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Abstract

Social networks store a considerable amount of personal data, which are
also a source of information for business. To comply with users’ privacy
rights, all social networks allow users to select the level of privacy they desire.
However, what occurs if the privacy choices of a user are modified unilaterally
by the social network? The privacy settings chosen by the user are stored
by the social network, which acts as a privileged party, which could tamper
with the user’s choices at any time. This paper addresses this problem and
proposes a decentralized approach to manage the privacy settings of a user.
Any change in the privacy settings of a social network user is validated by a
smart contract to ensure that it is compliant with users’ expectations. The
proposed solution has been implemented as an Ethereum-based decentralized
application to validate the effectiveness of the proposed approach.

Keywords:
Facebook, Instagram, smart contract, Ethereum, DApp, accountability,
GDPR

1. Introduction

The amount of personal data available on the Web has grown exponen-
tially, and a concentration of such data is placed in the most prominent social
networks, such as Facebook, Instagram, Twitter, YouTube, and LinkedIn.
The availability of a massive amount of personal information has raised pri-
vacy concerns about how social networks manage these data [14, 38, 47].
Conversely, data are an essential asset for social networks: they can sell per-
sonalized advertising with characteristics that match those of users because
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they know users’ demographic information, activities, purchasing patterns,
interests, and much more information. The contrast between the need to
preserve users’ data privacy and the need for social networks to monetize
users’ data is evident: for this reason, social networks allow users to choose
to what extent they want their data to be disclosed.

However, allowing a user to choose the desired privacy settings may not
be sufficient; for example, in 2018, the discovery that Facebook gave access
to the personal data of more than 87 million users to Cambridge Analytica
fueled interest in the risks of privacy violations [28]. In 2019, a study per-
formed by the European Commission [44] concluded that many people do
not know how to change privacy settings in social networks.

Concerning the problem of privacy settings in social networks, several
studies have been performed, primarily focusing on enabling users to specify
correct privacy requirements [41, 12, 40, 39] and detecting incorrect sharing
settings [34, 7, 32]. In this paper, we manage a new issue related to the user’s
privacy settings in social networks. Although a user can set whether personal
data can be transferred to third parties and which data can be displayed to
whom via the Internet, the user’s choices are saved by the social network
and used to manage his/her data accordingly. However, what occurs if the
choices of the user are modified unilaterally by the social network? Consider
the following hypothetical example. John accuses the social network Fantasy
of having permitted a third party to access his data and asks for compensa-
tion. Fantasy replies by showing the permission given by John to share his
data. At this point, such a dispute cannot be resolved: Fantasy could have
tampered with the stored privacy settings of John to hide a data breach; on
the other hand, John could have simulated this privacy violation to obtain
compensation. This issue occurs because the privacy settings chosen by a
user are stored by the social network, which acts as a privileged party, which
could modify the user’s choices at any time. To the best of our knowledge,
no solution to this problem has been proposed in the literature. Existing
approaches based on data encryption or decentralized storage [13, 25, 9] can-
not be used for the most popular social networks. Indeed, social networks
show their service for free and generate most of their revenue by offering
custom advertisements to specific types of consumers [8, 43]. Because the
advertisement-based business model of social networks strongly depends on
user data, any approach aimed at hiding such data from social networks,
such as schemes based on data encryption or decentralized storage, is not
effective in practice.
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Our paper proposes a solution to this problem that is based on the de-
centralized storage of users’ privacy settings in such a way that the social
network cannot modify such settings without this change being tracked. The
proposed approach is based on blockchain, a recent disruptive technology
that has already been applied in many fields, such as finance and smart
cities. The blockchain is a fully distributed cryptographic system that guar-
antees transparency, traceability, and immutability of registered information.
The control is distributed among several nodes in a peer-to-peer fashion and
ensures that transactions comply with programmable rules in the form of
smart contracts [31]. The blockchain is in charge of storing both the privacy
preferences of a user and the privacy settings assigned to him/her by a social
network. Moreover, using suitable smart contract functions, the blockchain
determines whether the privacy settings assigned to the user by the social
network are compliant with those declared by the user.

A further benefit derived from the use of the proposed approach is that
it favors the achievement of one of the goals of the recent General Data Pro-
tection Regulation (GDPR) [19], the new European Union privacy law. The
GDPR is intended to apply guidelines and regulations to how data are an-
alyzed, managed, stored or exchanged and applies to organizations that are
registered in the EU, organizations that have an establishment or subsidiary
in the EU, and to any organization that sells goods or shows services and
must process or track the personal data of EU residents. The GDPR places
strict obligations in terms of accountability on organizations to show their
compliance with the regulation and also implies that organizations will have
to maintain written records of the processing activities they perform. The
use of the proposed solution achieves accountability because it allows a so-
cial network to show the correct management of the user’s privacy choices.
Indeed, such choices are not self-certified by the social network, as currently
occurs; however, they are stored in a decentralized way on the blockchain
that guarantees the integrity and authenticity of data.

The proposed approach does not aim to prevent a social network from vi-
olating the user’s privacy but only to detect whether a violation has occurred
in case of dispute. For example, in the case of John and Fantasy introduced
above, the use of the proposed scheme allows anyone to determine whether
the social network misbehaved based on information publicly available on
the blockchain. The proposed approach is designed in such a way that the
information stored in the blockchain does not show any sensitive information
about the user.
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The primary contributions of this paper are:

1. we identify an issue in the management of the user’s privacy settings
that allows a social network to perform and hide a privacy breach;

2. we propose a blockchain-based scheme for detecting the malicious be-
havior of a social network that exploits this issue;

3. we analyze the privacy settings of five prominent social networks (Face-
book, Instagram, Twitter, YouTube, and LinkedIn) and define a graph-
based model to represent the concepts and relations of privacy settings
concisely;

4. we implement the proposed approach for Facebook, Instagram, Twit-
ter, YouTube, and LinkedIn to demonstrate its effectiveness.

