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Abstract
The ecotoxicological consequences of synthetic pesticides have encouraged stakeholders to search for eco-friendly pest 
control tools, like essential oils (EOs). Nano-delivery systems (nanoparticles and nano-emulsions) seem ideal for developing 
EO-based biopesticides, although production processes should be standardized and implemented. In this study, nano-emul-
sions loaded with a high amount of Allium sativum L. EO (15%) were developed using different mixed bottom-up/top-down 
processes. Garlic EO was chemically analyzed by gas chromatography-mass spectrometry (GC-MS) and formulations were 
physically characterized using Dynamic Light Scattering (DLS) apparatus. The insecticidal activity against Planococcus 
citri Risso (Hemiptera: Pseudococcidae) and selectivity toward Apis mellifera L. (Hymenoptera: Apidae) worker bees was 
evaluated. Garlic EO was mainly composed of sulphur components (96.3%), with diallyl disulphide and diallyl trisulphide 
as the most abundant compounds (37.26% and 28.15%, respectively). Top-down processes could produce stable nano-
emulsions with droplet size in the nanometric range (< 200nm) and good polydispersity index (PDI < 0.2). In contrast, 
the bottom-up emulsion was unstable, and its droplet size was around 500nm after 24 hours. High-energy emulsification 
processes significantly increased the residual toxicity of garlic EO against 3rd instar P. citri nymphs, whereas the developed 
formulations were harmless to A. mellifera workers in topical application. This study confirmed that the production process 
significantly affected the physical properties and efficacy against target pests. The lack of adverse impact on honeybees 
denotated the potential of these formulations as bioinsecticides in organic and/or IPM programs, although further extended 
ecotoxicological studies are necessary.
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Introduction

In recent years, alternatives to synthetic pesticides for crop 
protection have been investigated due to environmental 
and health problems caused by the widespread use of these 
substances (Nenaah et al. 2015; Rizzo et al. 2020). Among 
the alternative solutions, botanical extracts as essential oils 
(EOs) could be the ideal candidates for the development 
of new eco-friendly bioinsecticides (Franzios et al. 1997; 
Priestley et al. 2003; Raybaudi-Massilia et al. 2006; Zhou 
et al. 2008; Campolo et al. 2020; Ben Abdallah et al 2023).

Despite the efficacy of different EOs under laboratory 
conditions, some characteristics of these natural substances 
limited their use in real-field situations. Volatility, flamma-
bility, rapid degradation, poor solubility in water, and phy-
totoxicity are the challenges that should be overcome before 
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using these substances as biopesticides (Pavela and Benelli 
2016; Karalija et al. 2020).

These limitations of EOs can be mitigated through the 
development of more stable and effective formulations using 
nanotechnological interventions (Giunti et al. 2023). Among 
the different nano-formulations, EO-based nano-emulsions 
seem to be the ideal due to their easy preparation and scal-
ability at the industrial level (Campolo et al. 2017).

Nano-emulsions are produced using bottom-up and top-
down approaches (Donsì and Ferrari 2016). Bottom-up 
processes (e.g., self-emulsification, phase inversion com-
position or temperature, solvent demixing, etc.) are highly 
effective in combining very small molecules into more struc-
tured systems and producing nano-emulsions. Bottom-up 
approaches in general require a large amount of surfactant 
or co-surfactants to develop EO-based nano-emulsions at the 
nanoscale (droplet size < 200 nm) (Tadros et al. 2004; Saga-
lowicz and Leser 2010; Sugumar et al. 2014). Top-down 
approaches like sonication, high-pressure homogenization, 
high-pressure microfluidization, etc.) on the other hand, use 
high energy or pressure to create homogeneous nano-emul-
sions from large structured materials (Verma et al. 2009; 
Chan and Kwok 2011; Arole and Munde 2014). Top-down 
methods are generally considered more advantageous than 
bottom-up methods. They are easier to apply at industrial 
scale and reduce the occurrence of undesired effects, such 
as coalescence and flocculation, with reduced amount of sur-
factants and without co-surfactants and thickeners (Anton 
et al. 2008; McClements and Rao 2011; Santana et al. 2013; 
Barradas and de Holanda e Silva 2020).

Planococcus citri Risso (Hemiptera: Pseudococcidae), 
commonly known as citrus mealybug, is a polyphagous 
insect-pest that can affect agricultural and ornamental plants 
(Franco et al. 2004). This is one of the most important cit-
rus pests due to its direct and indirect damages. The mealy-
bug induces falling and deformation reduces plant growth 
and fruit size. The production of abundant honeydew that 
soils the fruits and attracts other undesirable insects, such 
as ants, can have significant economic consequences (Afifi 
et al. 2010; Zappalà 2010). Its management can be done 
through different strategies, such as agronomic practices and 
biological control using predators and/or parasitoids, but the 
primary control strategy is based on chemical insecticides 
(Ghaffari et al. 2017; Mansour et al. 2018).

