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Abstract

The control of arthropod pests of agricultural importance is increasingly difficult due to the quick
development of resistance in the targeted pest populations coupled to their massive non-target lethal
and sublethal effects. This fostered the progressive banning of active ingredients at international and
national levels, making pest management challenging. Reliable and environmentally sustainable pest
control tools are required. Botanicals, with special reference to plant essential oils (EOs), can
represent a broad source of active ingredients to develop effective insecticides and acaricides for
agricultural purposes. In this context, our review analyzed the literature currently available about the
lethal and sublethal activity of EOs on non-target terrestrial invertebrates in agricultural settings,
including biological control agents (predators and parasitoids), pollinators and soil non-target species.
Even if EO-based insecticides and acaricides are generally considered safer from a non-target point
of view, a number of detrimental effects have been noted on biological control agents, including
negative effects on respiration rate, reduced predatory ability and reduced parasitization rates, among
others. Examples of sublethal effects experienced by pollinators exposed to EO-based pesticides are
the reduction in the movement speed and distance travelled, while the toxicity of EO-based products
on soil invertebrates is limited. Of note, the modes of action leading to EO toxicity on non-target
species are scarcely studied. Further research on long-term non-target effects of EO-based pesticides

in the field is still needed.

Key words: biocontrol; Integrated Pest Management; lethal effects; sublethal effects; parasitic wasp;

honeybee; bumblebee; stingless bee; earthworm
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1. Introduction

The still growing widespread demand and use of synthetic pesticides in agriculture pose several risks
in terms of ecotoxicology, as well as social issues. Therefore, the harmful effects of some molecules
on human health, as well as the negative impact on the environment, induced the international and
national regulators to ban or severely restrict the application of several synthetic insecticides (e.g.,
multiple banned organochlorine and organophosphate insecticides, and more recently neonicotinoids
in Europe, Jactel et al., 2019). Most of the authorized chemical insecticides and acaricides are still
neurotoxic, affecting the nervous system of arthropod pests; however, synthetic active ingredients,
especially the earliest ones, may also threaten human health, warm-blooded animals as well as non-
target arthropods species such as biological control agents (BCA) and pollinators (Weisenburger,
1993; Desneux et al., 2007; Casida and Durkin, 2013). Compared to first and second-generation
pesticides, the toxicity of last-generation synthetic pesticides has generally increased towards aquatic
invertebrates and pollinators, while the acute toxicity towards mammals and birds has been reduced,
mainly due to their low application rates (Schulz et al., 2021). Scientists have been working on the
development of viable alternatives to synthetic chemicals which can be less harmful to the
environment, and both researchers and consumers are paying even close attention to bioactive plant
active ingredients for developing new green pesticides. The development of plant-based biopesticides
has also attracted increasing interest from the pesticide industry in recent years and the issues related
to the formulation and toxicology of pesticides are usually not shared by industries, because they are
considered proprietary information. On this basis, it should be assumed that the scientific literature,
which is the basis for the scientific dissemination, is lacking in some hard-to-access knowledges.
Several plant extracts can act either as toxicants or repellents, as well as phagodeterrents,
ovideterrents or growth regulators and may provide viable alternatives to traditional synthetic
pesticides (e.g. Shah et al., 2020; Verheggen et al., 2022), since they are a valuable source of bioactive

molecules (Campolo et al., 2018; Kavallieratos et al., 2021). Among the plant extracts proposed for
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pest control, essential oils (EOs) are promising active ingredients for insecticidal formulations due to
their worldwide availability and relative low cost and their presumed safety for human health and the
environment (Isman, 2020; Li et al., 2022; Palermo et al., 2021). EOs are secondary metabolites
produced by plants for a variety of purposes and they are involved in indirect plant defense
mechanisms (i.e., against both biological and abiotic stress), and play a key role in signaling
processes, including plant attractiveness toward beneficials and pollinators. EOs are produced by
several plant species, i.e. the so-called aromatic plants belonging to a panel of botanical families such
as Asteraceae, Apiaceae, Lamiaceae, Lauraceae, Myrtaceae, Verbenaceae, Geraniaceae,
Zingiberaceae, Pinaceae, and others (Benelli et al., 2017; Pavela et al., 2021a, 2021b; Spinozzi et al.,
2021). They are synthesized and eventually stored in secretory structures of epidermal or
parenchymatic origin which are distributed in different plant parts or organs, such as roots, bark,
leaves, seeds, fruits, bark, and tubers. Furthermore, EOs produced from the same plant but extracted
from different organs can vary significantly both in terms of chemical composition and yield. Even
when the same plant species is considered, the yield and composition of EOs may vary with the
cultivated environment and the plant genetic background leading to the presence of different
chemotypes within the same species (Pavela and Benelli, 2016).

EOs are phytocomplexes composed of a blend of substances (i.e., often more than 50),
including terpenes (monoterpenoids and sesquiterpenoids), the most frequent constituents, but also
aromatic (i.e., phenylpropanoids, aldehydes, alcohols, esters, etc.) and aliphatic compounds (i.e.,
alkanes, aldehydes, alcohols, ketones, esters) and others (i.e., polyacetylenes). It is quite common that
a single compound accounts for more than 20% of a given EO; as an example, the relative content of
D-limonene in orange EO exceeds 50% of total components (Buriani et al., 2020).

Because EOs are accumulated inside plant organs, they must be collected from plant tissues
using different extraction techniques. The most common extraction techniques are hydrodistillation
(HD), steam distillation, and cold pressing (CP). These sometimes are characterized by a variety of

disadvantages, including low efficiency and yield, and degradation of some molecules (Reyes-Jurado

4
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et al., 2014). Due to the above-mentioned limitations, several new techniques have been developed
to effectively extract EOs, such as microwave-assisted extraction (MAE), which improves the
production efficiency while reducing time and energy consumption during the process (Sawamura,
2011; Fiorini et al., 2020).

The EO characteristics (i.e., high volatility and biodegradability, low persistence in the
environment) which make these phytocomplexes promising active ingredients for biopesticides, also
limit their application as commercial plant protection products. These limitations reduce the
possibility of the use of EOs as such and the difficulties in patenting the EO-based pesticide
formulations have limited the spread of commercial formulations. Since these bioinsecticides are
moderately commercialized and represent a restricted market at present, it can be assumed that EOs
are unsuccessful control tools under field conditions. Nonetheless, field evaluations showed that EOs
can be effective in some situations and can obtain pest control levels comparable to organo-synthetic
pesticides (Isman et al., 2011; Smith et al., 2018). Despite the huge number of studies about EO
bioactivity against pests, the main commercialization of bioinsecticides based on EOs dates over a
decade ago in the USA and just 6-7 years in the EU (Isman, 2020). Commercially available
formulations may contain a single EO or EO constituent, a mixture of different EOs, as well as a
blend of synthetically produced terpenoids. These formulations and EOs in general are often
acknowledged to be safe for the environment and human health based on the physicochemical
properties of these compounds derived from their respective structures; however, few studies,
compared to the large bibliography available about EOs toxicology against pest species, focused on
the ecotoxicological impact of EOs and EO constituents against non-target species (Haddi et al. 2020;
Turchen et al. 2020).

In a recent paper, Ferraz et al. (2022) reviewed the impact of both EOs and plant extracts on
non-target organisms, namely microalgae, crustaceans, fishes, plants, and soil (micro)organisms;
however, terrestrial invertebrate species, such as BCA and pollinators, were not considered. Natural

enemies of crop pests, as well as pollinators, can directly contact with pesticides on sprayed crops
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and contaminated nearby vegetation, and they can feed on treated plants/preys/hosts. Furthermore,
soils can also be polluted by residues of pesticide applications due to drift phenomena, and the
abundance and variety of invertebrate species in soils is a recognized bioindicator for environmental
health and pollution, which should be accounted in agroecosystems (Burger, 2007). In this context,
this review focuses on the main findings about lethal and sublethal effects of EOs against non-target
terrestrial invertebrates in agriculture, including beneficial arthropods (i.e., predators, parasitoids,

pollinators), as well as soil non-target species.

2. Invertebrate predators of crop arthropod pest species

Among beneficials playing a key role in biological control programs against several pests, predators
are valuable control agents due to their ability to feed on and kill several to many individual prey
during their lifetimes. Predatory beetles, flies, lacewings, true bugs, and predatory mites are just some
examples of predators used in biological control programs. The side effects of EOs on these predators
are quite variable depending on different parameters, including plant species, EO formulation,

application technique, and non-target species and life stage (Table 1).

2.1. Lethal effects of EOs toward invertebrate predators
EOs are generally considered safe for non-target predators, because of their high mobility and their
larger size compared to target species. In this regard, it is commonly acknowledged that higher doses
of toxicants are needed to kill larger species or specimens, although there are exceptions. In contact
toxicity tests on Aphis punicae Passerini (Hemiptera: Aphididae) adults, it was shown that LCsos for
various EOs were approximately four-fold lower than those estimated for Coccinella
undecimpunctata L. (Coleoptera: Coccinellidae) larvae (Sayed et al., 2022). Furthermore, Satureja
intermedia C. A. Mey EO is a good candidate to develop plant-derived aphicides because of its
toxicity against Aphis nerii Boyer de Fonscolombe (Hemiptera: Aphididae), coupled with its relative

safety to the generalist predator Coccinella septempunctata L. (Coleoptera: Coccinellidae)
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(Ebadollahi and Setzer, 2020). On the other hand, fumigation with four EOs toxic to aphid pests
(Mentha pulegium L., Mentha X piperita L., Ocimum basilicum L., and Citrus sinensis (L.) Osbeck
EOs) caused variable mortality on two coccinellid predator species, the seven-spotted ladybird C.
septempunctata and the two-spotted ladybird Adalia bipunctata L. (Coleoptera: Coccinellidae) with
distinctive selective toxicity ratios depending on the considered aphid species, coccinellid predator
and EO (Kimbaris et al., 2010).

