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Abstract—In a virtual experiment, the data available to solve an 

inverse scattering problem are linearly combined in order to make 

the inversion task simpler. This goal is achieved by conditioning 

contrast sources radiating the scattered fields and exploiting their 

properties in the inversion procedure, for instance by devising 

data-driven approximations or regularization schemes. In this 

framework, the design of a virtual experiment amounts to 

determine the coefficients ruling the recombination of the 

available data. In this paper, we present a general and simple 

procedure to design virtual experiments capable of enforcing 

contrast sources with desired properties. The proposed procedure 

is computationally straightforward and stable, as it does not 

require an explicit inversion and regularization process, and just 

consists in the evaluation of the adjoint solution of an auxiliary 

problem. The design approach is tested in the case of VE enforcing 

circularly symmetric contrast sources and the corresponding 

inversion procedure is assessed using both simulated and 

experimental data. 

 
Index Terms— adjoint solution, microwave imaging, inverse 

scattering problem, virtual scattering experiments, orthogonality 

sampling method, algebraic reconstruction method. 

 

I. INTRODUCTION 

N microwave imaging, the virtual experiments (VE) are 

defined as a new set of experiments whose realization does 

not require physical measurements, but is obtained through a 

suitable (numerical) rearrangement of the measurements 

already performed to probe an unknown target [1]-[3]. In so 

doing, the VE do not aim at introducing new information, but 

rather at implicitly enforcing peculiar properties of the 

(unknown) contrast sources (and/or the total fields) induced in 

the imaging domain by the interaction between the target and 

the probing (incident) fields.  

By taking these imposed properties into account, it is 

possible to conveniently recast the inverse scattering problem 

and counteract the pitfalls arising in its solution, namely, the ill-

posedness and the non-linearity [4]. For instance, thanks to this 

approach, a new data-driven linear approximation having an 

extended validity range as compared to the traditional Born 

approximation [1] has been developed and effective non-linear 

inversion methods based on algebraic inversion formulas [2] or 
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peculiar forms of regularization [3] have been proposed. 

In practice, to turn a set of scattering experiments into a VE, 

one has to determine the coefficients ruling a superposition of 

the measured scattered fields that matches the virtual scattered 

field one wants to enforce and which is in turn radiated by the 

desired virtual contrast source. To cope with this design (or 

synthesis) problem, some overlooked pieces of information 

arising from the linear sampling method (LSM) and the 

factorization method (FM) [6] have been so far exploited [1]-

[3]. More recently, orbital angular momentum has also been 

exploited in linearized microwave imaging [7] and in particular 

in the VE framework [8]. 

While successful to demonstrate the effectiveness of the VE 

framework, the VE design procedures used so far requires the 

solution of a linear ill-posed inverse problem, thus being subject 

to possible inaccuracies. In fact, instabilities in the inversion 

process may be such to lose the direct control on the contrast 

sources, whose behaviour is the actual ultimate goal of the VE 

design.  

In this paper, we introduce a new and general VE design 

procedure that (partially) overcomes the above issues and 

determines the superposition coefficients in a simpler and more 

effective way. Such a new approach is general as it allows to 

possibly design VE contrast sources other than focused ones. 

The proposed approach is also straightforward as, by virtue of 

the adjoint operator method introduced in the ‘60s by Dymskii 

[9],[10], it provides a convenient approximate solution to the 

synthesis problem, without requiring an explicit inversion and 

regularization process. Moreover, and most important for our 

purpose, we show that the proposed procedure is capable to 

better design and control the virtual contrast source induced 

within the unknown target by the synthesized VE. Finally, once 

particularized to the case of circularly symmetric VE currents, 

the new approach is also related to a well-known qualitative 

imaging technique, the orthogonality sampling method (OSM) 

[11]-[13], so that it can be used to provide an estimate of the 

support (i.e., location and shape) of the targets, which 

represents a convenient piece of information to further simplify 

the solution of the inverse scattering problem.  

The paper is organized as follows. In Section II, the inverse 

scattering problem is formulated and the basic VE definitions 
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are briefly recalled. In Section III, the new VE design procedure 

is outlined. In Section IV, the new procedure is detailed for the 

case of VE whose contrast sources are designed to exhibit a 

circular symmetry. In Section V, we assess the capabilities of 

the new design procedure showing that it outperforms previous 

strategies. Finally, Section VI discusses and shows the added 

value of the proposed procedure when dealing with actual 

inversion. In particular, the effectiveness of the proposed 

strategy is verified against synthetic and experimental data by 

exploiting the designed “circularly symmetric” VE to set the 

direct algebraic reconstruction method [2]. Conclusions follow.  

Throughout the paper we consider the canonical 2D scalar 

problem (TM polarized fields), linear media, and we assume 

and drop the time harmonic factor 𝑒𝑥𝑝{𝑗𝜔𝑡}.  

II. INVERSE SCATTERING PROBLEM AND VIRTUAL 

SCATTERING EXPERIMENTS FRAMEWORK 

A. Statement of the inverse scattering problem 

Let Ω denote the region under test where the targets are 

located. The contrast function 𝜒(𝒓) =
𝜖𝑠(𝒓)

𝜖𝑏(𝒓)
− 1, 𝒓 = (𝑥, 𝑦) ∈

Ω relates the unknown complex permittivity of the scatterers 

𝜖𝑠(𝒓), to that of the host medium 𝜖𝑏. Without loss of generality, 

let us assume that the host medium is homogeneous.  

The scatterers are probed by the incident fields 𝐸𝑖(𝒓, 𝒓𝒕) 

radiated by N antennas located in 𝒓𝒕 ∈ Γ , with 𝑡 = 1, . . , 𝑁 

and Γ being a curve which is external to Ω. The resulting 

scattered fields 𝐸𝑠(𝒓𝒎, 𝒓𝒕) are measured by M antennas 

positioned at 𝒓𝒎 ∈ Γ, with 𝑚 = 1, . . , 𝑀 (see Figure 1).  