The efficacy of EOs as insecticides has been investigated 
against several pests including P. citri (Koul et al. 2008; 
Mossa 2016; Campolo et al. 2018). Cloyd et al. (2009) high-
lighted that the EOs of cottonseed, cinnamon, rosemary, and 
lavender provided > 90% mortality of citrus mealybug. Simi-
larly, EOs of Pimpinella anisum L., Rosmarinus officinalis 
L., Mentha piperita L., Origanum onites L., Thymus vulgaris 
L., and Thymus capitatus L. exhibited good fumigation effi-
cacy against P. citri adults (Erdemir and Erler 2017, 2018; 

Alloui-Griza et al. 2022). Attia et al (2022) showed that the 
topical application of Mentha pulegium L. EO at 40.96 mg/L 
provided 100% mortality of P. citri nymphs.

In literature, the efficacy of Allium sativum (L.) EO has 
been extensively investigated against several pests. Garlic 
EO was highly effective against different mites such as Tet-
ranychus urticae Koch, Tetranychus truncates Ehara (Acari: 
Tetranychidae), Aceria oleae (Nalepa), and Tegolophus has-
sani (Keifer) (Acari: Eriophyidae) (Attia et al. 2012; Mossa 
et al. 2018; Sararit and Auamcharoen 2020). Furthermore, 
A. sativum EO can also be used as a pesticide for nematode 
management (Catani et al. 2023). Its fumigant or contact 
toxicity was indeed confirmed against Meloidogyne incog-
nita (Kofoid & White), Meloidogyne javanica (Treub) 
Chitwood, (Nematoda: Meloidogynidae), Bursaphelenchus 
xylophilus (Bursxy) (Nematoda: Aphelenchoididae) and 
Panagrolaimus sp. (Nematoda: Panagrolaimidae) (Park et al. 
2005; Jardim et al. 2020; Oro et al. 2020; Galisteo et al. 
2022, Nguyen et al. 2022). Among stored product pests, 
garlic EO and its major compounds revealed fumigant and 
contact toxicity against Tribolium confusum J. du Val and 
Tribolium castaneum (Herbest) (Coleoptera: Tenebrioni-
dae), Callosobruchus maculatus (Fabricius) (Coleoptera: 
Bruchidae), Sitophilus zeamais Motschulsky and Sitophilus 
oryzae L. (Coleoptera: Curculionidae) (Huang et al. 2000; 
Yang et al. 2010; Douiri et al 2013; Chude and Chude 2020; 
Palermo et al. 2021). Crude garlic EO was also tested against 
crop pests although with contrasting results; as an exam-
ple, it exhibited low toxicity against Spodoptera littoralis 
(Boisd.) (Lepidoptera: Noctuidae) larvae (Hamada et al. 
2018). In contrast, Ricupero et al. (2022) produced a garlic 
EO-based nano-emulsion which highlighted good efficacy 
in terms of larval and egg mortality as well as oviposition 
deterrence against Tuta absoluta (Meyrick) (Lepidoptera: 
Gelechiidae). On this basis, the impact of formulation can 
be a critical point to investigate the bioactivity of this EO 
against major pests.

Among the different EOs used for the control of P. citri, 
garlic EO seems a good choice for the development of new 
control tools since this phytocomplex has been proved to 
exert good insecticidal activity without affecting the sur-
vival of its main predator Cryptolaemus montrouzieri Mul-
sant (Coleoptera: Coccinellidae) (Modafferi et al. 2024). In 
this study, the authors investigated the insecticidal activity 
of a garlic EO nano-emulsion produced with a single low 
energy method and its stability over time was determined 
(Modafferi et al. 2024). In view of the promising insecti-
cidal activity of garlic EO, this study was aimed at devel-
oping various garlic EO-based emulsions comparing single 
or mixed bottom-up/top-down approaches, and maintaining 
the same high EO/surfactant ratio (3:1). The EO and the 
formulations were chemically and physically characterized 
using gas chromatography-mass spectrometry (GC–MS) and 
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dynamic light scattering (DLS) apparatus, respectively. The 
suitability of the different methods to produce stable nano-
emulsion formulations was assesses in terms of their efficacy 
against 3rd instars of P. citri and selectivity toward adults of 
A. mellifera bees.

