by means
± standard deviation (n = 3). Statistical analysis ANOVA were followed by Tukey’s test which were used to
evaluate any differences at the same time of analysis. Result followed by letters are significant. ** p ≤ 0.01; nd:
not detected.

Movagharnejad and Pouya [18] compared the impact of different drying process
(convective tray dryer, microwave dryer, and freeze dryer) on ascorbic acid content and
found the major retention of this bioactive occurred when the freeze-drying process was
applied (80% of fresh kiwifruits). The effect of freeze drying (FD), hot air drying (HAD),
vacuum drying (VD), and hot air–microwave assisted vacuum combination drying (HA–
MVD) on Hayward kiwifruits was assessed [22]. The main loss of ascorbic acid was found
when HAD was applied (−77.52%), with a value of 249.17 mg/100 g.

A lower content in ascorbic acid was found by Zhang et al. [42] in fresh Hayward
kiwifruits with the value of 93.3 mg/100 g. This bioactive undergoes a significant reduction
during storage, reaching 64.3 mg/100 g after 11 days of storage at 20 ◦C.

3.3. Total Phenol and Flavonoid Content and Radical Scavenging Activity

The TPC in fresh kiwifruit was found to be equal to 941.79 mg GAE/100 g dw (Table 5).
This value was higher than that reported by Leontowicz et al. [49] and Gümüşay et al. [32],
who found TPC in the range 262.66–540.00 mg GAE/100 g dw; similar values were found
by Chin et al. [24].
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Table 5. Total polyphenol content, total flavonoid content, and radical scavenging activity of fresh
and dried kiwi slices under storage.

Days Storage TPC
(mg GAE/100 g dw)

TFC
(mg CTE/100 g dw)

DPPH
(mmol Trolox/100 g dw)

ABTS
(mmol Trolox/100 g dw)

FKF

T0 941.79 ± 4.49 260.19 ± 6.22 1195.87 ± 15.19 56.05 ± 3.06

KLT

T0 979.42 ± 2.40 a 281.84 ± 2.17 a 1657.62 ± 0.92 a 64.68 ± 0.34 a

T30 650.54 ± 2.32 b 273.84 ± 2.04 b 1318.95 ± 6.62 b 61.49 ± 2.95 ab

T60 586.64 ± 2.05 c 243.64 ± 3.70 c 1241.47 ± 1.39 c 58.00 ± 0.82 c

T90 495.14 ± 5.43 d 180.05 ± 0.99 d 1024.68 ± 4.37 d 55.93 ± 3.76 c

T120 395.34 ± 0.85 e 113.93 ± 1.12 d 996.79 ± 2.63 e 42.29 ± 1.61 d

Sign. ** ** ** **

KHT

T0 526.04 ± 2.40 a 169.07 ± 5.27 a 926.15 ± 2.75 a 67.59 ± 1.68 a

T30 472.27 ± 4.80 b 166.37 ± 3.50 a 891.13 ± 5.13 b 52.70 ± 2.37 b

T60 456.82 ± 3.18 c 165.33 ± 2.78 a 889.00 ± 2.95 b 45.96 ± 0.24 c

T90 453.15 ± 2.64 c 116.60 ± 2.90 b 859.32 ± 1.49 c 39.54 ± 1.39 d

T120 408.25 ± 2.11 d 102.78 ± 1.61 c 854.35 ± 1.30 c 36.71 ± 0.52 d

Sign. ** ** ** **

Fresh kiwifruits (FKF), kiwifruit slices dried at 40 ◦C (KLT) and 55 ◦C (KHT). GAE: Gallic Acid Equivalent; CTE:
Catechin Equivalents. Data were expressed by means ± standard deviation (n = 3). Statistical analysis ANOVA
were followed by Tukey’s test which were used to evaluate any differences at the same time of analysis. Result
followed by letters are significant. ns: not significant; ** p ≤ 0.01.

The effect of the drying process on TPC and TFC was studied, and the results are
summarized in Table 5. Drying temperature influenced the TPC in kiwifruit slices; at
T0, values of 979.42 and 562.04 mg GAE/100 g dw were recorded for KLT and KHT,
respectively. It is interesting to note that the TPC of KLT is quite similar to the FKF sample
at T0 (941.79 mg GAE/100 g dw). This could be due to the lower water loss during the
drying treatment at a lower temperature [50–52]. The decrease in TPC as consequence of
heat treatment has been reported by other authors [14,53]. During the storage of dried kiwi
slices, a clear decrease after the first 30 days of storage was observed in both samples, with
values of 650.54 and 472.27 mg GAE/100 g dw for KLT and KHT, respectively. In general,
the KLT sample suffered a greater loss of TPC (−59.35%) compared to the value recorded
at T0 compared to KHT (−22.39%). For TFC, values of 260.19, 281.84, and 169.07 mg
CTE/100 dw were recorded for FKF, KLT, and KHT, respectively. Also, for TFC, while the
concentration of these compounds in the slices dried at 40 ◦C remained unchanged, a slight
decrease was observed for the samples dried at 55 ◦C. During storage, these values were
further reduced, reaching a concentration of 113.93 and 102 mg CTE/100 g dw for KLT and
KHT, respectively. This reduction is more accentuated in samples dried at 55 ◦C compared
to those obtained by applying the drying temperature of 40 ◦C. In fact, a loss of −59.57 and
−39.20% for KHT and KLT, respectively, was recorded at T120.

