
Computers & Security 140 (2024) 103771

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Enforcing security policies on interacting authentication systems

Francesco Buccafurri a,∗, Vincenzo De Angelis b, Sara Lazzaro a, Andrea Pugliese b

a DIIES Dept., University Mediterranea of Reggio Calabria, Via dell’Universita 25, Reggio Calabria, 89124, Italy
b DIMES Dept., University of Calabria, Via Pietro Bucci, Rende, 87036, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

Authentication

Security policies

Digital identity

Security policies of authentication systems are a crucial factor in mitigating the risk of impersonation, which is
often the first stage of advanced persistent threats. Online authentication systems may often interact with each
other, due to various mechanisms, such as account recovery or federated authentication. This leads to an implicit
extension of the security policies of an authentication system with policies over which the system has no control.
As a result, an authentication system that adopts very strong security policies can be unexpectedly weak. This
paper deals with the above problem, which affects most real-world online authentication systems. The paper
proposes a theoretical framework that formalizes authentication policies and interactions among authentication
systems, together with a protocol that prevents, whenever an interaction is established or updated, the security
issues described above. An SSI-based implementation of the proposed protocol is presented as well.
1. Introduction

Security policies of authentication systems play a crucial role in
protection against attacks on impersonation (Bonneau et al., 2012; Cam-

pobasso and Allodi, 2020; Squicciarini et al., 2007). The latter is one of
the most serious threats, as it can represent the basis of complex attack
vectors, leading to advanced persistent threats (Alshamrani et al., 2019;
Li et al., 2018; Oberle et al., 2016).

Nonetheless, in real-world online authentication systems, a serious
problem exists that can invalidate the effectiveness of authentication-

policy management, leading to paradoxical situations.

We illustrate this problem by considering a simple example. Alice

registers with a powerful provider’s cloud service called invented-

giant.com. inventedgiant.com is very attentive to security as-

pects, so it sets very strong security policies, such as multi-factor au-

thentication, strong security rules for passwords, and throttling mech-

anisms. As usual, an account recovery mechanism is also provided,
based on sending a reset link to an email address specified by the user.

Alice uses the email address alice @inventedcolander .com. However,

inventedcolander.com is somewhat distracted about security is-

sues, so its security policies are quite weak. For example, users of its
email service can set weak passwords like “Alice”, “Bob”, “Password”,
etc., and the system does not protest. Alice is not fully aware of se-

curity issues, and, on the other hand, does not give much importance

* Corresponding author.

to the email service by inventedcolander.com, which she uses just
for (apparently) non-critical activities. Therefore, when, in 2022, she
registered with the email service of inventedcolander.com, she
set “Alice2022” as her password. Unfortunately Alice has an enemy,

Trudy, who is very eager to steal all of Alice’s pictures stored at

inventedgiant.com. It is a matter of fact that it is unfeasible for

Trudy to break the authentication process of inventedgiant.com

to impersonate Alice, but it is a piece of cake to violate the account
alice @inventedcolander .com, which, fortunately for Trudy, Alice has
published in her public social network profile (thus simplifying the task
of Trudy). This will allow Trudy to achieve the aimed goal.

This intuitive example is a clear proof of a practical yet seri-

ous problem that affects existing online services. The problem arises
from the possible interaction between different authentication systems.
Federated authentication exposes this problem as well, regardless of
the technology adopted to implement it (Sakimura et al., 2014; Wil-

son and Hingnikar, 2019). In general, authentication systems cannot
be always viewed as closed systems, in which it suffices to enforce
one’s own security policies to ensure that the security level obtained
is consistent with those policies. Indeed, the interaction with other
authentication systems may result in a sort of propagation of secu-

rity policies and, consequently, to unexpected possible security viola-

tions.
Available online 23 February 2024
0167-4048/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access

E-mail address: bucca@unirc.it (F. Buccafurri).

https://doi.org/10.1016/j.cose.2024.103771

Received 23 October 2023; Accepted 12 February 2024
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cose
mailto:alice@inventedcolander.com
mailto:bucca@unirc.it
mailto:alice@inventedcolander.com
https://doi.org/10.1016/j.cose.2024.103771
https://doi.org/10.1016/j.cose.2024.103771
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2024.103771&domain=pdf
http://creativecommons.org/licenses/by/4.0/

F. Buccafurri et al.

Thus, a research question arises: How can we ensure that security
policies for authentication are enforced over interacting authentication sys-

tems? In more detail, viewing interaction as a dependency relationship
between different authentication systems, the question becomes: How
can we guarantee that such dependencies can be established and maintained
without violating the coherence of the respective security policies?