Materials and methods

Biological materials

Planococcus citri laboratory rearing was established 
from hundreds of specimens collected from citrus groves 
located in the Reggio Calabria province (Italy) in 2023. The 
mealybug colony was reared for several generations at the 
Entomology laboratory of the Department of Agriculture, 
University Mediterranea of Reggio Calabria. Insects were 
reared on organic butternut pumpkin fruit inside a climatic 
chamber under constant climatic conditions: 28 ± 1  °C, 
70 ± 5% R.H., with a photoperiod of 12 h:12 h (L:D). Newly 
emerged (< 48 h) Apis mellifera ligustica Spinola (Hyme-
noptera: Apidae) worker bees used in the toxicity trial were 
collected from the experimental apiary of the Department 
of Agriculture, University Mediterranea of Reggio Calabria, 
Reggio Calabria, Italy. During the past three months, the 
apiary did not undergo any chemical treatment for Var-
roa destructor Anderson and Trueman (Acari: Varroidae) 
control.

Chemical characterization of Allium sativum EO

Commercial Allium sativum EO (GEO) was purchased 
from Esperis S.p.A. (Milan, Italy). The chemical char-
acterization of the garlic EO was carried out following 
the methods described by Giunti et al. (2019). Briefly, a 
Thermo Fisher TRACE 1300 GC with a MEGA-5 capillary 
column (30 m × 0.25 mm; coating thickness = 0.25 μm) 
and a Thermo Fisher ISQ LT mass detector (ionization 
mode: EI; scan time: 1.00 s; scan mass range: 30–300 m/z) 
were used setting injector and transfer line at 250 and 
240 °C, respectively, and a temperature ramp from 60 to 
240 °C at 3 °C  min−1 (carrier gas: He 1 mL  min−1). The 
pure EO was diluted (1:10 v:v) in hexane (95%, Sigma-
Aldrich, Munich, Germany), and 0.2 μL were injected at 
a split ratio of 1:30. The identification of peaks was made 
using computer matching against the commercial libraries 
(NIST 05, Wiley FFNSC and ADAMS) comparing linear 
retention indices (LRI). The LRIs were calculated using 
the formula of Van den Dool and Kratz (1963) by compar-
ing the retention times of the compounds to be identified 
with those of a standard mixture of alkanes (C8-C20 satu-
rated alkanes standard mixture, Supelco®, Bellefonte, PA, 
USA) which was analyzed in GC–MS under the identical 

operating conditions as the sample (Yoshiro 1976; Davies 
1990; Jennings 2012; Adams 2017).

Formulation and physical characterization 
of nano‑emulsions

The A. sativum EO-based nano-emulsions were obtained 
using different methodologies characterized by different 
amounts of energy supplied to the system (Supplementary 
Table S1). In detail, we developed four garlic EO-based 
formulations: (i) Raw emulsion (RAW), (ii) Sonicated 
nano-emulsion (SN), (iii) Sonicated and Microfluidized 
nano-emulsion (SH) and (iv) Microfluidized nano-emul-
sion (HPM). The RAW emulsion was obtained through 
the self-emulsification method (low-energy process) 
described by Bouchemal et al. (2004) with modifications. 
Specifically, to obtain the organic phase, GEO and Tween 
80® (polyoxyethylene (20) sorbitan monooleate, Sigma-
Aldrich, Munich, Germany) (ratio 3:1 w:w) were mixed 
for 30 min at 7,000 rpm at room temperature (25 ± 2 °C). 
Double-distilled water (aqueous phase) was then added 
slowly (1 mL  min−1) to the preliminary mixture (ratio 4:1 
w:w) without mixing. The obtained emulsion (EO 15% 
w/w; Tween 80® 5% w/w; water 80% w/w) was mixed for 
3 h at 7,000 RPM. Aliquots of the obtained RAW emulsion 
were used to develop the other EO-based nano-formula-
tions like SN, SH, and HPM.

The SN nano-emulsion was obtained using the self-emul-
sifier process followed by sonication (high-energy process) 
as described by Laudani et al. (2022) with modifications. 
The RAW emulsion was sonicated for 5  min in an ice 
bath using a UP200ST ultrasonic immersion homogenizer 
(Hielsher©, Teltow, Germany) at 100 W power. The (HPM) 
nano-emulsion was obtained by high-pressure micro-fluid-
ization technique as described by Modafferi et al. (2024), 
using an LM20 microfluidizer (Microfluidizer™ Processor, 
USA) for 5 cycles at 30,000 PSI. To avoid the degradation 
of the EO due to the heat generated during the process, the 
interaction chamber and heat exchanger were immersed in 
an ice bath to maintain a low temperature (< 10 °C). The SH 
nano-emulsion was obtained by integrating both the sonica-
tion and the microfluidization processes, respectively, at the 
same operative conditions. The nano-emulsions were then 
stored at 4 °C until characterization.