Under the above assumptions, the equations describing the 

scattering problem can be expressed in integral form as [4],[14]:  

 

𝐸𝑠(𝒓𝒎, 𝒓𝒕) = ∫ 𝐺𝑏(𝒓𝒎, 𝒓′)

Ω

𝑊(𝒓′, 𝒓𝒕)𝑑𝒓′ = 𝔸𝑒[𝑊] 

(1.a) 

𝑊(𝒓, 𝒓𝒕) = 𝜒(𝒓)𝐸𝑖(𝒓, 𝒓𝒕) + 𝜒(𝒓) ∫ 𝐺𝑏(𝒓, 𝒓′)

Ω

𝑊(𝒓′, 𝒓𝒕)𝑑𝒓′

= 𝜒𝐸𝑖 + 𝜒𝔸𝑖[𝑊] 
(1.b) 

 

where 𝑊 is the contrast source induced in the target, and 𝐺𝑏 is 

the Green’s function pertaining to the background 

medium. 𝔸𝑒: 𝐿2(Ω) → 𝐿2(Γ) and 𝔸𝑖 : 𝐿2(Ω) → 𝐿2(Ω) are the 

short notations for the corresponding integral radiation 

operators.  

The problem cast by Eqs. (1) is non-linear, as 𝑊 depends on 

the unknown of the problem, i.e., the contrast 𝜒. Moreover, it is 

also ill-posed, due to the properties of the radiation operator 𝔸𝑒 

[15]. Indeed, as discussed in [16], for both cases of single and 

multiple illuminating incident waves, the scattering operator is 

compact. As the inverse of a compact operator cannot be 

continuous, the inverse scattering problem is ill-posed. Then, 

small variations of the scattered field data produce unbounded 

variations of the corresponding solutions. Another important 

consequence is that the scattered fields admit a finite-

dimensional representation within any required accuracy [16]. 

By virtue of the above, in any scattering experiment one deals 

with a finite amount of independent data (no matter how many 

samples one is collecting). Also, by considering the operator 

relating the primary source to the field inside domain under test, 

it also follows that only a finite number of independent 

scattering experiments can be performed. As a consequence, 

care has to be taken in choosing the number and positions of 

transmitting and receiving probes, as their placement (and 

number) affects the possibility of collecting all the available 

information, in a non-redundant fashion. In the paper, the 

conceptual framework developed in [16] is adopted. 

 

B. The Virtual Experiments Framework 

From Eq. (1.b), it can be noted that, for a fixed contrast 

function, the relationship between the contrast source and the 

incident field is linear. As Eq. (1.a) is linear too, it follows that, 

for any given scatterer, the relationship between scattered field 

and the incident field is linear as well.  

The concept of VE is based on this simple observation, which 

entails that the information arising from multiple scattering 

experiments can be re-organized in a different possibly more 

convenient way by means of a linear superposition of the 

incident fields [1]-[3].  

By repeatedly applying this simple procedure (that is by 

considering several sets of superposition coefficients) it is 

possible to generate a set of virtual scattering experiments, with 

no need of additional measurements. 

From a mathematical point of view, a VE is identified by a 

virtual incident field ℰ𝑖 obtained through a linear superposition 

of the known incident fields according to the virtual excitation 

coefficients 𝜶 = (𝛼1, … , 𝛼𝑁): 

 

ℰ𝑖(𝒓) = ∑ 𝛼𝑡

𝑁

𝑡=1

𝐸𝑖(𝒓, 𝒓𝒕) 

(2.a) 

Under the assumed linear constitutive relationships, the 

virtual incident field ℰ𝑖 gives rise to a virtual contrast source 𝒲 

 

 
 

Figure 1. Pictorial view of the domain of interest and the transmitters and 

receivers locations. 
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and a virtual scattered field ℰ𝑠 that are just a superposition of 

the original ones according to the same coefficients, i.e.: 

 

𝒲(𝒓) = ∑ 𝛼𝑡

𝑁

𝑡=1

𝑊(𝒓, 𝒓𝒕) 

(2.b) 

ℰ𝑠(𝒓𝒎) = ∑ 𝛼𝑡𝐸𝑠(𝒓𝒎, 𝒓𝒕)

𝑁

𝑡=1

 

(2.c) 

 

Finally, by using Eqs. (2), Eqs. (1) can be recast for the VE 

as: 

ℰ𝑠(𝒓𝒎) = ∫ 𝐺𝑏(𝒓𝒎, 𝒓′)

Ω

𝒲(𝒓′)𝑑𝒓′ = 𝔸𝑒[𝒲] 

(3.a) 

𝒲(𝒓) = 𝜒(𝒓)ℰ𝑖(𝒓) + 𝜒(𝒓) ∫ 𝐺𝑏(𝒓, 𝒓′)

Ω

𝒲(𝒓′)𝑑𝒓′

= 𝜒ℰ𝑖 + 𝜒𝔸𝑖[𝒲] 
(3.b). 

III. VIRTUAL EXPERIMENTS DESIGN 

The design of a VE consists in determining the virtual 

excitation coefficients 𝜶. In doing so, the goal is that of 

enforcing some convenient properties of 𝒲 that can be 

exploited in the inversion of Eqs. (3). As the actual contrast 

sources 𝑊 are unknown and the scattered fields 𝐸𝑠 collected in 

the original experiments are the only available data, the VE 

design must be based on these latter.  

A first option is to formulate the design of a VE as the 

problem of synthesizing the coefficients 𝜶 such that the virtual 

incident field ℰ𝑖 interacting with the unknown targets produces 

a desired virtual scattered field pattern ℰ𝑠
𝐷. To this end, let us 

introduce the multistatic response matrix (MSR) [17],[18], 

denoted with 𝕂 ⊂ ℂ𝑀×𝑁, which represents the 𝑀 × 𝑁 data 

matrix collected under the adopted measurements 

configurations. Its generic entry 𝑘𝑖𝑗 is the complex scattered 

field measured by the i-th receiver when the j-th transmitter is 

illuminating the region of interest. Moreover, let us express the 

recombination of the original data as follows: 

 

𝕂𝜶 ≔ ∑ 𝛼𝑡𝐸𝑠(𝒓𝒎, 𝒓𝒕)

𝑁

𝑡=1

 

(4) 

 

and let us define 𝓔𝒔
𝑫 ⊂ ℂ𝑀 the vector containing the samples of 

the desired virtual scattered field ℰ𝑠
𝐷 at the receivers locations. 

Then, the synthesis problem at hand can be expressed as: 

 

𝕂𝜶 = 𝓔𝒔
𝑫 

 
1 Any source can be decomposed into a radiating part, a non-radiating part 

which corresponds to an identically null field outside of the source support and 
an essentially non-radiating part which gives rise to an evanescent field [16].  

(5) 

 

As it is shown in Appendix A, this procedure can be related to 

the VE design approach based on LSM, exploited in [1]-[3]. In 

particular, Eq. (5) can be solved in the least square sense by 

computing the singular value decomposition (SVD) of 𝕂. 