A loss of TPC in kiwifruits of −59.43%, −54.72%, and −53.61% at 60, 70, and 80 ◦C,
respectively, was found by Tepe et al. [39]. A significant loss in TPC was found by Correia
et al. [25], who reported a decrease from −80 to −93% in kiwifruits dried at temperatures
of 60 to 80 ◦C, respectively.

Previously, Izli et al. [5] reported the effect of convective (60, 70, and 80 ◦C), microwave
(120 and 350 W), and freeze-drying methods on the TPC of kiwi slices and found a de-
crease ranging from −5 to −49% following drying treatments. Kiwi slices dehydrated by
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freeze-drying process exhibited the highest TPC, with value of 361.38 mg GAE/100 g dw;
on the contrary, the application of microwave at 120 W determined the lowest TPC value
(193.05 mg GAE/100 g dw). This could be caused by the fact that the lower drying tem-
peratures used with the microwave did not inactivate the oxidative enzymes completely,
which then resulted in oxidation of the phenolic substances and, statistically, a lower TPC
value. However, temperature is one of the factors affecting the degradation of the phenolic
compounds; the other one is drying time, since a longer time causes higher degradation.

Table 5 reported the radical scavenging potential of fresh and dried kiwifruit slices
activity evaluated by ABTS and DPPH tests. Regarding DPPH, at T0 it is possible to
observe that KLT was more active than FKF with values of 1657.62 and 1195.87 mmol
Trolox/100 g dw, respectively. A similar situation was observed by Ozcan et al. [23], who
proposed that heating processes destroy the integrity of the cell structure of kiwifruits,
thereby promoting the release of phenols during extraction procedure and consequently
increasing the antioxidant activity of the extract. Conversely, a lower DPPH radical scav-
enging activity was found for KHT with values of 926.15 mmol Trolox/100 g dw.

This behavior could be explained by the reduction of TPC after the drying process,
which also resulted in a reduction in antioxidant capacity. This situation was also observed
by Degirmencioglu et al. [53] for blueberry fruits. However, the radical scavenging potential
against DPPH underwent only a slight reduction, with a value at T120 equal to 996.79 and
854.35 mmol Trolox/100 g dw for KLT and KHT, respectively.

In the ABTS assay, the radical scavenging activity at T0 was slightly higher than that
recorded for fresh kiwifruits independently by the drying temperature applied with values
of 56.05, 64.68, and 67.59 mmol Trolox/100 g dw for FKF, KLT, and KHT, respectively. A
positive Pearson’s correlation coefficient was found between TPC and DPPH and ABTS
data with R2 values of 0.93 and 0.95, respectively, whereas values of 0.88 and 0.80 were
found for TFC and the same antioxidant data.

As for other types of fruits, the intrinsic antioxidant activity is related to cultivar and
harvesting time [54].

Pal et al. [55] evaluated the effect of fruit harvesting stage on the antioxidant properties
in five kiwi cultivars, namely Abbot, Bruno, Allison, Hayward, and Monty.

Generally, kiwifruit exhibited the highest radical scavenging activity at the start of
fruit development. In particular, the following trend was observed by comparing the
different cultivars, ‘Allison’ > ‘Abbot’ > ‘Bruno’ > ‘Hayward’, in both DPPH and ABTS
tests. The relationship between cultivars and radical scavenging potential was also found
by Ozen et al. [15], who recorded IC50 values of 53.11 and 123.31 for Greenlight and Topstar
kiwifruits cultivars, respectively.

The effect of different drying treatments, convection drying (CD), microwave drying
(MD) and hybrid drying (HD), on antioxidant activity of kiwifruits slices was investigated
and compared with fresh kiwi samples [33]. At the same concentration test, a greater
inhibitory activity against DPPH radical was found with the fresh sample, followed by
the HD sample (60 ◦C + 300 W). The reduction of antioxidant activity is related to the
destruction of bioactive compounds such as phenols, which further leads to chemical,
enzymatic, or thermal decomposition. Moreover, the evidence that the antioxidant potential
was higher in HD than in CD and MD could be because partially oxidized polyphenols
have better antioxidant activity than non-oxidized polyphenols [56].

