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Abstract
This study explores the potential of implementing the focusing properties of
a virtual ideal Veselago lens within a standard free-space microwave imaging
scenario. To achieve this, the virtual lens is introduced as an inhomogeneous
numerical background for the inverse source problem. This numerical Vesealgo
lens is incorporated into the incident and scattered field decomposition, result-
ing in a new data equation that involves the Veselago lens Green’s function.
In addition to the contrast sources within the object-of-interest, the lens intro-
duces virtual contrast sources along the lens boundaries that depend on the total
tangential magnetic field. It is shown that a surface integral contribution that
takes into account these surface contrast sources must be added to the collected
free-space data before one can invert using the well-conditioned Veselago lens
inversion operator. A preliminary investigation of the accuracy to which this
surface integral contribution must be computed is performed using additive
Gaussian noise. Results show that an error of less than one percent is required
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to achieve imaging performance similar to utilizing an actual Veselago lens.
All results are performed within a 2D simulation environment.

Keywords: double-negative materials, ill-posedness, inverse problem,
inhomogeneous background, microwave imaging, non-iterative, virtual,
Veselago lens

1. Introduction

Microwave imaging (MWI) is a non-destructive technique that uses electromagnetic (EM)
radiation to determine the interior physical characteristics of an object-of-interest (OI). Over
the past few decades, MWI has found numerous applications in various fields, including med-
ical and biomedical imaging [1–3]. In biomedical applications, the interest in MWI as a pos-
sible replacement or supplementation of MRI and x-ray modalities stems from the potential
to create a low-cost modality that uses non-ionizing radiation [1, 4–17]. However, as a wave-
field imaging technique where the wavelength is comparable to the size of the features being
imaged, quantitative MWI algorithms suffer from lower resolution. On the other hand, the
specificity of MWI, due to its quantitative nature is a desired feature. Thus, any improvements
to increasing the resolution would move the technology forward, closer to being accepted as
a clinical imaging modality.

The inverse scattering problem (ISTP) associated with MWI is inherently nonlinear and ill-
posed, allowing only a limited amount of information to be extracted from the measurement
data. It does not have a unique solution and is sensitive to small perturbations in the collected
measurement data. The ill-posedness of the ISTP originates in the associated inverse source
problem (ISP) which is a linearization of the ISTP in terms of contrast sources. Focusing
on the ISP allows one to concentrate the effort on the underlying ill-posedness. Of course,
many advanced regularization techniques have been developed during the past decades, usu-
ally embedded in the iterative algorithms used for the ISTP. Actually, the multi-illumination
scenarios utilized in a typical ISTP are indeed a form of regularization, wherein, although
the contrast sources change with the illumination, the contrast of the OI remains constant.
Therefore, implementing various additional forms of regularization in solving the ISTP has
been a means of obtaining reliable imaging results. On the other hand, if one could achieve
improved recovery of the contrast sources, for a single illuminating source, the impact would
indeed be great.

In the last two decades, following Veselago’s seminal work on the focusing phenomenon of
double-negative materials [18], numerous researchers have undertaken investigations into the
properties of these materials for various applications [19], including MWI [20–24]. The utiliz-
ation of an ideal Veselago lens (VL), a loss-less double-negative material with ϵr = µr =−1,
in quantitative MWI, has been successfully demonstrated in previous research [25].

Despite the demonstrated potential usefulness of ideal VLs in various applications, such
as MWI, their practical implementation has been hindered by the absence of a natural
material with the required properties and the associated technical challenges of fabrication.
Nonetheless, recent investigations have revealed that the use of a VL can significantly mit-
igate the ill-posedness of the inverse source and scattering problems associated with MWI,
as reported in [25]. This is accomplished because the VL Green’s function (GF), previously
derived in closed form in [26], produces a well-conditionedmatrix in the discretized ISP. It was
shown in [25] that the quality of the inversion results was limited only by the signal-to-noise
ratio of the collected data.
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In this research, motivated by the unique properties of the VL, we propose a theoretical and
numerical study of a non-physical VL, achieved by considering an inhomogeneous background
possessing a double-negative profile. Our goal is to evaluate the potential of exploiting the
lens’s focusing properties without physically realizing it. To achieve this objective, we consider
an imaging scenario in which the VL is absent in the total field measurement process. The
problem is then split into the incident and scattered-field problems in the presence of the VL
inhomogeneous background. It is noteworthy that in the standard approach of considering
an inhomogeneous background in MWI, the contrast outside of the imaging domain is zero.
However, it will be shown that unlike the inhomogeneous background used in the conventional
imaging set-up, the inhomogeneous background which functions as a virtual VL (VVL) here,
is defined outside of the imaging domain.

Subsequently, we employ the concept of the distributional derivative to state the ISP based
on the contrast generated by the VL boundaries. Then, we revise the data equation presented
in [25], which was introduced for the case where an actual physical lens was utilized. This
revision involves the inclusion of two improper surface integrals along the VL boundaries
(line integrals in the 2D problem considered herein), and the accuracy of the ISP solution
relies on the precise calculation of these integrals. The surface integrals represent the add-
on data in the VVL ISP and their value must be evaluated and added to the VL data. If it is
possible to evaluate the surface-integral contribution the corrected data could then be directly
inverted using the VL Green’s operator proposed in [25], with the analytic kernel for the VL
GF described in [26].

However, accurately computing the surface integral contribution is a challenge, as it requires
the tangential magnetic field along the VVL boundaries. As will be shown, the true value of
the surface integral contribution to the data can be obtained by comparing the VVL problem to
both the VL problem and the standard MWI problem in the free space. Numerical results are
obtained by inverting synthetic data created by assuming the true contribution of the surface
integral and corrupting it with Gaussian noise. Preliminary results show that corrupting the true
add-on data with an error of less than one percent, results in new VVL data that are invertible
producing high-accuracy imaging.

The paper is organized as follows. Section 2 defines the ideal VL using step functions to
represent double-negative properties of the VL. A new 2D internal boundary value problem
(BVP), using distributional derivatives, is formulated for the VL. Additionally, the concept of
virtualizing the VL is introduced where BVPs for the VVL scattered and incident fields are
defined.

In section 3 details of using the VVL in a free-space MWI scenario are provided. Two
mathematical formulations of the ISP are given: using either the traditional method of divid-
ing the problem into three separate regions or using the distributional derivative approach. In
the latter approach, it is shown how the VVL boundary conditions are converted to a single
inhomogeneous Helmholtz partial differential equation (PDE) for the scattered fields applic-
able over all regions. The inhomogeneity consists of two surface distributions occurring at the
VVL boundaries.

Section 4 derives the VVL data-equation utilizing the inhomogeneous Helmholtz PDE. The
result is the same data-equation as for imaging with an actual VL [25], plus the addition of two
line integrals arising from the virtualization procedure. These line integrals represent what we
refer to as add-on data that must be added to the collected free-space data so as to properly
perform inversion. The section presents the ISTP of the VVL in matrix form, accompanied by
an explicit representation of the line integrals for direct computer implementation.
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In section 5 we provide estimates of the tolerable error for computing the add-on data.
Synthetic imaging results when the add-on data is computed with different amounts of error
are provided. Finally, section 6 presents some concluding remarks summarizing the findings
discussed throughout the paper. Details of all the mathematical derivations are given in the
appendices.

2. Virtualization of an ideal VL for ISTP implementation

2.1. Mathematical formulation of an ideal VL

We consider the VL to be an infinite slab of permittivity ϵr =−1 and permeability µr =−1
situated in free space and located between the surfaces x= d1 and x= d2. The width is denoted
by d= d2 − d1. The surfaces of the VL will be denoted as

SVL = S1 ∪ S2, (1a)

where Si is defined by

Si =
{
r̄ ∈ R2| r̄= (di,y)

}
, (1b)

for i = 1,2. As we will only consider line-source excitations we can limit ourselves to the 2D
xy-plane for the description of the geometry and the fields associated with such a source.

