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Abstract A potential future challenge in the wave

energy sector will involve the design and construction

of massive wave power farms. That is, collections of

several ([ 100) wave energy converters (WEC)

operating in identical environmental conditions at a

distance comparable with typical water wave lengths.

In this context, theWECs are likely to be influenced by

each another by radiation force effects that are

associated with the radiated wave field propagated

by WECs operating in the surrounding wave field.

These effects are commonly captured by the Cum-

mins’ equation, where the radiation force is expressed

as a convolution integral depending on the past values

of the WEC response. Due to this mathematical

representation, the time domain computation of the

wave farm response can become computationally

daunting. This article proposes one approach for

computing efficiently the wave farm response in the

time domain. Specifically, it demonstrates that the

values of the radiation force components can be

determined at each time step from their previous

values by approximating the retardation function

matrix elements via the Prony method. A notable ad-

vantage of this approach with respect to the ones

available in the open literature is that it does not

require either the storage of past response values or

additional differential equations. Instead, it uses

simple algebraic expressions for updating at each

time instant the radiation force values. Obviously, this

feature can induce significant computational effi-

ciency in analyzing an actual wave farm facility.

The reliability and efficiency of the proposed

algorithm are assessed vis-à-vis direct time domain

comparisons and Monte Carlo data concerning a wave

farm composed by an array of U-Oscillating Water

Columns. Notably, the proposed methodology can be

applied to any linear or nonlinear dynamics problem

governed by differential equations involving memory

effects.

Keywords Wave power farm �Array � Time-domain

model � Fast numerical model

1 Introduction

The first technological developments of wave energy

converters (WECs) focused on the determination of
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working principles exploiting effectively the energy

carried by water waves. This effort led to the

development of a plethora of devices that, in most

cases, did not proceed beyond small-scale modeling.

Consequently, recent investigations have focused

mainly on the analysis of a few types of WECs: single

point absorbers [1]; and Oscillating Water Columns

(OWCs) [2]. There are a few notable exceptions like

the overtopping device [3], and they are the only ones

with a clear potential for commercialization. Their key

characteristics are: their reliability, since they can

absorb a relevant fraction of incident wave energy and

survive in harsh environmental conditions; and their

flexibility, since they can be installed in a variety of

locations, both nearshore and offshore, and thus be

embedded in major infrastructures. In this light,

certain studies have focused on the economic viability

of these technologies, and on the determination of

relevant economic indicators. Considering, for

instance, the OWC case, estimates concerning plants

installed in Portugal and Scotland have shown that the

LCoE (Levelized Cost of Electricity) value ranges

between 1.30 and 1.05 €/kWh [4]. This is a quite high

value compared to the LCoE values of other renew-

ables, such as concentrated solar (0.16 €/kWh) and

offshore wind (0.10 €/kWh) [5]. To overcome this

limitation, the concept of economic scaling has been

considered as a means for reducing the unitary cost of

WEC production, while increasing the overall power

output of the wave farm. This concept has been

investigated, for instance, in the wind energy sector,

where the challenges associated with the large wind

power were already assessed a decade ago [6].

Currently, wave farms are considered in few studies

exploring problems of layout optimization of a

specificWEC (see, for instance, Ref. [7–9]). However,

in most cases, these analyses concern farms compris-

ing a small number ofWECs. This choice is frequently

due to the significant computational cost associated

with the inclusion of several WECs. Indeed, WEC

dynamics and hydrodynamics is studied initially in the

context of linear water wave theory, where effects due

to diffraction and radiation of waves are taken into

account. In this context, the computational complexity

is twofold. Specifically, the determination of the

hydrodynamic parameters can be cumbersome

because of the complexity in the solution of the

associated boundary value problems [10]. Further, the

determination of the farm response in the time domain

is quite challenging due to the fact that it must be

computed by resorting to the Cummins’ equation [11].

This equation accounts for hydrodynamic memory

effects by convolution integrals. The first problem was

addressed, for instance, by Sarkar [12] via a scheme in-

volving multiple optimization strategies (statistical

emulators, active learning, genetic algorithm). The

second problem is largely unexplored. In this case, an

efficient approach for determining the farm response is

to work directly in the frequency domain, where the

convolution integral reduces to the product of two

frequency dependent functions via Fourier transform

[13, 14]. However, this approach does not allow taking

into consideration complex WEC dynamics behaviors

due to large amplitude motions (see, for example, Ref.

[15]), or nonlinear power take-off (PTO) effects [16].

Further, it does not allow testing PTO control strate-

gies used in realistic applications. One approach for

addressing some of these issues relies on the concept

of statistical linearization [17]. This methodology has

proved effective and efficient for determining the

response and power output of OWC arrays [18, 19] as

well as of single point absorbers [20], but it does not

allow testing the performance of PTO controllers

[21, 22]. Another approach considers the numerical

integration of the equation of motion in the time

domain after replacing the convolution integral by a

computationally less costly operator. In this context,

the typical approach involves introducing additional

ordinary differential equations, so that additional

fictitious degrees of freedom are utilized for capturing

the hydrodynamic memory effects [23]. This is the

state-space method. Otherwise, the convolution inte-

gral can be computed in the time domain within the

numerical integration algorithm, with the proviso that

the response past values are stored, and that at each

time step the convolution integral values are updated.

In this regard, useful instructions for increasing the

computational efficiency of the procedure were given

by Stavropoulou et al. [24]. Specifically, they empha-

sized that: a velocity-based formulation of the Cum-

mins’ equation should be preferred over the

acceleration-based formulation, since the velocity is

a (known) state of the system; the convolution integral

can be computed over a fixed time interval to limit the

number of stored past values; and integration by a

fixed step solver should be preferred for reducing the

uncertainties associated with the estimation of the

response past values.
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With their advantages notwithstanding, these alter-

natives for conducting a time domain integration

possess features that may limit their application to the

case of massive wave farms. Frequency domain

approaches do not allow conducting a holistic WEC-

PTO design, because the option of PTO control is

ignored in the computation. State-space approaches

require augmenting the number of differential equa-

tions under examination. Further, the identification of

the parameters associated with the additional ordinary

differential equations can be cumbersome. The direct

numerical integration relying on storing the past

velocity values becomes computationally prohibitive,

unless resorting to parallel computing and a highly

performance hardware configurations is adopted.