Our data are in agreement with the trend observed by Izli et al. [5], who demonstrated
how a reduction in antioxidant activity should be observed in dried kiwifruits samples in
comparison to the fresh one. Moreover, no significant differences were recorded between
convective (60, 70, and 80 ◦C), and microwave (120 and 350 W) dried samples, with values
of 4.71, 5.08, 5.23, 4.42, and 4.66 µmol Trolox/g dw, respectively. In addition, non-thermal
freeze-dried kiwi slices (7.94 µmol Trolox/g dw) had notably higher antioxidant capacity
when compared to the other dried samples.
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3.4. Degradation Kinetic of TPC and TFC Content during Storage

The effects of the drying temperatures (40 and 55 ◦C) used for drying the kiwi slices
were determined through the degradation kinetics of the quantified TPC and TFC.

Obtained data evidenced that TPC followed a first order reaction, with R2 ranging
from 0.9074 to 0.9527, whereas a zero-order reaction was found for TFC with an R2 ranging
from 0.8543 to 0.9173 (Table 6, Figure S1).

Table 6. Degradation kinetic of TPC, TFC, and ascorbic acid in kiwifruit slices during storage for
120 days.

Bioactives Drying Reaction
Order

K-Value
(min−1) R2 Half-Life

(t1/2) (Days)

TPC KLT 1 0.0018 0.9074 385.080
KHT 1 0.007 0.9527 99.021

TFC KLT 0 0.6078 0.8243 1.1404
KHT 0 1.432 0.9173 0.4840

TPC: Total phenols content; TFC: Total flavonoids content; Kiwifruit slices dried at 40 ◦C (KLT) and 55 ◦C (KHT).

The stability of TPC and TFC during storage was evaluated considering changes in
their concentration. Table 6 shows the kinetic parameters (kinetic rate constant (k) and
half-life values (t1/2)) determined for the thermal degradation of TPC and TFC. The kinetic
parameter k is an indicator that predicts the thermal degradation of the phytochemical con-
tent, where the lower k value indicates better stability of the analyzed bioactive compounds.
However, the values of t1/2 allow us to predict the progress of degradation during storage.

As expected, there was a decrease in the percentage of TPC, TFC, and ascorbic acid
during storage. In fact, as shown in Table 6, the TPC half-life time values (t1/2) were
385.080 and 99.021 for KLT and KHT, respectively. This trend can be explained by the fact
that at T0, the TPC was greater in KLT compared to KHT; this reduction is due to the higher
drying temperature. Subsequently, in the first 30 days of storage, the concentration of TPC
tends to decrease drastically, although remaining at rather high values, in samples treated
at a temperature of 40 ◦C. The same trend was observed for ascorbic acid, while, in the case
of TFC, the decrease was not as drastic as in the case of other bioactive phytochemicals.

These results suggest that “mild” drying initially preserves the thermolabile compo-
nents and avoids major changes in the organoleptic properties of the dried kiwi, for this
reason the organoleptic and functional quality of the kiwi slices dried at a temperature of
40 ◦C is better during the shelf life.

Subsequently, during storage, the phytochemical reactions observed towards TPC,
TFC, and ascorbic acid are probably due to the activity of polyphenol oxidases (POO), the
enzyme responsible for their oxidation, and this greater activity could be responsible for
the decrease in their contents during storage.

Furthermore, as reported in the literature, the decrease or increase of these compounds
depends greatly on the temperature during treatment and the drying time [47,56,57].

3.5. Texture and Sensory Analysis

Texture profile analysis (TPA) results obtained from kiwi samples are summarized
in Table 7.

All TPA results (in hardness, springiness, cohesiveness, gumminess, and chewiness),
apart from resilience results, showed a significant difference between KLT and KHT sam-
ples, with values sometimes 2-fold higher or more in KLT over KHT samples.

As for the evolution during storage of hardness, gumminess, and chewiness, results
showed a steep increase at the 30-days of storage sampling, while cohesiveness showed
a steadily decreasing trend. All parameters, however, showed a rather high degree of
variation among replicates.
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Table 7. Textural parameters for kiwi slices after drying at different temperatures (40 and 55 ◦C).