To easily manipulate the physical parameters of the VL we introduce the VL step-function

usVL (x,y)≜ 1− 2us (x− d1)+ 2us (x− d2) , (2)

where

us (ξ) =

{
0 ξ < 0,

1 ξ > 0,
(3)

so that the permittivity and permeability functions become

ϵVL (r̄) ≜ ϵ0usVL , and µVL (r̄) ≜ µ0usVL , (4)

respectively, for any position r̄= (x,y) in any of the three regions x< d1, d1 ⩽ x⩽ d2, and
x> d2, created by the VL and identified as I, II, and II and, respectively, in figure 1.

For the 2D time-harmonic EM problems considered herein, we assume an ejωt time-
dependence, where j2 =−1 and ω denotes the radial frequency. The time-dependence is not
shown in the subsequent discussions.

We assume that an illuminating z-directed line-source is located within the problem domain,
V, at r̄0 = (x0,y0) in front of the VL having current density of magnitude I and defined by

J̄(r̄, r̄0) = Iδ (r̄− r̄0) âz, (5)

where âz denotes the unit vector in the z-direction and δ(·) is the Dirac delta function. This
current-source will produce only a 2D TMz polarized field having components Ez, Hx, and Hy.
These satisfy Maxwell equations and can be concisely written, using the previously defined
VL step function, as

4



Inverse Problems 40 (2024) 035001 M Eini Keleshteri et al

Figure 1. VL can focus waves by negative refraction [18]. The VL problem domain
is split into three main regions I, II, and III depending on the physical index of the
background.

jωϵVL (r̄)Ez− ∂xHy+ ∂yHx =−Iδ (r̄− r̄0) , (6a)

jωµVL (r̄)Hx+ ∂yEz = 0, (6b)

jωµVL (r̄)Hy− ∂xEz = 0. (6c)

It is typical to solve these first-order PDEs by converting them to a second-order Helmholtz
equation for any of the field components. But, having introduced the VL step-functions this
would necessitate taking derivatives across the discontinuity. Thus, the traditional approach is
to deal with the three regions separately and ‘stitch’ the solutions in each region together using
the boundary conditions (BCs). As we assume that no surface currents are created at the bound-
aries of the VL, and therefore the tangential components of the electric and magnetic fields
are continuous across the VL surfaces: Ez(r̄S)+ −Ez(r̄S)− = 0, and Hy(r̄S)+ −Hy(r̄S)− = 0,
where r̄S ∈ SVL, and the superscripts − and + represent the negative and positive sides of the
surfaces, respectively.

Proceeding in the traditional approach, and treating the three regions as separate, identical
homogeneous Helmholtz equations can be written for the electric field in each of the three
regions, except for in Region I, where the right-hand side (RHS) of the equation becomes
non-homogeneous due to the existence of the point source. Thus, we obtain the following
equations:

∇2Ez+ k20Ez =

{
jωµ0Iδ (r̄− r̄0) r̄ ∈ Region I

0 r̄ ∈ Regions I and II,
(7)

where ∇2(·) denotes the Laplacian operator and k0 is the free-space wavenumber [26].
One might ask, how are the physical properties of the VL manifest in the mathematical for-

mulation when the PDEs of the formulation are identical in each of the three regions? Clearly,
it is the BCs that couple the solutions of these three PDEs and determine the final form of the
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solution. In terms of the electric field u, the BCs are written as{
Ez (r̄S)

− −Ez (r̄S)
+

= 0,

∂xEz (r̄S)
−
+ ∂xEz (r̄S)

+
= 0.

(8)

An alternate approach, employing the concept of distributional derivative, the three-region
internal BVP can be equivalently expressed as an inhomogeneous Helmholtz equation
given by

∇2Ez+ k20Ez = jωµ0Iδ (r̄− r̄0)+ 2jωµ0 Hy (r̄S)δs, (9)

where δs = δs2 − δs1 . This equation is derived in [27] (forthcoming), as well as in appendix B.2.
Note that the RHS of this equation depends on Ez, which is the unknown variable within the
equation itself. Thus, if the free-space GF is used this becomes an integral equation for Ez. On
the other hand, if the second term on the RHS is considered to be part of the PDE operator,
this distributional PDE is equivalent to the three-region internal BVP that represents the VL.
As such, to invert this equation we require the VL GF.

In [26], the closed-form solution for the VL in the presence of a line source located at
r̄0 = (x0,y0) was obtained. Defining the electric field in the presence of a VL in terms of the
GF for the VL,

Ez =−jωµ0 I GVL, (10)

then GVL satisfies the following BVP:

∇2GVL + k20GVL =

{
−δ (r̄− r̄0) r̄ ∈ Region I

0 r̄ ∈ Regions I and II,
(11){

GVL (r̄S)
−
+GVL (r̄S)

+
= 0,

∂xGVL (r̄S)
− − ∂xGVL (r̄S)

+
= 0.

(12)

Note the change in signs in these BCs compared to those for the electric field in (8). The VL
GF was shown to be

GVL (r̄|̄r0,d1,d) =



−j
4 H(2)

0 (k0R) , x⩽ d1

j
4 H

(2)
0 (k0R1) , d1 ⩽ x< 2d1 − x0

j
4 H

(1)
0 (k0R1) , 2d1 − x0 < x⩽ d2

−j
4 H(1)

0 (k0R2) , d2 ⩽ x< x0 + 2d

−j
4 H(2)

0 (k0R2) , x> x0 + 2d,

(13)

where H(1)
0 denotes the Hankel function of the first kind of zeroth order, R= ∥r̄− r̄0∥,

R1 = ∥r̄− r̄1∥, R2 = ∥r̄− r̄2∥, r̄1 = (2d1 − x0,y0), and r̄2 = (x0 + 2d,y0). This ‘Green’s func-
tion’ is valid for d1 − d⩽ x0 < d1. Note that the coordinates r̄1 and r̄2 are the locations of
the singularities produced by the ideal VL, and they both depend on the location of the point
source, r̄0.
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The physical interpretation of (13) has been described extensively in [26], but here we
provide a brief summary of the remarkable features of the VL and how they are exemplified
by (13). The free-space GF for a 2D point source is given by the second-kind Hankel function,
H(2)

0 , centered at the location of the applied source, whereH(2)
0 is used because to the left of the

lens we are in free space and we are assuming the ejωt time convention. The first boundary of
the VL, x= d1, transfers all spectral content reaching that boundary into the interior of the lens
[19]. Thus, at x= d1 the BCs given by (12) dictate that the field also be of the formH(2)

0 (k0R1),
representing the field of a point sink located at r̄1. That this is a sink of energy comes from the
fact that we are forced to use a second-kind Hankel function, H(2), to satisfy the BCs in this
first interior region, d1 ⩽ x< 2d1 − x0, but now we are in the double-negative medium of the
VL. Although the phase ofH(2) propagates outward from the sink location, r̄1, the power flows
towards r̄1, as can be confirmed via the Poynting vector. Once we reach, what we refer to as,
the power transfer plane, x= 2d1 − x0, all the spectral content of the energy must continue to
flow to the right from the sink which forces us to use the first-kind Hankel functionH(1). In the
double negative medium H(1) has the properties of outward flowing power but inward phase
velocity. Therefore, in both of the interior regions, d1 ⩽ x< 2d1 − x0 and 2d1 − x0 < x⩽ d2,
we have backward traveling waves with respect to the phase velocity but the power consistently
flows to the right. The boundary condition at x= d2 dictates that we continue to use H(1) to
the right of the lens boundary until we encounter another singularity at r̄2 = (x0 + 2d,y0).
The region d2 ⩽ x< x0 + 2d is free space so H(1) represents an incoming wave towards the
singularity at r̄2, a sink of energy. At the power transfer plane located at x= x0 + 2d, again
the power must pass through to the right, x> x0 + 2d, so we utilize H(2). We refer to the two
virtual singularities created by the lens, one interior to the lens at x= 2d1 − x0 and one exterior
to the lens at x= d2, as power-transfer singularities because they are both sinks and sources
of power.