However, even in this case, the execution of costly

Monte Carlo simulations, where realizations of several

samples of the response components must be deter-

mined, is challenging. Thus, approaches for comput-

ing efficiently the WEC farm response in realistic

conditions are still quite desirable.

To address these limitations, herein a novel proce-

dure for determining efficiently the response of

massive wave power farms is developed. The proce-

dure overcomes the limitations of the previously

mentioned methods as it allows computing the radi-

ation forces by updating the convolution integral

values at each time step without storing past velocity

values and without introducing additional differential

equations. Instead, it utilizes simple algebraic expres-

sions. To achieve this result, the procedure relies on

the Prony method [25] for representing the kernels of

the convolution integrals by superposition of damped

harmonics. The particular mathematical form of the

Prony approximation allows setting up conveniently a

recurrence relation for updating the convolution

integral values at each time step. In this regard, it is

noted that the Prony method was already considered in

other studies for representing analytically the kerned

of the convolution integrals. For instance, Henriques

et al. [26] used it for developing a nonlinear time—

domain wave-to-wire model of the Mutriku OWC—

breakwater; and Faedo et al. [27] used it for simulating

linear multi-degree-of-freedom WECs. However, in

the studies available in the open literature the method

was formulated within the more traditional state-space

approaches through the use of additional differential

equations. In the following sections, it is shown that

there is no need for augmenting the number of

differential equations, and that a pair of algebraic

expressions can be used for updating the convolution

integral values at each time step. In the body of the

paper, the fundamental equations for determining the

farm response and the Prony method are first intro-

duced. Then, the proposed numerical procedure is

described. Finally, a numerical example concerning a

U-Oscillating Water Column wave farm is utilized for

assessing the reliability and the efficiency of the

proposed approach of analysis.

2 Preliminary remarks on WEC dynamics

and Prony method

This section describes the main equations used for

determining the response of a wave farm, and the key

equations involved in the Prony method.

Wave farm dynamics is governed by integro-

differential equations arising from the formulation of

the second Newton law in conjunction with the

representation of the wave force via the Cummins’

equations [10]. Under the assumption that the system

exhibits nonlinear characteristics, the general formu-

lation of a wave farm governing equation is

Fin tð Þ ¼ Fe tð Þ � r
t

�1
K t � sð Þ _x sð Þds� Fs tð Þ � Fd tð Þ;

ð1Þ

where Fin tð Þ is the inertial force vector; Fe tð Þ is the
excitation force vector; Fs tð Þ is the restoring force

vector; Fd tð Þ is the dissipative force vector; KðtÞ
denotes the retardation function matrix; x tð Þ is a vector
comprising the individual WEC displacement values;

and the dot above a symbol denotes differentiation

with respect to time.

Specific representations of the forces are derived

based on the configuration and working principle of

the WECs. However, it is generally recognized that

inertial forcesFin tð Þmust include the so-called infinite

frequency added mass matrix Madd 1ð Þ (as a conse-

quence of the Cummins’ equation). This is a fully

populated matrix accounting for water-related inertial

effects on the WECs. Further, the convolution integral

is used for expressing the radiation force that is the

force due to the wave field changes induced exclu-

sively by the WEC dynamics. The excitation force

Fe tð Þ is determined by solving the associated
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diffraction water wave problem. This problem is posed

by assuming that the WECs are held fixed during their

interaction with the incident waves, and includes the

incident wave field characteristics. The symbols

Madd 1ð Þ, K tð Þ, and Fe tð Þ denote geometrically

dependent functions of the wave farm, which are

computed by standard numerical codes such as

WAMIT [28] and NEMOH [29]; by utilizing the

boundary element method for solving the radiation

and diffraction water wave problems; or by analytical

methods [30].

In the next section, the Prony method is used for

representing efficiently the radiation force. Specifi-

cally, the method is used to approximate each element

of the retardation function matrix Kij tð Þ by superpo-

sition of damped harmonics of the form

Kij tð Þ ¼
Xþ1

m¼1

bijme
�aijmt cos xijmt þ /ijm

� �
; ð2Þ

in which bijm, aijm, xijm, and /ijm are parameters

identified from the known retardation function. After

selecting the order of the approximation of the Prony

expansion M, various identification procedures are

available in the open literature, such as Classic Prony,

Prony, Pisarenko, Linear predictor, and Modified

Prony [31]. In wave energy applications, the approach

described by Roessling and Ringwood [32] can be

used to identify the parameters. Note that the partic-

ular mathematical form of the Prony approximation is

critical for the development of the proposed approach

of dynamic analysis in the ensuing section.

3 Efficient computation of the WEC response

in time domain

This section describes the numerical algorithm for

solving the integro-differential Eq. (1) without the

storage of past velocity values or the use of additional

differential equations. Initially, the numerical proce-

dure for computing the convolution integrals is

derived. Then, a numerical algorithm based on the

use of the incremental form of the equation of motion

is derived in conjunction with the proposed numerical

approach. A flowchart elucidating the procedure for

producing a related numerical code is given.

3.1 Radiation force treatment

Consider the radiation force in Eq. (1) pertaining to a

wave farm whose dynamics involves N degrees of

freedom. Then, assume that each element of the

retardation functionmatrixK tð Þ can be represented via
the Prony expansion shown in Eq. (2). In this context,

the elements of the radiation force vector,

I tð Þ ¼ r
t

�1
K t � sð Þ _x sð Þds; ð3Þ

can be computed using the equation,

Ii tð Þ ¼ r
t

�1

XN

j¼1

Xþ1

m¼1

bijme
�aijm t�sð Þ

cos xijm t � sð Þ þ /ijm

� �
_xj sð Þds; fori ¼ 1; . . .;N:

ð4Þ

It can be rewritten in compact notation as,

Ii tð Þ ¼
Xþ1

m¼1

Icim tð Þ; ð5Þ

where

Icim tð Þ ¼ r
t

�1

XN

j¼1

bijme
�aijm t�sð Þ cos xijm t � sð Þ þ /ijm

� �
_xj sð Þds:

ð6Þ

Next, introduce the auxiliary function

~Ii tð Þ ¼ r
t

�1

XN

j¼1

Xþ1

m¼1

bijme
�aijm t�sð Þ

sin xijm t � sð Þ þ /ijm

� �
_xj sð Þds; fori ¼ 1; . . .;N;