This paper is structured as follows. In the next section, we discuss how
the most commonly used social networks manage the privacy preferences of
users. In Section 3, we introduce a model for defining the privacy settings
of a user in a social network and show how the model is instantiated in the
most popular social networks. This model is used to define both the privacy
settings desired by a user and those stored by the social network. In Section
4, we present the approach proposed to solve the privacy issue faced in this
study. In Section 5, we instantiate the proposed approach in an example
scenario, and we show the technical details about how our solution has been
implemented. Related work is discussed in Section 6. Section 7 presents the
advantages and limitations of the proposed solution. Finally, in Section 8,
we draw conclusions and propose future work.

2. Privacy Settings in Social Networks

In this section, we describe the privacy choices that a user can make in
the most used social networks.

We start with the user’s privacy settings on Facebook [17]. The “Privacy
Setting and Tools” section allows users to choose who can see their activity
(future posts). A user can choose among several levels of visibility of posts:
public, available to friends on Facebook, available to friends on Facebook
except for certain selected users, available to a specific group of friends,
available to a custom group of people, or private. Also, users can choose
who can find their profile. To be more specific, a user can choose if anyone
can send a friend request or if the sender must be friends with at least
one of the user’s friends. Other privacy settings in this section include the

4

https://doi.org/10.1016/j.ins.2021.01.004



possibility of choosing whether other users can see account information such
as the user’s friends list, phone number, and email address. The friends’ list
can be public, private, or available to friends of friends; the user’s phone
number and email address can be set to be available to everyone, friends,
or friends of friends. In the “Timeline and Tagging Settings” section, users
are shown more privacy settings that manage their profile privacy. Users
can filter comments and decide whether to allow their friends to post on
their timeline. They can also choose who can see what others post on their
timeline and whether to allow other users to share their posts to stories or
not. Also, this section displays tagging options: users can choose who can see
posts they are tagged in, and they can also decide if they want to review tags
before they are submitted. Facebook also allows its users to block specific
users, apps, or pages from interacting with their profile or from performing
specific actions. In addition to sharing content, Facebook users can also chat:
the privacy options associated with this feature allow users to choose if they
want to show their activity status or not. Facebook users can even change
their story privacy settings, and Facebook stories can be public, available to
friends and connections, available to friends, or available to a custom set of
users. Last, location services, sometimes called location access, are available
in Facebooks mobile app and help Facebook show its users location-based
features, including allowing them to post content that is tagged with their
location, obtain more relevant ads, find places and Wi-Fi nearby, and find
nearby friends. When location services is on, a user can choose to turn
Background Location on or off, which allows Facebook to access the device’s
precise location when the user is not using the app or not.

On Instagram [27], users can manage their privacy settings on different
levels. First, users can manage account privacy, where anyone can view a
user’s profile and posts on Instagram by default. Users can decide to make
their profile private so that only approved followers will be able to see its
content. If a user’s posts are set to private, only approved followers will see
them on hashtag or location pages. Second, users can decide how photos
and videos depicting them are added to their profile by the “Photos of you”
section: they can choose to add them automatically to their “photos and
videos of you” or not. If a user’s profile is public, people can reshare the user’s
posts on their stories. There is an option to turn this feature off through the
“Resharing stories” section. Similar to Facebook, Instagram allows users to
block specific accounts from viewing their profile. Blocked accounts cannot
view any sort of content posted by the user who blocked them. Instagram
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users can also decide if they want their activity status to be shown or not,
and they can decide who can see their stories. Users can choose with whom
to share their stories. Everyone on Instagram can send direct messages to
any user, whether they follow them or not. However, messages from people
other than one’s followers are kept under a different section (Requests) in
direct messages. While Instagram does not let users stop direct messages for
regular messages, it can restrict direct message replies for stories. Instagram
shows three privacy options for message replies to stories: Everyone, People
you follow, and Off. Last, in the “comment controls” section, users can filter
comments and choose who can post comments on their posts. Depending
on what the user chooses, comments can be posted by Everyone, followed
accounts, or followers.

In Twitter [46], privacy settings are categorized into three sections. The
first section is about Tweets, which can be set to be public or protected.
Public tweets, which is the default setting, are visible to anyone, including
people who do not have a Twitter account, and protected tweets are visible
only to followers. The second option in this section addresses the location
of Tweets, which enables the addition of precise location information to a
Tweet. This feature is off by default. When it is enabled, it allows Twitter
to collect, store, and use Tweets’ precise locations obtained by GPS. The
last option in this section addresses allowing people to tag users in photos:
this can be set to anyone, only following, or nobody. The second section is
Direct Messages: by default, users can receive a private conversation request
only by who follows them. However, a user can choose to receive requests
from anyone on Twitter. The second option of this section allows users to
turn on or off the notification that they have seen a message: by turning off
this setting, a user would not be able to see read receipts from others. The
third section, called Discoverability, allows others to find the user by email
address or phone number.

The privacy settings on YouTube are simple: these settings allow users
to choose who can see their liked videos, saved playlists, and subscriptions.
By default, such resources are public, but a user can maintain one or more
categories of resources private.

LinkedIn shows privacy settings in three sections: profile and network in-
formation, LinkedIn activity, and job-seeking preferences. Users can choose
their profile visibility for viewers not logged in LinkedIn, and the profile’s
public visibility can be turned on or off. From this level, privacy settings on
personal information, posts, or activities are generated; by default, LinkedIn
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sets primary information as public, but users can decide what category of
data include in the public profile. Public profiles can be found through
search engines. Public visibility can be switched on or off: if it is off, the
profile will not be visible for not logged-in members; if on, users will show ba-
sic profile information (name, number of connections, industry, and region).
Profile photos can be shared with connections, the network (LinkedIn mem-
bers connected up to three degrees of separation), and anyone (all LinkedIn
members). Users can choose to show their headline or not, posts and activi-
ties, current experience, past experiences, and education in the profile. Also,
users can choose to show only the first letter of the last name. Personal infor-
mation, such as email, can be shared with no one, 1st-degree connections, 1st-
and 2nd-degree connections, and anyone on LinkedIn. With regard to con-
nections, users can choose to hide or not hide them from other connections.
LinkedIn also implements the concept of “views”: if a user sees another user’s
profile, the user with the viewed profile will be notified. LinkedIn protects
the user’s privacy via three different levels of profile viewing options: name
and headline, private profile characteristics, and private mode. Concurrently,
a user can manage active status by three options: no one, connections, and
all LinkedIn members. Users can choose whether or not they want to share
changes in jobs or education with the network and to notify the network if
they have been mentioned in a blog or article post. Users can allow others
to be mentioned or tagged in content, such as posts, comments, and tags
in the photo. Users can decide whether LinkedIn can save the information
entered when applying to jobs (internal or external application) directly on
LinkedIn. When users apply for a job, they can choose to share their full
profile with the job poster. Users can be open to opportunities or not: in
the first case, recruiters will be able to find users by career interests. Users
can also decide to create a job alert for companies: they will be notified of
new jobs matching their skills. Last, users can choose to share or not share
their interests with recruiters.