Bioactive botanical compounds can be more selective than commercial synthetic insecticides
(Benelli et al., 2019¢, 2018a; Pavela, 2018); as an example, the EO of Lippia sidoides Cham.,
(Verbenaceae) and its major compound thymol were less toxic than deltamethrin toward the predator
Podisus nigrispinus (Dallas) (Hemiptera: Pentatomidae), a predator of Spodoptera frugiperda Smith
(Lepidoptera: Noctuidae); besides, deltamethrin led to quicker mortality to nymphs of P. nigrispinus
(LTs0= 0.36 h) compared to EO (LTso= 119 h) and thymol (LTs0= 93 h). Moreover, these botanical
compounds acted against the pest faster than the synthetic insecticide (Lima et al., 2020). Similarly,
dichlorvos was more toxic (LDso 9.0 x 1071 mg cm™) against Orius strigicollis Poppius (Hemiptera:
Anthocoridae), compared with O. basilicum EO constituents, whose LDs¢ values ranged from 0.0127
to > 0.23 mg cm > (Kim et al., 2015).

Nevertheless, EO-based formulations are not always selective to predators of target species.
As an example, LCso values for Vanillosmopsis arborea Baker and Lippia microphylla Cham. EOs
topically applied to S. frugiperda larvae were 172.86 mg mL™! and 104.52 mg mL"! respectively, but
the lethal concentrations for the generalist predator Euborellia annulipes Lucas (Dermaptera:
Anisolabididae), were similar or even lower (V. arborea LCso = 160.2 mg mL™'; L. microphyla LCso
= 134.67 mg mL™") (Alves et al., 2022). Furthermore, EOs can cause mortality of predators both by
direct contact, as well as by ingestion of treated prey, as supported by the survival of Podisus
maculiventris Say (Heteroptera: Pentatomidae) to Curcuma longa L. EO and its major components
after topical application and ingestion of treated Spodoptera exigua Hiibner (Lepidoptera: Noctuidae)

larvae (Tavares et al., 2019). In some cases, EOs can be safe to adults and pre-imaginal stages of
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predators while causing mortality of eggs, impairing egg hatching; this is the case of Rosmarinus
officinalis L. EO, which caused low mortality rate toward Chrysoperla carnea Stephens (Neuroptera:
Chrysopidae) larvae, however having negative effects on the eggs hatching rate of the same species
(Azimi Zadeh and Ahmadi, 2018).

The use of EOs as acaricides has also been studied in depth, since phytophagous mites are
serious pests in greenhouse and field agricultural ecosystems. Among the EOs used for the control of
mites, the one extracted from Lippia sidoides Cham. exhibited a good toxicity against Tetranychus
urticae C.L. Koch (Acari: Tetranychidae) as well as a good selectivity towards the predator mite
Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) (de Santana et al., 2021). This predatory
mite was also more tolerant than the target pest to Melissa officinalis L. (Momen et al., 2014), Piper
aduncum L., Melaleuca leucadendra L., and Schinus terebinthifolius Raddi EOs, as well as their
binary blends (de Aratjo et al., 2020), while it was sensitive to P. marginatum Jacq. EO (Ribeiro et
al., 2016). Similar results were reported for Typhlodromus ornatus Denmark & Muma (Acari:
Phytoseiidae), a naturally occurring generalist predatory mite in coconut plantations, which was not
affected by sweet orange (C. sinensis) cv “Pera” EO at the lethal concentrations used against the
target mite species Aceria guerreronis Keifer (Acari: Eriophyidae) (Brito et al., 2021). The selectivity
of the tested EOs towards 7. ornatus may be related to the biological, anatomical, and physiological
differences between predators and their prey, such as the integument or presence of detoxifying
enzymes (Sato et al., 2006; Tsolakis and Ragusa, 2008). Conversely, dos Santos et al. (2019) reported
that the EO from Lippia gracilis Schauer was toxic both against the target species Raoiella indica
Hirst (Acari: Tenuipalpidae) as well as against the predator mite Amblyseius largoensis (Muma)
(Acari: Phytoseiidae), since the LCso (4.99 mg/mL) of the EO estimated for R. indica caused
48.33 £3.07% mortality to 4. largoensis.

Within the same plant genus, EOs extracted from different plant species or chemotypes can
have different efficacy toward target pests, as well as adverse effects on non-target organisms (Seixas

et al., 2018a). Nevertheless, pennyroyal EO (Mentha pulegium) extracted from two different
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chemotypes (i.e., major constituent pulegone or piperitone) revealed a good insecticidal activity
against Aphis gossypii Glover (Hemiptera: Aphididae), 4. spiraecola Patch (Hemiptera: Aphididae)
and T. urticae (Acari: Tetranychidae) at 1000 pul/L of EO concentration in spray applications
irrespective of the chemotype; the impact of both EOs on the polyphagous predator Nesidiocoris
tenuis (Reuter) (Hemiptera: Miridae) was negligible (Papadimitriou et al., 2019). Similar results were
highlighted by Ricupero et al., (2022) in which garlic EO based nano-emulsion revealed a significant
toxicity against Tuta absoluta while no lethal effects were highlighted towards N. tenuis adults. On
the other hands, the same formulation had a significant impact on the progeny produced by females
allowed to develop on treated plants. Shaltoki et al. (2022) confirmed the negative effect of
pennyroyal EO applications towards Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae)
eggs and first-instar larvae, affecting both survival and reproductive performances of the developed
adult beetles.

Considering different closely related species, the evaluation of different Citrus peel EOs
towards the generalist predator N. tenuis demonstrated a significant variability in terms of acute
mortality and side-effects depending on the type of formulation, the EO used and the different residual
times (Campolo et al., 2020). Moreover, exposure time is also a key factor determining the effects of
insecticides on non-target species; indeed, the EOs extracted from Artemisia sieberi Besser,
Pelargonium graveolens L’Hér., and Ferula gummosa Boiss. Showed similar toxicity against the pest
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) (Zandi-Sohani et al., 2018). Conversely, their
effects on the generalist predator Orius albidipennis (Rueter) (Hemiptera: Anthocoridae) varied
according to the EO and the exposure time, although the LCso values against predators were
significantly higher than those of target pest species (Zandi-Sohani et al., 2018). These results suggest
that the compatibility of EO-based pesticides in organic agriculture can be improved through careful
timing of treatment and release of natural enemies. Indeed, most of these substances exert their toxic
activity only at high doses for a limited period after treatment and, in general, the toxicity towards

natural enemies is significantly reduced with the aging of residues both toward generalist and specific
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predators (Brito et al., 2021; Campolo et al., 2020, 2017). Although low persistence is a desirable
trait in conventional pest management, the rapid degradation and volatility of EOs in the
agroecosystems can limit their effectiveness against the target species and, at the same time, can be
useful where natural enemies need to be protected.

The formulation of EO in organic solvent can also mitigate potential negative effects toward
non-targets, while maintaining pesticidal activity (Abdel Kader et al., 2015); as an example, Varronia
curassavica Jacq. (Boraginaceae) oil-in-water emulsion revealed a good insecticidal activity against
the target pests Myzus persicae (Sulzer) (Hemiptera: Aphididae) and T. urticae, while it did not affect
the survival of the generalist predator Ceraeochrysa cubana Hagen (Neuroptera: Chrysopidae), even
when applied at the highest tested application rate (1%) (Andrade et al., 2021). Amer et al. (2016)
evaluated the toxicity of Laurus nobilis L. EO and its commercial formulation Lauricide® on the
predatory mite, Typhlodromus negevi Swirski and Amitai and Phytoseiulus persimilis Athias- Henriot
(Acari: Phytoseiidae); predatory females were found to be more tolerant than 7. urticae females to
both materials, with LCso values higher for the EOs (1.82 x 10* and 2.00 x 10* ppm for T. negevi and
P. persimilis, respectively) compared to the formulation (0.28 x 10* and 0.40 x 10* ppm).

The evaluation of the efficacy of various conventional and biological pesticides against the
prickly pear cactus cochineal Dactylopius opuntiae (Cockerell) (Hemiptera: Dactylopiidae) and their
selectivity towards its natural predator Cryptolaemus montrouzieri Mulsant (Coleoptera:
Coccinellidae) have been investigated by El Aalaoui et al. (2019). Among the tested insecticides, the
Prev-am® commercial formulation based on d-limonene (the main compound of sweet orange EO)
was effective in controlling Dactylopius opuntiae (Cockerell) (Hemiptera: Dactylopiidae) and, at the
same time, showed a low impact on adults and larvae of the coccinellid predator (El Aalaoui et al.,
2019). Similarly, Soares et al. (2019) demonstrated that the survival of the mirid predator N. tenuis is
not affected by Prev-am® at various concentrations.

The susceptibility of predator species to EOs may be caused by physiological alterations. The

EOs from Mentha spicata L. and Melaleuca alternifolia (Maiden & Betche) Cheel were used to

10
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evaluate the effect of ingestion of treated prey by P. nigrispinus. Atico Braga et al. (2020)
demonstrated that M. alternifolia EO administration caused an elongation of digestive cells, followed

by cell lysis and tissue necrosis, while M. spicata caused just a reduction in the carbohydrate levels.

2.2. Sublethal effects of EOs toward invertebrate predators

Apart from acute lethal toxicity, EO administration can influence various life-history traits of non-
target predators such as their reproductive performance and predatory ability, which are the most
investigated biological parameters in this context and are designated sublethal effects (see Desneux
et al., 2007 for a thorough review). EOs and their terpenoid constituents can affect the physiology of
insects and mites in different ways and places, resulting in a disruption of reproductive processes
such as oogenesis, vitellogenesis, maturation, and spermatocyte growth (Shaltoki et al., 2022). The
LCso and LCso of the ‘Pera’ sweet orange EO, estimated for A. guerreronis, did not affect the
population growth of the generalist predatory mite 7. ornatus (Brito et al., 2021). In contrast, sublethal
effects on fecundity and fertility were observed in Chrysoperla externa (Hagen) (Neuroptera:
Chrysopidae) for d-limonene, while oregano EO affected only the fecundity of this green lacewing
(Castilhos et al., 2018).