However, such inversion procedure is influenced by the 

presence of measurement noise which affects the elements of 

𝕂. As a countermeasure, only the singular values which are 

above of the noise level must be exploited to provide stable 

solution. However, since the noise level can be unknown, 

setting the proper truncation level of the SVD can be difficult. 

Moreover, the VE design based on (5) pursues the matching 

between the obtained virtual scattered field and the desired one, 

rather than directly reasoning on the virtual contrast source 𝒲.  

 

A. Direct design of virtual sources via adjoint operator 

To overcome the above drawbacks, a different approach can 

be devised. Any radiated field is unambiguously paired with a 

purely radiating source, which is simply obtained via 

backpropagation [16]. This source is not exactly the one that 

radiates the field, but represents a convenient approximation of 

its radiating component1. Moreover, the computation of such a 

backpropagation source is straightforward, as it does not require 

any inversion process but a simple matrix multiplication.  

In our case, the above circumstance entails that the desired 

virtual scattered field ℰ𝑠
𝐷 is related to the virtual 

backpropagation contrast source 𝒲𝐵𝑃
𝐷  as: 

 

𝒲𝐵𝑃
𝐷 (𝒓) = ∑ [𝐺𝑏(𝒓𝒎, 𝒓)]∗ℰ𝑠

𝐷(𝒓𝒎)

𝑀

𝑚=1

= 𝔸𝑒
+[ℰ𝑠

𝐷] 

(6) 

 

where * stands for the complex conjugate operation and + 

denotes the adjoint of the operator 𝔸𝑒, such that 〈𝔸𝑒[𝑤], 𝑒〉 =
〈𝑤, 𝔸𝑒

+[𝑒]〉, being 𝑤 ∈ 𝐿2(Ω) and 𝑒 ∈ 𝐿2(Γ) [15].  

From (6), it follows that we can recast the VE synthesis in 

terms of a desired, purely radiating, backpropagation contrast 

source 𝒲𝐵𝑃
𝐷 . From a formal point of view, this corresponds to 

apply the operator 𝔸𝑒
+ to both sides of (5), as: 

 

𝕃𝜶 = 𝔸𝑒
+𝕂𝜶 = 𝔸𝑒

+  [∑ 𝛼𝑡𝐸𝑠(𝒓𝒎, 𝒓𝒕)

𝑁

𝑡=1

] =

= ∑ 𝛼𝑡𝔸𝑒
+[𝐸𝑠(𝒓𝒎, 𝒓𝒕)] =

𝑁

𝑡=1

= ∑ 𝛼𝑡

𝑁

𝑡=1

𝑊𝐵𝑃(𝒓, 𝒓𝒕) = 𝒲𝐵𝑃
𝐷(𝒓) 

(7) 

where 𝕃 is the compound operator 𝕃 = 𝔸𝑒
+𝕂: 𝐿2(Γ) → 𝐿2(Ω) 
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and 𝑊𝐵𝑃(𝒓, 𝒓𝒕) = 𝔸𝑒
+[𝐸𝑠] is the backpropagation contrast 

source corresponding to the actual scattered field 𝐸𝑠(𝒓𝒎, 𝒓𝒕) 

measured at 𝒓𝒎 and due to the transmitter positioned in 𝒓𝒕.  

The last row of Eq. (7) provides a VE design equation 

directly cast in terms of desired virtual contrast sources. In 

particular, the superposition of the actual back-propagated 

contrast sources is forced to have the same behaviour in 𝒓 ∈ Ω 

as 𝒲𝐵𝑃
𝐷.  

As the operator 𝕃 is compact, the synthesis problem cast in 

(7) is again ill-posed. While of course such a problem could be 

solved (with the same caveats) by adopting the same SVD-

based regularization scheme used up to now to solve (5), a more 

straightforward procedure can be devised. Such procedure 

assumes as a solution of (7) the one provided by the application 

of the adjoint operator 𝕃+ to the right-hand member. 

Accordingly, a solution of (7) is readily obtained as:  

 

𝛼𝑡 = 𝕃+𝒲𝐵𝑃
𝐷 (𝒓) = ∫ [𝑊𝐵𝑃(𝒓′, 𝒓𝒕)]∗𝒲𝐵𝑃

𝐷 (𝒓′)𝑑𝒓′
Ω

 

(8) 

 

By observing that the right-hand member is a scalar product, 

Eq. (8) can be interpreted as follows: the amplitude of the 𝛼𝑡 

coefficients will be large for those actual experiments whose 

backpropagated currents are somehow similar (but for a scale 

factor) to the desired virtual one, while it will be relatively small 

or negligible for those backpropagated currents which are 

nearly orthogonal to the desired virtual one 𝒲𝐵𝑃
𝐷 .   

The above approach is inspired by the adjoint synthesis 

method, introduced in [9],[10] as a convenient way to provide 

a purely radiating solution to the synthesis of an array. In our 

case, this method proves to be convenient for two reasons. The 

first one is that it provides an estimate of the solution without 

performing the inversion of the compact operator 𝕃, which 

requires to use the error-affected SVD of 𝕃. The second reason 

is that the adjoint solution provides an estimate of the sought 

unknown which, among all solutions with bounded norm, 

brings the better trade-off between accuracy and stability 

[9],[10].  

It is worth noting that 𝒲𝐵𝑃
𝐷  enforced in the designed VE is 

independent from the unknown targets (being in fact a degree 

of freedom of the design). On the other hand, 𝒲𝐵𝑃
𝐷  is built as a 

linear combination via the coefficients 𝛼𝑡 in (8), that are instead 

dependent on the target properties through 𝑊𝐵𝑃. As such, in the 

designed VE, the “footprint” of the targets is encoded in the 

data-driven coefficients 𝜶. 

In summary, the VE synthesis, exploited and tested in the 

following Sections, can be simply summarized as: 

 

1. Set the desired 𝒲𝐵𝑃
𝐷 . 

2. For 𝑡 = 1, . . , 𝑁  

Compute 𝑊𝐵𝑃(𝒓, 𝒓𝒕) for all transmitters, via 𝔸𝑒
+[𝐸𝑠]; 

Compute 𝛼𝑡 for 𝒲𝐵𝑃
𝐷  by using (8). 

3. Recombine 𝐸𝑖 and 𝐸𝑠 according to (2). 

B. A closer look to the actually synthesized contrast sources 

Eq. (8) is the key result of this paper, as it provides a direct 

formula to design a VE, in which the radiating component of 

the induced virtual contrast source has a prescribed behaviour 

within the investigated domain.  