The description of the choices that social networks show about privacy is
used in the next section to define a model to represent the privacy settings
of a user.

3. Modeling Privacy Settings

The purpose of this section is to define a model to represent the privacy
settings of a user in a social network. To do this, we introduce certain
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preliminary definitions.

Definition 1. Given a social network S, the privacy feature graph of S is a
direct graph PF S = 〈N,E〉, in which nodes are divided into two disjoint and
independent sets G (groups) and R (resources); thus, N = G ∪ R. A node
in G represents a group of users (i.e., profiles) of the social network S, while
a node in R represents a type of information in a user’s profile. Given two
nodes gi, gj ∈ G with i 6= j, an edge from gi to gj denotes that all the users
in gj are also in gi.

Now, we show an example to help the reader understand this definition
better.

Example 1. In Figure 1, the privacy feature graph of Instagram is shown.
In this graph, we have four group nodes g1, . . . , g4 (i.e., |G| = 4) and five re-
source nodes r1 . . . r5 (i.e., |R| = 5). As described in Section 2, an Instagram
user can choose to show profile data to four categories of users: g1 denotes
all Instagram users; g2 and g3 denote the follower users and followers who
are also followed by the account owner respectively; and g4 denotes all the
non-follower users who are followed by the account owner. Again, we have
seen that on Instagram, privacy settings apply to five categories of resources:
r1, . . . , r5 denote photos and videos, stories, story message replies, comments,
and active status, respectively. Finally, the edges from g1 to g2, g3, and g4
denote that g1 is a superset of all the other group nodes (e.g., followers are
included in everyone). Again, for the same reason, note that g2 is a superset
of g3.

Starting from the analysis shown in Section 2, we show how it is possible
to build a privacy feature graph for each of the social networks considered in
the previous section.

Facebook has five group nodes: everyone, friends, friends of friends, re-
stricted users, and custom (the user can decide to include or exclude certain
users). Resource nodes are made of posts, tagged posts, stories, friends’ lists,
profile information, and app information.

In Twitter, we identify three group nodes (everyone, everyone in Twitter,
and followers) and the following resource nodes: tweets, location, tag, direct
messages, notification, email, and phone number.

YouTube is simplest and only has the group node everyone and three
resources: videos, saved playlists, and subscriptions.
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Figure 1: Privacy feature graph of Instagram.

In LinkedIn, there are three group nodes (everyone, connections, and
members), and there are five resource nodes (posts, tagged posts, personal
information, job applications, and job interests).

The model defined in this study can be extended to many other social
networks. Now, we define a model for the privacy settings that a user can
choose in a social network.

Definition 2. Given a user U and a social network S with privacy feature
graph PF S = 〈N,E〉, the privacy setting graph of U in S is a direct graph
PSS

U = 〈N,E ∪ P 〉, where p ∈ P is an edge (g ∈ G, r ∈ R).

This graph has the same nodes as PF S, and a superset of edges: the
additional edges w.r.t. PF S are edges from a group node to a resource node.
Specifically, an edge (g ∈ G, r ∈ R) models that the users denoted by g can
access the information shown by the resource r.

Example 2. Considering Instagram again, we examine the privacy settings
of three different users mapped by three privacy setting graphs PSS

U1
, PSS

U2
,

9

https://doi.org/10.1016/j.ins.2021.01.004



and PSS
U3

.
The first user U1 has a public profile. Then, PSS

U1
is similar to PF S and

has four edges (g1, r1), . . . , (g1, r4), which indicates that everyone (g1) can
access all resources r1 . . . r4.

In the second case, user U2 chooses to set her/his profile as private. In a
private profile, only U2’s followers can access resources; therefore, PSS

U2
has

as edges (g2, r1), . . . , (g2, r4), where g2 are the followers of U2.
The most interesting and probably common case is when a user, say U3,

has customized privacy settings modeled by the privacy setting graph PSS
U3

,
such as the one shown in Figure 2. The edge (g1, r1) represents that every
Instagram user can access photos and videos posted by U3; (g1, r2) represents
that every Instagram user can access stories posted by U3. Story message
replies can be sent by those users who are followed by U3; this is shown through
the edges (g3, r3) and (g4, r3). Permission to comment is given to followers
and followed accounts (i.e., “People you follow and your followers”); this is
shown by the edges (g2, r4). and (g4, r4). Finally, U3 has chosen not to show
the activity status: this is modeled by the lack of edges to the node activity
status.

Now, we are ready to introduce the two definitions that will be widely
used in the following.

Definition 3. Given a privacy setting graph PSS
U = 〈G ∪ R,E ∪ P 〉, we

define the extended privacy setting graph EPSS
U = 〈G ∪ R,P ∪ P ′〉 as the

bipartite graph such that every edge connects a vertex in G to one in R, and
P ′ is the set of edges (gi, rj) such that there exist in PSS

U the edges (gy, gi)
and (gy, rj) with i 6= y.

The following example shows an intuitive idea of how to build an extended
privacy setting graph.