In what follows, we require the GF for the case where the source is situated at the boundaries
of theVL. These two cases can be simply found by consistently imposing the focusing behavior
of the VL when a source is located at either boundary.

Case I: as shown in figure 2(a), when the source is located on the first VL boundary,
r̄S1 = (d1,y ′), the VL merges the source’s location with the internal focus point and moves
the external focus point to a distance of 2d to the right of the VL. Therefore, observing from
a point, r̄= (x,y), located in Region III, i.e when d2 ⩽ x< d2 + d, we can write

GVL (r̄|̄rS1 ,d1,d) =
−j
4
H(1)

0 (k0RS1) , (14)

where RS1 = ∥r̄− (r̄S1 +(2d,0))∥.
Case II: as shown in figure 2(b), when the source is situated on the second VL boundary

at r̄S2 = (d2,y ′), this corresponds to a horizontal reflection of Case I because we can think of
this case as where the first boundary of the VL is now located at x= d2. Consequently, the two
focus points are generated on the opposite side of the VL compared to Case I, specifically on
the left side. Therefore, observing from a point, r̄= (x,y), in Region III, i.e when x> d2 we
can write

GVL (r̄|̄rS2 ,d2,d) =
−j
4
H(2)

0 (k0RS2) , (15)

where RS2 = ∥r̄− r̄S2∥.
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Figure 2. A schematic of the special cases of the VL field due to a point source. (a) Case
I: the point source is located on the first VL boundary at x= d1. (b) Case II: the point
source is located on the second boundary at x= d2.

2.2. Virtualizing the VL for use in the ISTP

Before we introduce the concept of a VVL, it is useful to review the general concept of using a
numerical inhomogeneous background within a typical ISTP. Consider the conventional ISTP
where an OI is positioned within a well-defined imaging domain, D. Assume that the OI is
immersed in free space. The OI is nonmagnetic but has complex permittivity ϵ(r̄), thus we
define the relative permittivity for the problem within the problem domain V as

ϵ(r̄) =

{
ϵOI (r̄) r̄ ∈ D
1 r̄ ∈ V\D.

(16)

The total field u(r̄)≜ Ez0 , which is the field in the presence of the OI as well as the illumin-
ating source, s(r̄|̄r ′), satisfies the inhomogeneous Helmholtz equation

∇2u+ k2 (r̄)u=−s(r̄|̄r ′) , (17)

where k2(r̄) = ω2µ0ϵ0ϵ(r̄) is the wavenumber.
Themethodology of using a virtual inhomogeneous background employs a numerical back-

ground medium with relative permittivity defined by ϵb(r̄), r̄ ∈ V, for both the incident and
scattered-field problems [28–33]. Hence, the incident field ui(r̄) is defined to satisfy the fol-
lowing Helmholtz equation

∇2ui + k2b (r̄)u
i =−s(r̄|̄r ′) , (18)

where k2b(r̄) = ω2µ0ϵ0ϵb(r̄) is the non-constant wavenumber.
Then, using the definition for the scattered field,

us ≜ u− ui, (19)
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we obtain the following Helmholtz equation

∇2us+ k2b (r̄)u
s =−k2b (r̄)w(r̄) . (20)

In this equation, we define the contrast source by

w(r̄)≜ χ(r̄)u(r̄) , (21)

and the contrast function as

χ(r̄)≜


ϵOI (r̄)− ϵb (r̄)

ϵb (r̄)
=

[
k(r̄)
kb (r̄)

]2

− 1 r̄ ∈ D

0 r̄ ∈ V\D.
(22)

Note that introducing the virtual background is a purely numerical strategy to aid in the
ISTP. In the past, the permittivity of the virtual background, εb, has been chosen to be different
than the true physical background, in this case, ϵr = 1, only within the imaging domainD. The
effect of introducing such a numerical background is two-fold. Firstly, it changes the unknown
contrast that is to be found, and, via the contrast, the contrast source as well. Secondly, it
modifies the solution of the BVP for the scattered field (via changing the GF for that BVP). Of
course, the introduction of a virtual background also requires that one calculate the incident
field for that background, i.e. the incident field at the receiver points cannot be physically
measured.

The remaining steps of the ISTP stay the same. Several illuminating sources can be used,
each of which produces a different total field that modifies the contrast sources. The contrast,
on the other hand, remains the same for each illuminating source. Note that when using the
virtual background in a practical MWI problem one measures the total field and computes the
incident field at the receiver points to obtain the scattered field for the employed inhomogen-
eous background. The virtual inhomogeneous background medium approach has been used
successfully for MWI in various applications [28–33], prompting the inquiry into whether
such a technique can be used to virtualize the VL, i.e. without the necessity of creating double
negative materials for practical implementation.

The first attempt at creating a VVL might be to simply replace the inhomogeneous back-
ground permittivity with that of the VL. That is, to simply set ϵb = ϵVL and use the Helmholtz
equation for the scattered field defined by (20). In this case, the wavenumber of the inhomogen-
eous background for the VVL is equal to the wavenumber of free space throughout the entire
problem domain. That is, kb = k0 everywhere but this would completely ignore the effect of
the lens’s BCs.

We will see that BCs (8) obtained for the VL problem will also apply to the VVL incident-
field problem. On the other hand, it will be shown that BCs for the scattered-field problem
associated with the VVL will require an inhomogeneous RHS due to an induced surface con-
trast source at the VVL boundaries. This induced surface contrast source depends on the total
field along the boundaries of the VVL. More specifically, this inhomogeneous term is propor-
tional to the tangential component of the magnetic field along the boundaries. The magnetic
field, of course, is obtained in free space and depends on the OI. The precise mathematical
formulation and algorithmic MWI procedure required to implement such a VVL is described
in the next section.
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Figure 3. A schematic of MWI using a VVL. (a) The VVL total-field problem is
assumed to be similar to that of the conventional MWI problem, that is, without the
VL. (b) The VL is viewed as an inhomogeneous numerical background with a double-
negative profile in the incident-field problem. (c) The scattered field is obtained by sub-
tracting the incident field from the total field using equation (19).

3. Formulation of the ISTP for the VVL

3.1. MWI setup using a VVL

Schematics of the MWI procedure employing a VVL are depicted in figure 3. Figure 3(a)
depicts the total-field problem. The OI is placed within the imaging domain,D, and is illumin-
ated by a source, S located at r̄0 creating the total field. The background properties are those
of free space (i.e. no lens is present). The imaging domain D contains an object of unknown
permittivity ϵ(r̄). The problem domain V is all of the free space. The total field is measured
outside the imaging domain at various locations within the measurement domain DR, which
is a 2d-translation of D to the right of the imaging domain. The discretization of D is also

10
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2d-translated and used to discretize DR. Specifically, each vertical column of cells labeled as
R ′
1,R

′
2, . . . ,R

′
M within the imaging domain, D, corresponds to a column of receivers labeled

as R1,R2, . . . ,RM, located 2d away to the right of D. In other words, corresponding to the ith

column of cells of the discretized OI located a distance li from the VL, there will be a column
of receivers on the other side of the VL located a distance of d− li from the VL.