Our paper studies this problem by formalizing the interaction be-

tween authentication systems in the general case and by proposing a
protocol ensuring security policy coherence. Specifically, our main con-

tributions are the following.

1. We provide a formal characterization of authentication security
policies.

2. We provide a formal characterization of the interactions among au-

thentication systems. In the above example, inventedgiant.com
plays the role of the “main” system whereas inventedcolan-
der.com plays the role of the “secondary” system – this is formal-

ized as a dependency of the main system on the secondary system.

3. On the basis of a theoretical framework built around the notion
of dependency, we provide an algorithm to verify whether the de-

pendency of a system 𝑆 on another system 𝑆′ can be established
and kept over time. Intuitively, the verification is successful only if
the security policies of 𝑆 are not weakened by 𝑆′ (i.e., an adver-

sary cannot gain advantage by using 𝑆′ to authenticate on 𝑆) – we
provide a formal security analysis for this purpose.

4. We define a protocol to enforce the verification described above
and we design a Self-Sovereign-Identity (SSI) based (Mühle et al.,
2018; Preukschat and Reed, 2021) solution to implement this pro-

tocol. Our implementation considers a reference set of authen-

tication attributes derived from the OWASP authentication cheat
sheet (OWASP, 2024) and NIST Digital Identity Guidelines: Authen-

tication and Lifecycle Management (NIST, 2017a).

To the best of our knowledge, no previous work deals with the prob-

lem considered in this paper, despite its practical relevance.

The remainder of the paper is organized as follows. In Section 2, we
propose a model for authentication systems and their security policies.
Section 3 discusses the registration of a user with a single authentica-

tion system. The interactions among different authentication systems
are formalized in Section 4. Section 5 provides a formal security analy-

sis of authentication in our proposed framework. An implementation of
our proposal is described in Section 6. Finally, Section 7 discusses re-

lated work and Section 8 outlines our conclusions and identifies open
challenges.

2. Modeling authentication systems

In this section, we provide our formal characterization of authenti-

cation systems. We assume the existence of a set S of systems and a set
U of users.

2.1. Authentication attributes

In our framework, A𝑎𝑢𝑡ℎ = A𝑢𝑠𝑟 ∪ A𝑠𝑦𝑠 is the set of authentication
attributes, where A𝑢𝑠𝑟 and A𝑠𝑦𝑠 are sets of user and system attributes,
respectively. Each attribute 𝐴 ∈A𝑎𝑢𝑡ℎ has an associated sequence

values(𝐴) = ⟨𝑣1,… , 𝑣|values(𝐴)|⟩
of possible values, equipped with a total order ≺ such that 𝑣𝑖 ≺ 𝑣𝑖+1 for
all 𝑖 ∈ [1, |values(𝐴)| − 1].

Example 1. Consider a scenario where A𝑢𝑠𝑟 = {𝐴1, 𝐴2} and A𝑠𝑦𝑠 =
{𝐴3, 𝐴4, 𝐴5, 𝐴6} with
2

• 𝐴1 =“Password length”, values(𝐴1) = ⟨4, … , 256⟩;
Computers & Security 140 (2024) 103771

• 𝐴2 =“No dictionary words used for passwords”, values(𝐴2) = ⟨false,
true⟩;

• 𝐴3 =“No password character limit”, values(𝐴3) = ⟨false, true⟩;
• 𝐴4 =“Method for password reset”, values(𝐴4) = ⟨Security questions,

URL token, PINs, Offline methods⟩;
• 𝐴5 =“Token duration (hours) for password reset”, values(𝐴5) = ⟨false,

true⟩;
• 𝐴6 =“PIN length for password reset”, values(𝐴6) = ⟨4, … , 12⟩.

We also write min-val(𝐴) = 𝑣1, max-val(𝐴) = 𝑣|values(𝐴)|, succ-val(𝐴, 𝑣𝑖)
= 𝑣𝑖+1, and prec-val(𝐴, 𝑣𝑖) = 𝑣𝑖−1.