Example 3. Consider the privacy setting graph shown in Figure 2. To obtain
the bipartite graph, we must remove the edges between group nodes because
they violate the bipartite requirement. For any edge e ∈ E from gy to gj, if
gy has no edge to any resource node, then e can be removed. Otherwise, for
any edge (gy, rj) ∈ P , we add to P ′ a new edge (gj, rj) before removing e.
Figure 3 shows the extended privacy setting graph derived from the privacy
setting graph shown in Figure 2. For example, note that everyone can access
r1 and r2, and everyone is a superset of g2, leading to the addition of the
edges (g2, r1) and (g2, r2), when the edge (g1, g2) is removed.
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Figure 2: Privacy setting graph of a customized profile.

We conclude this section by defining a binary encoding of the model,
which will be useful in the implementation of the proposal.

Definition 4. Given an extended privacy setting graph EPSS
U = 〈G∪R,E∪

P 〉, we define the serialized privacy setting SPSS
U as the |G| · |R|-bit string

such that the x-th bit with 1 ≤ x ≤ |G| · |R| is 1 if and only if there exists the
edge (ni, rj) with i = (x− 1)/|G|+ 1 and j = (x− 1)%|G|+ 1, where / and
% denote the quotient and the remainder of Euclidean division, respectively.

This definition allows us to represent an extended privacy setting graph
using a bit string. In the following example, we show how this string is
obtained.

Example 4. Consider the extended privacy setting graph shown in Figure 3.
This graph can be shown by the adjacency matrix reported in Table 1, whose
32-bit string encoding is 0x000FF370, based on the definition given above.
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Figure 3: Extended privacy setting graph.

4. Proposed Solution

In this section, we present the proposed approach to ensure that the
privacy settings requested by a user cannot be modified by a social network
without being detected.

We introduce a scenario in which we have four actors:

• an online social network, a decentralized and distributed computer net-
work that shows services through the Internet.

• a user, a person using one social network to communicate with other
people and share information and resources.

• a Blockchain, a Distributed Ledger enabling smart contracts, such as
Ethereum.

• a smart contract, which is deployed on the blockchain.
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g1 g2 g3 g4

r1 1 1 1 1

r2 1 1 1 1

r3 0 0 1 1

r4 0 1 1 1

r5 0 0 0 0

Table 1: Adjacent matrix of the considered SPSS
U .

Figure 4 shows the architecture of the proposed solution and the interac-
tions among the actors performed based on the following operations.

1. Social network registration. Each social network needs an External
Owned Account (EOA) to operate on the blockchain, and a blockchain
address is generated as follows: a pair of private and public blockchain
keys are generated, and then, the corresponding blockchain address is
computed as the cryptographic hash of the public key. Each social
network makes its blockchain address publicly available.

2. User registration. A user also needs an EOA: following the same pro-
cedure described above, each user U can generate her/his blockchain
address, say A. Also, each social network SN includes SN includes two
new fields in the user’s profile: the first is for the user’s blockchain ad-
dress, the second is filled in by the user’s secret (e.g., a password), which
works as a salt. Finally, U generates a transaction on the blockchain
from A to the social network blockchain address, which is publicly avail-
able, with a payload H(snid, A, salt), where snid is the ID of the user
in the social network, and H is a suitable cryptographic hash function.
Via this transaction, the user links her/his social network identifier to
blockchain address A. This mapping can be verified only by knowing
salt, and this is performed by the social network.

3. User verification. This operation is performed by a social network to
verify that the blockchain address declared by one of its users is correct.
Given a user U , this check is performed as follows: first, the social
network extracts from U ’s profile the values snid, A, and salt. Then,
it searches for a received transaction coming from address A having in
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Figure 4: Interactions between the actors.

payload H(snid, A, salt). If no transaction is found, then this check
fails; otherwise, the mapping is correct.

4. Privacy setting. This operation is performed by a user to declare
her/his desired privacy settings. Specifically, this is performed by call-
ing the function setPrivacy of the smart contract (say SM) and by
passing the extended privacy setting bit string as a parameter (see
Definition 4) derived by the privacy feature graph that represents the
desired privacy settings of the user (see Definition 2). The smart con-
tract stores the settings associated with the user’s blockchain address.

5. Privacy compliance. When a social network wants to assign or modify
the privacy settings of user U , the function checkSettingGraph of SM
is called to ensure that the new settings are compliant with the user’s
preferences stored on the blockchain,
This function has A and BU , where A is the blockchain address of the
user, and BU is the extended privacy setting bit string derived from the
privacy feature graph representing the privacy settings to be assigned
to the user. This function (1) extracts the bit string P representing the
preferences of the user saved locally, if any, and (2) compares bitwise
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P and BU to verify that a zero bit in P is associated with a zero bit
in BU . Only if this check does not fail, the function returns that the
settings are compliant with the user’s preferences.

In summary, the idea underlying the proposed approach is to exploit a
blockchain smart contract to store both the desired privacy preferences of
the user and the privacy settings assigned to the user by the social network.
Also, the smart contract verifies whether the privacy settings assigned to the
user by the social network are compliant with those declared by the user.
Because all operations are stored in the blockchain, and transactions cannot
be modified, this solution implements an easy method to show accountabil-
ity of all the privacy assignments performed by a social network. A social
network can use this solution as proof of having acted correctly, based on the
accountability requirement of the recent General Data Protection Regulation
(GDPR) [19].

5. Design and Implementation

In this section, we describe the development of the proposed solution,
which is based on a decentralized application (DApp), called Your Privacy
Manager DApp, which runs on a blockchain. We start by discussing the
choices concerning the architecture of the system.

5.1. System architecture

We start by surveying the most commonly used blockchain technologies
and highlighting their advantages and drawbacks based on the interesting
analysis reported in [42].

Ethereum [49] is considered the second largest and global cryptocurrency
platform and is a permissionless blockchain enabling the creation of decen-
tralized applications through the use of smart contracts. This platform can
be considered a system that is globally shared and implementing a crypto-
graphically secure transaction-based state machine [49]. A smart contract is
defined as a piece of code verifying and enforcing conditions that stipulate a
digital contract between parties that does not require a third intermediary.
Smart contracts are written in Solidity, an object-oriented and high-level
Turing complete programming language.