The radiating component of the contrast source plays an 

important role in the scattering phenomena, as it is responsible 

of the radiation. On the other hand, non-radiating sources are 

the cause of ill-posedness and non-uniqueness of the inverse 

source problem [16]. Accordingly, the reformulation of the 

inverse problem in the obtained VE framework (see Eqs. (3)) is 

expected to be more robust with respect to these two issues than 

the original problem (see Eqs. (1)). 

This remarkable goal is not exactly accomplished, as the 

contrast source actually induced in the virtual experiment is 

given by (2.b), that is by the combination of the contrast sources 

𝑊 that have (or may have) a non-radiating component. 

However, as the virtual excitation coefficients 𝜶 are estimated 

via the adjoint operator, they are characterized by a bounded 

norm and are energetically optimal [9],[10]. As a consequence, 

they enforce virtual induced currents with bounded norm [19], 

whose non-radiating sources is not expected to play a dominant 

role.  

A better understanding of the actually synthetized contrast 

sources can be achieved by replacing (8) in (2.b). By so doing, 

an explicit relationship for the actual virtual contrast sources is 

found, which reads: 

 

𝒲(𝒓) = ∫ 𝒲𝐵𝑃
𝐷 (𝒓′) ∑ 𝑊(𝒓, 𝒓𝒕)[𝑊𝐵𝑃(𝒓′, 𝒓𝒕)]∗

𝑁

𝑡=1

𝑑𝒓′
Ω

 

(9) 

 

Such relationship suggests that designed virtual contrast 

sources 𝒲 is a weighted version 𝒲𝐵𝑃
𝐷  according to the spatially 

varying factor given by the product on Γ between 𝑊 and 𝑊𝐵𝑃. 

Note that, if such product is equal to a delta function in 𝒓, the 

virtual contrast sources 𝒲 would be exactly equal to 𝒲𝐵𝑃
𝐷 . 

By decomposing the actual currents 𝑊(𝒓, 𝒓𝒕) in a 

backpropagated component 𝑊𝐵𝑃 and the residual (i.e., non-

radiating and/or essentially non-radiating [16]) components 

∆𝑊(𝒓, 𝒓𝒕), the expression (9) can be recast as:  

 

𝒲(𝒓) = ∫ 𝒲𝐵𝑃
𝐷 (𝒓′)𝑔1(𝒓, 𝒓′)𝑑𝒓′

Ω

+ ∫ 𝒲𝐵𝑃
𝐷 (𝒓′)𝑔2(𝒓, 𝒓′)𝑑𝒓′

Ω

 

(10) 

 

wherein: 

 

𝑔1(𝒓, 𝒓′) = ∑ 𝑊𝐵𝑃(𝒓, 𝒓𝒕)[𝑊𝐵𝑃(𝒓′, 𝒓𝒕)]∗

𝑁

𝑡=1

 

(11.a) 

𝑔2(𝒓, 𝒓′) = ∑ ∆𝑊(𝒓, 𝒓𝒕)[𝑊𝐵𝑃(𝒓′, 𝒓𝒕)]∗

𝑁

𝑡=1

 

(11.b) 
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Whatever 𝒓𝒕, each addendum of 𝑔1(𝒓, 𝒓′) is peaked in 𝒓′ = 𝒓 

[17],[18] and such a behavior is enhanced by the sum over the 

transmitter curve Γ. Conversely, each addendum of 𝑔2(𝒓, 𝒓′) 

may not exhibit such a property. Hence, the sum over Γ in (11.b) 

and the integration in Ω in (10) can cancel out or make 

negligible the contribution of ∆𝑊 to 𝒲. As a consequence, as 

long as the effect of the second integral in (10) is negligible, one 

can assume that the actual virtual currents will be indeed an 

approximated version of the 𝒲𝐵𝑃
𝐷 (𝒓′). Note that such a 

requirement is related to the contribution of the non-radiating 

and/or essentially non-radiating components of the actual 

currents, which are expected to increase with the amplitude of 

the contrast. As such, when higher and higher contrasts are 

considered, the adjoint procedure is expected to exhibit some 

limitations in the design of the desired currents. 

All the above reasoning and arguments are fully supported 

by the ad hoc numerical tests reported in Section V, where we 

show that the proposed design procedure definitely outperforms 

the previous ones [1]-[3] . 

IV. CIRCULARLY SYMMETRIC VIRTUAL SOURCES 

To give an example of the VE design procedure described in 

the previous Section, let us consider the case of VE enforcing 

virtual contrast sources having a circular symmetry with respect 

to a set of properly selected pivot points 𝒓𝒑, and corresponding 

to elementary currents herein located. Note that this is the case 

so far considered in the VE design using LSM [20] (see also 

Appendix A). 

To this end, let us recall that, in the case we are considering 

of a homogenous medium, the backpropagated contrast source 

𝒲𝐵𝑃
𝐷  can be expressed in a closed form [16] as: 

 

𝒲𝐵𝑃
𝐷 (𝒓, 𝒓𝒑) = 𝔸𝑒

+[𝐺𝑏(𝒓𝒎, 𝒓𝒑)] = 𝛽 𝐽0(𝑘𝑏|𝒓 − 𝒓𝒑|) 

(12) 

wherein 𝐺𝑏 exactly corresponds to the field radiated on 𝒓𝒎 ∈ Γ 

by an elementary source positioned in the pivot point 𝒓𝒑, 𝐽0 is 

the Bessel function of zero order and 𝛽 is a constant, which does 

not depend on 𝒓 and 𝒓𝒑, and modulates the amplitude of 𝐽0. 

Accordingly, one has just to replace (12) in (8) to obtain the 

desired coefficients, after the 𝑊𝐵𝑃  have been computed via 𝔸𝑒
+.  

To complete the design procedure, the choice of the pivot 

points 𝒓𝒑, which are needed to provide a set of VE, must be 

discussed. In this respect, as the contrast source is defined only 

for 𝜒 ≠ 0, it is obvious that the pivot points must be picked 

within the support of the targets, as otherwise 𝒲𝐷 would be 

null in the pivot point.  