Given an attribute 𝐴 ∈A𝑎𝑢𝑡ℎ and a value 𝑣 ∈ values(𝐴),

voided-by(𝐴,𝑣) ⊂A𝑎𝑢𝑡ℎ
denotes the set of attributes that cannot be used when value 𝑣 is used for
attribute 𝐴. For instance, “Token duration (hours) for password reset”
∈ voided-by(“Method for password reset”, PINs) and “PIN length for
password reset” ∈ voided-by(“Method for password reset”, URL token).

Finally, if 𝐴 ∈A𝑠𝑦𝑠, then

sys-val(𝑆,𝐴) ∈ values(𝐴)

denotes the value used by system 𝑆 for attribute 𝐴.

2.2. System policies

Each system 𝑆 ∈ S defines its authentication policy by specifying, for
each attribute 𝐴 ∈A𝑎𝑢𝑡ℎ, a set

policy(𝑆,𝐴) = {(𝑚1,𝐶1),… , (𝑚𝑛,𝐶𝑛)}

where, ∀𝑖 ∈ [1, 𝑛]:

• 𝑚𝑖 ∈ values(𝐴);
• 𝐶𝑖 is a set of pairs (𝐴′, 𝑣) with 𝐴′ ∈A𝑎𝑢𝑡ℎ, 𝐴′ ≠ 𝐴, 𝑣 ∈ values(𝐴′),

and 𝑣 ≠ min-val(𝐴′).

Intuitively, the semantics of the policy is that ∀𝑖 ∈ [1, 𝑛 −1], if ∀(𝐴′, 𝑣) ∈
𝐶𝑖 the value of attribute 𝐴′ is at least 𝑣, then the minimum accepted
value for attribute 𝐴 is 𝑚𝑖.

Example 2 shows how our definition can express a policy which is
recommended by NIST, along with a graphical representation.

Example 2. NIST Special Publication 800-63B (NIST, 2017a) recommends
the following:

“Look-up secrets having at least 112 bits of entropy SHALL be hashed
with an approved one-way function. Look-up secrets with fewer than
112 bits of entropy SHALL be salted and hashed using a suitable one-

way key derivation function. The salt value SHALL be at least 32 in bits
in length and arbitrarily chosen so as to minimize salt value collisions
among stored hashes. Both the salt value and the resulting hash SHALL be
stored for each look-up secret. For look-up secrets that have less than 64
bits of entropy, the verifier SHALL implement a rate limiting mechanism
that effectively limits the number of failed authentication attempts that
can be made on the subscriber’s account.”

and

“Look-up secrets SHALL have at least 20 bits of entropy.”

We can express the above policy by making policy(𝑆 ,“Bits of entropy for

look-up secret”) consist of the following pairs:

Computers & Security 140 (2024) 103771F. Buccafurri et al.

Fig. 1. Example system policy for attribute “Bits of entropy for look-up secret”.
(112, {(“Method for storing look-up secret”, one-way

function)})
(64, {(“Method for storing look-up secret”, one-way key

derivation function), (“Salt length for storing

look-up secret”,32)})
(20, {(“Method for storing look-up secret”, one-way key

derivation function), (“Salt length for storing look-up

secret”,32), (“Throttling applied to look-up secret”,

𝑡𝑟𝑢𝑒)})

Fig. 1 shows a graphical representation of the policy.

Given a policy policy(𝑆, 𝐴) = {(𝑚1, 𝐶1), … , (𝑚𝑛, 𝐶𝑛)}, we define its
equivalent expanded version exp-policy(𝑆, 𝐴) as

∪𝑚∗∈[𝑚1 ,max-val(𝐴)]{(𝑚∗,𝐶1)}
⋃

∪𝑖∈[2,𝑛],𝑚∗∈[𝑚𝑖,prec-val(𝐴,𝑚𝑖−1)]{(𝑚
∗,𝐶𝑖)}.

The equivalence will be clearer later on.1

Example 3. In the case of Example 2, if we assume max-val(“Bits of entropy
for look-up secret”) = 200, then the expanded version of policy(𝑆 ,“Bits of
entropy for look-up secret”) consists of:

• a pair (𝑚∗, {(“Method for storing look-up secret”, one-way function)})
for each 𝑚∗ ∈ [112, 200];

• a pair (𝑚∗, {(“Method for storing look-up secret”, one-way key deriva-

tion function), (“Salt length for storing look-up secret”, 32)}) for each
𝑚∗ ∈ [64, 111];

• a pair (𝑚∗, {(“Method for storing look-up secret”, one-way key deriva-

tion function), (“Salt length for storing look-up secret”, 32), (“Throttling
applied to look-up secret”, 𝑡𝑟𝑢𝑒)}) for each 𝑚∗ ∈ [20, 63].