IOTA [36] networks were designed for IoT applications and are permis-
sionless blockchain networks that are built on Tangle, a new data structure
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based on a directed acyclic graph, which does not need blocks, miners, or any
chain. For this reason, IOTA transactions are free. Although this platform
can yield better performance than Ethereum and Hyperledger blockchains,
its primary limitation is that devices may not be not capable of performing
the Proof of Work, resulting in a bottleneck when transactions occur [18].

EOSIO [16] is the first blockchain platform that uses the Delegated Proof
of Stake consensus algorithm. Converse to traditional proof-of-work-based
systems, EOSIO is public, permissionless, and suffers from serious attacks
derived from exploiting vulnerabilities in DApps and leading to millions of
dollars lost for EOSIO users, as discussed in references [26, 37].

Among permissioned blockchains, Hyperledger Fabric [2] is an implemen-
tation of an open-source private blockchain running smart contracts and is
intended to form a foundation for developing applications with a modular
architecture. Hyperledger Fabric allows components, such as consensus and
membership services, to be plug-and-play.

MultiChain [20] is a platform enabling the creation and deployment of
private blockchains to be developed and used inside organizations. The sys-
tem administrator sets a series of user permissions to introduce controls over
transactions and block size.

Chain Core [15] is another platform for private blockchains and is typically
used to initiate and transfer financial assets based on permission from the
blockchain infrastructure. Corda [10] is a distributed ledger platform for
recording and enforcing business agreements among institutions. Chain Core
and Corda also rely on smart contracts and allow participants to manage
permissions.

Open Chain [35] is an open-source distributed ledger technology based
on the Partitioned Consensus: every Open Chain instance has one authority
validating transactions. This platform aims to manage the digital assets of
organizations in a scalable and secure way.

This analysis provides a way to verify the suitability of each technology
with respect to the needs of the proposed solution. The Hyperledger Fabric,
MultiChain, Chain Core, and Open Chain platforms suffer from limitations
due to their permissioned nature and goals [2, 15, 10, 35]: users belong to
disparate environments and organizations, which makes it difficult to indi-
viduate who can arrange permissions [20].

Therefore, from the perspective of users’ accessibility, Ethereum, IOTA,
and EOSIO are valid options for the implementation of the proposed solution.
Among these platforms, we choose Ethereum for developing the proposed
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solution because it is the most used and widespread permissionless Blockchain
enabling smart contracts.

5.2. Implementation

In this section, we describe the implementation of the DApp called Your
Privacy Manager DApp. This DApp provides a front-end to interact with the
Ethereum blockchain via a smart contract, and the application’s back-end
code is executed on a peer-to-peer decentralized network.

The development environment relies on Truffle, a testing framework for
blockchain that uses the Ethereum Virtual Machine (EVM)), which simplifies
the DApp implementation process for developers.

For the deployment of the smart contract, Ganache is used. Ganache
is part of the Truffle suite and is a personal blockchain used to develop
distributed applications for Ethereum and Corda. Additionally, Ganache can
be used to run tests and deploy contracts. The local test network produced
by Ganache can be used for development purposes only. To deploy the smart
contract on the Ethereum blockchain, a connection to the primary network
is necessary.

A user can interact with the Ethereum decentralized application through
the browser without the need to run a full Ethereum node but does need
MetaMask. Unlike other wallets, MetaMask is a web browser plug-in that
supports Brave, Google Chrome, and Firefox and provides a user interface
to sign blockchain transactions and to manage identities.

For the implementation of the proposed application, we used Node.js, an
open-source, cross-platform JavaScript run-time environment. The use of
Node.js enables the use of the same programming language to develop both
server- and client-side scripts.

The user interface consists of HTML and JQuery functions that display
different DOM elements depending on what options the user selects. The core
of the client-side application is a JavaScript file that contains all the functions
necessary to load the smart contract, connect with the wallet, capture the
user’s desired privacy settings and call the smart contract functions.

Figure 5 schematizes the sequence diagram of the privacy setup process.
A similar diagram can be traced to represent the verification of compliance. A
user accesses the DApp using a web browser with Metamask and submits the
desired privacy settings through a form. Then, the JavaScript asynchronous
function setPrivacy() calls the setPrivacy function of the smart contract.
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Figure 5: Sequence diagram showing functional calls and events.

The smart contract then saves the setting graph of the user (sender): Al-
ternative 2 in Figure 5 records if this is the first time the user sets his/her
privacy, and how smart contract associates this graph with the new user. The
result of this operation is logged on the blockchain using the proper event.
Alternative 1 represents the result of the operation requested by the user: if
no error occurred in the process, a confirmation message is sent to the user.
An error message is shown to the user in the case the transactions failed for
any reason (e.g., out of gas, incorrect signature, exceeding block gas limit).

Now, we show the implementation of the privacy settings in the case of
an Instagram user. We present the data flow among several actors: the user,
its Dapp, the social network Instagram, and the Ethereum blockchain with
the smart contract.

A preliminary operation that occurs only once regards the link between
the user’s Instagram account and blockchain address. For this purpose, the
DApp includes three fields to be filled in by the user:

• Username, which is the username of the user on Instagram;
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• Blockchain address, which is set to the user’s blockchain account ad-
dress, say A;

• Password, which is set to the password of the user on Instagram.

Once the user fills in these fields, the application generates a transaction to
the social network blockchain address with a payload 〈H(username,A, pass-
word1)〉.

The social network receives this transaction, extracts the blockchain ad-
dress of the sender (i.e., A), searches for the username who has declared this
address, and retrieves the password of this user. Now, the social network
has all the data required to calculate the same digest and to verify that the
digest received by the transaction has been correctly generated. This process
assures that the link between the username and blockchain address has been
sent by the user. To generate such a transaction, the password of the user
and the private key associated with the blockchain address must be known
because the transaction is signed.