Hence, this phase of MWI utilizing the VVL is analogous to the total-field problem in a
conventional MWI technique, except for the fact that an equal number of receiver points as the
cells inside the discretized imaging domain are used, and the placement of the receiver points
is not arbitrary but is chosen to correspond to the original discretization insideD. This location
of the receivers is similar to the demonstration of MWI in the presence of a VL described in
[25], but it is important to note that this problem differs from the MWI procedure presented
therein because in that work all MWI steps are conducted in the presence of the VL. Thus, to
be implemented an actual VL would be required.

In figure 3(b), the virtual incident-field problem is depicted. A VVL of thickness d is now
placed as shown labeled as region DVL). The OI is removed but the point source is placed
at the same location as when illuminating the OI in the total-field problem. The GF for the
illuminating point source is used to calculate the incident field at each receiver point in the
measurement domain. Notice that the VL GF is equivalent to introducing a translated illumin-
ating point source at the location shown in the figure.

Once the incident field is computed, the scattered field is obtained by simply subtracting the
numerically generated incident field from the total field measurements at the receiver points.
The scattered field at the receiver points becomes the data that needs to be inverted by the new
ISTP inversion algorithm. To understand the basis of that algorithm we must first consider the
BVP that the scattered field satisfies.

3.2. Formulation of the BVP of the VVL

The full derivation of the scattered field BVP is provided in appendix A. The PDE for the BVP
is an inhomogeneous Helmholtz equation given as

∇2Esz+ k20E
s
z =−wOI. (23)

Subject to the inhomogenous BCs{
Esz (r̄S)

− −Esz (r̄S)
+

= 0,

∂xEsz (r̄S)
−
+ ∂xEsz (r̄S)

+
= 2∂xEz0 (r̄S) ,

(24)

for every r̄S ∈ S, where the contrast source is given by

wOI (r̄) =

{
χOIEz0 r̄ ∈ D
0 r̄ ∈ V\D,

(25)

and the contrast of the OI defined as

χOI (r̄)≜ k2OI (r̄)− k20, (26)

with

kOI ≜ ω2µ0ϵ(r̄) . (27)

11
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As can be seen from the resulting BVP, the inhomogeneous BCs reveal that when theVVL is
treated as an inhomogeneous numerical background, while the field remains continuous across
the boundaries, a contrast is induced along the VL boundaries at S1 and S2, which manifests
as an in-homogeneity in the second BC of the scattered field.

Solving the above BVP is a much simpler task if it is converted to a single PDE in the
distributional sense that is valid over the whole domain V, as was done for the GF of the VL (9),
reproduced as in [27] (forthcoming). The full mathematical derivations are also provided in
appendix B.

TheHelmholtz equation for the total field corresponding to the 2DTMz free-space problem,
which forms the first step of the VVL MWI setup, can be written as

∇2Ez0 + k2OIEz0 = jωµ0Iδ (r̄− r̄0) , (28)

where, as before, kOI ≜ ω2µ0ϵ(r̄) takes care of the OI’s permittivity.
The VVL incident-field problem, written in terms of the distributional Helmholtz equation

of a VL (9), for Ēi, can be written as

∇2Eiz+ k20E
i
z = jωµ0Iδ (r̄− r̄0)+ 2jωµ0 H

i
y (r̄S)δs. (29)

Thus, the scattered-field distributional Helmholtz equation can be written as

∇2Esz+ k2OIEz0 − k20E
i
z =−2jωµ0 H

i
y (r̄S)δs. (30)

or as

∇2Esz+ k20E
s
z =−wOI (r̄) − 2jωµ0 H

i
y (r̄S)δs. (31)

with wOI defined as in (25). Formulating the integral equation solution to this PDE and how it
can be used in the ISTP for MWI is described in the next section.

4. The ISTP of The VVL

4.1. A closed-form VVL data-equation

The VVL MWI workflow is similar to the standard approach of solving the ISTP of MWI.
First, measurements of the total field, produced by illuminating the OI located in free space,
are made at the receiver locations. The incident field is then computed at these same receiver
locations for the same illuminating source in the presence of the VVL. The scattered field,
which is the ‘data’ to be inverted, is then obtained by subtracting the computed incident field
from the measured total field. The data-operator, which maps the unknown contrast sources
inside the OI to the measured data is then inverted to obtain the contrast sources. We will focus
on the ISP because it is the ISP that is ill-posed and must be solved as part of the ISTP. The
unknown contrast of the OI, eventually, can be found using the obtained contrast sources and
the knowledge of the total field inside the OI.

In [25], the ISP associated with performing MWI in the presence of a VL was derived
and a new data-operator was introduced. The new data-equation integral operator was denoted
as GVL, which included the VL GF, introduced in [26], as the kernel (the VL GF was herein
provided in (13)). It was shown there that the discretized version of GVL was well-conditioned.
However, the data-equation operator for the VVL problem derived herein turns out to be dif-
ferent than that introduced in [26] for MWI with an actual VL as will now be described.

12
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The VVL data-equation operator is obtained by solving the VVL PDE (31). Note that the
RHS contains the incident field along the VL boundaries, whereas the scattered field is the
unknown within the Helmholtz operator. Therefore, inverting this equation in the form of a
data operator would utilize the free-space GF as its kernel. The goal is to create a data operator
that utilizes the VLGF as its kernel so as to take advantage of the discretized version ofGVL. To
do this, we introduce the scattered field on the RHS by rewriting the incident field in terms of
the total/scattered field decomposition of (19). The result is the following distributional PDE

∇2us+ k20u
s− 2jωµ0 H

s
y (r̄S)δs =−wOI − 2jωµ0 Hy (r̄S)δs. (32)

The above Helmholtz equation with a source term due to a point source instead of the terms
inside the bracket on the RHS is equivalent to the Helmholtz equation obtained in (9). This
equation is equivalent to the Helmholtz equation obtained and solved separately inside the
three regions of the VL problem. The solution of such a Helmholtz equation is the VL GF,
GVL, which was introduced in [26] and presented here in (13). Therefore, to write a solution
to (32) in terms of an integral equation we need to use the VL GF as its kernel.

Therefore, the solution of PDE (32) derived for the VVL problem in (23) and (24), can be
finally obtained by

us (r̄) =−
ˆ
V
GVL (r̄|̄r ′) [wOI + 2jωµ0 Hy (r̄S)δs] dr

′, (33)

where dr ′ = dx ′dy ′. Employing the sifting property of the surface delta distribution leads to
surface integrals on the RHS as

us (r̄) =−
ˆ
V
GVL (r̄|̄r ′)wOI dr

′

+ 2jωµ0

ˆ
S1

GVL

(
r̄|̄r ′S1

)
Hy (r̄S1) ds

′ − 2jωµ0

ˆ
S2

GVL

(
r̄|̄r ′S2

)
Hy (r̄S2) ds

′, (34)

which using Faraday’s law can be written equivalently as

us (r̄) =−
ˆ
V
GVL (r̄|̄r ′)wOI dr

′

×
ˆ
S2

GVL

(
r̄|̄r ′S2

)
2∂x ′Ez0 (r̄S2) ds

′ −
ˆ
S1

GVL

(
r̄|̄r ′S1

)
2∂x ′Ez0 (r̄S1) ds

′. (35)

Note that the VL GF involved in the surface integrals in (35) can be obtained by the special
cases presented in equations (14) and (15) in section 2.1. The first term on the RHS of this
data equation is equivalent to the GVL operator in [25] which produces a well-conditioned
discretization matrix. The last two terms are novel terms that involve line integrals of the
free-space tangential magnetic field, or equivalently, normal derivatives of the total tangential
electric field, taken over the VVL boundaries. These line-integral contributions are the ‘add-on
data’ that needs to be added to the collected data, in free space, before we can take advantage
of the GVL operator.