Dynamic Light Scattering (DLS) instrument was used 
to evaluate the physical characteristics. Particularly, droplet 
size, polydispersity index (PDI), and surface charge (ζ) val-
ues of each developed nano-formulation were measured. The 
analysis was repeated 1, 7, 50, and 100 days after preparation 
to assess the stability of the developed nano-emulsions over 
time. The DLS analyses were done by diluting the samples 
with double distilled water (1:400 v:v).
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Residual contact toxicity against Planococcus citri

The bioactivity of the developed garlic EO-based nano-
emulsions was determined through leaf dip method to evalu-
ate their residual contact toxicity. Circular sections (Ø 5 cm) 
of untreated citrus leaves were individually immersed for 
10 s in different nano-formulation dilutions. The treated leaf 
discs were dried at room temperature and placed in venti-
lated plastic Petri dishes (Ø 5.5 cm). Fifteen unsexed 3rd 
instar of P. citri nymphs from the laboratory rearing were 
gently placed on the surface of treated leaf. Petri dishes were 
placed inside climate chambers set at the same climatic con-
ditions used for insect rearing. Mortality was recorded 24 
and 48 h after treatment. Insects were considered dead if 
immobile after stimulation with a fine brush. Preliminary 
tests were conducted to check mortality at high concentra-
tion (2.5% EO). To estimate lethal doses, only formulations 
that caused 100% mortality of the exposed mealybugs were 
subsequently tested by applying serial dilutions (1.87, 1.25, 
0.93, 0.625, and 0.46% EO). Dilutions of each nano-emul-
sion were made by adding the required amount of distilled 
water. Each dose was replicated six times and distilled water 
was used as untreated control.

Toxicity toward Apis mellifera

The acute toxicity of SN, SH, and HPM nano-emulsions 
toward A. mellifera was evaluated using  LD50 and  LD90 esti-
mated on P. citri after 48 h. The raw emulsion was excluded 
due to its instability and low efficacy against P. citri. For this 
trial, we followed the topical application method described 
by Medrzycki et al. (2013). Briefly, bees were collected and 
anaesthetized with carbon dioxide. Then, 1 µL of nano-emul-
sions diluted in distilled water was placed on each bee's tho-
rax to achieve the desired concentration. Treated bees were 
then transferred inside Bugdorm cages (30 × 30 × 30 cm) 
and fed ad libitum with a 50% (w/v) sucrose solution. Each 
replicate included 10 worker bees and the experiment was 
replicated six times. The experimental procedure included 
a treated (dimethoate applied at 0.01 ppm) and an untreated 
(distilled water) control, and it was conducted under labo-
ratory conditions at 25 ± 1 °C, 70 ± 5% R.H. with a pho-
toperiod of 16 h:8 h (L:D). The mortality of the bees was 
recorded at 24, 48, and 96 h after the treatment. Specimens 
were considered dead if they failed to move when stimulated 
with a fine brush.

Data analysis

Datasets were checked for normality and homoscedastic-
ity of variance through Levene and Shapiro–Wilk tests 
(P > 0.05) and log-transformed whenever needed. Analysis 

of variance (ANOVA) was used to assess the differences 
in physical characteristics over time among the different 
nano-formulations with size, polydispersity index (PDI), 
and zeta potential values as dependent variables, and the 
methodology used as fixed factors. Multiple comparisons 
were assessed by Tukey’s HSD post hoc test. P. citri mor-
tality registered 24 and 48 h after the treatment was cor-
rected for control mortality using Abbott’s formula (Abbott 
1925).  LD50 and  LD90 values and their fiducial limits were 
estimated using the Probit analysis. LD values were consid-
ered significantly different if their 95% fiducial limits did not 
overlap. The effects of the different treatments on honeybee 
mortality were subjected to the Kruskal–Wallis test. Statis-
tics were carried out using IBM® SPSS® Statistics v. 23 
(IBM Corp. Released 2015. Armonk, NY, USA).

Results

Chemical composition of Allium sativum EO

The chemical composition of A. sativum EO is shown in 
Table 1. A total of 44 peaks were recorded (Supplemen-
tary Fig. S1), and twenty-four compounds corresponding to 
96.3% of the total area were identified from GC–MS analy-
sis. The A. sativum EO was composed of sulfur compounds 
with diallyl disulfide (37.26%), diallyl trisulfide (28.15%), 
diallyl tetrasulfide (12.20%), 1-allyl-3-(2-(allylthio)propyl)
trisulfane (6.69%) and diallyl sulfide (5.84%) as the most 
abundant detected compounds.