Predatory behavior can also be influenced by insecticidal and acaricidal treatments; the
walking activity of N. tenuis adults exposed to leaves treated with synthetic pyrethroid (lambda-
cyhalothrin) and Citrus EO-based biopesticide (Prev-am®) was significantly higher compared to the
control treatment, while the predatory voracity was reduced by lambda-cyhalothrin and increased by
Prev-am® treatment (Soares et al. 2019). Similarly, Passos et al., (2022) demonstrated that N. tenuis
adults biological traits (fertility and orientation behaviour) were negatively affected by exposing the
mirid to the tested EOs formulations (garlic, anise, fennel and lavender).

In contrast, Abdel Kader et al. (2015) evaluated the effect of M. officinalis EO and its
commercial formulation (Melissacide®) against females of two predatory phytoseid mites,

Typhlodromips swirskii (Athias Henriot) (Acari: Phytoseiidae), and Neoseiulus barkeri (Hughes)
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(Acari: Phytoseiidae), showing that Melissacide® can reduce food consumption, while moderate
effects were highlighted in the daily number of deposited eggs. Similarly, eggs of both predatory
mites were not influenced by L. nobilis EO, while its formulation reduced oviposition and food
consumption, also influencing the sex-ratio of the offspring (Amer et al., 2016). The effect of an EO
can be species-specific; the exposure to Siparuna guianensis Aubl. EO did not affect the predatory
abilities of Coleomegilla maculata (DeGeer) (Coleoptera: Coccinellidae) but increased the abilities
of Eriopis connexa (Germar) (Coleoptera: Coccinellidae) to prey upon M. persicae (Toledo et al.,
2019). Similarly, Ceraeochrysa caligata B. (Neuroptera: Chrysopidae) larvae surviving exposure to
Citrus EO exhibited higher predatory ability when faced with prey scarcity (Farias et al., 2020).
Briigger et al. (2019) investigated the impact of lemongrass EO and its constituents against P.
nigrispinus, the terpenoid constituents of lemongrass EO had a negative effect on respiration rate of
the hemipteran predator, probably due to muscle paralysis, disruption of oxidative phosphorylation
processes and dysregulation of the breathing activities, which could explain the reduced predatory
ability. In addition, P. nigrispinus nymphs exposed to treated surfaces demonstrated irritability or
repellency (Briigger et al., 2019).

Furthermore, EOs can play an important role to improve the efficacy and the accuracy of
predators’ activity. Liu et al. (2019) showed that Coriandrum sativum L., Alpinia officinarum Hance,
Manilkara zapota (L.) P. Royen and Nerium indicum Mill. EOs, EO fractions, and two derived
compounds, isocaryophyllene and trans-2-dodecenol, attracted both adults and nymphs of
Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae), predator of Nilaparvata lugens (Stal)
(Hemiptera: Delphacidae). The ability of EOs or some of their compounds to lure natural enemies
was investigated by several authors. As examples, Harmonia axyridis Pallas (Coleoptera:
Coccinellidae) laid more eggs in beans treated with limonene or B-caryophyllene than in control seeds
(Alhmedi et al., 2010). Similarly, the green lacewing Chrysoperla rufilabris Burmeister (Neuroptera:
Chrysopidae) preferred as oviposition sites pecan branches treated with B-caryophyllene than
untreated branches (Kunkel and Cottrell, 2007). Attractancy/repellency of EOs toward the spider

12



Pardosa pseudoannulata Boesenberg and Strand (Araneae: Lycosidae) was evaluated in choice tests
using EOs of Piper nigrum L. and Litsea cubeba (Lour.) Pers., or their mixture as given cues,
revealing that these EOs had no significant influence on the orientation of the predator while the

mixture elicited its attraction (Farid et al., 2019).

3. Parasitoids of crop insect pest species

Parasitoids represent one of the best weapons among the BCA used against various pests. Their
success is due to their effectiveness in intercepting the host, which is generally more sophisticated
than that of predators, and their high efficacy in rapidly reducing the population density of the target
host. One of the critical issues in the use of parasitoids is their susceptibility to pesticides, which are
commonly used in organic agricultural systems as well (Biondi et al., 2015). Since EOs are considered
eco-friendly tools for pest control, the belief has arisen that they can also be used in combination with
the release of natural enemies, with special reference to parasitoids prmis (Monsreal-Ceballos et al.,

2018). But is it real? The effects of EOs toward parasitoids are summarized in Table 2.

3.1.Lethal effects of EOs toward parasitoids
Research concerning the biological effects of EOs towards parasitoids showed contrasting results
depending on i) the parasitoid species; ii) the EO used; iii) the host/parasitoid instars or iv) the
administration technique.

Several EOs or EO constituents demonstrated a promising selectivity against key crop pests
(Chiasson et al., 2004; Stimer Ercan et al., 2013; Yotavong et al., 2015). Rosmarinus officinalis EO
and its major compounds had good larvicidal effect against Drosophila suzukii (Matsumura) (Diptera:
Drosophilidae), whereas they did not cause adult parasitoid mortality in topical application and
ingestion bioassays (Trombin De Souza et al., 2021). The EOs from Hyptis marrubioides Epling and
O. basilicum were classified as harmless according to the IOBC (International Organization for

Biological Control) criteria against the parasitoid 7richogramma pretiosum Riley (Hymenoptera:
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Trichogrammatidae), so they potentially could be used in S. frugiperda integrated pest management
programs (Bibiano et al., 2022). Similarly, oregano, peppermint, and thyme EOs were more toxic to
different instars of Diaphania hyalinata (L.) (Lepidoptera: Pyralidae) than toward its adult parasitoid,
Trichospilus pupivorus Ferriere (Hymenoptera: Eulophidae), in residual contact toxicity trials,
whereas the toxicity of ginger EO was comparable for both the pest and the natural enemy (Moreira
Da Silva et al., 2020). Therefore, EOs are not always harmless for parasitoids, as reported by Zapata
et al. (2016), who evaluated the toxicity of Laurelia sempervirens (Ruiz & Pav.) Tul.
(Atherospermataceae) EO against adult Trialeurodes vaporariorum (Westwood) (Hemiptera:
Aleyrodidae) (LCso = 3.77 pL L air) and the parasitoid Encarsia formosa (Gahan) (Hymenoptera:
Aphelinidae) (LCso = 0.86 pL L™! air).

Despite the non-target toxicity highlighted for some EOs, these botanicals are usually less
toxic than commercial synthetic insecticides, as reported by Yi et al. (2016), who demonstrated that
a mixture of 21 Lavandula angustifolia Mill. EO constituents was ~1,430 times less toxic than
dichlorvos against Cofesia glomerata (L.) (Hymenoptera: Braconidae), a parasitoid of Plutella
xylostella (L.) (Lepidoptera: Plutellidae), in spray application. However, C. glomerata remained more
susceptible than its host to several EO fumigations (Yi et al., 2007).

Plant species and EO chemical characteristics deeply influence the toxicity toward parasitoids;
Habrobracon hebetor Say (Hymenoptera: Braconidae), natural enemy of several Lepidoptera, was
susceptible to Foeniculum vulgare Mill. (LCs50=0.48 uL L) and O. basilicum EOs (LCs50=0.84 L -
1, while Achillea millefolium L. (LCso=1.68 uL L") and Zataria multiflora Boiss EOs (LCso=1.04
uL L) were less toxic (Ahmadpour et al., 2021). Furthermore, LCso values for R. officinalis and
Salvia officinalis L. EOs against this braconid species are 4.15 and 18.36 uLL"! of air, respectively.
In addition, EOs extracted from five species of the genus Piper were tested against the pupal
parasitoid Trichopria anastrephae Lima (Hymenoptera: Diapriidae), natural enemy of D. suzukii, but
these EOs caused low parasitoid mortality (< 20%) both through ingestion and topical application

(Trombin de Souza et al., 2020).
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Different administration techniques can determine various degrees of selectivity. As an
example, the application of different EOs as fumigants towards adults of the egg parasitoid 77issolcus
basalis Wollaston (Hymenoptera: Scelionidae) highlighted a good selectivity of the tested EOs, while
the same EOs were not selective in residual contact toxicity trials (Werdin Gonzalez et al., 2013).
Three EOs [Lippia origanoides Kunth, Cymbopogon winterianus Jowitt ex Bor, Cymbopogon
citratus (DC.) Stapf] showed selectivity for the parasitoid 7. pretiosum in residual contact toxicity
experiments, resulting in a LCso of 0.43%, 0.15% and 0.12% for L. origanoides, C. citratus and C.
winterianus, respectively (Sombra et al., 2022). Time interval between EO treatment and parasitoid
release can be a key factor for EO selectivity. The parasitoid wasps Dinarmus basalis (Rond.)
(Hymenoptera: Pteromalidae) and Triaspis [luteipes (Thomson) (Hymenoptera: Braconidae),
developing on bruchid host larvae, were tested for their susceptibility to Artemisia herba-alba Turra
and 4. campestris L. EOs. Dinarmus basalis was susceptible in fumigation trials while parasitoids
released 6 days after treatment had reduced negative effects, as well as 7. luteipes, whose emergence
was just slightly reduced (Titouhi et al., 2017). Similarly, Ketoh et al. (2005, 2002) demonstrated that
EO vapors and residues (6 days from treatment) can be highly toxic toward adult D. basalis, and all
developmental stages of this parasitoids were very susceptible to Hyptis spicigera Lam and H.
suaveolens (L.) Kuntze EOs (Sanon et al., 2011).

Parasitoid instars can be differentially affected by EO administration according to their
biology (i.e., larval-pupal/egg and endo/ecto-parasitoids) because they can be protected by the
parasitized host. Adults of Pachycrepoideus vindemmiae (Rondani) (Hymenoptera: Pteromalidae) a
pupal parasitoid of D. suzukii, were susceptible to EO vapors extracted from Mentha arvensis L.,
whereas the immature instars were unaffected by this EO, probably because they are developing
within the host puparia which can protect the parasitoid from toxicants (Gowton et al., 2020).

Similar to pupal cases, the egg chorion may protect parasitoids from the negative impacts of
EOs targeting their host pests. Indeed, P. aduncum EO applied against Euschistus heros (F.)