ð7Þ

which is obtained by replacing the cosine function by a

sine function in Eq. (4), and, similarly, recast it in the

compact form,

~Ii tð Þ ¼
Xþ1

m¼1

Isim tð Þ; ð8Þ

in which,

Isim tð Þ ¼ r
t

�1

XN

j¼1

bijme
�aijm t�sð Þ sin xijm t � sð Þ þ /ijm

� �
_xj sð Þds:

ð9Þ
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Then, eqs. (4) and (7) are computed at a time instant

t þ Dt and the computation of the integrals is split in

the intervals �1; tð Þ and t; t þ Dt½ �. That is,

Ii t þ Dtð Þ ¼ r
tþDt

�1

XN

j¼1

Xþ1

m¼1

bijme
�aijm tþDt�sð Þ

cos xijm t þ Dt � sð Þ þ /ijm

� �
_xj sð Þds

¼ r
t

�1

XN

j¼1

Xþ1

m¼1

bijme
�aijm tþDt�sð Þ

cos xijm t þ Dt � sð Þ þ /ijm

� �
_xj sð Þds

þ r
tþDt

t

XN

j¼1

Xþ1

m¼1

bijme
�aijm tþDt�sð Þ

cos xijm t þ Dt � sð Þ þ /ijm

� �
_xj sð Þds;

ð10Þ

and

~Ii t þ Dtð Þ ¼ r
tþDt

�1

XN

j¼1

Xþ1

m¼1

bijme
�aijm tþDt�sð Þ

sin xijm t þ Dt � sð Þ þ /ijm

� �
_xj sð Þds

¼ r
t

�1

XN

j¼1

Xþ1

m¼1

bijme
�aijm tþDt�sð Þ

sin xijm t þ Dt � sð Þ þ /ijm

� �
_xj sð Þds

þ r
tþDt

t

XN

j¼1

Xþ1

m¼1

bijme
�aijm tþDt�sð Þ

sin xijm t þ Dt � sð Þ þ /ijm

� �
_xj sð Þds:

ð11Þ

Further, the integrals defined over the time interval

t; t þ Dt½ � can be approximated numerically by the

trapezoidal rule. Thus, eqs. (10) and (11) can be

rewritten equivalently as

Ii t þ Dtð Þ ¼
XN

j¼1

Xþ1

m¼1

e�aijmDt cos xijmDt
� �

Icim tð Þ

� e�aijmDt sin xijmDt
� �

Isim tð Þ

þ 1

2
bijmDt cos /ijm

� �
D _xj t þ Dtð Þ

�

þ e�aijmDt cos xijmDt þ /ijm

� �
þ cos /ijm

� �� �
_xj tð Þ
�
;

ð12Þ

and

~Ii t þ Dtð Þ ¼
XN

j¼1

Xþ1

m¼1

e�aijmDt cos xijmDt
� �

Isim tð Þ

þ e�aijmDt sin xijmDt
� �

Icim tð Þ

þ 1

2
bijmDt sin /ijm

� �
D _xj t þ Dtð Þ

�

þ e�aijmDt sin xijmDt þ /ijm

� �
þ sin /ijm

� �� �
_xj tð Þ
�
;

ð13Þ

where

D _xj t þ dtð Þ ¼ _xj t þ Dtð Þ � _xj tð Þ ð14Þ

is the velocity increment from t to t þ Dt. A compar-

ison between eqs. (12), (13), and (5–8) shows that,

Icim t þ Dtð Þ ¼
XN

j¼1

e�aijmDt cos xijmDt
� �

Icim tð Þ

� e�aijmDt sin xijmDt
� �

Isim tð Þ

þ 1

2
bijmDt cos /ijm

� �
D _xj t þ Dtð Þ

�

þ e�aijmDt cos xijmDt þ /ijm

� �
þ cos /ijm

� �� �
_xj tð Þ
�
;

ð15Þ

and

Isim t þ Dtð Þ ¼
XN

j¼1

e�aijmDt cos xijmDt
� �

Isim tð Þ

þ e�aijmDt sin xijmDt
� �

Icim tð Þ

þ 1

2
bijmDt sin /ijm

� �
D _xj t þ Dtð Þ

�

þ e�aijmDt sin xijmDt þ /ijm

� �
þ sin /ijm

� �� �
_xj tð Þ
�
:

ð16Þ

Clearly, these expressions show that, given the

values of Icim tð Þ and Isim tð Þ, which are known at a given
time t, the numerical computation of the radiation

force at time t þ Dt is obtained via an algebraic

expression dependent on the current velocity values

_xj tð Þ and on the forward velocity values _xj t þ Dtð Þ.
Note that the computation of the radiation force

requires only the computation of Iim t þ dtð Þ (see

Eq. 5), but the auxiliary function (7) is necessary for

formulating a numerical procedure avoiding the need

of storing the past velocity values through the

simultaneous update of the Icim tð Þ and Isim tð Þ values.

Further, note that eqs. (12) and (13) require the

knowledge of the increment D _xj t þ Dtð Þ, which is

determined within the algorithm used for conducting

the numerical integration of the equation of motion.
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3.2 Numerical integration of the equation

of motion

To conduct the step-by-step analysis of a wave farm,

the incremental equation of motion can be used.

Specifically, considering the time instants tl and

tlþ1 ¼ tl þ Dt, the difference between the vector

equilibrium relationships (1) at those time instants is:

DFin ¼ DFe � DI þ DFs þ DFd; ð17Þ

where

DI ¼ I tlþ1ð Þ � I tlð Þ: ð18Þ

The force vector increments in Eq. (17) are gener-

ally dependent on the specific WEC considered.

Nevertheless, commonly they are of the form

DFin ¼ Fin tlþ1ð Þ � Fin tlð Þ ¼ M0D x; ð19Þ

DFd ¼ Fd tlþ1ð Þ � Fd tlð Þ ¼ C0D _x; ð20Þ

DFs ¼ Fs tlþ1ð Þ � Fs tlð Þ ¼ K0Dx; ð21Þ

and

DFe ¼ Fe tlþ1ð Þ � Fe tlð Þ: ð22Þ

In the preceding equations, the displacements,

velocities, and accelerations increments are given by

the equations

Dx ¼ xlþ1 � xl; ð23Þ

D _x ¼ _xlþ1 � _xl; ð24Þ

and

D€x ¼ €xlþ1 � €xl; ð25Þ

with M0, C0 and K0 denoting mass, damping, and

stiffness matrices, whose elements are influence

coefficients. In the case of linear force vectors, these

are classical mass, damping, and stiffness values, but

in the case of nonlinear force vectors, these are time

dependent values computed by a Taylor expansion of

the nonlinear force vector at the initial time instant tl.