Physical characteristics of Allium sativum EO‑based 
nano‑emulsions

The developed nano-emulsions showed different physi-
cal characteristics. The use of high-energy methods 
allowed the development of highly stable nano-emulsions 
with droplet size in the nanometric range, low PDI val-
ues, and good stability indicated by negative surface 
charge. Conversely, the self-emulsifier method resulted 
in droplet sizes that did not fall within the nanometric 
range (> 500 nm) and a high polydispersity index (PDI 
tending to 1). Statistical differences were recorded over 
time in all physical characteristics between the different 
production processes (P < 0.05). Generally, the drop-
let size showed an increasing trend over time. After one 
day the smallest droplet sizes were registered in SH and 
HPM methods (72.61 ± 0.13 and 73.56 ± 0.19 nm, respec-
tively) (F = 12,986.2; df = 3; P < 0.01), while at the end 
of the observations (100 days after the nano-emulsions 
production), the droplets in the HPM nano-emulsion 
(108.3 ± 0.35 nm) were smaller than those of the formula-
tions produced with the other methods (F = 287.81; df = 3; 
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P < 0.01) (Fig. 1A). The PDI registered during the entire 
period of observation showed low values (0.06 ± 0.006—
0.187 ± 0.01) in SN, SH, and HPM nano-emulsions, while 
the RAW nano-emulsion was characterized by high PDI 
values (0.912 ± 0.07–0.988 ± 0.008). After one day, statis-
tical differences were observed among all nano-emulsions, 
and the HPM method highlighted the best homogeneity 
(0.06 ± 0.006) (F = 129.1; df = 3; P < 0.01). On the other 
hand, 100 days after preparation, statistical differences 
were observed almost among all the different produc-
tion methods (F = 5.21; df = 3; P < 0.05) (Fig. 1B). The 
ζ -potential analysis showed negative values for all the 
formulations, and the surface charge varied with time and 
the production method (P < 0.05) (Fig. 1C).

Toxicity against Planoccoccus citri

The A. sativum EO-based nano-formulations exhibited dif-
ferent efficacy against the immature stages of P. citri. The 
preliminary trial at the high percentage of active ingredient 
(a.i.) (2.5% of EO) showed that the nano-emulsions obtained 
through the use of a high-energy process (i.e., SN, SH and 
HPM) provided effective control of the pest, resulting in 
100% mortality. Differently, RAW emulsion did not par-
ticularly affect the insects either 24 or 48 h after the treat-
ment (Fig. 2). The mortality registered in P. citri treated 
with serial dilution of SN, SH, and HPM fitted in the Probit 
model (P > 0.05) showing dose–response mortality both 24 
and 48 h (Fig. 3). In all cases, the lethal doses  (LD50 and 
 LD90) highlighted no statistical difference between the dif-
ferent exposure times (24 and 48 h) and between the differ-
ent production processes (Table 2).

Toxicity toward Apis mellifera

The acute topic toxicity of the nano-emulsions (SN, SH, 
and HPM) toward A. mellifera workers is shown in Fig. 4. 
96 hours after the exposure, no statistical differences were 
observed among  LD50,  LD90, and negative control (water) 
for all the developed nano-emulsions. Conversely, statis-
tical differences were observed between positive control 
(dimethoate) and the  LD50 and  LD90 of nano-emulsions 
(H = 23.000; df = 7; P < 0.05). In particular, the nano-emul-
sions had no effect on the exposed honeybees (100% sur-
vival), while dimethoate resulted in the death of all the bees.

Discussion

The GC–MS analysis showed that garlic EO was mainly 
composed of sulfur compounds (over 95%), and among 
them, diallyl disulfide was the most abundant (37.26%) fol-
lowed by diallyl trisulfide (28.15%). Modafferi et al. (2024) 
on the other hand showed that garlic EO was mainly com-
posed of diallyl disulfide (73.5%) followed by diallyl sulfide 
(16.2%). According to our results, Sommano et al. (2016) 
proved that garlic EO from different countries contained the 
same proportion of these two principal compounds. How-
ever, the amount of these molecules within the EO depends 
on the extraction and drying methodologies (Satyal et al. 
2017; Condurso et al. 2019), as well as by the sampling 
technique can also impact the identified compounds. As an 
example, in the present study, garlic EO diluted in hexane 
was directly injected in GC–MS port; this methodology can 
impair the identification of the smallest EO components with 
retention indexes similar to the solvent’s one, since their 
GC_MS pikes can be covered by solvent (i.e., hexane). On 
the other hand, the methodology used by Modafferi et al. 