(Hemiptera: Pentatomidae), a key soybean pest, did not affect the emergence of either Telenomus
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podisi (Ashmead) (Hymenoptera: Platygastridae) and Trissolcus urichi (Crawford) (Hymenoptera:
Platygastridae) egg parasitoids (Turchen et al., 2016). Conversely, the preimaginal stages of
Trichogramma embryophagum (Hartig) (Hymenoptera: Trichogrammatidae) and 7richogramma
evanescens Westwood (Hymenoptera: Trichogrammatidae), developing inside Ephestia kuehniella
(Zeller) (Lepidoptera: Pyralidae) eggs, suffered reduced emergence rate due to the application of
Ferula assafoetida L. EO (Poorjavad et al., 2014). Several EO compounds can penetrate the egg
chorion acting as insecticides against immature stages of developing natural enemies, such as
Trichogramma galloi Zucchi (Hymenoptera: Trichogrammatidae), an egg parasitoid of Diatraea
saccharalis Fabricius (Lepidoptera: Crambidae) (Parreira et al., 2018). Indeed, Allium sativum L.,
Carapa guianensis Aublet, C. sinensis (L.) Osbeck, Origanum vulgare L., Syzygium aromaticum (L.)
Merr. & L.M.Perry EOs reduced the parasitoid Fi emergence rates by more than 30%, while Zingiber
officinale Roscoe EO can drastically reduce the emergence rate (i.e., around 90%) when the
parasitized eggs were treated during parasitoid pupal stage (Parreira et al., 2018). On the other hand,
the trichogrammatid parasitoid Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae)
is less susceptible to the previously listed EOs, except for C. guianensis EO (27.3% decrease of
emerged adults) and Z. officinale, which could completely nullify the emergence of adult parasitoids
(Parreira et al., 2019).

Most of the EOs-based insecticides or acaricides are formulated by using single compounds
or oils, even though mixtures of different EOs, or compounds, can improve their efficacy against
target pests while conserving natural enemies. A combination of Cedrus atlantica (Endl.) Manetti ex
Carriére, Corymbia citriodora (Hook.) K.D.Hill & L.A.S and C. citratus (Stapf.) EOs was effective
against Ceratitis capitata Wiedemann (Diptera: Tephritidae) larvae without causing any deleterious
effects on the the emergence rate of the koinobiont larval-pupal endoparasitoid Psyttalia concolor
(Szépligeti) (Hymenoptera: Braconidae) (Alves et al., 2020). The use of the aforementioned EOs at
1.8% of application rates highlighted that, between the adult females of both species, P. concolor was

more tolerant than the medfly, as the LDso value estimated for P. concolor was 6.5-fold higher than
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C. capitata one (Alves et al., 2020). Similar results were reported by Benelli et al. (2013) who found
that M. alternifolia EO was more toxic to C. capitata than to its parasitoid P. concolor in contact,

fumigation, and ingestion toxicity trials.

3.2. Sublethal effects of EOs toward parasitoids

Compared to predator species, more studies present results about sublethal effects of EO on
the life-history traits of parasitoids, mainly focusing on the parasitization ability of the adult females.
Parreira et al. (2019) identified two EOs (Allium sativum and Carapa guianensis) decreasing the
parasitism rate of 7. pretiosum females (33 and 70%, respectively), indicating these EOs as slightly
harmful (class 2) in relation to parasitism according to IOBC toxicity categories. Furthermore,
Leptospermum petersonii F.M. Bailey EO appeared harmless to 7. pretiosum, since both the
oviposition rate and the adult survival were not affected by the EO treatments (Purwatiningsih et al.,
2012). In contrast, the closely-related species 7. galloi reduced its parasitization ability (between 30
to 79%) in F; and F» parasitoid generations after treatments with 4. sativum, C. guianensis, C.
sinensis, Azadirachta indica A. Juss. and O. vulgare EOs (Parreira et al., 2018). Nevertheless, the EO
from Z. officinale completely nullified the parasitism rate of 7. pretiosum on eggs of E. kuehniella,
suggesting a strong repellent activity of this EO toward the parasitoid females (Parreira et al., 2019).

Nevertheless, some EOs have no effect on the parasitism rate of parasitoid species; as an
example, EOs from O. vulgare and Thymus vulgaris L. were selective fumigants, evoking no change
in parasitoid behavior, and one week-old residues were safe also to 7. basalis adults (Werdin
Gonzalez et al., 2013). Similarly, P. concolor treated with a mixture of EOs at 1.8% presented no
deleterious effects on the percentage of parasitized C. capitata larvae, whereas parasitism rate
decreased during the 2 first days after treatment at the highest concentration tested (4.8%) (Alves et
al., 2020). Furthermore, the differences of acute toxicity among EOs do not always correspond to

their side-effects (Sombra et al., 2022); A. millefolium and Z. multiflora EOs had lower LCso values
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on parasitoid wasps H. hebetor than F. vulgare and O. basilicum EQOs, although LC3¢ values affected
the fecundity and fertility of treated wasps similarly for all the tested EOs (Ahmadpour et al., 2021).

The reproductive ability of E. formosa was significantly affected by the administration of low
doses (i.e., lower than LCso for target pests) of L. sempervirens EO, but this treatment also decreased
the host parasitism ability and the total number of offspring produced by each parasitoid female
(Zapata et al., 2016). Zingiber officinale EO was able to reduce the T. galloi offspring production of
Fi and F; generations between 30 and 99%, showing a transgenerational effect, while this EO had
little influence on the female parasitism rate (Parreira et al., 2018). Nevertheless, the sex ratios of the
two T. galloi generations were neither affected in 7. galloi nor in T. pretiosum (Parreira et al., 2019,
2018). Under laboratory conditions, Eugenia uniflora L. EO was effective against different life stages
of Thaumastocoris peregrinus (Carpintero & Dellapé) (Hemiptera: Thaumastocoridae), but this EO
was harmful towards the egg parasitoid Cleruchoides noackae Lin & Huber (Hymenoptera,
Mymaridae), having also transgenerational effects (Stenger et al., 2021). The fertility life table
parameters of Trichogramma embryophagum (Hartig) (Hymenoptera: Tricogrammatidae) and
Trichogramma evanescens Westwood (Hymenoptera: Tricogrammatidae) were assessed after
treatments with F. assafoetida EO, and female longevity, total number of offspring, number of female
offspring per female (sex ratio), progeny wing abnormality in the progeny and developmental time
were negatively altered for both species when parasitoid females were treated with very low EO
concentrations (i.e., LCo1) (Poorjavad et al., 2014). Furthermore, the same research also investigated
the reproductive behavior of Trichogramma spp., which can influence the parasitoid performances.
Poorjavad et al. (2014) noted that mating success and occurrence were affected by EO, as well as the
duration of copula were reduced; on the other hand, the time spent by males in mating searching
behavior increased, highlighting some impairments caused by EO administration.

Apart from reproductive impairments, other side-effects can involve the developmental time
of both treated parasitoid and their offspring. Dinarmus basalis females almost halved the parasitism

rate on bruchid larvae treated with Hyptis spp. EOs, and the eclosed larvae presented a significantly
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extended pre-imaginal developmental time (Sanon et al., 2011). Some EOs can thus influence
population dynamic parameters such as: population growth rate (r or A), net reproductive rate (Ro)
and gross reproductive rate (GRR) of parasitoid species (Ahmadpour et al., 2021; Razmjou et al.,
2018). As an example, Asadi et al. (2018) reported that the EOs of R. officinalis and S. officinalis can
negatively affect several parameters of the parasitoid H. hebetor, including adult longevity, fecundity
and fertility, population growth rate, gross and net reproductive rates, mean generation and doubling
time, survival and death rate and cohort survival rate. Besides, also adult longevity can be reduced;
fumigation with clove EO and geranial (0.5uL 50mL" of air) caused above 90% reduction in egg
hatchability and life span of H. hebetor adults (Moawad et al., 2015). Similarly, the longevity of 7.
pretiosum females (i.e., both directly treated with EO or from F; generation) was almost halved in
presence of A. sativum or M. piperita EOs (Parreira et al., 2019). Yotavong et al. (2015) noted that
thymol could influence some biological parameters of the progeny of the parasitoid C. plutellae, at
sublethal doses, like the emergence rate and the larval-pupal developmental time. However, there was
no impact on detoxification enzymes (cytochrome P450 and carboxylesterase activities) (Y otavong
et al., 2015).

Lastly, sublethal concentrations of EOs (LC30) can cause consequences in the digestive system
of the parasitoid H. hebetor, decreasing the enzymatic activity, but not the protein content, in this

parasitoid wasp (Asadi et al., 2021).

4. Insect pollinators

EOs are very attractive products for pest control because they have low environmental
persistence and mammalian toxicity (da Silva Sa et al., 2022; Campolo et al., 2018; Isman, 2017);
however, research on natural products with insecticidal activity needs to also evaluate the bioactivity
towards key groups of non-target insects, such as pollinators, which have been little explored
(Turchen et al., 2020). During the flowering growth stage, many crop plants are important nectar and

pollen sources for pollinator insects, which frequently visit the crops to collect pollen, nectar and
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resins. This aspect highlights the need to assess the selectivity of EOs to these insect species because
to date few studies focused on the bioactivity of these botanicals toward pollinators.