Days Storage Hardness Springiness Cohesiveness Gumminess Chewiness Resilience

KLT

T0 11,782.33 ± 8252.49 b 0.835 ± 0.07 a 0.656 ± 0.09 a 7327.57 ± 5156.92 b 5967.77 ± 4106.79 b 0.289 ± 0.06
T30 28,983.86 ± 7512.27 a 0.712 ± 0.06 b 0.579 ± 0.04 b 16,881.93 ± 4660.77 a 12,051.43 ± 3611.15 a 0.332 ± 0.05
T60 27,160.28 ± 7642.55 a 0.798 ± 0.07 ab 0.599 ± 0.04 ab 16,403.81 ± 5150.93 a 13,191.35 ± 4674.64 a 0.349 ± 0.06
T90 30,177.77 ± 7607.16 a 0.727 ± 0.11 b 0.552 ± 0.06 b 16,858.77 ± 5026.39 a 12,243.89 ± 3473.21 a 0.323 ± 0.06
T120 29,158.98 ± 8077.83 a 0.772 ± 0.08 ab 0.573 ± 0.03 b 16,755.93 ± 4782.70 a 12,784.67 ± 3317.61 a 0.339 ± 0.04

Sign. ** ** ** ** ** ns

KHT

T0 5038.91 ± 4020.93 b 1.088 ± 0.39 a 0.722 ± 0.07 a 3403.76 ± 2676.40 b 3313.20 ± 2266.48 b 0.251 ± 0.09
T30 15,228.75 ± 7873.64 a 0.93 ± 0.22 ab 0.661 ± 0.06 ab 9923.41 ± 5039.80 a 8553.76 ± 4357.73 a 0.335 ± 0.06
T60 14,507.64 ± 5317.43 a 0.85 ± 0.05 ab 0.625 ± 0.06 b 9104.83 ± 3585.54 a 7755.64 ± 3225.34 a 0.271 ± 0.08
T90 14,543.67 ± 5551.77 a 0.818 ± 0.07 b 0.647 ± 0.05 b 9260.87 ± 3153.48 a 7468.94 ± 2225.94 a 0.302 ± 0.06
T120 16,346.33 ± 4903.62 a 0.855 ± 0.07 ab 0.628 ± 0.05 b 10,296.85 ± 3215.58 a 8772.78 ± 2658.17 a 0.321 ± 0.06

Sign. ** * ** ** ** ns

Kiwifruit slices dried at 40 ◦C (KLT) and 55 ◦C (KHT). Data were expressed by means ± standard deviation (n = 3).
Statistical analysis ANOVA were followed by Tukey’s test, which were used to evaluate any differences at the
same time of analysis. Result followed by letters are significant. ns: not significant; ** p ≤ 0.01.

3.6. Sensory Analysis

Sensory profiles for samples analyzed are shown in Figure 4. The main descriptors that
showed higher scores were found to be color and aroma intensity. The overall results of the
descriptive sensory analysis performed did not show significant differences among different
treatments in most descriptors, except for the two main descriptors of color intensity, which
was more intense in KLT samples and aroma intensity, that, on the other hand, was more
intense in KHT samples; one textural descriptor (elasticity) was found to be ascribable to
both statistical groups. No significant differences were found for taste descriptors.
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Figure 4. Sensory profile of kiwifruit slices dried at 40 ◦C (KLT) and 55 ◦C (KHT).

Previously, Mahjoorian et al. [58] demonstrated that no significant differences were
recorded on sensorial parameters such as color, odor, taste, and crunchiness (chewiness)
(p < 0.01) in kiwifruits dried at temperatures from 50 to 70 ◦C. Furthermore, the sample that
had the highest sensory score from a sensorial point of view was the one dried at 70 ◦C.
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4. Conclusions

This study highlights, for the first time, the impact on chemical, sensorial, and health
properties of dried Sungold cv. kiwifruit slices during conservation for 120 days in sealed
containers in the dark at 25 ◦C. Slices were dried at two different temperatures, 40 and 55 ◦C,
for 30 and 25 h, respectively, and monitored for their chemical-physical parameters, total
bioactive compounds content, radical scavenging potential, sensory, and texture analysis.

The results obtained showed that regardless of the temperature applied, the obtained
moisture content and water activity were suitable for preserving the dried samples from
degradative reactions (chemical, enzymatic, or microbiological). Color was also affected
by the drying process, although without significant differences. Textural parameters
(hardness, elasticity, cohesiveness, rubberiness, and chewiness), apart from the resilience
parameter result, showed significant differences between KLT and KHT samples, with
values sometimes 2-times higher or more in the KLT samples compared to KHT samples.
At the same time, a reduction in the content of bioactive compounds (vitamin C, phenolic
and flavonoid compounds) and in the antioxidant activity was observed in proportion to
the increase in drying temperature.

Regarding the sensory properties, it was possible to establish the sensory profiles
of the dried samples, and the attributes that varied most among them were color and
aroma intensity.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/foods13132100/s1, Table S1: Chroma (C) and Hue angle (h) of kiwi slices
after drying at different temperatures; Table S2: Results of the descriptive sensory analysis; Table S3:
Significant differences among the kiwi samples (KLT and KHT). Figure S1: Kinetics’ graphs. TPC (a)
and TFC (b); Figure S2: Texture Profile Analysis (TPA) parameters; Figure S3: Texture Profile Analysis
(TPA) calculations.
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