Table 1  GC–MS analysis of A sativum EO

a Calculated Linear Retention Index
b Literature Linear Retention Index
c Retention time
*  < 0.01%

Component LRIa LRIb RTc Area (%)

Allyl isopropyl sulfide 825 826 3.2 *
1,2-Dithiolane 841 842 3.44 0.22%
Diallyl sulfide 856 850 3.67 5.84%
Allyl-n-propyl sulfide 871 875 3.9 *
Isopropyl methyl disulfide 895 899 4.27 *
Allyl methyl disulfide 917 922 4.77 1.65%
Dimethyl trisulfide 970 962 6.1 *
1,3-Dithiane 1021 1027 7.57 *
Allyl propyl disulfide 1049 1048 8.54 0.19%
Diallyl disulfide 1082 1082 9.68 37.26%
1-Propenyl propyl, trans disulfide 1094 1100 10.08 0.09%
Methyl 2-propenyl trisulfide 1137 1142 11.77 1.20%
4-Methyl-1,2,3-trithiolane 1151 1150 12.3 1.27%
3-Vinyl-1,2-dithiacyclohex-4-ene 1185 1205 13.68 0.03%
2-Vinyl-4H-1,3-dithiine 1210 1215 14.72 0.11%
4,5-Dimethyl-2-butylthiazole 1226 1226 15.39 *
Allyl isopropil trisulfide 1264 1266 16.97 0.16%
Allyl trisulfide 1301 1296 18.54 28.15%
1,2,3,4-Tetrathiane, 5-methyl- 1357 1359 20.88 0.57%
Diallyl tetrasulfide 1539 1538 28.23 12.20%
4-Ethyl-6-methyl-1,2,3,5-tetrathi-

olane
1580 1588 29.81 0.03%

1-(1-propenylthio)propyl propyl 
disulfide

1581 1592 29.87 0.07%

6-Methyl-4,5,8-trithiaundeca-
1,10-diene

1591 1591 30.24 0.51%

1-Allyl-3-(2-(allylthio)propyl)
trisulfane

1811 1815 38.21 6.69%

Sulfur compounds 96.3%
Total Identified 96.3%
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(2024), i.e., headspace SPME (solid phase micro extraction) 
technique, requires no solvent but can be less sensitive to the 
less volatile molecules or to substances weakly affine to the 
selected fiber or extraction substrates.

This work aimed to develop four different A. sativum 
EO-based insecticide nano-emulsions with high a.i. (15% 
w/w) and low surfactant (5% w/w) amounts through mixed 
bottom-up/top-down approaches. Generally, bottom-up pro-
cesses cannot produce emulsions with fine and homogene-
ous droplets in the nano-meter range (Campolo et al. 2020). 

In agreement with this study, our RAW emulsion had mean 
droplet sizes around 500 ± 83.60 and 1,647 ± 440.69 nm 
after 1 and 100 days, respectively. Furthermore, the RAW 
emulsion exhibited highly polydisperse droplets with PDI 
values close to 1 throughout the observation times. Con-
versely, several studies reported the effectiveness of these 
approaches in the preparation of nano-emulsions with 
other EOs. Using the self-emulsification process, Chang 
and McClements (2014) obtained a transparent orange EO 
nano-emulsion (20% surfactant, 10% oil phase, and 70% 

Fig. 1  Physical properties (A = Size; B = PDI; C = ζ-potential) (mean ± SE) of nano-emulsions 1, 7, 50 and 100 days after production. Different 
letters indicate statistical differences among the methods within the same time (ANOVA, P < 0.05)

Fig. 2  Mortality (% ± SE) 24 
and 48 h after the exposure 
to Allium sativum EO-based 
nano-emulsions against  3rd 
instars of Planoccoccus citri 
in the preliminary test (2.5% 
of EO). Different letters 
indicate statistical differences 
among the different methods 
at the same exposure time 
(ANOVA, P < 0.05)
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Fig. 3  Dose–response mortality (% ± SE) caused by the developed 
nano-emulsions (A = SN; B = SH; C = HPM) against  3rd instars of 
Planoccoccus citri 24 and 48 h after the treatment. Different letters 

indicate statistical differences between different times of exposure 
within the same dose (EO %) (ANOVA, P < 0.05)

Table 2  Estimated  LD50 and 
 LD90 of developed Allium 
sativum EO-based nano-
emulsions against immature 
stages of Planoccoccus citri 24 
and 48 h after the exposure

Values were considered significantly different if their 95% fiducial limits did not overlap
a Lethal dose
b Degrees of freedom
c Sonicated nano-emulsion
d Sonicated + Microfluidized nano-emulsion
e Microfluidized nano-emulsion