For instance, if the restoring and damping forces are

nonlinear and depend on displacements and velocities,

respectively, the influence coefficients are [33]

K0f gij¼
dFs;i

dxj

����
t

; ð26Þ

and

C0f gij¼
dFd;i

d _xj

����
t

: ð27Þ

Thus, the incremental equation of motion becomes

M0D xþC0D _xþ DI þ K0Dx ¼ DFe: ð28Þ

Substituting the values of the convolution integrals

given in eqs. (5) and (12), Eq. (28) becomes,

M0D xþ C0 þ CDI½ �D _xþ K0Dx ¼ DFe � FDI ; ð29Þ

where CDI is a matrix with elements

CDIf gij¼
Xþ1

m¼1

1

2
bijmDt cos /ijm

� �
; for i; j ¼ 1; . . .;N;

ð30Þ

and FDI is a force vector with elements

FDIf gi¼
XN

j¼1

Xþ1

m¼1

e�aijmDt cos xijmDt
� �

� 1
� �

Icim tlð Þ

� e�aijmDt sin xijmDt
� �

Isim tlð Þ

þ 1

2
bijmDt e

�aijmDt cos xijmDt þ /ijm

� ��

þ cos /ijm

� ��
_xj tlð Þ; for i ¼ 1; . . .;N:

ð31Þ

Equation (29) is the incremental form of the

equation of motion (1) which accounts for the

radiation force vector by an additional damping term

CDI depending on the Prony parameters bijm and /ijm;

and by an external force vector accounting for the

actual external force increment, and for the current

values of the radiation force via the terms Icim tlð Þ and
Isim tlð Þ.

Equation (29) is integrated numerically by estab-

lishing initially the relation between displacement,

velocity, and acceleration, and then, determining the

value of the displacement increment. For instance, by

utilizing the constant average acceleration method

(see Ref. [33]), the displacement increment is calcu-

lated by the equation

~K � Dx ¼ D ~F; ð32Þ

where

~K ¼ K0 þ
2

Dt
C0 þ CDIð Þ þ 4

Dt2
M0; ð33Þ

and
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D ~F ¼ DFe � FDI þ 2 C0 þ CDIð Þ � _xl þM

� 4

Dt
_xl þ 2 €xl

	 

; ð34Þ

with WEC accelerations readily determinable directly

from the equation of motion. That is,

€xl ¼ M�1 � Fe � I tlð Þ þ Fd þ Fs½ �; ð35Þ

and the velocity increment is determined by the

equation

D _x ¼ 2

Dt
Dx� 2 _xl: ð36Þ

The mechanization of the proposed approach is

captured in Fig. 1. The flowchart points out the fact

that the effect of the radiation force is incorporated via

the vector force I tð Þ, which is determined at each time

instant via the updated values of the Icim tð Þ terms. The

procedure can be utilized also in the case of nonlinear

wave farm models with the stipulation that the values

of K0 and C0 are updated at each time instant

consistently with eqs. (26–27).

4 Numerical examples

To elucidate the details about the application of the

proposed method, a preliminary numerical example

regarding a classical nonlinear single-degree-of-free-

dom (SDOF) oscillator comprising a linear-plus-cubic

stiffness and with memory effects is discussed. Next,

the proposed approach is used by a case study

regarding a farm comprising an array of U-Oscillating

Water Column (U-OWC) energy harvesters. U-OWCs

are wave energy converters exploiting the sea wave

energy by the typical OWC working principle. Thus,

they comprise a water column excited by the external

wave field that compresses and expands an air pocket

located above it. The chamber enclosing the air pocket

is connected to the atmosphere by a small orifice in

which an air turbine is installed. The alternating

compression/expansion of the air pocket creates an air

flow through the orifice that drives the air turbine, thus

producing electrical energy. Compared to classical

OWC systems, this device includes also a small

vertical U-shaped duct connecting the water column to

the open wave field. This case study has been selected

as U-OWCs are one of the few devices that have

reached the prototype scale stage. Further, it is one of

the few that have the potential for being implemented

in the form of a massive wave farm. The fact that they

are commonly embedded in vertical breakwaters,

whose layout may span several hundred meters, makes

it quite likely to be installed as a wave farm. In this

regard, it is worth mentioning the farm built in

Civitavecchia (Rome, Italy), where a plant comprising

more than 100 converters has been constructed [34].

Fig. 1 Flowchart for implementing the proposed numerical

procedure

Table 1 Parameters of the Prony expansion used for repre-

senting the Kernel of convolution integral of Eq. (37)

n 1 2 3

an 0.83 0.93 1.15

bn 2.52 0.77 3.19

xn 1.18 3.67 2.59

/n 1.18 - 2.80 - 0.63
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4.1 Response of a nonlinear SDOF oscillator

with memory effects

The application of the proposed method is first

elucidated by a numerical example involving a SDOF

oscillator governed by the equation of motion

m €xþc _xþ kxþ ex3 þ r
t

�1
K t � sð Þ _x sð Þds ¼ F tð Þ;

ð37Þ

with parameters m ¼ 2:21, c ¼ 0:50, k ¼ 1:0, and

e ¼ 0:25. The kernel of the convolution integral is

represented by a Prony expansion involving three

parameters whose values are shown in Table 1. The

excitation of the system is sinusoidal with amplitude

Fj j ¼ 0:83 and period T ¼ 4:26.