Despite the high insecticidal activity of C. citriodora EO against Ascia monuste (Godart)
(Lepidoptera: Pieridae) (LDso = 20.61 pg/mg) and its selectivity toward the predatory ant Solenopsis
saevissima (Smith) (Hymenoptera: Formicidae), this EO caused high mortality among Tetragonisca
angustula (Latreille) (Hymenoptera: Meliponini) adult forager bees, an important generalist
pollinator species in tropical regions (Ribeiro et al., 2018). Similarly, Artemisia annua L. EO is a
promising bioinsecticide against D. hyalinata, causing a low mortality against the predator ant S.
saevissima (42 %), while significant toxicity was demonstrated toward the pollinator bee 7. angustula
(74%) (Seixas et al., 2018b). Therefore, the use of these EOs when the plants are in the flowering
stage and constantly visited by bees, should be avoided. The absence of physiological selectivity of
EOs, similarly to many synthetic commercial insecticides, does not preclude their use, although it
should be considered under open field conditions. Nevertheless, some botanical extracts
demonstrated good selectivity against stingless bees. In contrast with the previous results, when adult
stingless bees, Nannotrigona aff. testaceicornis (Lepeletier) (Hymenoptera: Meliponini), were
exposed to synthetic insecticides, L. sidoides EO or its major compounds in contact toxicity trials
designed to evaluate the lethal and sublethal (i.e., locomotion and flight orientation) effects, the EO
and its constituents demonstrated the lowest acute toxicity to forager worker bees, producing no
effects on their locomotion and orientation ability (Matos et al., 2021). Furthermore, the authors
reported that N. testaceicornis avoided L. sidoides EO and its major constituent thymol in arena trials,
suggesting that this non-target species was repelled by the EO presence (Matos et al., 2021).

Consistent with the toxic activity reported for 7. angustula, EOs can also impact the survival
and behavior of the honeybee Apis mellifera L. (Hymenoptera: Apidae). Honeybees are beneficial
and economically important insects, having a major impact on crop production because they represent
80% of insect pollinators, apart from the market for honey and beeswax. 4. mellifera is a recognized

bioindicator species since it is very sensitive and greatly affected by environmental changes and
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pollutants, as well as by pesticide presence (Burger, 2006). Melo et al. (2018) reported that L. gracilis
EOs and their major compounds (i.e., thymol and carvacrol) were effective against the target species
D. hyalinata; however, these EOs were not selective to 4. mellifera L. nor to Polybia micans Ducke
(Hymenoptera: Vespidae), because in topical toxicity trials these botanicals (i.e., applied at the LDgo
for D. hyalinata) caused significant mortality (> 80%) for both non-target species (Melo et al., 2018).

In bees, susceptibility towards an EO appears to be influenced by the exposed species rather
than the EO. Apis mellifera foragers exposed to ginger, mint, oregano, and thyme EOs were less
tolerant than Trigona hyalinata (Lepeletier) (Hymenoptera: Apidae) foragers (da Silva et al., 2020).
Conversely, oregano and thyme EOs applied at sublethal doses had negative impact on the distance
traveled, the movement speed and the number of stops by the stingless bee whereas, on A. mellifera
foragers only oregano EO showed similar effects (da Silva et al., 2020). The walking activity of 4.
mellifera was negatively affected by eucalyptus EO, as well as neem seed kernel oil, which also
showed a repellent effect towards honeybee foragers (Xavier et al., 2015).

On the other hand, some EOs (eucalyptus, camphor) or single compounds (i.e., thymol and
menthol) are commonly used in commercial acaricide formulations (i.e., ApiLife Var® and
Apiguard®) for Varroa destructor (Anderson & Trueman) (Mesostigmata: Varroidae) control, despite
some moderate sub-lethal effects towards honeybees may raise some questions about their presumed
complete harmlessness. Gashout et al., (2015) reported that among different EO compounds tested
against the varroa mite, thymol and menthol had the lowest and the highest LCso against both adult
bees and larvae, respectively (adults: 210.3 and 523.5 pg/bee; larvae: 150.7 and 382.8 pg /larva).
Furthermore, low concentration of EOs or single compounds (i.e., thymol and carvacrol) may also
impact on the physiology of honeybees, mainly at nervous system level by causing an increase of
acetylcholinesterase and glutathione S-transferase activities (Clavan et al., 2020), as well as EO
compounds can be accumulate in their bodies by both adult bees and larvae (Sammataro et al., 2009).

In the last decade, nanotechnologies strongly influenced research on the formulation of novel
insecticides, both synthetic and natural (de Oliveira et al., 2014; Vurro et al., 2019). Acute toxicity of
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peppermint EO and its alginate-based nanoemulsion were recently evaluated against worker bees in
oral and contact toxicity trials by Youssef and Abdelmegeed (2021); nanoemulsion was more toxic
on A. mellifera than their crude materials both in contact (LCso = 5471.13 and 11,895.65 ppm,
respectively) and oral toxicity trials (LCso = 2629.85 and 4246.84 ppm, respectively). Furthermore,
both nanoemulsions and crude EO have biochemical and physiological effects on honeybee workers,

altering amylase, total protein, and lipid contents (Y oussef and Abdelmegeed, 2021).

5. Soil invertebrates
Among soil invertebrates, most of the studies aimed at the evaluation of the side-effects of EOs used
earthworms as the bioassay species. Among this group, ecotoxicology tests mainly involved the non-
target species Eisenia fetida (Savigny) (Haplotaxida: Lumbricidae)s (e.g., Kang et al., 2022; Nenaah
et al., 2022; Pavela et al., 2019; Sanchez-Gomez et al., 2022; da Silva Sa et al., 2022). The acute
toxicity of EOs against target crop pests and the non-target earthworm E. fetida are presented in Table
3.

Commonly the EOs have little to no effects against this non-target species; as an example,
Stevia rebaudiana (Bertoni) EO was effective against the aphid Metopolophium dirhodum (Walker)
(Hemiptera: Aphididae), while it had no effect towards non-target E. fetida adults (Benelli et al.,
2020b). Similarly, Pavela et al. (2020b) demonstrated that the EOs extracted from Oliveria
decumbens Vent., Thymus daenensis Celak Satureja sahendica Bornm., S. khuzistanica Jamzad and
S. rechingeri Jamzad, effective insecticides against both moth and larvae of Spodoptera littoralis
(Boisduval) (Lepidoptera: Noctuidae), were slightly toxic towards E. fetida when applied at 200 mg
kg! of soil, while the positive control a-cypermethrin induced complete mortality at a very low
concentration (0.1 mg x kg! of soil) (Pavela et al., 2020b).

The commercial insecticide a-cypermethrin had a stronger impact on the survival of
earthworms compared to several EOs, which appears to selectively favor E. fetida (Benelli et al.,

2020a, 2019a, 2019b, 2019d, 2018b; Pavela et al., 2020a; Zabka et al., 2021). Similarly, two
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organophosphate insecticides (i.e., monocrotophos and temephos) had a stronger impact on the
survival, developmental rate, weight, and enzymatic activity of two earthworms E. fetida and
Eudrilus eugeniae (Kinberg) (Haplotaxida: Eudrilidae) than the EO extracted from Piper betle L.;
the LCso observed for the two organophosphates were at least 775-fold lower than that estimated for
the EO (Vasantha-Srinivasan et al., 2018, 2016). Furthermore, monocrotophos and temephos added
in the soil repelled both earthworm species, whereas P. betle EO was attractive (Vasantha-Srinivasan
et al., 2018). Similar results were also described by Murfadunnisa et al. (2019) who noted that
Sphaeranthus amaranthoides Burm. f. (Asteraceae) EO caused no toxicity against E. euginae at the
maximum dose of 1000 and 1500 ppm, while the synthetic chemical monocrotophos heavily affected
the earthworm survival.

The formulation of the EO into nano-pesticides might influence target, as well as non-target
bioactivity; the Deverra tortuosa (Desf.) DC. EO-based nanoemulsion exhibited an increased contact
bioactivity (LCso=10.3 pg cm™) compared to crude EO (LCso=23.1 ug cm™), but both the tested
products were safe toward the non-target earthworm E. fetida (Almadiy et al., 2022).

Aside from earthworms, the side-effects of eighteen EOs have been tested on adults of the soil
collembolan Proisotoma minuta Tullberg (Collembola: Isotomidae), highlighting adverse effects in
fumigation bioassays (Lee et al., 2002). Organic certified EO-based pesticides could also indirectly
affect the presence of collembolan species, Protaphorura fimata Gisin (Poduromorpha:
Onychiuridae), by repelling them from treated soils (Joseph, 2018). Furthermore, the EO from
Eucalyptus globulus Labill. reduced the reproduction of the collembolan Folsomia candida Willem
(Collembola: Isotomidae) (ECso = 35.0 mg/kg), and the attractiveness of food toward both F. candida

and the isopod Porcellio dilatatus Brandt (Isopoda: Oniscidae) (Martins et al., 2013).

6. Challenges for future research
Due to regulatory restrictions on conventional pesticides and consumer awareness of their deleterious

effects on health and the environment, the demand for biopesticides is expected to constantly increase
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in the next years; therefore, the ecotoxicological evaluation of this kind of pesticides is fundamental
to understand their environmental impact. Nowadays, few studies, compared to the huge amount of
research on EO bioactivity against crop pests, focused on the side effects toward natural enemies.
Knowledge about non-target effects is needed to boost the large-scale industrial production of EO-
based pesticides but also due to regulatory strictness. However, it is quite surprising that a very limited
number of papers tested the side effects of commercial biopesticides containing EO as active
ingredients, that have been on the market for at least a decade. Indeed, these commercial products
might be used by farmers for integrated pest management programs involving biopesticides and BCA;
nevertheless, the compatibility and economic sustainability of these two techniques should be
addressed before suggesting their coupled application.

Generally, despite the usual lower efficacy of botanicals compared to conventional pesticides, the use
of botanicals may be a valid alternative in terms of crop yields. Indeed, crops can tolerate a certain
amount of pest damage and the selectivity of plant-based pesticide can ensure pest reduction through
conservation of natural enemies and non-target species (Tembo et al., 2018). The selectivity of
botanicals, including EOs-based pesticides, can be obtained following different paths such as: (i)
timing of pest treatment; (ii) timing of natural enemies’ release; (iii) correct choice of pesticide
formulation according to the target pest and beneficials; iv) use of different types of formulations
(e.g., nano vs. traditional). A holistic view of pest control that considers plant protection,
environment, human health, and economic aspects will be able to facilitate the integration of
biopesticides into agro-ecologically sustainable crop production systems.