Formulation type Time LDa Estimated Lower bound Upper bound Χ  (dfb) P level

SNc 24 h 50 0.764 0.632 0.900 3.663 (3) 0.300
90 1.378 1.124 2.054

48 h 50 0.653 0.538 0.762 0.562 (3) 0.905
90 1.104 0.920 1.579

SHd 24 h 50 0.950 0.877 1.029 3.306 (3) 0.653
90 1.248 1.131 1.499

48 h 50 0.826 0.744 0.909 4.996 (3) 0.416
90 1.211 1.072 1.506

HPMe 24 h 50 0.925 0.783 1.102 1.091 (3) 0.779
90 1.676 1.346 2.575

48 h 50 0.684 0.529 0.825 0.503 (3) 0.903
90 1.407 1.108 2.363
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water w/w) that showed droplet size around 20 nm. Another 
study reported that the phase inversion temperature (PIT) 
method allowed to obtain different Origanum vulgare EO-
based nano-emulsions (20% surfactant; 10% oil phase and 
70% water w/w) with droplet size in the range of 35–55 nm 
(Moraes-Lovison et al. 2017). The use of the bottom-up pro-
cess presents some limitations depending on the type of EO, 
the surfactant, and their relative ratios that reduce its appli-
cation in nano-emulsion preparation (Sessa and Donsì 2015; 
Donsì and Ferrari 2016). This aspect should be considered 
since high amount of surfactant often results in phytotoxic-
ity toward crop plants (Temple and Hilton 1963; Falk et al. 
1994; Appah et al. 2020; Mirgorodskaya et al. 2020).

The top-down approaches allowed us to develop garlic 
EO-based nano-emulsions (i.e., SN, SH, and HPM) with 
droplet size in the nanometric range (< 200 nm) and good 
homogeneity (PDI less than < 0.2), Other researchers high-
lighted the efficacy of the top-down approaches to develop 
garlic EO-based nano-emulsions. Through sonication meth-
ods, Palermo et al. (2021) prepared several EOs-based nano-
insecticides, including a garlic nano-emulsion. This garlic 
formulation had similar characteristics to our SN nano-emul-
sion, with a droplet size of 144.30 ± 0.15 nm and PDI of 
0.164 ± 0.008. Similarly, Liu et al. (2022) developed differ-
ent garlic EO-based nano-emulsions using different sonica-
tion duration (0, 1, 5 and 10 min). All the developed formu-
lations had droplet sizes and PDI values higher than those 
obtained in this study by SN, SH, and HPM approaches.

The surface charge, achieved (− 5.13 to − 38.5 mV) in 
our garlic EO nano-emulsion should contribute, together 
with the steric repulsion, to the stability recorded over time. 
Usually, surface charges around ± 30 mV are considered 
predictors of stability, but the use of non-ionic surfactants 
(i.e., Tween 80) owes their main stability to both steric and 
electrostatic repulsions (Gul et al. 2018; Akbari and Nour 
2018; Liu et al. 2022). In these cases, ζ-potential values 

of ± 20 mV coupled with small droplet size could stabilize 
nano-emulsions (Müller et al. 2001; Malhotra and Coupland 
2004; Campolo et al. 2020).

The biological activity of aqueous or solvent garlic 
extracts against scale pests has been quite well studied. As 
an example, Fand et al (2012) demonstrated the efficacy of 
aqueous garlic extract against 2nd instar nymphs of Phe-
nacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), 
proving that the topical application of a 1% concentrated 
garlic solution reduced the insect population by about 
50%. Similarly, Prishanthini and Vinobaba (2014) high-
lighted the efficacy of different botanical extracts, including 
garlic, against P. solenopsis adults. The results showed a 
dose–response mortality with an estimated  LC50 of 1.15% 
for A. sativum extract. Garlic extract was also found effec-
tive against Aulacaspis tubercularis Newstead (Hemiptera: 
Diaspididae), and its application reduced the insect popula-
tion in field conditions (Siam and Othman 2020). Further-
more, garlic extract exhibited strong residual toxicity  (LC90 
= 121.96 ppm) against Icerya purchasi Maskell (Hom-
optera: Margarodidae) (Allam et al. 2022). Other authors 
reported that the methanolic extract and EO of garlic were 
effective against 3rd instar of Pseudococcus viburni Sigor-
net (Hemiptera: Pseudococcidae), with an estimated  LC50 
of 0.12% and 0.31% 48 h after the exposure, respectively 
(Ramzi et al. 2022), and against Pseudococcus longispinus 
Targioni Tozzetti (Hemiptera: Pseudococcidae) with an esti-
mated  LC50 of 1.65% (Smith 2015).