We now turn to an analysis of this add-on data and first write the VVL data equation in a
more concise form as

us (r̄) =−
ˆ
V
GVL (r̄|̄r ′) wOI (r̄

′) dr ′ + IS (r̄) , (36)

13
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where

IS (r̄)≜ IS2 (r̄)− IS1 (r̄) , (37)

indicates the line-integrals over SVL. These are the improper integrals

IS1 (r̄) =
ˆ
S1

GVL

(
r̄|̄r ′S1

)
2∂xEz0

(
r̄ ′S1

)
ds ′

=

ˆ ∞

−∞
GVL (r̄|(d1,y ′)) 2∂x ′Ez0 (d1,y

′) dy ′, (38)

and

IS2 (r̄) =
ˆ
S2

GVL

(
r̄|̄r ′S2

)
2∂xEz0

(
r̄ ′S2

)
ds ′

=

ˆ ∞

−∞
GVL (r̄|(d2,y ′)) 2∂x ′Ez0 (d2,y

′) dy ′. (39)

Note that considering the 2D problem, both of the above surface integrals become line
integrals along the boundaries of the VL. Also, note that both line integrals are improper due
to the infinite boundaries of the lens.

The data that is collected in the VVL scenario is the total field collected at the receiver
points, located at r̄m, in the presence of the OI and the illuminating source. We denote this data
as u0(r̄m). Following the procedure of a numerical inhomogeneous background, we subtract
the numerical incident field for the VVL, arriving at the scattered-field data for the VVL:

dVVL (r̄
m) = u0 (r̄

m)− ui (r̄m) , (40)

where ui(r̄m) is the VVL numerical incident field. The solution to the ISTP for an OI incor-
porating the VVL is finally written as

dVVL (r̄
m) = usVL (r̄

m)+ IS (r̄
m) , (41)

where usVL denotes the scattered field for the VL problem as expressed in [25] and rewritten
here as

dVL (r̄
m) ≜ usVL (r̄

m) =−
ˆ
V
GVL (r̄

m |̄r ′) wOI (r̄
′) dr ′. (42)

The preceding equation holds considerable significance as it establishes the potential of
MWI using a VVL by leveraging the solution of the ISTP of a physical VL, as exemplified
in [25]. The two line-integral contributions to the data describe the discrepancy between the
data obtained in the virtual and physical VL problems. The accurate evaluation of IS is the
sole prerequisite for performing MWI in the presence of a VVL. If the evaluation of these
integrals can be performed with sufficient accuracy, this VVL MWI approach enables one to
take advantage of the VL’s properties without the need to build an actual physical VL.
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Note that in an actual MWI VVL scenario the magnetic field along the locations of the
VVL boundaries would be required. These boundaries are outside the imaging domain D and
are related to the actual data in free space u0. Therefore, the magnetic field along these virtual
boundaries is accessible in such an experiment. Unfortunately, the VVL boundaries are infinite
in extent and it would be impossible to measure the magnetic field along the complete bound-
aries. So one needs to further investigate the use of (36). For real applications, research will
have to be performed on different ways of approximating the infinite domain integrals using
discrete measurements along a finite portion of the VVL boundaries. One possible method
might be to measure the field around the OI and then perform a near-to-far field expansion
to obtain the required field along the VVL boundaries. In the present 2D scenario, this would
mean expanding the field along the VVL boundaries using cylindrical wave functions with
coefficients derived from measurements made on a circular boundary circumscribing the OI.

Another possibility is to investigate the evaluation requirements for these surface integrals
by expressing the add-on data in terms of the volumetric contrast sources due to the OI, wOI.
We perform such an evaluation in the final section of the paper.

4.2. Explicit form of the line integrals

Assuming that we have expressions for the field along the VVL boundaries, we study the add-
on data that is required for the VVL ISTP. To evaluate the surface integrals (38) and (39), one
needs to find the partial derivative of the free-space total field alongwith the VVL’s boundaries.
From (19) we know that

Ez0 (r̄S) =−ω µ0I
4

H(2)
0 (k0∥r̄S− r̄0∥)+

ˆ
D
G0 (r̄S |̄r ′)wOI (r̄

′) dr ′. (43)

Thus, recalling that (H(2)
0 (v)) ′ =−v ′H(2)

1 (v), we may find the partial derivative of the total
field with respect to the x-component of r̄S, xS as

∂xSEz0 (r̄S) =
ω µ0k0I

4
xs

∥r̄S− r̄0∥
H(2)

1 (k0∥r̄S− r̄0∥)

+
jk0
4

ˆ
D

xs
∥r̄S− r̄ ′∥

H(2)
1 (k0∥r̄S− r̄ ′∥) wOI (r̄

′) dr ′. (44)

Moreover, given that the source points for the VLGF involved in the surface integrals IS1 and
IS2 in (38) and (39) are located on the VL boundaries, it is necessary to utilize the specialized
descriptions of the VL GF, as introduced previously in (14) and (15).

Hence, in view of the receivers positioned within Region III, the VL GF that pertains to the
line integrals (38) and (39) can be written

GVL

(
r̄|̄r ′S1

)
=

−j
4
H(1)

0

(
k0∥r̄−

(
r̄ ′S1 +(2d,0)

)
∥
)
, (45)

and

GVL

(
r̄|̄r ′S2

)
=

−j
4
H(2)

0

(
k0∥r̄− r̄ ′S2∥

)
, (46)

respectively.
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Employing the descriptions (45) and (46) as well as the relations for the partial derivative
of the total electric field in (44) gives rise to final explicit formulas for the line integrals IS1 and
IS2 as

IS1(r̄) = C
ˆ ∞

−∞

d1√
(d1 − x0)2 +(y ′ − y0)2

×H(1)
0 (k0

√
(x− d1 − 2d)2 +(y− y ′)2)H(2)

1 (k0
√
(d1 − x0)2 +(y ′ − y0)2) dy

′

+
k0
8

ˆ ∞

−∞

{
H(1)

0 (k0
√
(x− d1 − 2d)2 +(y− y ′)2)

ˆ
D

d1√
(d1 − x ′ ′)2 +(y ′ − y ′ ′)2

× H(2)
1 (k0

√
(d1 − x ′ ′)2 +(y ′ − y ′ ′)2) wOI(x

′ ′,y ′ ′) dr ′ ′
}
dy ′, (47)

and

IS2(r̄) = C
ˆ ∞

−∞

d2√
(d2 − x0)2 +(y ′ − y0)2

×H(2)
0 (k0

√
(x− d2)2 +(y− y ′)2)H(2)

1 (k0
√
(d2 − x0)2 +(y ′ − y0)2) dy

′

+
k0
8

ˆ ∞

−∞

{
H(2)

0 (k0
√
(x− d2)2 +(y− y ′)2)

ˆ
D

d2√
(d2 − x ′ ′)2 +(y ′ − y ′ ′)2

× H(2)
1 (k0

√
(d2 − x ′ ′)2 +(y ′ − y ′ ′)2) wOI(x

′ ′,y ′ ′) dr ′ ′
}
dy ′, (48)

respectively, where C is a constant defined by C≜ −jk20ηI
8

and η =
√

µ0/ϵ0.

These line integrals are dependent on the OI and therefore evaluating the effectiveness of
the VVLMWI procedure by replacing the add-on data with the computation of these integrals
will depend on several factors. For example, because these integrals require the field from
−∞ to ∞ a study is required on how far these improper integrals can be truncated while
maintaining sufficient accuracy. That is, this will depend on how quickly the total field drops
off along these lines, which will in turn depend on the OI. Such a study is beyond the scope
of the present work, but some indication of the accuracy required can be ascertained by the
observations discussed in the next section.