From a commercial and marketing standpoint, only those effective EOs coming from plants
which are cultivated on a large scale and that are obtainable in middle-high yield (> 1% on a dry
weight basis; the price of an EO is inversely linked to the yield), thus offering a cost-effective raw
material (often derived from cultivation waste), should be used for agrochemical industries. To
improve the latter parameter, new effective extraction techniques (e.g., MAE, enzyme-assisted

distillation, etc.) capable of boosting the release of EO constituents from the plant secretory structures
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should be more explored in the future. From a registration perspective, the EOs which are generally
recognized as safe (GRAS) from the principal authorities (i.e., FDA, EFSA, EPA, etc.) or are derived
from plants with documented use as a food (so that they do not pose particular risk from their usage)
should be preferred to the ones coming from plants subjected to some restrictions (e.g., toxic plants).
Finally, more research is needed on the development and evaluation of the ecotoxicological effects
of nanocarriers (e.g., micro- and nano-emulsions, nanoparticles made with plant polymers, liposomes,
protein baits) able to incorporate these EOs and spread them on crops in an eco-sustainable way
(Pavoni et al., 2019; Sanchéz-Gomez et al., 2022).

To date very few studies evaluated the impact of EO and their formulations toward pollinators;
this aspect is crucial to understand the ecological impact of biopesticides in the fields, but it seems
quite neglected by scientists. Pollination and pollinator losses are key topics in modern agriculture,
as well as from an ecological point of view. Future studies should focus on the possible side effects
of EOs toward these species to evaluate their eco-safety potential.

The modest number of studies exploring non-targeted effects of EO-based pesticides also
share shortcomings common in studies with conventional insecticides, despite recent shift in that
regard relative to the latter. Two important shortcomings in such studies merit particular attention: (i)
the common assumption of a monophasic response with an increase in EO dose or concentration, and
(i1) the study focus on isolated species. The first shortcoming neglects the possibility of biphasic
concentration-response taking place, consistent with the hormesis phenomenon, in which exposure
levels below the no-observed-adverse-effect-level (sub-NOEL) lead to a stimulatory response
potential benefit to the exposed organism (e.g., non-targeted species) (Agathokleus and Calabrese,
2020; Belz and Duke, 2022). The potential importance of this phenomenon for pest management and
environmental impact has been increasingly recognized for a broad range of anthropogenic stressors,
including insecticides (Guedes and Cutler, 2014, Guedes et al., 2016, 2022), but largely neglected for

plant-based compounds, such as EO-based pesticides (Haddi et al., 2020).
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The second shortcoming on the current studies is the focus on isolated species, which although
understandable based on a cost-effective experimental standpoint, neglect the fact that isolated
species do not exist in natural environments and species interactions are prevalent. Thus, more
realistic studies exploring the invertebrate communities are necessary not only to ascertain the field
efficacy of EO-based formulations, but particularly to assess their potential non-target impact
cascading from directly exposed targeted species to potentially directly and indirectly affected non-
target species (Cutler et al. 2022; Guedes et al. 2016, 2022b). Conceptual frameworks such as the
stress-response pathway are useful in that regard, although still underexplored even for the assessment
of environmental impacts of conventional pesticides (Guedes et al., 2017). Thus, the rethinking and
expanding of the scope of studies with EO-based insecticidal and acaricidal formulations is a need
worth pursuing.

Therefore, national and international regulators are now paying more attention about the
ecotoxicological impact of pesticides, including biopesticides based on plant-borne a.i., to ensure
their environmental safety. In the last decades, the authorization process of botanicals has been greatly
facilitated in the USA, by instituting exemptions from the normal regulatory approval process
required for synthetic pesticides to certain EOs and their major constituents (Isman 2020). A similar
approach has been used also by EU legislators, although with many more limitations and far less
success (Vekemans & Marchand, 2020). In this regard, it should be kept in mind that the European
legislation concerning plant protection products (PPP) (regulation (EC) N° 1107/2009) is quite
unclear about the definition of PPP admitted in organic agriculture, botanical-based products
included, thus the registration of green/biopesticides often faces insurmountable obstacles throughout
the whole authorization process as a consequence (Vekemans & Marchand, 2020). In this scenario,
research on non-target impact of botanical-based pesticides may improve the knowledge and the
awareness about their ecotoxicological safety both among companies and industries, as well as within

the regulator agencies, promoting and supporting further registration and commercialization.
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Table 1. Lethal and sub-lethal effects of essential oils (EO) toward non-target predator species.

Macrosiphoniella

Plant family  Plant EO Non-target species Target pest Exposure Non-target species Endpoint Lethal Sub-lethal References
route* life stage # effects § effects §
Amaryllidaceae  Allium sativum Nesidiocoris tenuis Tuta absoluta R A Survival; Fertility - + Ricupero et al. 2022
Apiaceae Coriandrum sativum Cy T’?rh’”?‘s Nilaparvata lugens R N, A Attractivity; Orientation + Liuetal., 2019
lividipennis
Ferula gummosa Orius albidipennis Bemisia tabaci F A LCso=3.467 uL L"! - Zandi-Sohani et al., 2018
Rhopalosiphum
padi, Sitobion
Heracleum persicum Hippodamia variegata gr;’:ni;’uifhlzap his 1 E N Mortality; Life history traits - + Shaltoki et al., 2022
Metopolophium
dirhodum
Apocynaceae Nerium indicum C"y .rt(.)rhlm.” Nilaparvata lugens R N A4 Attractivity; Orientation + Liu et al., 2019
lividipennis
Rhopalosiphum
padi, Sitobion
Asteraceae Achillea millefolium  Hippodamia variegata Z;Z”m“l.jufrfh’mph” I EN Mortality; Life history traits - + Shaltoki et al., 2022
Metopolophium
dirhodum
Artemisia sieberi Orius albidipennis Bemisia tabaci F A LCso=0.621 pL L*! + Zandi-Sohani et al., 2018
Vanillosmopsis Euborellia annulipes Sp oa.'op tera T N LDso = 160.2 mg mL"! + Alves et al., 2022
arborea frugiperda
Boraginaceae Varroma' Ceraeochrysa cubana My Zus persicac, T R Mortality - Andrade et al., 2021
curassavica urticae
Brassicaceae Brassica nigra Podisus maculiventris ~ Spodoptera exigua T, N A4 Mortality - Tavares et al., 2019
Euphorbiaceae  Croton grewioides Neoseiulus californicus 5:;2;? chus R I A LCso=3.26 uL mL™! - de Santana et al., 2021
Crotonl e Neoseiulus californicus Tet{’any chus R I A LCso=1.14 uL mL™! - de Santana et al., 2021
rhamnifolioides urticae
Geraniaceae 1 clargonium Orius albidipennis Bemisia tabaci F A LCso=0.954 uL L-! + Zandi-Sohani et al., 2018
graveolens
. . S . . Tetranychus . Lo .
Lamiaceae Melissa officinalis Neoseiulus barkeri urticae T E 4 Mortality; Food consumption; Fecundity =+ + Abdel Kader et al., 2015
Typhlodromips swirskii 55;;2’3 chus T E A Mortality; Food consumption; Fecundity — + + Abdel Kader et al., 2015
Neoseiulus californicus 55;;2’3 chus T, F E, N, A4 Mortality - Momen et al., 2014
o Coccinella . . _ o
Mentha longifolia undecimpunctata Aphis punicae R N LCso=8.737 pg mL + Sayed et al., 2022
L Coccinella . . _ a
Mentha piperita undecimpunctata Aphis punicae R N LCso=10.334 ng mL + Sayed et al., 2022
Acyrthosiphon
Mentha pulegium Adalia bipunctata Zz’;r: Aphis F A LCso=0.19 L L' + Kimbaris et al., 2010




Mentha spicata

Mentha x piperita

Ocimum basilicum

Origanum vulgare

Rosmarinus
officinalis

Salvia officinalis
Salvia rosmarinus

Satureja intermedia

Chrysoperla carnea

Coccinella
septempunctata

Hippodamia variegata

Nesidiocoris tenuis

Podisus nigrispinus

Adalia bipunctata

Coccinella
septempunctata

Adalia bipunctata

Coccinella
septempunctata

Chrysoperla externa

Chrysoperla carnea

Coccinella
undecimpunctata
Coccinella
undecimpunctata
Coccinella
septempunctata

sanborni, Myzus
persicae
Agonoscena
pistaciae
Acyrthosiphon
pisum, Aphis
fabae,
Macrosiphoniella
sanborni, Myzus
persicae
Rhopalosiphum
padi, Sitobion
avenae, Schizaphis
graminum,
Metopolophium
dirhodum

Aphis gossypii, A.
spiraecola, T. T
urticae

Alabama
argillacea
Acyrthosiphon
pisum, Aphis
fabae,
Macrosiphoniella
sanborni, Myzus
persicae
Acyrthosiphon
pisum, Aphis
fabae,
Macrosiphoniella
sanborni, Myzus
persicae
Acyrthosiphon
pisum, Aphis
fabae,
Macrosiphoniella
sanborni, Myzus
persicae
Acyrthosiphon
pisum, Aphis
fabae,
Macrosiphoniella
sanborni, Myzus
persicae

T F

~

Agonoscena
pistaciae

Aphis punicae R
Aphis punicae R

Aphis nerii R

E N

Mortality; Hatching rate

LCs0=0.35 pL L!

Mortality, life history traits

Mortality

Immunohistochemical effect

LCso=0.62 uL L°!

LCso=0.67 pL L!

LCs0=0.63 pL L!

LCs0=0.58 pL L!

LDso= 26,451 pg g''; Hatching rate;

Fecundity
Mortality, Hatching rate

LCso= 6.237 pg mL"!
LCso= 5.960 pg mL"!

LCso = 913.722 pg mL"!