The selection of the pivot points according to the above basic 

principle is straightforward in the case of circularly symmetric 

virtual contrast sources. As a matter of fact, as shown in 

Appendix B, the expression of 𝜶 given by (8) is related to the 

orthogonality sampling method [11]-[13], a well-known 

qualitative imaging method. In particular, the energy (𝑙2-norm) 

of 𝜶 corresponds to the indicator function used in the OSM to 

estimate the targets support, which attains large values when 𝒓𝒑 

belongs to the support of the targets and low values elsewhere 

[11]. As such, by plotting the 𝑙2-norm of 𝛼, that is ‖𝜶‖Γ
2, on the 

entire imaging domain Ω, it is possible to determine the 

unknown target’s support and use this information to select the 

pivot points to be used in the design of the VE.    

 

In conclusion, by means of the proposed approach, the 

synthesis of circularly symmetric sources is performed as: 

 

1. Set the desired 𝒲𝐵𝑃
𝐷 = 𝔸𝑒

+[𝐺𝑏(𝒓𝒎, 𝒓𝒑)]. 

2. Determine 𝑊𝐵𝑃(𝒓, 𝒓𝒕) via 𝔸𝑒
+[𝐸𝑠]; 

3. Compute ‖𝜶‖𝛤
2  using (8) for an arbitrary set of 

points 𝒓𝒔 sampling 𝛺 to estimate the target support. 

4. Select the pivot points 𝒓𝒑 within the estimated 

support and pick the corresponding coefficients 𝜶 

to build the desired VE. 

5. Recombine 𝐸𝑖 and 𝐸𝑠 according to (2). 

 

V. ASSESSING THE NEW VE DESIGN PROCEDURE 

In this Section, numerical tests of the capability of Eq. (8) to 

design VE enforcing circularly symmetric virtual contrast 

sources are reported. In particular, a comparison with the so far 

exploited LSM-based design is pursued. 

The first test scenario consists of a lossless cylindrical object 

of radius of ~0.33𝜆𝑏 with 𝜒 = 1, embedded in a homogenous 

medium within a square domain of side 𝐿 = 1.5 𝜆𝑏 discretized 

into 64 × 64 cells [21], being 𝜆𝑏 the wavelength in the 

background. Moreover, without loss of generality, we assume 

𝒓𝒎 = 𝒓𝒕. According to the Nyquist criterion suggested in [16], 

𝑁 = 𝑀 = 15 incident directions and measurements (collected 

on a circumference Γ of radius 𝑅 = 3𝜆𝑏) have been considered. 

The scattered field data, simulated by means of a full-wave 

solver based on the method of moments, have been corrupted 

with a random Gaussian noise with SNR = 20 dB.  

In Figures 2(a) and 2(b), the normalized values of 

‖𝜶‖Γ
2  computed via LSM and (8) are reported, respectively. In 

these figures, 𝒓𝒔 spans all the points belonging to the grid which 

samples the investigation domain Ω. Figures 2(c)-(f) and 2(g)-

(j) show the amplitudes of the virtual contrast sources 𝒲 

designed by means of LSM and adjoint solution (8), 

respectively, for some pivot points 𝒓𝒑. As can be seen, when 

the pivot point belongs to the support, focused and circularly 

symmetric contrast sources are induced. Conversely, when the 

pivot point does not belong to the support, the contrast source 

does not show any circular symmetry (see Fig.s 2(f),(j)). This 

circumstance holds true whatever the design approach.  

By comparing the plots in Figure 2, it turns out that the adjoint 

solution (8) not only allows a simpler VE design, but also is 

able to enforce a better circular symmetry. Indeed, it avoids the 

deformation of the circular pattern of the currents, especially 

when the pivot point is close to the boundary of the target (see 

Figs. 2(d),(e) and 2(h),(i)). Indeed, the circular pattern obtained 

via Eq. (8) preserves the regularity of the desired currents 𝒲𝐵𝑃
𝐷  

(see Figs. 2(k)-(n)), even if it shrinks, possibly due to 

unavoidable presence of a small amount of non-radiating 

currents. 
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To quantitatively appraise the difference in terms of circular 

pattern of the currents, a synthetic parameter, defined as the 𝑙2-

norm of the angular derivative 𝜕𝜗 of the virtual contrast 

sources, has been computed as:  

 

𝑠𝑦𝑚(𝒓𝒑) = ‖𝜕𝜗[𝒲(𝒓, 𝒓𝒑)Π(𝒓, 𝒓𝒑)]‖
2

2
 

(13) 

wherein 𝜗 is the angular coordinate of a local polar reference 

system centered in 𝒓𝒑 and Π(𝒓, 𝒓𝒑) identifies a circular 

neighborhood of radius 0.3 𝜆𝑏. The larger the value of sym, the 

worse the circular symmetry around the considered pivot point. 

As can be seen from the values are reported in Table I, the new 

design approach improves the symmetry parameter 𝑠𝑦𝑚 of 

roughly the 50% on average, thus confirming the reasoning in 

Section III.  

As a second test case, a lossy ‘kite’ target with 𝜒 = 1.2 −
0.36 𝑖 and leading dimension of 𝜆𝑏, embedded in a homogenous 

medium, has been considered. The square domain of side 𝐿 =

 
                                                                                            (a)                                                      (b)    

 
                                 (c)                                                       (d)                                                     (e)                                                       (f) 

 
                                 (g)                                                      (h)                                                       (i)                                                       (j) 

 
                                 (k)                                                      (l)                                                       (m)                                                     (n) 

 
Figure 2. Numerical validation of the proposed VE design strategy: the cylindrical target. SNR= 20 dB. Retrieved supports via LSM (a) and adjoint solution 

(b). Amplitudes of virtual induced currents 𝒲 for some pivot points via LSM (c)-(f) and adjoint solution (g)-(j). Amplitudes of desired currents 𝒲𝐵𝑃
𝐷  (k)-(n).The 

pivot points are superimposed as black crosses: (c),(g),(k) 𝑟𝑝=(0.035 𝜆𝑏,0.24 𝜆𝑏), (d),(h),(l) 𝑟𝑝=( -0.012 𝜆𝑏, -0.012 𝜆𝑏), (e),(i),(m) 𝑟𝑝=(0.20 𝜆𝑏, 0.27𝜆𝑏), 

(f),(j),(n) 𝑟𝑝=(-0.36 𝜆𝑏, -0.27 𝜆𝑏).  