5. Investigation of the add-on data

5.1. Estimation of tolerable error in add-on data

Recall that the total field in the VVL problem is the free space total field of the OI illuminated
by the source. To simplify notation we will denote the fields by u, e.g. the total electric field
will be denoted as u0 ≜ Ez0 . Thus,

u0 = ui0 + us0. (49)

A Similar expression, using uVL = uiVL + usVL, represents fields obtained in the presence of an
actual VL.
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The data equation for the standard problem of MWI is

d0 (r̄) ≜ us0 (r̄) =−
ˆ
V
G0 (r̄|̄r ′)wOI (r̄

′) dr ′, (50)

where wOI ≜ χOIu0 indicate the same contrast sources as defined in (25) created by the same OI
as considered in figure 3. On the other hand, recall that the free space total field can be split into
the VVL incident and scattered fields as in (19). Knowing this and then using the descriptions
of data equations in the virtual, physical, and standard approaches introduced, respectively,
in (40), (42) and (50), we obtain an alternative approach for describing the surface integral
IS as

IS (r̄) =−
ˆ
V
[G0 (r̄|̄r ′)−GVL (r̄|̄r ′)]wOI (r̄

′) dr ′ + ui0 (r̄) − ui (r̄)

= d0 (r̄)− dVL (r̄)+ ui0 (r̄)− uiVL (r̄) = u0 (r̄)− uVL (r̄) . (51)

In this form, we clearly see that the add-on data, IS, in equation (37), can also be represented
as the difference between the total field at the receiver points performing the imaging in free
space and the total field at the same receiver point locations measured in the presence of an
actual VL. As in the expressions for IS using the line integrals that depend on the total field
along the VVL boundaries (and in turn depend on the OI), it is also evident that the expression
derived for IS in equation (51) is also contingent upon knowledge of the unknown contrast
sources wOI. Consequently, while this relationship is unsuitable for evaluating the add-on data
in a practical situation because knowledge of the OI is required, it can be utilized to estimate
the amount of tolerable error in the add-on data, IS.

To achieve this analysis, we first subtract the vector of incident field data at the receiver
points in the VVL problem, ui

VL
, which is the same as that in the VL problem, from the vector

of total-field measurements in free space, u0, as

dVVL = u0 −ui
VL
. (52)

This equation is the fundamental equation defining the collection of data in MWI using the
VVL procedure.

To obtain the vector, IS, we perform two separate synthetic experiments for the same OI
to generate the numerical scattered-field data in free space, denoted by d0, and the numerical
scattered-field data in the presence of an actual VL, denoted by dVL, as described in [25]. Then,
we use (51) to find a vector equation to compute the vector IS by

IS = d0 − dVL +∆ui, (53)

where∆ui is the vector of the corresponding differences of the numerical incident field in both
problems as described by (51).

Recall that in the VVL procedure, after one acquires dVVL, one has to calculate IS using the
line integrals of the total field, and subtract it from dVVL to form what would be the data in the
VL scenario, dVL. This is summarized in equations (41) and (42). Here, instead, we subtract a
corrupted version of IS from dVVL to obtain

dVL ≈ dVVL − ĨS. (54)
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In this formula we obtain the corrupted ĨS

ĨS = eIS ⊙ IS, (55)

where IS is the true add-on data obtained via (53), and eIS is a randomly generated vector
created as

eIS = 1+ ξ × [RVR+ jRVI] , (56)

where ξ is the percent error we want to corrupt the add-on data with, 1 is a vector of (1+ j)s,
and the random vectors RV are distinct uniformly distributed vectors of real numbers in the
interval (−1,1), for the real and imaginary parts.

With this corrupted data, we continue with the VVL inversion procedure; this utilizes the
discretized VL Green’s operator, GVL, introduced in [25], to obtain the reconstructed contrast
sources as

wR = G−1
VL

(
dVVL − Ĩs

)
. (57)

Numerical results for different amounts of percent error, ξ are presented in the next section.

5.2. Numerical results

All conducted experiments utilize a single monochromatic illuminating source. The dimen-
sions are given in terms of the wavelength, λ. For all the experiments the left boundary of the
domain, D, is positioned at a distance of d from the VVL. This requirement ensures that the
total width ofD corresponds to the width of the VL, which is the maximum distance away from
the VVL where focusing will occur. For the example considered herein, a single illuminating
source is located on the same side of the VVL as the OI, which is positioned at a distance of
d/2 from the VVL and one wavelength above the imaging domain.

Figure 4 shows the results for the true permittivity and reconstructed permittivity of the test
target depicted in figure 4(a). It also shows reconstructions when noise according to (57) is
added to the synthetic data (ξ = 10−4%, ξ = 0.1% and ξ = 1%).

As depicted in figure 4(a), the test target is comprised of two overlapping 2DGaussian func-
tions situated within the square λ×λ imaging domain. The imaging domain, D, is discretized
into 25 cells in both the x- and y-directions, resulting in a total of 625 unknowns that are recon-
structed based on 625 scattered-field measurements. Specifically, the maximum permittivity
values chosen for the left and right Gaussian functions are 2− 0.2j and 1− 0.4j respectively.
The selection of this target is motivated by its characteristics: it represents a lossy target with
a continuous profile, yet it contains small sub-wavelength features that pose challenges for
reconstruction using most imaging techniques. In all figures presented within this paper, the
color maps are carefully selected to correspond to the maximum and minimum values of the
reconstructed contrast.

The matrix inversion method presented in equation (57) is first used to obtain the contrast
source. Then, as in [25], the total field within D is computed and the contrast is obtained by
dividing the contrast source at each pixel by the corresponding total field. The resulting per-
mittivity is illustrated in figure 4(b). The input for this reconstruction is the corrupted meas-
urement matrix ĨS created using equations (55) and (56), where the percent error is specified as
ξ = 10−6. It is important to note that this exemplary reconstruction demonstrates an excellent
result achieved when, effectively, no noise is introduced into the generated synthetic data. It
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Figure 4. The true and reconstructed permittivity (RP) of the OI obtained by one
illuminating source and adding corrupting noise to the synthetic data created by ξ =
10−4%,0.1%, and 1%.

shows, what was demonstrated in [25], that a VL can be used to effect almost perfect quantit-
ative imaging.

Figures 4(c) and (d) present the reconstruction for the same target, but now with increased
corruption utilizing the corrupted matrix ĨS with, respectively, 0.1% and 1% errors, denoted
as ξ = 10−3 and ξ = 10−2. As observed in the last figure, the reconstruction quality is signi-
ficantly compromised. These results reflect the similar effect that adding random noise to the
collected data had in [25], but there the added noise was not correlated to the add-on data, IS.

It was shown in [25], that to mitigate the error and enhance the recovered contrast, a pos-
sible approach is to treat the corrupted error as high-frequency spatial noise when considering
the contrast as a 2D image. In this regard, two noise filtering techniques, based on truncated
singular value decomposition, were introduced. These regularization techniques could also be
applied here but the full study of such techniques is beyond the scope of this work. The focus
of the present work is to demonstrate that the VL can be virtualized in such a way that the free-
space ISP can be converted to an equivalent ISP where the data is collected in the presence of
an actual VL. The reformulation of the free-space ISP using a VVL can be looked upon as a
regularization technique in itself.

The plot of the root mean square error (RMSE) of the real, imaginary, and absolute value
of the reconstructed permittivity, normalized by the maximum of the absolute value of the
true permittivity of the OI over the interval, is presented in figure 5. The graph illustrates
the relationship between the error and the parameter ξ, which spans the range of 10−6–10−2,
corresponding to a total of 100 synthetic experiments for the same OI. It can be observed that
the error approaches nearly zero when a 10−4% error is imposed. However, as the percentage
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Figure 5. The RMSE of the reconstructed permittivity normalized by the maximum
value of the true permittivity as a function of percent error ξ.

of the noise in the data increases to 1%, the normalized RMSE grows gradually, reaching its
maximum value at 1. Starting from a negligible error near zero, the RMSE of the reconstructed
permittivity starts to increase over this interval. While the real part remains always under 0.5,
the imaginary and so the absolute value of the RMSE exceeds double the expected value of
the true permittivity of the OI as reaching the end of the interval at ξ = 1%.