+ (eggs)
— (larvae)

+

+

Azimi and Ahmadi, 2018

Kimbaris et al., 2010

Shaltoki et al., 2022

Papadimitriou et al., 2019

Atico Braga et al., 2020

Kimbaris et al., 2010

Kimbaris et al., 2010

Kimbaris et al., 2010

Kimbaris et al., 2010

Castilhos et al., 2018
Azimi and Ahmadi, 2018
Sayed et al., 2022

Sayed et al., 2022

Ebadollahi and Setzer,
2020




LDso= 64.493 pg g''; Hatching rate;

Thymus vulgaris Chrysoperla externa T N Fecundity Castilhos et al., 2018
- 4 . 5 [P
Lauraceae Laurus nobilis Phytoseiulus persimilis  T. urticae T A LCso Z'QOX_IO ppm; Ov1pos1t}0n, Food Amer et al., 2016
consumption; Offspring sex-ratio
= 4 . : e,
Laurus nobilis Typhlodromus negevi T. urticae T A LCso l.SZXIIO ppim; OV"’OS“?OH’ Food Amer et al., 2016
consumption; Offspring sex-ratio
Litsea cubeba Pardosa F A Orientation Farid et al., 2019
pseudoannulata
Myrtaceae Melal?ucq Podisus nigrispinus Alaéama I N Immunohistochemical effect Atico Braga et al., 2020
alternifolia argillacea
Piperaceae Piper divaricatum Neoseiulus californicus ﬁngey chus R, A LCso=1.79 uL mL™! de Santana et al., 2021
Piperaceae Piper marginatum Neoseiulus californicus ﬁttgzgzchus F A Mortality Ribeiro et al., 2016
Piper nigrum Pardosa F A Orientation Farid et al., 2019
pseudoannulata
Cymbopogon . T Mortality; Respiratory activity; .
Poacee citraius Podisus nigrispinus T N, A Locomotor activity Briigger et al., 2019
Rutaceae Amyris balsamifera  Chrysoperla externa T LDs0o>142,657 pug g™! Castilhos et al., 2018
Citrus aurantifolia Neoseiulus californicus ifttz;‘;ney chus R A LCso=0.76 uL mL™! de Santana et al., 2021
Citrus limon Neoseiulus californicus 5:3;‘;”! chus R, A LCso=2.26 uL mL™! de Santana et al., 2021
Acyrthosiphon
pisum, Aphis
Citrus sinensis Adalia bipunctata ]Xj[bae, . . F A LCso=1.88 uL L! Kimbaris et al., 2010
acrosiphoniella
sanborni, Myzus
persicae
Acyrthosiphon
pisum, Aphis
Coccinella Jabae, F A LCso=2.09 uL L' Kimbaris et al., 2010
septempunctata Macrosiphoniella
sanborni, Myzus
persicae
Cryptolaemus Dactylopius R AN Mortality El Aalaoui et al., 2019
montrouzieri opuntiae
Neoseiulus californicus ;‘fg;iney chus R, A LCso = 3.80 uL mL™ de Santana et al., 2021
Nesidiocoris tenuis Tuta absoluta R A :;Iizli\t;?l; Locomotor activity; Feeding Soares et al., 2019
g‘}:}tgg.”smensts i Typhlodromus ornatus ~ Aceria guerreronis R A Mortality; Population growth Brito et al., 2021
Citrus spp. Ceraeochrysa caligata ?;[s:]%’;y chellus T N Feeding activity Farias et al., 2020
Citrus spp. Nesidiocoris tenuis R A Mortality; Fertility Campolo et al., 2020
Sapotaceae Manilkara zapota Cy .rtqrhzm'ts Nilaparvata lugens R N A4 Attractivity; Orientation Liu et al., 2019
lividipennis
Siparunaceae Siparuna guianensis  Coleomegilla maculata M. persicae R N, A Survival; Feeding activity Toledo et al., 2019
Eriopis connexa M. persicae R N A Survival; Feeding activity Toledo et al., 2019
Verbenaceae Lippia gracilis Amblyseius largoensis  Raoiella indica T A Mortality dos Santos et al., 2019




L . . Spodoptera 1
; = +

Lippia microphylla  Euborellia annulipes frugiperda T N LDso = 134.67 mg mL Alves et al., 2022
Lippia sidoides Neoseiulus californicus 55;;2’2/ chus R I A LCs0=0.78 uL mL"! - de Santana et al., 2021

T o Spodoptera LDso=28.43mg g'; LTso= 119 h; .
Lippia sidoides Podisus nigrispinus frugiperda T N Locomotory activity: Repellence + + Lima et al., 2020

Zingiberaceae  Alpinia officinarum l%; ZZ::ZZ’:: Nilaparvata lugens R N A Attractivity; Orientation + Liu et al., 2019

Curcuma longa Podisus maculiventris ~ Spodoptera exigua T, N, A Mortality + Tavares et al., 2019

* R = Residual; F'= Fumigation; 7' = Topical; / = Ingestion.
# A = Adults; N = Nymphs; E = Eggs
§ + = significant effects; - = negligible effects



Table 2. Lethal and sub-lethal effects of essential oils (EO) toward non-target parasitoid species.

Plant family  Plant EO Non-target species  Target pest Exposure Non-target species Endpoint Lethal Sub-lethal References
route * life stage # effects § effects §
Amaryllidaceae Allium sativum Trichogramma galloi C E Life history traits; transgenerational effect + Parreira et al., 2018
Trichogramma pretiosum R E A Life history traits; transgenerational effect + Parreira et al., 2019
: — = 2.
Anacardiaceae SChWS molle var. Trissolcus basalis Nezara viridula  F, T A LC.SU 75'69 ugmL~/0.56 g om™ + - Werdin Gonzalez et al., 2013
areira Oviposition
Apiaceae Carum carvi Habrobracon hebetor F A LCso= 0.340 pL L'; Life history traits + + Razmjou et al., 2018
Cm.‘tandrum Cotesia glomerata Plutella F A LDso = 5.52 mg/filter paper - Yietal., 2007
sativum xylostella
. Trichogramma
Ferula assafoetida embryophagum Ephestia F 4 LCso= 1758 ppm; Life history traits; B . Pooriavad ct al.. 2014
Trichogramma kuehniella Mating behavior J ”
evanescens
Foeniculum vulgare  Habrobracon hebetor F A LCso = 0.48 mL L!; Life history traits + + Ahmadpour et al., 2021
Hera.cleum Habrobracon hebetor F A LCso=3.416 pL L; Life history traits - + Razmjou et al., 2018
persicum
Asteraceae Achillea millefolium  Habrobracon hebetor F A LCso = 1.68 mL L'; Life history traits - + Ahmadpour et al., 2021
. . . Plutella .
= +
Artemesia vulgaris  Cotesia glomerata wlostella F A LDso = 2.18 mg/filter paper Yietal., 2007
Callosobruchus
Artemzsza‘ Dinarmus basalis maculatus - F A Adult emergence + Titouhi et al., 2017
campestris Bruchus
rufimanus
Callosobruchus
L . maculatus - . .
Triaspis luteipes Bruchus F A Adult emergence + Titouhi et al., 2017
rufimanus
Callosobruchus
Artemisia herba- Dinarmus basalis maculatus - F A Adult emergence + Titouhi et al., 2017
alba Bruchus
rufimanus
Callosobruchus
S . maculatus - . .
Triaspis luteipes Bruchus F A Adult emergence + Titouhi et al., 2017
rufimanus
Atherospermatace - Laurelia Encarsia formosa Trialeurodes . 4 LCso=0.86 uL L' air; LT; Fecundity + + Zapata et al., 2016
ac sempervirens ’ vaporariorum
Cupressaceae Thuja occidentalis Cotesia glomerata )];?;jtlil;la F A LDso = 2.28 mg/filter paper + Yietal., 2007
Lamiaceae Hyptis L Trzc'hogramma Sp Od.OP tera R A Survival; Fecundity - - Bibiano et al., 2022
marrubioides pretiosum, frugiperda
Hyptis spicigera Dinarmus basalis F L A Mortality; Oviposition + + Sanon et al., 2010
Hyptis suaevolens Dinarmus basalis F LA Mortality; Oviposition + + Sanon et al., 2010
Lavandula ) Plutella -~ .
angustifolia Cotesia glomerata wlostella F A LDso = 8.51 mg/filter paper - Yietal., 2007




Plutella

Cotesia glomerata F A LCso= 0.01 mg cm Yietal, 2016
xylostella
Mentha x piperita Trichospilus pupivorus %ZZ:Z:ZG R A LCso=16.09% Moreira da Silva et al., 2020
Mentha arvensis szchy crep oideus meP hila F P A Mortality; Adult emergence Gowton et al., 2020
vindemmiae suzukii
Mentha piperita Cotesia glomerata Plutella F A LDso = 5.64 mg/filter paper Yi etal., 2007
xylostella : ”
Trichogramma galloi R E Life history traits; transgenerational effect Parreira et al., 2018
Coccinella . . _ o
undecimpunctata Aphis punicae R L LCso=10.334 ng mL Sayed et al., 2022
Trichogramma pretiosum R E 4 Life history traits; transgenerational effect Parreira et al., 2019
, ) Plutella _ .
Mentha pulegium Cotesia glomerata lostella F A LDso = 3.61 mg/filter paper Yi et al., 2007
- _ 1. e
Ocimum basilicum  Dinarmus basalis Callosobruchus F A LCso 9'69 1.20 uL L™ Longevity; Ketoh et al., 2002
maculatus Fecundity
Habrobracon hebetor F A LCso= 0.84 mL L™'; Life history traits Ahmadpour et al., 2021
Trichogramma Spodoptera R A Survival; Fecundity Bibiano et al., 2022
pretiosum, frugiperda
Origanum vulgare  Trichogramma galloi R E Life history traits; transgenerational effect Parreira et al., 2018
Trichogramma pretiosum R E A Life history traits; transgenerational effect Parreira et al., 2019
Trichospilus pupivorus ‘;?lap.hama R A LCs0=2.79% Moreira da Silva et al., 2020
wyalinata
— -1 2.
Trissolcus basalis Nezara viridula F, A LC.5 0 .92'40 g mL™/ 1.54 pg em™; Werdin Gonzaélez et al., 2013
Oviposition
Rosmarinus , Plutella _ .
officinalis Cotesia glomerata lostella F A LDso = 2.44 mg/filter paper Yi et al., 2007
Habrobracon hebetor F A LCso=4.15 uL L!; Life history traits Asadi et al., 2018
. Lo . Plutella _ .
Salvia officinalis Cotesia glomerata lostella F A LDso = 2.30 mg/filter paper Yietal., 2007
Habrobracon hebetor F A LCso= 18.36 uL L!; Life history traits Asadi et al., 2018
Thymus vulgaris Trichogramma galloi R E Life history traits; transgenerational effect Parreira et al., 2018
Trichogramma pretiosum R E, A Life history traits; transgenerational effect Parreira et al., 2019
Trichospilus pupivorus Dlapﬁuma R A LCso=10.68% Moreira da Silva et al., 2020
hyalinata
- -1 2.
Trissolcus basalis Nezara viridula F, A LC§O 59'55 g mL™/ 1.97 pg em™; Werdin Gonzalez et al., 2013
Oviposition
Zataria multiflora Habrobracon hebetor F A LCso= 1.84 mL L™'; Life history traits Ahmadpour et al., 2021
Lauraceae Aniba rosaeodora Cotesia glomerata )};yofz{é‘;la F A LDso = 7.18 mg/filter paper Yietal., 2007
Cinnamomum Cotesia glomerata Plutella F A LDso = 7.12 mg/filter paper Yietal., 2007
camphora xylostella
Meliaceae Carapa guianensis  Trichogramma galloi R Life history traits; transgenerational effect Parreira et al., 2018
Trichogramma pretiosum R E A Life history traits; transgenerational effect Parreira et al., 2019
Myrtaceae Cor?/nzbta Psyttalia concolor Cerfztms R 4 LDso= 0.04 pL/parasitoid; Oviposition; Alves et al., 2020
citriodora capitata Emergence