 

 

𝒓𝒑 = (𝒙𝒑, 𝒚𝒑) 
LSM based VE design adjoint VE design 

SNR=20 dB SNR=10 dB SNR=20 dB SNR=10 dB 

(0.035 𝝀𝒃,0.24 𝝀𝒃) 14 20 3 6 

(-0.012 𝝀𝒃, -0.012 𝝀𝒃) 63 58 42 46 

(0.20 𝝀𝒃, 0.27𝝀𝒃) 29 30 10 13 

Table I. The synthetic parameter 𝒔𝒚𝒎 pertaining to the virtual currents induced in the cylindrical target.   
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1.66 𝜆𝑏 has been discretized in 42 × 42 cells [21] (see Figs. 

2(a)-(b)). Moreover, N = M = 22 (according to the Nyquist rule), 

𝑅 = 4 𝜆𝑏 and SNR = 20 dB. In Figures 3(c) and 3(g) the 

normalized values of ‖𝜶‖Γ
2  computed with LSM and adjoint 

solutions are respectively reported, while Figures 3(d)-(f) and 

3(h)-(j) show the amplitudes of the designed virtual contrast 

sources.  

By comparing Figs. 3(e) and 3(i) it turns out that the VE 

design exploiting the adjoint solution again avoids the 

deformation of the circular pattern of the currents (see Table II). 

Indeed, one can notice that the adjoint solution (8) allows to 

preserve the same regularity of the pattern of 𝒲𝐵𝑃
𝐷  (see Fig.s 

3(k)-(m)), while also outperforming the LSM in support 

retrieval. Again, this improved performance confirms the 

discussion in Section III. 

In order to show the increased robustness to noise of the 

proposed design method with respect to the one based on the 

LSM, the examples in Figures 2 and 3 have been re-run with 

different SNR. The results in term of synthetic parameter 𝒔𝒚𝒎 

are summarized in the Tables I and II.  

 
                                                                                            (a)                                                       (b)                                              

 
                                 (c)                                                      (d)                                                       (e)                                                      (f) 

 
                                 (g)                                                      (h)                                                      (i)                                                       (j) 

                                                                    
                                                                                             (k)                                                      (l)                                                       (m) 

 
Figure 3. Numerical validation of the proposed VE design strategy: the kite target. SNR= 20 dB. Real part and imaginary part of the contrast function (b)-(c). 

Retrieved supports via LSM (c) and adjoint solution (g). Amplitudes of virtual induced currents 𝒲 for some pivot points via LSM (d)-(f) and adjoint solution 

(h)-(j). Amplitudes of desired currents 𝒲𝐵𝑃
𝐷  (k)-(m).The pivot points are superimposed as black crosses: (d),(h),(k) 𝑟𝑝=(-0.02 𝜆𝑏,0.18 𝜆𝑏), (e),(i) , (l) 𝑟𝑝=( -

0.02 𝜆𝑏, -0.22 𝜆𝑏), (f),(j),(m) 𝑟𝑝=(-0.53 𝜆𝑏, -0.02 𝜆𝑏).  

 

 

𝒓𝒑 = (𝒙𝒑, 𝒚𝒑) 
LSM based VE design adjoint VE design 

SNR=20 dB SNR=10 dB SNR=5 dB SNR=20 dB SNR=10 dB SNR=5 dB 

(-0.02 𝝀𝒃,0.18 𝝀𝒃) 32 33 36 10 10 13 

(-0.02 𝝀𝒃, -0.22 𝝀𝒃) 33 34 37 20 20 22 

Table II. The synthetic parameter 𝒔𝒚𝒎 pertaining to the virtual currents induced in the kite target.   
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Finally, stimulated by a reviewer’s comment, the lossless S 

shaped target embedded in free space has been considered (see 

Figs. 4(a)). The square domain of side 𝐿 = 2 𝜆𝑏 has been 

discretized in 42 × 42 cells [21]. Moreover, N = M = 19, 𝑅 =
2 𝜆𝑏 and SNR = 20 dB. The results are shown in Figure 4 and 

Table III. As can be seen, notwithstanding the complex shape 

of the target, both LSM and adjoint solutions can synthesize the 

desired currents. Notably, the adjoint solution provides an 

improved circular symmetry of the currents and better estimates 

the target support, which also leads (see the next section) to a 

better quantitative inversion. 

VI. NUMERICAL TESTS: INVERSION BASED ON NEW VE 

DESIGN 

In this Section, some results of quantitative profiling 

achieved using the VE designed via solution (8) are reported. In 

particular, among the different VE-based inversion procedures 

which have been introduced in literature, we focus our attention 

on the direct algebraic reconstruction (DARE) proposed in [2]. 

The DARE approach takes advantage of two main ideas. First, 

the original scattering experiments are re-arranged to give rise 

to virtual contrast sources focused in a set of pivot points 

 
                                                              (a)                                                       (b)                                                      (c) 

 
                                                              (d)                                                      (e)                                                      (f) 

 
                                                              (g)                                                      (h)                                                       (i) 

 
                                                              (j)                                                        (k)                                                      (l) 

 

Figure 4. Numerical validation of the proposed VE design strategy: the lossless S shaped target. Real part of the contrast function (a). Retrieved supports via 

LSM (b) and adjoint solution (c). Amplitudes of virtual induced currents 𝒲 for some pivot points via LSM (d)-(f) and adjoint solution (g)-(i). Amplitudes of 

desired currents 𝒲𝐵𝑃
𝐷  (j)-(l).The pivot points are superimposed as black crosses: (d),(g),(j) 𝑟𝑝=(-0.024 𝜆𝑏,0.024 𝜆𝑏), (e),(h),(k) 𝑟𝑝=(0.31 𝜆𝑏, 0.60 𝜆𝑏), (f),(i),(l) 

𝑟𝑝=(0.31 𝜆𝑏, -0.024 𝜆𝑏).  

 

 

𝒓𝒑 = (𝒙𝒑, 𝒚𝒑) LSM based VE design adjoint VE design 

(-0.024 𝝀𝒃,0.024 𝝀𝒃) 13 11 

(0.31 𝝀𝒃, 0.60 𝝀𝒃) 22 20 

Table III. The synthetic parameter 𝒔𝒚𝒎 pertaining to the virtual currents induced in the S shaped target.   
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belonging to the imaged domain. Then, an analytical 

approximation is introduced for the virtual contrast sources, 

which holds true in a neighbourhood of the pivot point. Such an 

approximation relies on a theorem for Bessel functions and 

provides an explicit dependence of the focused virtual contrast 

sources on the contrast function. Note this approximation can 

be used when the contrast function is assumed to be slowly 

variable around each pivot point [2].  