6. Conclusion

We have introduced an MWI procedure that utilizes a virtual (numerical) VL to address the
ill-posedness of the associated ISP. The procedure requires only measurement data obtained
as in a traditional MWI scenario, free space chosen herein, and then modifies the data equation
involving the surface integrals of the tangential magnetic field along the boundaries of a VVL.
The VVL boundaries are outside the imaging domain and therefore one has access to these
measurements in theory, although the fact that these boundaries are infinite would require some
further study to determine how far a distance along the boundaries the measurements could be
truncated, while retaining satisfactory imaging results. An initial step towards ascertaining the
accuracy required in obtaining this add-on data has been performed.

Future research will include the straightforward extension of the VVL concept to 3D ima-
ging scenarios. Clearly, in the 3D imaging case the line integrals that represent the add-on data
will become surface integrals. The accurate computation of these surface integrals is a topic
for future study. As was briefly mentioned, a potentially fruitful way to proceed is to use near-
field measurements made around the OI and then perform a near-to-far field transformation to
obtain the field on the VVL surfaces.

Data availability statement

No new data were created or analysed in this study.
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Appendix A. Formulation of the VVL problem. Approach 1: the three region
internal BVP

This section presents the derivation of the formulation of the 2D EM field problem for the
VVL illuminated by a z-directed line source. The derivation is based on a partitioning of the
problem into three distinct regions, denoted as Regions I, II, and III, as illustrated in figure 1.
Starting with Maxwell’s equation in each of these regions a second-order partial differential
equation for the electric field is derived. Thus, the permittivity and permeability of each region
are considered as constants and there is no need to invoke the Veselago step functions µVL and
ϵVL. The solutions in each region are coupled via BCs.

A.1. The Helmholtz equation for the VVL scattered-field problem

For the free-space problem, the three components of the total EM fields are denoted as Ez0 ,
Hx0 , and Hy0 .

The first-order Maxwell’s equations are simply written as

jωϵ(r̄)Ez0 − ∂xHy0 + ∂yHx0 =−Iδ (r̄− r̄0) , (A.1a)

jωµHx0 + ∂yEz0 = 0, (A.1b)

jωµHy0 − ∂xEz0 = 0, (A.1c)

where ϵ(r̄) takes care of the permittivity of the OI as in (16). As the VVL will be introduced
into the incident and scattered field problems, it is useful to explicitly state that the total fields
remain continuous at those boundaries:{

Ez0 (r̄S)
− −Ez0 (r̄S)

+
= 0,

∂xEz0 (r̄S)
− − ∂xEz0 (r̄S)

+
= 0,

(A.1d)

for r̄S ∈ SVL.
As described in the main text, the incident field is defined with the same line source in the

presence of a VVL. Thus, the components of the VVL incident field satisfy

jωϵVL (r̄)E
i
z − ∂xH

i
y + ∂yH

i
x =−Iδ (r̄− r̄0) , (A.2a)

jωµVL (r̄)H
i
x+ ∂yE

i
z = 0, (A.2b)

jωµVL (r̄)H
i
y− ∂xE

i
z = 0. (A.2c)

Here, superscripts are used to denote the incident fields in this virtual problem. The permittivity
and permeabilities, denoted by ϵVL and µVL and defined as in (4), are used to denote the material
parameters in each of the three regions. The internal BCs are

{
Eiz (r̄S)

− −Eiz (r̄S)
+
, = 0,

∂xEiz (r̄S)
−
+ ∂xEiz (r̄S)

+
= 0,

(A.2d)

for r̄S ∈ SVL, that is, at the boundaries of the VVL, x= d1 and x= d2.
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Maxwell’s equations for the scattered field are

jωϵVL (r̄)E
s
z− ∂xH

s
y+ ∂yH

s
x =−wE, (A.3a)

jωµVL (r̄)H
s
x+ ∂yE

s
z =−wHx , (A.3b)

jωµVL (r̄)H
s
y− ∂xE

s
z =−wHy , (A.3c)

subjected to the BCs{
Esz (r̄S)

− −Esz (r̄S)
+

= 0,

∂xEsz (r̄S)
−
+ ∂xEsz (r̄S)

+
= f(r̄S) ,

(A.3d)

for r̄S ∈ SVL, where we have introduced unknown contrast sources wE, wHx , wHy and f that are
to be determined such that the addition of the incident and scattered fields are equal to the total
field.

Firstly, adding (A.2a)–(A.2c) to (A.3a)–(A.3c) we arrive at

jωϵVL (r̄)Ez0 − ∂xHy0 + ∂yHx0 =−Iδ (r̄− r̄0)−wE, (A.4a)

jωµVL (r̄)Hx0 + ∂yEz0 =−wHx , (A.4b)

jωµVL (r̄)Hy0 − ∂xEz0 =−wHy . (A.4c)

Then, subtract (A.4a)–(A.4c) from (A.1a)–(A.1c) we find the contrast sources as

wE (r̄) =


jω (ϵOI (r̄)− ϵ0)Ez0 r̄ ∈ D
2jωϵ0Ez0 r̄ ∈ DVL

0 r̄ ∈ V\(D∪DVL) ,

(A.5)

wHx (r̄) =

{
2jωµ0Hx0 r̄ ∈ DVL

0 r̄ ∈ V\DVL,
(A.6)

and

wHy (r̄) =

{
2jωµ0Hy0 r̄ ∈ DVL

0 r̄ ∈ V\DVL.
(A.7)

The contrast source f will be determined once the second-order Helmholtz equation is
derived for the scattered field. We first start with solving equations (A.3b) and (A.3c) respect-
ively for Hs

x and H
s
y to find

Hs
x =

−∂yEsz−wHx

jωµVL (r̄)
, (A.8a)

Hs
y =

∂xEsz−wHy

jωµVL (r̄)
. (A.8b)

Then, substitute (A.8a) and (A.8b) into (A.3a) to obtain

jωϵVL (r̄)E
s
z− ∂x

(
∂xEsz−wHy

jωµVL (r̄)

)
+ ∂y

(
−∂yEsz−wHx

jωµVL (r̄)

)
=−wE. (A.9)
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Taking the partial derivatives in (A.9), taking note that we are treating the three regions sep-
arately, we arrive at

jωϵVL (r̄)E
s
z−

1
jωµVL (r̄)

{
∂2
xE

s
z− ∂xwHy + ∂2

yE
s
z+ ∂ywHx

}
=−wE. (A.10)

Recalling definitions in (4), note that the wavenumber k0 is obtained everywhere both inside
and outside the VL as k20(r̄) ≜ ω2µ0ϵ(r̄). So, multiplying both sides of (A.10) by jωµVL, gives
rise to

−k20Esz− ∂2
xE

s
z
− ∂2

yE
s
z =−jωµVLwE+ ∂ywHx − ∂xwHy , (A.11)

which is equivalent to

∇2Esz+ k20E
s
z = jωµVLwE− ∂ywHx + ∂xwHy . (A.12)

Using relations definitions (A.5)–(A.7) for wE, wHx , and wHy in each of the different domains
within V, we arrive at

∇2Esz+ k20E
s
z =


−ω2µ0 (ϵOI (r̄)− ϵ0)Ez0 r̄ ∈ D
−2jωµ0 [jωϵ0Ez0 − ∂xHy0 + ∂yHx0 ] r̄ ∈ DVL

0 r̄ ∈ V\DVL.