Following the procedure described in Sect. 3.2,

Eq. (37) is taken in incremental form. That is,

mD €xþcD _xþ kiDxþ DI ¼ DF; ð38Þ

where the stiffness value ki is computed at each time

step by utilizing the initial displacement value xi
through the equation

ki ¼ k þ 3ex2i : ð39Þ

This is done consistently with the typical applica-

tion of the step-by-step integration methods [33] (see

also Eq. 26). The procedure described in Sect. 3.1

allows recasting the convolution integral increment in

the form

DI ¼I t þ Dtð Þ � I tð Þ

¼
X3

n¼1

e�anDt cos xnt þ /nð Þ � 1
� �

Icn tð Þ

� e�anDt sin xnt þ /nð ÞIsn tð Þ

þ 1

2
bnDt cos/nD _xþ cos/n þ e�anDt cos xnDt þ /nð Þ

� �
_x tð Þ

� �
;

ð40Þ

in which the quantities Icn tð Þ and Isn tð Þ are known

values at each time step. In this regard, note that they

are defined by the equations

Icn tð Þ ¼ r
t

�1
bne

�an t�sð Þ cos xn t � sð Þ þ /n½ � _x sð Þds;

ð41Þ

and

Isn tð Þ ¼ r
t

�1
bne

�an t�sð Þ sin xn t � sð Þ þ /n½ � _x sð Þds:

ð42Þ

However, their numerical values within the numer-

ical scheme are determined by updating their values

known at the previous time instant. This is done by

using the counterpart of the auxiliary Eq. (13) for the

SDOF case, which is captured by the equation

~I t þ Dtð Þ ¼
X3

n¼1

e�anDt cos xnDtð ÞIsn tð Þ

þ e�anDt sin xnDtð ÞIcn tð Þ

þ 1

2
bnDt sin /nð ÞD _xf

þ e�anDt sin xnDt þ /nð Þ þ sin /nð Þ
� �

_x tð Þ
�
:

ð43Þ

This leads to the equations

Icn t þ Dtð Þ ¼e�anDt cos xnDtð ÞIcn tð Þ � e�anDt sin xnDtð ÞIsn tð Þ

þ 1

2
bnDt cos /nð ÞD _xf

þ e�anDt cos xnDt þ /nð Þ þ cos /nð Þ
� �

_x tð Þ
�
;

ð44Þ

and

Isn t þ Dtð Þ ¼e�anDt cos xnDtð ÞIsn tð Þ
þ e�anDt sin xnDtð ÞIcn tð Þ

þ 1

2
bnDt sin /nð ÞD _xf

þ e�anDt sin xnDt þ /nð Þ þ sin /nð Þ
� �

_x tð Þ
�
:

ð45Þ

Finally, substituting Eq. (40) into (38), and after a

few algebraic manipulations, the incremental equation

of motion

mD xþ cþ
X3

n¼1

1

2
bnDt cos/n

 !
D _xþ kiDx

¼DF �
X3

n¼1

e�anDt cos xnt þ /nð Þ � 1
� �

Icn tð Þ

� e�anDt sin xnt þ /nð ÞIsn tð Þ

þ 1

2
bnDt cos/n þ e�anDt cos xnDt þ /nð Þ

� �
_x tð Þ;

ð46Þ
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is obtained, which is recognized as the counterpart of

Eq. (29) in the case of SDOF systems.

The response of this system is computed over a time

span of 100 s with a constant time step Dt ¼ 0:01 s

from quiescent initial conditions, and by setting the

initial values of Icn 0ð Þ ¼ Isn 0ð Þ ¼ 0. The system accel-

eration between two successive time instants is

considered constant. Therefore, the expressions of

the constant average acceleration method can be used

for computing the effective stiffness and effective

load. The response obtained by the proposed method is

shown in Fig. 2 (circles) and is compared with data

obtained by applying the classical trapezoidal inte-

gration for the computation of the memory term

(continuous line). In this regard, note that the kernel

function used in the standard computational scheme is

obtained by Eq. (2) over a time windows of 10 s with

the same time step Dt used in the numerical integra-

tion. The figure shows a perfect agreement between

the proposed approximation and the standard approach

available in the literature. Notably, the system

response is well captured in both their transient and

steady state parts.

4.2 Case study: U-oscillating water column wave

power farm

Next, the case study concerning a U-OWC plant

installed in the Port of Salerno (Italy) is considered

[35]. While the studies concerning the design and

construction of the plant started about a decade ago,

the whole infrastructure has been completed only

recently with the installation of three vertical break-

waters comprising totally 30 independent U-OWC

harvesters, thus making it the most recent case study

on U-OWC wave energy converters.

The typical cross section and plant view of a

U-OWC plant are shown in Figs. 3 and 4, where the

main geometrical parameters used in the U-OWC

numerical model are shown. The numerical data

regarding the Salerno case study are shown in Table 2

and are utilized for producing the numerical results

shown in the next sections. In this regard, note that the

table shows the installation water depth d, as well. To

simulate the behavior of a wave farm, the U-OWC

chambers are supposed to be geometrically identical.

However, the proposed method can be implemented,

as well, in the case of chambers having different sizes.

Prior to computing the system response, the hydro-

dynamic parameters associated with the U-OWC wave

Fig. 2 Response of a

nonlinear SDOF with

memory to sinusoidal

excitation. Continuous line:

computation by classical

trapezoidal integration.

Circles: integration by

Prony approximation

Fig. 3 Vertical cross section of a U-OWC wave energy

converter
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farm must be determined. For this purpose, the semi-

analytical solution developed byMalara and Arena [36]

is used. It allows determining the system excitation

vector, infinite frequency added mass, and radiation

damping matrices. Then, the retardation function of the

system is determined by inverse Fourier transform of

the radiation damping matrix [37]. In this regard, note

that the choice of adopting identical U-OWC chambers

allowed reducing the computational cost of the semi-

analytical computation because the resulting matrices

are Toeplitz [38].