These two simple ideas allow recasting the inverse problem 

in such a way that the values of the contrast in the pivot points 

can be achieved by solving a diagonal system of algebraic 

equations of the kind: 

 

𝐴(Χ ⊙ Χ ⊙ Χ) + 𝐵(Χ ⊙ Χ) + 𝐶Χ + 𝐷 = 0 

(14) 

where ⊙ denotes the Hadamard product between vectors, 𝛸 =
[𝜒1 ⋯ 𝜒𝑘 ⋯ 𝜒𝑃]𝑇  is the vector that contains the punctual 

values of the unknown contrast in the selected pivot points 𝒓𝒑, 

and (∙)𝑇 denotes the matrix transposition. Finally, 𝐴, 𝐵, 𝐶 and 

𝐷 are diagonal matrices whose expressions are known and can 

be found in [2]. The solution of (14) provides the values of the 

contrast function in the considered pivot points. Then, these 

latter are interpolated in order to achieve the overall image of 

the target. As a consequence, provided the proposed 

approximation holds true, the inverse scattering problem is 

solved by means of closed form formulas, and, hence, in a 

deterministic and computationally very effective way.  

In [2] DARE has been tested using LSM-designed VE, 

whereas in the following we assess its capabilities and 

performance using VE designed via Eq. (8). In what follows, 

we refer to the first approach as LSM-DARE, while the one 

proposed here is referred as Adjoint-DARE (Ad-DARE).  

 

 
                                                                  (a)                                                      (b)                                                     (c) 

 
                                                                 (d)                                                      (e)                                                      (f) 

 

Figure 5. Inversion through the proposed VE design strategy: the kite target. Retrieved supports via LSM (a) and adjoint solution (d) with the selected pivot 

points superimposed as dots. Real part and imaginary part of the contrast functions retrieved via LSM-DARE (b)-(c) and via Ad-DARE (e)-(f).  
 

 
                                       (a)                                                     (b)                                                    (c)                                                     (d) 

                                                            
                                                                                                (e)                                                     (f)                                                      (g) 

 

Figure 6. Inversion through the proposed VE design strategy: the non-convex target. Real part of the reference contrast profile (a). Retrieved support via LSM 
(b) and adjoint solution (e) with the selected pivot points superimposed as dots. Real part and imaginary part of the contrast functions retrieved via LSM-DARE 

(c)-(d) and via Ad-DARE (f)-(g). 
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A. Simulated data 

As first example, we have again considered the lossy kite 

shown in Figure 3. Figs. 5(a) and 5(d) show the retrieved 

support with the considered pivot points superimposed for 

LSM-DARE and Ad-DARE, respectively. In both cases the VE 

have been designed with respect to the selected pivots using the 

relevant formula. Finally, the diagonal system of third-degree 

algebraic equations described in Eq. (14) has been solved.  

The retrieved contrast functions, resulting from the linear 

interpolation of the punctual values estimated in the selected 

pivot points, obtained via LSM-DARE and Ad-DARE are 

shown in Figs. 5(b),(c) and 5(e),(f), respectively. As can be 

seen, due to the better estimation of the target support, Ad-

DARE outperforms LSM-DARE in retrieving the target. To 

quantitatively appraise such a qualitative observation, we 

computed the normalized mean square error between the 

retrieved contrast function �̃� and the actual one 𝜒, that is: 

 

𝑁𝑀𝑆𝐸 =
‖𝜒 − �̃�‖2

2

‖𝜒‖2
2  

(14) 

The NMSE is 0.28 for LSM-DARE, while it is as low as 0.18 

in case of Ad-DARE.  

As second example, a non-convex lossless target with 𝜒 = 1 

and dimension of 𝜆𝑏 has been considered (see Figure 6). The 

square domain of side 𝐿 = 1.66 𝜆𝑏 has been discretized in 

50 × 50 cells. Moreover, N=M=16, 𝑅 = 3.3𝜆𝑏 and SNR =
15 dB. The retrieved support with the considered pivot points 

superimposed are shown in Figs. 6(b) and 6(e) for LSM-DARE 

and Ad-DARE, respectively, while the retrieved contrast 

functions are shown in figs 6(c),(d) and 6(f),(g). Note that in 

this example the punctual values 𝛸 obtained via Ad-DARE are 

interpolated by taking into account the corresponding support 

estimation. As can be seen, a better accuracy in the contrast 

reconstruction is reached, as also witnessed by the NMSE (0.16 

against 0.29).  

Finally, as last example with simulated data, the lossless 

target in Figure 4 has been considered. The results are reported 

in Figure 7 and show that, even if the LSM-DARE reaches a 

slightly lower error, the reconstruction via Ad-DARE allows a 

better rendering in terms of shape and homogeneity of the 

electrical properties.  

 Note that in the above cases the overall inversion procedure 

involved in Ad-DARE takes just one or two seconds. The 

numerical calculations have been run on a workstation 

equipped with one Intel i5 (2.9 GHz) processor and 8 GB RAM. 

B. Experimental data 

In this subsection we assess the Ad-DARE against the 

Fresnel experimental data [22], which are usually adopted to 

benchmark inverse scattering procedures. As compared with 

previous examples using simulated data, the Fresnel 

experiments introduce the additional difficulty of dealing with 

a partially aspect limited configuration. More details about the 

measurement configuration and the target are reported in [22].  

Among the different targets belonging to the Fresnel dataset, 

the TwinDiel target has been considered [22]. It consists of two 

identical purely dielectric circular cylinders with radius 1.5 cm 

and contrast 𝜒 = 2 ± 0.3. The herein processed data are 

organized in a 72 × 36 matrix by simply replacing with zeros 

the original data entries that are not available. The investigated 

domain is a square of side 0.15 m and the working frequency is 

6 GHz.  

The retrieved support with the considered pivot points 

superimposed are shown in Figs. 8(a) and 8(d) for LSM-DARE 

and Ad-DARE, respectively. The retrieved contrast functions 

are shown in Figs. 8(b)-(c) and 8(e)-(f). Note that the punctual 

values 𝛸 are interpolated by taking into account the 

corresponding supports. Although no quantitative metric can be 

given in this case, the results clearly allow to appreciate how 

Ad-DARE allows to improve the already good result achieved 

with LSM-DARE, thus confirming the effectiveness of the 

underlying VE design procedure. 

VII. CONCLUSION 

In this contribution, the problem of designing virtual 

scattering experiments (VE) has been addressed and pursued by 

means of a simple yet effective design approach.  