Then, the user can select their desired privacy setting on the DApp. The
part of the user interface relative to this operation is shown in Figure 6, which
shows privacy settings that the user can choose. After having selected the
desired options and input their password by clicking the button Submit, the
DApp generates an Ethereum transaction for the smart contract. This trans-
action is built based on the operation described in Section 3 and is handled by
the function called PrivacyManager; the code of this function and the entire
smart contract is reported in Figure 7. The smart contract is implemented
in Solidity, a statically typed programming language designed for developing
smart contracts, compiled to bytecode, and executed on a suitable virtual ma-
chine (EVM). The smart contract has been written using the CRUD pattern.
Considering how the EVM currently works, this process is recommended. In
the first portion of the code, a structure, UserSettingStruct, is defined
using the struct keyword. This structure contains two types of information:

• setting graph, of type bytes, is a dynamically sized array used to rep-
resent the setting graph.

1For the sake of presentation, we assume that the OSN knows the user’s password.
Actually, only the password digest is known: thus, the password digest should be used in
place of the password.
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Figure 6: Selection of the desired privacy settings on the DApp.

• index, of type uint, represents the position of a user’s blockchain ad-
dress in the userSettingIndex array, based on the CRUD pattern.

Line 8 defines a mapping between the address of a user and an element
of the previously defined structure. Finally, the array userSettingIndex is
used to verify the correctness of this mapping.

The following events are also part of the smart contract:

• PrivacySetting: This event is emitted every time a user declares a de-
sired privacy setting for the first time;

• SettingChange: This event is emitted every time a user updates the
desired privacy settings;
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• CheckSetting: This event is emitted whenever a privacy setup is config-
ured through the OSN front-end and shows whether the privacy setting
graph received as an input is compliant with the one previously set by
the user.

The function isSet (Lines 14-17) checks if a user is associated with a
setting graph. To do this, the function first checks if the userSettingIndex

array is empty (Line 15). If the array is empty, no association exists, and
the function returns false. If the array is not empty, the function retrieves
the index associated with the input from the userSettingStruct struct
through the mapping. Then, the function retrieves the address contained
in the userSettingIndex array at the retrieved index position and checks
if this address matches the input. A Boolean value is returned based on a
comparison result.

The function setPrivacy (Lines 18-30) is used by users to set or update
their privacy preferences. The input setting graph is a dynamically sized
array of bytes used to represent the privacy setting graph associated with
the user’s preferences (see Definition 4). First, the isSet function is called
(Line 19). If isSet returns false, the function indicates that the sender has
never submitted a graph; thus, the new setting graph value is stored as the
value of setting graph in the userSettingStruct struct associated with
the address of the sender through the mapping (Line 21). Then, the address
of the sender is pushed in the array userSettingIndex, and the new index
is stored as a value for the index attribute in the structure. Finally, the
PrivacySetting event is emitted.

Everything works similarly if the user had already submitted a graph in
the past (Lines 25-29). In this case, only an update is required. Thus, only
the graph contained in the structure must change, and the index remains the
same. Once the update has occurred, the SettingChange event is emitted.

The function checkSettingGraph (Lines 31-50) is called by an OSN in-
terested in associating a set of privacy options with a user. First, the function
checks if the user address has ever been associated with a privacy preference
graph. To do this, the isSet function is called. If the result of this call is
false, the CheckSetting event is emitted, and the value of its third param-
eter is false because the user has never defined her/his privacy preferences.
Otherwise, if isSet returns true, the checkSettingGraph function checks
if the input privacy settings and those already associated with the user are
compatible in size. If their sizes do not match, then the CheckSetting event

21

https://doi.org/10.1016/j.ins.2021.01.004



is emitted, and the value of its third parameter is set to false. Otherwise,
the function compares the input setting graph request coming from the
OSN with the user’s request. This comparison is performed for each cor-
responding byte of the byte arrays by a bitwise OR: if the output of this
OR operation is greater than the byte in the stored setting graph in the
userSettingStructs, then the settings are not compliant with the user’s
preferences. Eventually, a CheckSetting event that displays the OSN ad-
dress (msg.sender), the user’s address, and the result of the call is emitted:
in particular, the result will be true if the request from the OSN is compliant
with the user’s, false otherwise.

Finally, we consider the case in which a user wants to update the pri-
vacy setting. This case is similar to the setting of the privacy seen above,
with the only difference that instead of the PrivacySetting event, the
SettingChange event is emitted. The use of events is necessary because the
real value returned by a function is always the hash of the transaction that
is created: transactions do not return a value to the front end because they
are not immediately mined and included in the blockchain. As a solution,
to obtain the return value from the function, the front end must maintain
watching for that event. This process also implies that a listener must be
active in detecting the events. Specifically, the OSN listens to the events,
and when the SettingChange event occurs, the social network checks if the
new privacy settings of the users are compliant with the existing settings
associated with the user. If they are not compliant, then the social network
has to update the user settings accordingly.

To validate the proposed smart contract, we used Etherscan, a Block
Explorer and Analytics Platform for Ethereum, where it is possible to find
all Ethereum transactions. When a function of the smart contract is called,
the transaction begins, and after a few seconds, it is visible on Etherscan.
Also, in the Event Logs section, the events emitted during the execution of
the function are also shown. The contract has been implemented by Remix -
Solidity IDE connected with Metamask, an extension for accessing Ethereum
enabled distributed applications from the browser: the Ethereum testnet
used is Ropsten.

The implementation of the proposed solution can be found on GitHub
at https://github.com/Lara-F/Your-Privacy-Manager. The smart con-
tract has been deployed on Ropsten and is reported at https://ropsten.

etherscan.io/address/0x3657b2322f2dde1fea4af963ae2f5b7837db4fe1.
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6. Related work

In this section, we survey the most important proposals related to the
proposed approach. We start by considering the literature related to social
networks.

Facebook, Twitter, and Instagram are social media platforms that are fa-
miliar to many people, and many online users use them every day [43]. Stud-
ies [6, 3] explore the growing importance of social networks in contemporary
development, investigating the relationship between social media and crime
or homicide. Considering Facebook, the authors suggest that the associa-
tion between Facebook penetration and crime or homicide is overall negative
because social media are used essentially for productive ends. However, ref-
erence [6] highlights the prominence of a positive relationship between social
media in terms of Facebook penetration and terrorism. The direct link be-
tween social media and governance dynamics is studied in references [5, 29],
while that between social media and corruption is discussed in reference [30].
These studies show the growing importance of information and communica-
tion technology and the spread of social media in the daily life of citizens.
These relationships also describe on the tourism sector [4].