Given the retardation function matrix, the param-

eters of the Prony expansion, Eq. (2), can be identi-

fied. The procedure described by Roessling and

Ringwood [32] has been used for determining the

Prony parameters, but the numerical results showed

that several terms in the Prony expansion were

necessary for approximating accurately the retardation

function components. Thus, the results of this method

have been enhanced by an algorithm seeking the

optimal Prony parameters via minimization of the

mean square error between the target retardation

function and the estimated one. For this purpose, the

initial guess was obtained by the method in Roessling

and Ringwood [32]. Then, the Python Scipy optimiza-

tion tool has been used [39], where bounds on the

Prony parameters have been established. Specifically,

the parameters have been selected by ensuring that

aijm � 0, �1\bijm\þ1, xijm � 0, and �p\/ijm

� p. For instance, consider the case of a U-OWC

wave farm comprising nine converters. Figure 5

compares the retardation function element K1;1 tð Þ
computed by the standard identification procedure

(left panel) with the one involving a further mean

square error minimization procedure (right panel). It is

seen that an excellent agreement can be achieved by

utilizing only three terms of the Prony approximation,

whereas the standard identification procedure barely

captures the salient features of the function. Pertinent

numerical analyses showed that this identification

procedure allows representing the diagonal elements

of the retardation function matrix with a rather small

number of terms. However, more terms are needed for

approximating with a similar level of accuracy the out-

of-diagonal elements. This fact can be observed in

Fig. 6, where three terms in the Prony expansion do

not allow capturing the retardation function (K1;9 tð Þ)
behavior after 10 s. This is due to the specific

retardation function pattern. Indeed, fluctuations mov-

ing away from the simple damped harmonic behavior

are less likely to be well approximated by few terms.

Generally, including more terms in the expansion

allows achieving better accuracy. In this regard, Fig. 7

shows that 10 terms approximate better the target

function. Clearly, this fact might reduce the compu-

tational efficiency of the proposed procedure if several

terms are needed for capturing well the overall

retardation function matrix behavior. However, note

that the computed radiation force values are largely

dominated by the diagonal elements, while the rele-

vance of the out-of-diagonal elements becomes

rapidly negligible. Therefore, it may be argued that

an excellent approximation of the near-to-diagonal

elements is sufficient for estimating reliably the wave

farm response.

Table 2 Geometrical

parameters of the U-OWC

chambers and water depth d

b1 (m) 2.0

b2,i (m) 4.0

b3,i (m) 4.0

li (m) 5.65

hc,i (m) 5.6

Di (m) 0.75

d (m) 12.0

Fig. 4 Horizontal cross section of a vertical breakwater caisson

embedding a U-OWC array
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The U-OWC dynamic model considered in this

section was developed by Malara and Arena [36]. In

such a model, the wave field in front of the wave farm

is described by the potential flow theory, while the

water column dynamics is described by the real fluid

flow theory. Specifically, the water column equation of

motion is governed by the unsteady Bernoulli equation

[40] and the air pocket thermodynamic process is

described by the conservation of mass principle in

conjunction with the assumption of isentropic ther-

modynamic process [2]. In this regard, note that each

of the air chambers is associated with one water

column, and is assumed independent. Thus, there are

no air mass exchanges between contiguous chambers.

In this manner, the related governing equations are

individually paired to the unsteady Bernoulli equa-

tions. In this context, the governing equations are

M xð Þ €xþC x; _xð Þ _xþ r
t

�1
K t � sð Þ _x sð Þdsþ x

þ 1

qg
pc � patmð Þ

¼ 1

qg
Dp Dð Þ ð47Þ

for the water column oscillations; and

b2;ib3;i hc;i � xi
� �

_pc;i � cb2;ib3;i _xipc

þ cpc;i
patm
pc;i

� �1
c _mturb;i

qatm
¼ 0; for i ¼ 1; . . .;Nc; ð48Þ

for each air chamber. The constants g, q, qatm, patm, and
c denote acceleration due to gravity; water density;

atmospheric density; atmospheric pressure; and ratio

between the specific heat at constant pressure and the

Fig. 5 Diagonal element of the retardation function matrix

pertaining to an array comprising 9 U-OWCs. Continuous line:

target function. Dotted line: Prony approximation of order 3.

Left panel: identification via the method described by Roessling

and Ringwood [32]. Right panel: identification via mean square

error minimization

Fig. 6 Element (1, 9) of the retardation function matrix

pertaining to an array comprising 9 U-OWCs. Continuous line:

target function. Dotted line: Prony approximation of order 3

Fig. 7 Element (1, 9) of the retardation function matrix

pertaining to an array comprising 9 U-OWCs. Continuous line:

target function. Dotted line: Prony approximation of order 10
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specific heat at constant volume, respectively. The

system excitationDp Dð Þ is the wave pressure computed

at the U-OWC inlets in a diffracted wave field. The

symbol _mturb;i denotes the air mass flow rate through

the turbines. This quantity is dependent upon the

specific turbine under examination. In the case of

Wells turbines, this is a linear function of the air

chamber pressure. However, other models, such as the

biradial turbine, are described by nonlinear relations

with the air pressure [2]. Equations (47) and (48) are

the coupled integro-differential equations governing

the motion of a U-OWC wave farm. In this model,

each U-OWC is described by water column displace-

ment (xi) and air pressure terms (pc;i), which are

captured by the vectors x and pc. Therefore, a wave

farm comprising Nc U-OWC converters has 2Nc

degrees of freedom. However, the radiation term

appears only in Eq. (47). This is due to the fact that the

unsteady Bernoulli equation is derived by enforcing an

energy balance between each U-OWC inlet and its

associated water column free surface. So that, the

radiated term arises from the representation of the water

pressure at the U-OWC inlet via the Cummins’

representation. In this regard, note that the units

associated with these quantities are not the one

commonly utilized in WEC models based on force

equilibrium. Nevertheless, the mathematical formula-

tion of the model studied herein can be treated by the

numerical procedure described in the previous sections

without a particular adjustment. Additional notable fea-

tures of this model are: the inclusion of nonlinear mass

terms, which account for the water mass variations

occurring into the water column during the alternate

crossing of wave crests and troughs; and the nonlinear

damping terms due to the kinetic heads and to the head

losses included into the computation of the total heads.

In this regard, the expressions given by Malara and

Arena [36] are used. That is,

M xð Þ ¼ 1þ Cin

g

b2;1
b1

l1 þ l1 þ hþ x1 0 0

0 . .
.

0

0 0
b2;Nc

b1
lNc

þ lNc
þ hþ xNc

2

666664

3

777775
þM 1ð Þ;

ð49Þ

and C x; _xð Þ is a diagonal matrix with elements,

C x; _xð Þf gii¼
1

2g
Cdg

li
Rh1;i

b2;i
b1

� �2

þ li þ hþ xi
Rh2;i

" #
_xij j

(

þ 1�
b22;i
b21

 !
_xi

)
; for i ¼ 1; . . .;Nc:

ð50Þ

The coefficients Cin and Cdg are empirical coeffi-

cients accounting for experimentally observed head

losses. In the numerical calculations, they are set equal

to 0.13 and 0.71, respectively [41]. Further, Rh1;i and

Rh2;i denote the hydraulic radii of the U-ducts and of

the inner chambers, respectively.