Eucalyptus

. Habrobracon hebetor F A LCso=1.116 pL L; Life history traits Razmjou et al., 2018
camaldulensis
Eucalyptus globulus ~ Cotesia glomerata Plutella F A LDso = 1.59 mg/filter paper Yietal., 2007
IPius & & xylostella o=k & pap ”
Eugenia uniflora Cleruchoides noackae Thauma;tocorz R A, Survival; transgenerational effect Stenger et al., 2021
s peregrinus
Leptosp ermum Trichogramma pretiosum Plutella R A Mortality; Oviposition deterrence Purwatiningsih et al., 2012
petersonii xylostella
Melahfucz.z Psyttalia concolor Cerqtms R F I A Mortality Benelli et al., 2013
alternifolia capitata
Melaleuca ) Plutella _ .
viridiflora Cotesia glomerata lostella F A LDso = 1.89 mg/filter paper Yi et al., 2007
Myrtus communis Cotesia glomerata Plutella F A LDso = 2.84 mg/filter paper Yi etal., 2007
xylostella ! ”
Syzyg um Habrobracon hebetor Galleria F A Mortality; Life history traits Moawad et al., 2015
aromaticum mellonella
Trichogramma galloi R E Life history traits; transgenerational effect Parreira et al., 2018
Trichogramma pretiosum R E, Life history traits; transgenerational effect Parreira et al., 2019
Pinaceae Cedrus atlantica Psyttalia concolor Cerqtltls R A LDso= 0.04 plL/parasitoid; Oviposition; Alves et al., 2020
capitata Emergence
Piperaceae Piper aduncum Tel'enomus p o'dzs.z Euschistus R A Adult emergence; Oviposition Turchen et al., 2020
Trissolcus urichi heros
Trichopria anastrephae gg;;gf hila LT A Mortality Trombin de Souza et al., 2020
Piper crassinervium  Trichopria anastrephae sDu’:;SIgf hila LT A Mortality Trombin de Souza et al., 2020
Pip er . Trichopria anastrephae Droso.;-) hila LT A Mortality Trombin de Souza et al., 2020
gaudichaudianum suzukii
Piper Trichopria anastrephae DrosoP hila LT A Mortality Trombin de Souza et al., 2020
malacophyllum suzukii
Piper marginatum Trichopria anastrephae g;ouskof hila LT A Mortality Trombin de Souza et al., 2020
Piper nigrum Trichogramma galloi R E Life history traits; transgenerational effect Parreira et al., 2018
Trichogramma pretiosum R E, Life history traits; transgenerational effect Parreira et al., 2019
Poaceac Cymbopogon Psyttalia concolor Cerqtztts R 4 LDso= 0.04 uL/parasitoid; Oviposition; Alves et al., 2020
citratus capitata Emergence
Trichogramma T A LCso= 0.15%; Oviposition Sombra et al., 2022
pretiosum,
. — _ 1. e
Cymbopogon Dinarmus basalis Callosobruchus F 4 LCso 11.70 2.66 uL L''; Longevity; Ketoh et al., 2002
nardus maculatus Fecundity
Cymbopogon Trichogramma T 4 LCso0= 0.12%; Oviposition Sombra et al., 2022
winterianus pretiosum,
) . , - N 1. e
Cymbopogons Dinarmus basalis Callosobruchus F 4 LCso Q.44 0.92 pLL L''; Longevity; Ketoh et al., 2002 Ketoh et
choenanthus maculatus Fecundity al., 2005
Rutaceae Agothosma betulina  Cotesia glomerata Plutella F A LDso = 7.33 mg/filter paper Yi etal., 2007
xylostella
Citrus sinensis Trichogramma galloi Life history traits; transgenerational effect Parreira et al., 2018
Citrus sinensis Trichogramma pretiosum R Life history traits; transgenerational effect Parreira et al., 2019
— 1 2.
Verbenaceae Aloysia citriodora Trissolcus basalis Nezara viridula F, T A LCso=94.23 ugmL"/ 1.53 pg em™; Werdin Gonzalez et al., 2013

Oviposition




Lippia origanoides Trichogramma T A

LCso=0.43%; Oviposition

Sombra et al., 2022

pretiosum,
Zingiberaceae Zingiber officinale  Trichogramma galloi R Life history traits; transgenerational effect Parreira et al., 2018
Trichogramma pretiosum R E A Life history traits; transgenerational effect Parreira et al., 2019
Trichospilus pupivorus Dzapﬁama R LCso=8.16% Moreira da Silva et al., 2020
hyalinata

* R = Residual; F'= Fumigation; 7" = Topical; / = Ingestion.
# A = Adults; P = Pupae; L = Larvae; E = Eggs
§ + = significant effects; - = negligible effects




Table 3. Percent mortality (mean * SE) of Eisenia fetida earthworms after 14 days exposure to different essential oils (EQ) and their toxicity toward target pests.

Target crop pest

E. fetida

Plant EO Botanical family EO dose o 1o References
(EO toxicity) mortality (%)
Callosobruchus maculatus 0.0+0.0
Deverra tortuosa Apiaceae 200 mg kg soil Almadiy et al., 2022
(LCso=23.1 ug cm) (*10 days)
Spodoptera littoralis .
Ocimum sanctum Lamiaceae 500 mg kg* soil 10.0+£5.0 Zabka et al., 2021
(LDso= 39.3 pg larvas)
Spodoptera littoralis
Ledum palustre Ericaceae 250 mg kg soil 5.0+5.0 Benelli et al., 2020a
(LDso = 117.2 pg larva)
Metopolophium dirhodum
Stevia rebaudiana Asteraceae 200 mg kg* soil 0.0£0.0 Benelli et al., 2020b
(LC30=5.1mLL?)
Spodoptera littoralis
Ferula assa-foetida Apiaceae 200 mg kg soil 0.0£0.0
(LDsp = 29.3 pg larva)
Pavela et al., 2020a
Spodoptera littoralis
Ferula gummosa Apiaceae 200 mg kg soil 0.0£0.0
(LDsp = 124.4 pg larva)
Spodoptera littoralis
Oliveria decumbens Apiaceae 200 mg kg* soil 0.0£0.0
(LDsp= 7.4 pg larval)
Spodoptera littoralis
Thymus daenensis Lamiaceae 200 mg kg* soil 7.5+4.3
(LD50 =9.6 ug Iarva‘l)
Spodoptera littoralis
Satureja sahendica Lamiaceae 200 mg kg* soil 0.0£0.0 Pavela et al., 2020b
(LDsp = 23.1 pg larva)
Spodoptera littoralis
Satureja khuzistanica Lamiaceae 200 mg kg soil 0.0+0.0
(LDsp = 8.9 pg larva)
Spodoptera littoralis
Satureja rechingeri Lamiaceae 200 mg kg* soil 0.0£0.0

(LDsp = 9.4 pg larval)




Solidago canadensis

Asteraceae

Spodoptera littoralis
(LD50 =98.9 ug Iarva‘l)

200 mg kg* soil

0.0+0.0

Solidago gigantea

Asteraceae

Spodoptera littoralis
(LDsp = 84.5 pg larva)

200 mg kg soil

0.0+0.0

Benelli et al., 2019a

Ocimum gratissimum

Lamiaceae

Spodoptera littoralis
(LDsp = 30.2 pg larva)

200 mg kg soil

0.0+£0.0

Benelli et al., 2019b

Origanum syriacum

Lamiaceae

Spodoptera littoralis
(LDso = 103.3 pg larva)

Myzus persicae

(LCso =0.005 mL L'l)

200 mg kg* soil

0.0+0.0

Benelli et al., 2019c

Schizogyne sericea

Asteraceae

Spodoptera littoralis
(LDsp > 200 pg larva?)

Myzus persicae

(LCso=2.1mL L?)

100 mg kg soil

0.0+0.0

Benelli et al., 2019d

Cuminum cyminum

Apiaceae

Spodoptera littoralis
(LDso = 100.0 pg larva)

Myzus persicae

(LCso =3.2mL L'l)

100 mg kg* soail

10.0£0.0

Pimpinella anisum

Apiaceae

Spodoptera littoralis
(LDso = 57.3 pg larva)

Myzus persicae

(LCso = 4.3 mL L)

100 mg kg soail

0.0+0.0

Benelli et al., 2018a

Cannabis sativa

Cannabaceae

Spodoptera littoralis
(LDso = 152.3 pg larva)

Myzus persicae

(LCso =3.5mL Ll)

100 mg kg* soil

0.0+£0.0

Benelli et al., 2018b




Foeniculum vulgare

Apiaceae

Myzus persicae

(LCso =0.6 mL L'l)

240.7 mg kg soil

12.5+5.0

Pavela, 2018