With regard to user privacy, [48] highlights the fact OSNs’ privacy set-
tings and features are frequently concealed, too difficult to understand, or
change so quickly that it is nearly impossible for users to maintain them.
This complexity raises the question of whether OSN users’ privacy settings
match what they intend to share. In reference [33], the authors present the
results of an empirical evaluation that estimates privacy objectives and be-
haviors and compares these with the privacy settings on Facebook. This
study emphasizes that, although Facebook provides the opportunity to con-
figure privacy preferences at a detailed level on most user data (e.g. each
album, video, photo or status update), users have to manage so much data
that, even if they used privacy-preserving features regularly, they would not
be able to monitor everything. Considering that every participant in this
study stated that they had identified at least a sharing violation, the results
of this paper show that managing privacy settings is not an easy task both for
OSNs and users. A similar study [32] shows results obtained by deploying a
survey implemented as a Facebook application. The primary purpose of this
study is to quantify the extent of the problem of handling privacy and mea-
suring the discrepancy between the desired and real privacy features. The
analysis shows that nearly half of the content users uploading to Facebook
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are exposed to all Facebook users as a result of being shared with the default
privacy settings.

Another interesting perspective on this topic is given in reference [45],
which discusses the privacy risks that come from various recent personal-
ization tendencies. The authors note that, depending on the functionalities
offered, each social network handles its users’ privacy differently. In reference
[50] the authors consider the fact that third parties have control over an enor-
mous amount of personal data and, considering the recent rise in reported
privacy violation incidents, they acknowledge that a solution to such prob-
lems is possible thanks to verifiable computing achieved using a decentralized
network of peers accompanied by a public ledger.

A relevant topic related to the proposed approach is blockchain. In ref-
erence [25] the limitations and the advantages of using private blockchain in
businesses are explored. The authors propose an attribute-based encryption
security system that relies on a private-over-public (PoP) blockchain ap-
proach to overcome the drawbacks of private blockchain and simultaneously
to benefit fully from the positive features of the public blockchain.

Blockchain and smart contracts are applied to many domains including
AI, 5G, IoT, and proof of delivery systems. The study shown in reference
[42] suggests how blockchain technology could transform AI, solving many
shortcomings and challenges related to AI such as data security, collective
decision making, and decentralized intelligence. Investigating on the features
of blockchain architecture and platforms, the authors show a wide range of
open research challenges for combining AI and blockchain technologies.

The authors of reference [11] discuss the key opportunities offered by
blockchain technology in 5G networks, highlighting the challenges of scal-
ability and interoperability among different blockchain platforms and 5G
stakeholders. Concurrently, IoT applications are continuously growing and,
these devices are deployed at a massive scale. The authors of reference [1]
propose a blockchain-based authentication system and implementation rely-
ing on Ethereum smart contracts for IoT devices.

With regard to the proof of delivery of assets, references [22, 23] explore
the use of the Ethereum blockchain to create decentralized PoD systems
ensuring accountability and integrity. Their solution includes the contem-
porary presence of multiple transporters, eliminating the need for a trusted
third party. In reference [24], another blockchain-based solution to show the
delivery of digital assets is shown. Their proposal is developed by smart
contracts exploiting the IPFS decentralized file system to ensure that the
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integrity of the agreement form between the parties is well maintained.
Every day sensitive and behavioral data about users are collected by social

networks [13] and present a means for companies or attackers that use them
for marketing or other purposes. The authors propose a blockchain-based
model to guarantee the privacy of users and to protect sensitive personal
information in a distributed environment. This approach focuses on data
storage applications, and the DEPLEST algorithm solves the problem of
data synchronization integrated with a new consensus protocol for blockchain
ledgers.

The investigation of transactions recorded inside blockchains is also im-
portant. Reference [21] studies transaction features and the relationships
between them. The authors introduce statistical laws of the data related to
a framework of network science and they represent the relations between dif-
ferent user accounts as a graph. They believe that this statistical approach
can be replicated to other cryptocurrency platforms.

The most recent literature related to the privacy aspects discussed in this
paper is described in the following. The authors of reference [41] highlight
the importance of self-determining privacy settings by digital service users:
specifically, the selected privacy requirements must be correct and describe
the real privacy demands of users. The study shows a categorization of the
common types of specification privacy interfaces and different user types.
The experiments identify how to increase the effectiveness, efficiency, and
satisfaction of privacy policy specification interfaces.

In some cases, the privacy settings of many mobile apps are difficult to
understand and locate by users [12]. These difficulties expose user privacy to
various risks, without proper consent. The authors of reference [12] report a
systematic study of this problem and analyze the user perception of privacy
settings. They discovered that 82.16% of hidden privacy settings are set to
leak user privacy by default. Privacy settings suffer from the “set it and forget
it” issue [34]. The decisions made about users’ personal preferences could
change over time and users tend to forget this type of setting. The survey
analyzes the behavior of 78 Facebook users to understand the potential risks
of the incorrect shifting of privacy preferences and to identify error-prone
and mismatched privacy settings.

Reference [40] describes the basic interest of users in transparency and
privacy control measures, individuating two important topics: transparency
and self-determination. Privacy settings are generally perceived as too com-
plex, and taking actions and making decisions about privacy are difficult for
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many users. Even if users are interested in protecting their privacy, they are
frequently hindered from making decisions.

This review of the literature shows the potential of blockchain technology
in applications that support privacy and authorization management. The
importance of privacy aspects in OSNs, such as users’ awareness of validating
their privacy choices, is evident. To the best of our knowledge, the unfair
behavior of a social network that changes the privacy settings of the user
is a new problem and no solution has been proposed in the literature. The
proposed approach is the first technique that detects the alteration of the
privacy settings of a user performed by a social network, and this result is
obtained by exploiting the power of blockchain technology.