The turbine model incorporated in Eq. (48) is the

Wells turbine [42]. The air flow rate of this turbine

depends linearly on the air chamber pressure drop.

That is,

_mturb;i ¼
KiDi

-i
pc;i � patm
� �

; ð51Þ

where Ki is a turbine characteristic parameter, and -i

is the turbine rotational speed. In the proposed

numerical computations, identical turbine models

working at a constant rotational speed are considered.

Specifically, the turbine coefficient Ki is set equal to

0.3 and the rotational speed is - ¼ 2800 rpm. These

parameters have been already utilized for similar

U-OWC plants [43].

Given the wave farm response, the overall farm

power output can be determined. For this purpose, the

following equation is used for computing the instan-

taneous pneumatic power available to the turbine:

Pi tð Þ ¼ pc;i � patm
� � _mturb;i

qatm
ð52Þ

Obviously, the average pneumatic power available

to the turbine over a time span T is

Pm;i ¼
1

T
r
T

0

Pi tð Þdt: ð53Þ

4.2.1 Reliability: response to harmonic wave

excitation case

Next the reliability of the proposed numerical proce-

dure for computing the radiation force is assessed.

Specifically, the response of U-OWCs exposed to

deterministic linear sea waves is computed by the
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proposed approach and by a classical Newmark

scheme in which the convolution integrals are com-

puted by the trapezoidal rule. All numerical examples

involve regular incident waves having wave height

H ¼ 1 m, period T ¼ 4:26 s, and direction of propa-

gation orthogonal to the U-OWC layout. The U-OWC

responses are computed over a time span of 100 s,

with a constant time step Dt ¼ 0:01 s and directly

compared in time domain.

The first comparison considers the basic problem of

an isolated U-OWC exposed to regular waves. In this

context, the system involves two degrees of freedom

and three state variables: the water column displace-

ment x, the water column velocity _x, and the air

chamber pressure drop Dp ¼ pc � patm. Figure 8

shows the results obtained by the classical numerical

integration based on the trapezoidal rule (continuous

lines), and the ones obtained by the proposed approach

(circles). It is seen that the proposed approach provides

an excellent estimation of all of the response compo-

nents. Further, it is capable of estimating perfectly also

the transient part of the response, where larger

fluctuations of the components can be observed. In

this context, note that this accuracy is obtained by

utilizing three terms of the Prony expansion.

Next, the algorithm is tested by considering a wave

farm comprising 9 U-OWCs. In this context, the farm

is a system described by 18 degrees of freedom. Even

in this case, the proposed approach is implemented by

retaining only three terms in the Prony expansion.

Figures 9 and 10 compare the farm response compo-

nents associated with the extremal chamber of the

Fig. 8 Time domain response of a U-OWC with 1 chamber.

Top panel: water column displacement. Central panel: water

column velocity. Lower panel: air chamber pressure drop.

Continuous lines: computation via trapezoidal approximation of

the convolution integral. Circles: computation via Prony

expansion with three terms

Fig. 9 Time domain

response of the extremal

chamber of an array

comprising nine chambers.

Top panel: water column

displacement. Central panel:

water column velocity.

Lower panel: air chamber

pressure drop. Continuous

lines: computation via

trapezoidal approximation

of the convolution integral.

Circles: computation via

Prony expansion with three

terms
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array, and with the central chamber of the array,

respectively. It is seen that all response components

are estimated quite reliably over the entire time

domain in all chambers. In this case, note that this

level of accuracy is obtained despite the use of only

three terms of the Prony expansion. Indeed, the

previous section showed that such a small number of

terms does not allow capturing the retardation function

pattern associated with the out-of-diagonal elements

of the retardation function matrix. However, the fact

that the overall wave farm dynamics is mostly

influenced by the diagonal (or near-to-diagonal)

elements allows obtaining quite reliable estimates

using an excellent approximation of just these

elements.

4.2.2 Efficiency: response to random wave excitation

case

Next, the efficiency of the proposed approach is

examined in the context of computationally costly

Monte Carlo simulations. Monte Carlo data are

produced for assessing, by numerical methods, the

behavior of the wave farm in realistic conditions, and

determining the response statistics (means, variances,

average power outputs, etc.). Monte Carlo simulations

are characterized by costly running times due to the

fact that reliable estimates of the response statistics

can be obtained only using an adequately large number

of response samples. In wave energy applications, this

computational barrier is partially limited by the fact

that sea waves are described as ergodic Gaussian

random processes with a known spectrum [44].

Therefore, relevant response statistics are determined

from one realization of the response by exploiting the

ergodicity assumption. However, if the wave farm is

exposed to non-stationary excitations (such as earth-

quake excitations) multiple realizations of response

are needed [17]. In this context, traditional methods

can be utilized requiring, however, high performance

computational hardware, but for the case of massive

wave power farms the cost may be prohibitive.

The following numerical results are obtained by

synthesizing spectrum compatible realizations of the

wave farm excitation. For this purpose, the incident

wave field is made compatible with a mean JONS-

WAP frequency spectrum with Mitsuyasu directional

spreading function [45, 46], in which the significant

wave height Hs ¼ 1:5 m and the peak spectral period

Tp ¼ 5:22 s. For determining response statistics and

average power outputs, 106 samples of the response

components are calculated per realization by adopting

a time step Dt ¼ 0:01 s over a simulation time of

10.000 s. The numerical simulations are executed for

wave power farms having N = 1, 7, 15, 31 U-OWCs

(therefore 2, 14, 30, 62 degrees of freedom). In all

cases, the response statistics pertaining to the central

U-OWC of the wave farm are shown. Figure 11 shows

a comparison between the statistics obtained by the

proposed Prony-based method (circles) and the clas-

sical trapezoidal integration (crosses). The figure com-

pares the standard deviations of the response

components (displacement and air pressure drop)

and the average power available to the turbine.

Consistently with the observations pertaining to the

harmonic wave excitation case, the response statistics

Fig. 10 Time domain

response of the central

chamber of an array

comprising nine chambers.

Top panel: water column

displacement. Central panel:

water column velocity.