The proposed design procedure is innovative with respect to 

the one so far exploited, as it allows to directly design the 

virtual currents in such a way to exhibit desired features. 

Moreover, it is general as it can be used for a generic desired 

currents distribution. In particular, as long as the effect of the 

non-radiating currents is cancelled out, one can assume that the 

actual virtual currents is an approximated version of the desired 

one. 

The presented tests have shown the reliability and 

effectiveness of the approach in the specific case of focused 

virtual currents and homogeneous medium. However, the 

proposed design approach can be applied to more complex 

scenarios as well as to different kind of nominal currents, such 

as for instance the one radiating the higher order multipoles, as 

suggested in [8],[23],[24]. Furthermore, the proposed design 

procedure is straightforward as it does not require an explicit 

regularization and inversion process, but just the evaluation of 

the adjoint solution of the VE design equation. As such, it is 

much more stable with respect to the noise and also 

energetically optimal [9],[10].  

As far as the computational burden, in the adjoint VE design 

procedure, the calculation of the SVD of the measured data is 

avoided. As such, the adjoint VE design, combined with the 

very fast DARE method, allows to get a very fast overall 

inversion procedure. 

Finally, the recognized connection between the proposed 

procedure and the OSM has a number of interesting 

consequences. First, OSM is more reliable in retrieving the 

target support, so that selection of pivot points can be more 

accurate. Second, as shown in [25], OSM is capable to provide 

qualitative information on the behavior of the permittivity (e.g. 

step-like) so that such an information can be encoded in the 

inversion as well as in the pivot selection.  

Future work will aim at exploiting the proposed procedure in 

case of different desired currents as well as analysing the 

limitations with respect to the case of large contrast profile. 

Moreover, numerical tests in complex scenario and in 

conjunction with other imaging techniques will be performed.  
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APPENDIX A 

In case of circularly symmetric VE design, the vector 𝓔𝒔
𝑫 ⊂

ℂ𝑀contains the sample of the field radiated by an elementary 

source located in 𝒓𝒑, that is 𝐺𝑏(𝒓𝒎, 𝒓𝒑). Then, equation (5) 

exactly corresponds to the (discretized) far field integral 

equation underlying the LSM [20], whose direct solution is not 

possible owing to ill-conditioning and a regularization 

technique is required.  

A possible solution of problem (5) can be achieved by 

minimizing in a least square sense the residual between 𝕂𝜶 and 

𝓔𝒔
𝑫, that is: 

 

min𝜙 = min
𝜶

‖𝕂𝜶 − 𝓔𝒔
𝑫‖Γ

2 

(A.1) 

 

and using the Tikhonov regularization [15]. This solution 

exactly corresponds to the one so far exploited in the VE design 

[1]-[3], that is: 

 

𝛼𝑡(𝒓𝒑) = ∑
𝜆𝑘

𝜆𝑘
2 + 𝛾2

〈𝐺𝑏(�̂�𝒎, 𝒓𝒑), 𝑢𝑘(�̂�𝒎)〉Γ𝑣𝑘(�̂�𝒕)

𝑘

 

(A.2) 

wherein {𝑢𝑘 , 𝜆𝑘 , 𝑣𝑘} is the SVD of the operator 𝕂 and 𝛾 is the 

Tikhonov regularization parameter, whose selection is crucial 

in order to obtain stable and reliable virtual excitation 

coefficients [15]. 

 
                                       (a)                                                     (b)                                                    (c)                                                     (d) 

                                                            
                                                                                                (e)                                                     (f)                                                      (g) 

 

Figure 7. Inversion through the proposed VE design strategy: the lossless S shaped target. Real part of the reference contrast profile (a). Retrieved support via 

LSM (b) and adjoint solution (e) with the selected pivot points superimposed as dots. Real part and imaginary part of the contrast functions retrieved via LSM-
DARE (NMSE= 0.32) (c)-(d) and via Ad-DARE (NMSE=0.36) (f)-(g). 

 

 

 
                                                                  (a)                                                     (b)                                                       (c) 

 
                                                                 (d)                                                      (e)                                                       (f) 
 

Figure 8. Inversion through the proposed VE design strategy: the TwinDiel Fresnel target. Retrieved support via LSM (a) and adjoint solution (b) with the 

selected pivot points superimposed as yellow dots. Real part and imaginary parts of the contrast functions retrieved via LSM-DARE (b)-(c) and via Ad-DARE 

(e)-(f). 
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APPENDIX B 

Let us substitute Eq. (12) in (8) to express the generic 

coefficient 𝛼𝑡 as: 

 

𝛼𝑡(𝒓𝒑) = 𝛽 ∫ 𝐽0(𝑘𝑏|𝒓 − 𝒓𝒑|)[𝑊𝐵𝑃(𝒓, 𝒓𝒕)]∗𝑑𝒓
Ω

 

(B.1) 

Due to the properties of the Bessel function, which is able to 

filter out the spectral components only located in a circle of 

radius 𝑘𝑏 [25], equation (B.1) can be rewritten in term of 

original induced currents, that is:  

 

𝛼𝑡(𝒓𝒑) = 𝛽 ∫ 𝐽0(𝑘𝑏|𝒓 − 𝒓𝒑|)[𝑊(𝒓, 𝒓𝒕)]∗𝑑𝒓
Ω

= 𝛽 [∫ 𝐽0(𝑘𝑏|𝒓 − 𝒓𝒑|)𝑊(𝒓, 𝒓𝒕)
Ω

]

∗

𝑑𝒓 

(B.2) 

 

The last term of (B.2) corresponds to the complex conjugate 

of the so-called reduced scattered field 𝐸𝑠
𝑟𝑒𝑑. In OSM, such a 

field tests the orthogonality relation between the far-field 

pattern and the Green’s function in the far zone, [11],[25].  

The OSM images the target shape via the computation of the 

energy associated to the reduced scattered field [11], that is 

‖𝐸𝑠
𝑟𝑒𝑑(𝒓𝒑, 𝒓𝒕)‖

Γ

2
. Such energy achieves large values when the 

far-field pattern approaches the one of the background Green’s 

function for the considered sampling point, that is when the 

point 𝒓𝒑 belongs to the target support [11].  

Since ‖𝛼𝑡‖Γ
2 ∝ ‖𝐸𝑠

𝑟𝑒𝑑(𝒓𝒑, 𝒓𝒕)‖
Γ

2
, we can conclude that the 

energy of the virtual excitation coefficient 𝛼𝑡 allows to identify 

the target support. 
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