(A.13)

Noting that there is no source inside the VL, based on (6a) in DVL we have

jωϵ0Ez0 − ∂xHy0 + ∂yHx0 = 0. (A.14)

So, equation (A.13) can be summarized into{
∇2Esz+ k20E

s
z =−ω2µ0 (ϵOI (r̄)− ϵ0)Ez0 r̄ ∈ D

∇2Esz+ k20E
s
z = 0 r̄ ∈ V\D.

(A.15)

Next, define

wOI (r̄) ≜
{
χOIEz0 r̄ ∈ D
0 r̄ ∈ V\D,

(A.16)

where χOI(r̄)≜ k2OI(r̄)− k20 and kOI ≜ ω2µ0ϵ(r̄) are defined as in (26) and (27), respectively.
Finally, the Helmholtz equation (A.15) can be rewritten as

∇2Esz+ k20E
s
z =−wOI. (A.17)

To determine the associated BCs and the unknown contrast function f, by virtue of the BCs,
adding the BCs for the incident field to those for the scattered field BVP and then subtracting
the result from the total field BCs in (A.1d) we obtain

f(r̄S)≜ 2∂xEz0 (r̄S)
+

= 2∂xEz0 (r̄S)
−

= 2∂xEz0 (r̄S) , (A.18)
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because the fields for the total field are continuous across the VVL surfaces. Consequently, the
following BCs for the VVL’s scattered-field problem are written as{

Esz (r̄S)
− −Esz (r̄S)

+
= 0,

∂xEsz (r̄S)
−
+ ∂xEsz (r̄S)

+
= 2∂xEz0 (r̄S) .

(A.19)

Appendix B. Formulation of the VVL problem. Approach II: the distributional
Helmholtz equations

B.1. Preliminaries from distributions

In this section, we use the concept of distributions from [34–37], and mostly borrow the nota-
tions from [36]. We introduce this notation for the full 3D case, denoting the EM fields as Ē
and H̄. In a region containing no volumetric sources Maxwell’s equations are written as

∇× Ē= {∇× Ē}+∆[n̂× Ē]δS, (B.1a)

and

∇× H̄= {∇× H̄}+∆[n̂× H̄]δS, (B.1b)

where ∇× (·) indicates the curl of a vector field in the sense of distribution, while {∇× (·)}
denotes the ordinary curl where the fields are continuous. Following [36], the δS denotes the
delta surface distributions centered at any surface, S, where surface currents induce discontinu-
ous fields. The∆(h) denotes the increment in quantity h in the n̂-direction. In our VL problem,
there are no imposed surface currents, so

∆[n̂× Ē] = 0, (B.2a)

and

∆[n̂× H̄] = 0. (B.2b)

On the other hand, the discontinuous VL step-function will produce distributions on the VL
surfaces, as will be shown in the next appendix where we derive the second-order equations
for the fields.

B.2. Distributional Helmholtz equation for a VL

Using the VL step functions, Maxwell’s curl equations in a source-free region, where neither
volumetric nor surface sources exist, are written as

∇× Ē=−jωµVLH̄, (B.3a)

and

∇× H̄= jωϵVLĒ. (B.3b)

Taking the curl of both sides of (B.3a) we obtain

∇×∇× Ē=−jω∇× (µVLH̄) . (B.4)
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Similar to (B.1b), for ∇× (µVLH̄), in the distributional sense we can write

∇× (µVLH̄) = {∇×µVLH̄}+∆[n̂×µVLH̄]δs. (B.5)

where δs is the surface delta distribution centered at SVL. When using (B.5), the unit vector n̂
is defined as the outward normal to the lens.

Now using, (B.3b) we arrive at

∇×∇× Ē=
{
k20Ē

}
− 2jωµ0 (n̂× H̄(r̄S))δs, (B.6)

where we have used k2VL =
√

ω2µVLϵVL = k20. Due to the continuity of k0 across the VL surfaces,
the second-order curl–curl equation for the electric field, (B.6) can be simply rewritten as

∇×∇× Ē= k20Ē − 2jωµ0 (n̂× H̄(r̄S))δs. (B.7)

Note that so far our derivations are valid for any double-negative lossless lens, of any shape
located in free space. In the next section, we specialize our formulation for the 2DVL problem.

B.2.1. The 2D Veselago case. For the 2D VL, the surface of the lens is denoted by SVL and
the surface distributions required in (B.7), δs, is the delta surface distributions centered at
x= d1 and x= d2. The outward unit vectors n̂ on S1 and S2 are therefore the unit vectors in
the negative and positive x-directions, respectively.

The z-directed line source produces the 2D TMz polarization, and the curl–curl vector
equation (B.7) becomes(

∇2Ez+ k20Ez
)
âz = 2jωµ0 (n̂× H̄(r̄S))δs, (B.8)

where H̄= Hx âx+Hy ây. The inhomogeneous Helmholtz equation for the z-component of the
electric field now becomes

∇2Ez+ k20Ez = 2jωµ0 Hy (r̄S)δs, (B.9)

where we have explicitly taken into account that the outward unit vectors at the two surfaces
are in opposite directions by defining

δs ≜ δs2 − δs1 , (B.10)

with δs1 and δs2 denoting the delta surface distribution at x= d1 and x= d2, respectively.
The RHS of (B.9) can be rewritten in terms of the normal derivative of the electric field,

either on the right or left of the surfaces

∇2Ez+ k20Ez = 2∂xEz (r̄S)
+
δs =−2∂xEz (r̄S)

−
δs. (B.11)

Using Maxwell’s equation (B.3a), the definition of the VL step function, and the continuity of
the tangential components of the magnetic fields along SVL, i.e.

Hy (r̄S)
+ −Hy (r̄S)

−
= 0. (B.12)

Note that by using these same equations, we get{
1
µVL

∂xEz (r̄S)

}+

−
{

1
µVL

∂xEz (r̄S)

}−

= 0, (B.13)
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which simplifies to

∂xEz (r̄S)
+
+ ∂xEz (r̄S)

−
= 0, (B.14)

the same BCs when the problem is dealt with as separate regions. That is, the distributional
Helmholtz equation

∇2Ez+ k20Ez = jωµ0Iδ (r̄− r̄0)+ 2∂xEz (r̄S)
+
δs. (B.15)

Replaces the formulation of the VL with point source located at r̄0 and traditional Helmholtz
PDEs in each region coupled by BCs (B.14), as well as continuity of electric field on SVL.

B.3. Helmholtz equation for VVL scattered-field problem

The Helmholtz equation for the total field corresponding to the 2D TMz free-space problem,
which forms the first step of the VVL MWI setup, can be written as

∇2Ez0 + k2OIEz0 = jωµ0Iδ (r̄− r̄0) , (B.16)

where, as before, kOI ≜ ω2µ0ϵ(r̄) takes care of the OI’s permittivity.
The VVL incident-field problem, written in terms of the distributional Helmholtz equation

for Ēi, similar to the formulation described in the previous section, can be written as

∇2Eiz+ k20E
i
z = jωµ0Iδ (r̄− r̄0)+ 2∂xE

i
z (r̄s)

+
δs

= jωµ0Iδ (r̄− r̄0)− 2∂xE
i
z (r̄s)

−
δs. (B.17)

Thus, the scattered-field distributional Helmholtz equation can be written as

∇2Esz+ k2OIEz0 − k20E
i
z =−2∂xE

i
z (r̄s)

+
δs = 2∂xE

i
z (r̄s)

−
δs (B.18)

or as

∇2Esz+ k20E
s
z =−wOI (r̄)− 2∂xE

i
z (r̄s)

+
δs

=−wOI (r̄)+ 2∂xE
i
z (r̄s)

−
δs (B.19)

with wOI defined as in (25).
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