Lower panel: air chamber

pressure drop. Continuous

lines: computation via

trapezoidal approximation

of the convolution integral.

Circles: computation via

Prony expansion with three

terms
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are estimated perfectly by the proposed method

irrespective of the size of the wave power farm. Note

that this level of accuracy is obtained by approximat-

ing the retardation function matrix elements just by

three terms in the Prony expansion.

The efficiency of the proposed method is assessed

by running time comparisons. For this purpose, the

time required by the computational hardware for

integrating the equation of motion over the entire time

span is recorded. This time does not include the time

spent for synthesizing the wave farm excitation and

the data post-processing. For producing comparable

data, the proposed and the classical integration

methods are coded both in Python language and

executed in a Windows environment using an Intel�
Xeon� CPU E5-2690 @ 2.90 GHz with 64 GB of

installed RAM. The results discussed in this numerical

section have not been obtained by accelerated GPU

computations and have not taken advantage of code

parallelization. Instead, the numerical execution of the

code has been accelerated software—wise by execut-

ing the numerical solver through the Numba just-in-

time compiler [47].

Figure 12 compares the running time of the inte-

gration by trapezoid vis-à-vis the running time of the

Prony-based integration. It is seen that the proposed

approach is significantly more efficient than the

classical one. In this regard, note that the vertical axis

of the figure is in logarithmic scale. While comparable

results are obtained in case of a single U-OWC, a

marked difference arises in the scenario of gradually

increasing farms. The great efficiency of the proposed

approach over the conventional one is quite evident by

considering a farm comprising 31 U-OWCs (therefore

62 degrees of freedom). In this case, the standard

approach requires a computational time of about

Fig. 11 Standard

deviations of displacement

(rx) and air pressure drop

(rDp) and average power

available to the turbine of

the central chamber of a

U-OWC farm with

N converters

Fig. 12 Running time versus number of WECs. Direct

integration through trapezoids vis-à-vis integration through

Prony expansion

123

Efficient wave farm response computation 6353



20,000 s (� 5, 5 h), while the proposed approach

requires 348 s.

5 Concluding remarks

This paper has dealt with the problem of efficient

computation of the wave power farm response in the

time domain. Specifically, it has proposed a numerical

approach for computing efficiently the radiation force

typically included in wave energy converter models

described via the Cummins’ equation.

The approach is based on the approximation of the

retardation function matrix elements via the Prony

method. This allows computing, through a novel

scheme, recursively the convolution integrals associ-

ated with the radiation forces at each time instant from

their known previous values. Compared to other

approaches available in the open literature, this

approach does not require storing past response values

(as required by the direct computation of the convo-

lution integral), and does not augment the number of

the differential equations governing the wave farm

dynamics (as done in standard state-space

approaches).

The reliability and efficiency of the algorithm have

been shown by comparisons in the time domain, and

by measuring the running times of the algorithm. It has

been found that the algorithm determines quite

reliably both the stationary and the transient parts of

the wave farm response irrespective of the wave farm

size. In the context of Monte Carlo simulation studies,

the algorithm significantly reduces the computational

costs. In this regard, it is mentioned that it was capable

to yield farm response parameters in 350 s versus the

5.5 h required by a straightforward numerical inte-

gration of the equation of motion.

Clearly, the technique proposed in this article is not

limited to wave energy-related applications. Indeed, it

can be applied to any problem of dynamics governed

by integro-differential equations, in which the ele-

ments of the convolution integral matrix kernel can be

approximated reliably by the Prony method.
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M.: Fast time-domain model for the preliminary design of a

wave power farm. Renew. Energy 219, 119482 (2023).

https://doi.org/10.1016/J.RENENE.2023.119482

25. Slyusar, V.I.: Interpretation of the Proni method for solving

long-range problems. Radioelectron. Commun. Syst. 41,
35–39 (1998)

26. Henriques, J.C.C., Portillo, J.C.C., Sheng, W., Gato,

L.M.C., Falcão, A.F.O.: Dynamics and control of air tur-

bines in oscillating-water-column wave energy converters:

analyses and case study. Renew. Sustain. Energy Rev. 112,
571–589 (2019). https://doi.org/10.1016/J.RSER.2019.05.

010

27. Faedo, N., Peña-Sanchez, Y., Ringwood, J.V.: Parameteri-

sation of Radiation forces for multiple degree-of-freedom

wave energy converters using moment-matching. Int.

J. Offshore Polar Eng. 30, 395–402 (2020). https://doi.org/

10.17736/IJOPE.2020.MK71

28. Newman, J.N., Malenica, S., Ouled Housseine, C.: Added

mass and damping of structures with periodic angular shape.

J. FluidMech. 948, R1 (2022). https://doi.org/10.1017/JFM.

2022.709

29. Kurnia, R., Ducrozet, G.: NEMOH: Open-source boundary

element solver for computation of first- and second-order

hydrodynamic loads in the frequency domain. Comput.

Phys. Commun. 292, 108885 (2023). https://doi.org/10.

1016/J.CPC.2023.108885

30. Göteman, M., Engström, J., Eriksson, M., Isberg, J.: Fast

modeling of large wave energy farms using interaction

distance cut-off. Energies 8, 13741–13757 (2015). https://

doi.org/10.3390/EN81212394

31. Pereyra, V., Scherer, G.: Exponential data fitting. In:

Exponential Data Fitting and its Applications, pp. 1–26.

Bentham Science Publishers Ltd, Sharjah (2010)

32. Roessling, A., Ringwood, J.V.: Finite order approximations

to radiation forces for wave energy applications. Renewable

energies offshore. 359, 359–366 (2015)

33. Clough, R.W., Penzien, J.: Dynamics of structures. Com-

puters & Structures Inc, Berkeley, CA, USA (1995)

34. Arena, F., Romolo, A., Malara, G., Ascanelli, A.: On Design

and Building of a U-OWC Wave Energy Converter in the

Mediterranean Sea: A Case Study. In: Proc. of the 32nd

International Conference on Ocean, Offshore and Arctic

Engineering. p. V008T09A102. Nantes, France (2013)

35. Arena, F., Romolo, A., Ascanelli, A., Ferrante, A., Ghiretti,

S., Valentino, E.: Green ports: an Italian experience. In: IV

Congreso Nacional de la Asociación Técnica de Puertos y
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