7. Discussion

In this section, we discuss certain aspects of the proposed solution.
We start by managing how the goals of the proposed solution are reached.

The blockchain stores all events related to the privacy settings of a user,
which are when a user states the desired privacy settings and when a social
network assigns the privacy settings to a user. In the event of a complaint, a
misbehaving party can be detected by looking at the events on the blockchain

The events on the blockchain allow a social network to demonstrate that
they have acted honestly, thus providing accountability, because the smart
contract verifies that the privacy settings assigned to a user are compliant
with her/his expectations.

The blockchain stores the privacy settings of a user. However, no party
except the user and the social network can link these settings to the user,
because the settings are associated with just a blockchain address, which is
pseudo-anonymous [50]. The link is generated in the step user verification
and is published on the Blockchain as a digest and can be known only by
guessing the password of the user, which can be assumed to be a secret only
known by the user and the social network.

We include certain considerations related to the cost of implementing this
solution by reporting the price of the operations related to the creation of
and the calls to the smart contract. The deployment of the smart contract,
which is performed only once, costs 525 Micro(ETH) (in December 2020,
this is approximately 0.12 $); the call to the function setPrivacy costs 91
Micro(ETH) (approximately 0.02 $) and the function checkSettingGraph

costs 29 Micro(ETH) (approximately 0.0065 $). Thus, we can conclude that
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by paying about 2 cents, users can set their privacy settings, and the OSN,
with a cost of 0.65 cents per user, can check whether the privacy settings of
the users are compliant with their privacy features. We believe that these
costs can be borne by the social network, even though there can be appli-
cations in which this service is paid by users. This result allows us to state
that the implementation of the proposed solution is cheap and effective.

Despite these important results, the proposed solution have certain lim-
itations. As discussed above, the drawback of using Ethereum is related to
the transaction fee. We noted in Section 5.1 that other implementations of
blockchain could be used, such as IOTA [36] and EOSIO [16], to overcome
this problem.

Another limitation of the proposed solution is related to the creation of
the privacy feature graph of a social network (see Definition 1). The identi-
fication of group and resource nodes requires a study of the social network
and cannot be automated. Also, any change in the privacy options of a so-
cial network requires updating the graph. Fortunately, these changes are not
frequent in social networks but do also require a change in the user interface
of the website and app.

A final aspect to consider regards the security of the smart contract code:
it is critical to ensure that the smart contract code is bug-free and is not
vulnerable to almost any security threats [24, 1]. One of the most effective
approaches to create secure applications is to make the implementation open
source (as we did) in such a way that many programmers may access and
test the code. However, we must remember that it is impossible to make a
system completely secure and still usable.

8. Conclusion

The problem of guaranteeing the privacy of users in the context of social
networks is receiving increasing attention from the research community. The
case of Cambridge Analytica and the issue of the GDPR Regulation have
highlighted the need to increase research to discover possible privacy issues
and suitable solutions.

This paper provides knowledge to this field of study by highlighting pos-
sible misbehavior of a social network that can result in a privacy violation.
The privacy settings of a user are stored by the social network, which acts as
a privileged party and could modify the user’s choices to spread his/her data
at any time without a user being able to prove this violation. These aspects
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have become critical challenges with the issuance of the GDPR Regulation,
and the proposed approach aims to provide OSNs with a tool to demonstrate
their honesty. The proposed approach combines the use of blockchain tech-
nology with a highly adaptable model to define the privacy settings of users
in social networks. The proposed solution has been implemented to show its
effectiveness and cheapness: the Ethereum smart contract implementing the
required functionality, and the decentralized web application that serves as
a user interface to interact with the smart contract. The price for obtaining
such features is on the order of some cents for each user.

The change required for a social network is minimal. They should show
users the possibility to declare the blockchain address used to manage privacy,
which is associated with the decentralized application. Despite this negligible
change, social networks would markedly benefit from using the proposed
solution.

As future work, we intend to extend the model to allow the same graph
to be used for more social networks. We plan to allow a user to select general
(i.e., independent from a specific social network) privacy settings, and these
settings are then automatically converted to specific privacy settings for each
social network of the user.
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1 pragma solidity ^0.5.10;
2
3 contract PrivacyManager {
4 struct UserSettingStruct {
5 bytes setting_graph;
6 uint index;
7 }
8 mapping(address => UserSettingStruct) private userSettingStructs;
9 address[] private userSettingIndex;

10 event PrivacySetting(address user, bytes setting);
11 event SettingChange(address user, bytes setting);
12 event CheckSetting(address OSN, address user, bool result);
13
14 function isSet(address _address) public view returns(bool exists) {
15 if (userSettingIndex.length == 0)
16 return false;
17 return (userSettingIndex[userSettingStructs[_address].index] == _address);
18 }
19 function setPrivacy(bytes memory _setting_graph) public returns(bool success) {
20 userSettingStructs[msg.sender].setting_graph = _setting_graph;
21 if (!isSet(msg.sender)) {
22 userSettingStructs[msg.sender].index = userSettingIndex.push(msg.sender) - 1;
23 emit PrivacySetting(msg.sender, _setting_graph);
24 return true;
25 }
26 else {
27 emit SettingChange(msg.sender, _setting_graph);
28 return true;
29 }
30 }
31 function checkSettingGraph(address _user, bytes memory _request) public {
32 if (!isSet(_user)) {
33 emit CheckSetting(msg.sender, _user, false);
34 return;
35 }
36 bytes memory setting_graph = userSettingStructs[_user].setting_graph;
37 if (setting_graph.length != _request.length) {
38 emit CheckSetting(msg.sender, _user, false);
39 return;
40 }
41 else {
42 for (uint i = 0; i < setting_graph.length; i++)
43 if ((setting_graph[i] | _request[i]) > setting_graph[i]) {
44 emit CheckSetting(msg.sender, _user, false);
45 return;
46 }
47 emit CheckSetting(msg.sender, _user, true);
48 }
49 }
50 }

Figure 7: Code of the smart contract.
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