Limited studies are available about the EO obtained 
from this plant toward scale pests. Mwanauta et al. (2023) 
reported the efficacy of this EO against Paracoccus margi-
natus Williams and Granara de Willink (Hemiptera: Pseu-
dococcidae). The results obtained 72 h after the exposure 
highlighted a good mortality (73.0 ± 1.7%) caused by pure 
garlic EO at 1.5% concentration. Modafferi et al. (2024), also 
investigated the bioactivity of garlic EO-based nano-emul-
sion against P. citri. The results highlighted a high efficacy 
of this formulation through direct and indirect application of 
EO exhibiting  LC90 of 0.967 and 1.088%, respectively, 48 h 
after the exposure. The  LD90 calculated in this study after 
24 and 48 h are comparable to the above-mentioned results 
and suggest that the formulation of the EO in nano-emulsion 
can improve the bioavailability and bioactivity of garlic EO 
also against other target scale pests.

The selectivity of these substances toward non-target 
organisms (e.g., predators, parasitoids, and pollinators) is 
a poorly investigated aspect about the use of EOs or their 
formulations as biopesticides. Nevertheless, several studies 
have proven the detrimental effect of biopesticides toward 
several bee species, including A. mellifera (reviewed in 
Borges et al. 2021; Cappa et al. 2022). Concerning botani-
cals, EOs were extensively investigated for the potential use 
in beekeeping for controlling Varroa spp. mites or other 

Fig. 4  Percentage of survived  Apis mellifera workers 96  h after 
exposure to nano-emulsions (SN, SH and HPM), negative control 
(water) and positive control (dimethoate). Different letters indicate 
statistical differences among the different treatments (Kruskal-Wallis 
test, P < 0.05)
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parasites on A. mellifera, and the majority of these com-
pounds showed low toxic effects for honeybees (Ntalli et al. 
2022; Catania et al. 2023). The present study tested the gar-
lic EO-based nano-emulsions (i.e., SN, SH, and HPM) for 
selectivity toward A. mellifera. These nano-emulsions did 
not affect the honeybee mortality, and 100% of the speci-
mens survived after exposure to all the concentrations of the 
tested formulations. Overall, the selectivity of these natural 
substances was influenced by some variables (e.g., type of 
EO, application rate, doses, insect species, etc.) (Giunti et al. 
2022). For example, Xavier et al. (2015) assessed the toxic-
ity of several botanical pesticides toward A. mellifera adults. 
The results demonstrated that citronella oil, eucalyptus oil, 
garlic extract, neem oil, and rotenone were highly toxic 
against bee larvae in ingestion bioassay, while andiroba oil 
was not statistically different from negative control. Further-
more, all the tested botanical extracts were repellent toward 
adult bees (Xavier et al. 2015). Some EOs can cause severe 
mortality for honeybees, as well as for other bee species. 
Melo et al. (2018) proved that the topical application of thy-
mol and carvacrol caused high mortality (> 80%) toward A. 
mellifera adults, as also reported in Tetragonisca angustula 
(Latreille) (Meliponinae), in which more than 70% of mor-
tality was caused by topical application of Artemisia annua 
L. EO (Seixas et al. 2018). Similarly, da Silva et al. (2020) 
reported lower toxicity of mint and ginger EOs toward hon-
eybees than oregano and thyme EOs. Nevertheless, toxico-
logical studies should take into account that thyme EOs is 
considered safe for honeybees in field conditions, since it is 
a widely used acaricide for the control of Varroa mites (van 
der Steen and Vejsnæs 2021). Moreover, EO doses and its 
application methods used for toxicological test against A. 
mellifera should be comparable to those used in real con-
ditions. As an example, garlic extract and EO were safely 
applied on honeybee colonies by Mazeed and El-Solimany 
(2020) to manage Varroa destructor Anderson & Trueman.

Conclusion

In conclusion, this study is focused on developing garlic 
essential oil (GEO)-based nano-emulsions for potential 
insecticidal applications. Mixed and single bottom-up/top-
down approaches were used to develop the nano-emulsions, 
the latter proving effective in achieving nanometric drop-
let sizes (< 200 nm) and good homogeneity. The limited 
research on their bioactivity against P. citri prompted this 
investigation, which confirmed promising results in terms of 
mortality. An essential aspect addressed in this study was the 
selectivity of garlic EO-based nano-emulsions for honeybee 
workers. The results indicated a lack of adverse effects of 
garlic EO on A. mellifera mortality, suggesting its environ-
mentally friendly potential. Further research is warranted 

to explore the full potentiality of these nano-emulsions in 
integrated pest management strategies and their broader 
ecological impact.
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