2.3. Policy requirements

We now define a set of 6 requirements policy(𝑆, 𝐴) must satisfy.

R1. ∀𝑖 ∈ [1, 𝑛 − 1], 𝑚𝑖 ≻ 𝑚𝑖+1.

R2. ∀𝑖 ∈ [1, 𝑛], if (𝐴′, 𝑣) ∈ 𝐶𝑖, then ∄(𝐴′, 𝑣) ∈ 𝐶𝑖 with 𝑣 ≠ 𝑣.
R3. If 𝐴 ∈A𝑠𝑦𝑠, then sys-val(𝑆, 𝐴) ⪰𝑚𝑛.
R4. There do not exist a set {𝐴1, … , 𝐴𝑘} of attributes and a set

{𝑤1, … , 𝑤𝑘} with ∀𝑗 ∈ [1, 𝑘], 𝑤𝑗 ∈ values(𝐴𝑗) such that:

• ∀𝑗 ∈ [1, 𝑘 − 1], (𝐴𝑗+1, 𝑤𝑗+1) ∈ 𝐶 with (𝑤𝑗, 𝐶) ∈ exp-policy(𝑆, 𝐴𝑗);
• (𝐴1, 𝑤) ∈ 𝐶 with (𝑤𝑘, 𝐶) ∈ policy(𝑆, 𝐴𝑘) and 𝑤≻𝑤1.

1 Observe that we introduce the notion of expanded policy only to make the
formalism in the remainder more compact – expanded policies do not need to
3

be actually computed when implementing the proposed framework.
R5. There do not exist a set {𝐴1, … , 𝐴𝑘} of attributes and a set
{𝑤1, … , 𝑤𝑘} with ∀𝑗 ∈ [1, 𝑘], 𝑤𝑗 ∈ values(𝐴𝑗) such that:

• ∀𝑗 ∈ [1, 𝑘 − 1], (𝐴𝑗+1, 𝑤𝑗+1) ∈ 𝐶 with (𝑤𝑗, 𝐶) ∈ exp-policy(𝑆, 𝐴𝑗);
• (𝐴𝑘, 𝑤) ∈ 𝐶 with (𝑤1, 𝐶) ∈ policy(𝑆, 𝐴1) and 𝑤≺𝑤𝑘.

R6. ∀𝑖 ∈ [1, 𝑛],
• if (𝐴′, 𝑣) ∈ 𝐶𝑖, then 𝐴′ ∉ 𝑉 ;

• if ∃ 𝑝 < 𝑖 s.t. (𝐴′, 𝑣′) ∈ 𝐶𝑝 and 𝐴′ ∉ 𝑉 , then (𝐴′, 𝑣) ∈ 𝐶𝑖 with 𝑣 ⪰
𝑣′;

where 𝑉 = voided-by(𝐴, 𝑚𝑖)∪
⋃

(𝐴′′ ,𝑣′′)∈𝐶𝑖 voided-by(𝐴′′, 𝑣′′).

Intuitively, Requirements R1–R3 ensure that:

• The sequence of 𝑣𝑖 values appears in decreasing order in policy(𝑆, 𝐴).
• An attribute cannot appear twice in the same 𝐶𝑖 with different min-

imum values.

• If the policy is applied to a system attribute, then the lowest admit-

ted value 𝑚𝑛 is not higher than the value used by the system for
that attribute.

Requirement R4 ensures that the policies cannot contain inadmissi-

ble cycles, as shown in Example 4.

Example 4. Consider a scenario where policy(𝑆 ,“Token length for pass-

word reset”) is

(50, ∅)
(30, {(“Token duration (hours) for password reset”,3)})

and policy(𝑆 ,“Token duration (hours) for password reset”) is

(3, {(“Token length for password reset”,40)})

By quickly inspecting the graphical representation in Fig. 2, we can easily
spot the fact that the policy must be considered inadmissible – it contains
a cycle such that when “Token duration (hours) for password reset” has a
value of 30, a minimum value of 3 would be required for “Token duration
(hours) for password reset”, but the latter would in turn require a minimum
value of 40 for “Token duration (hours) for password reset”.

The policy would indeed violate Requirement R4 with 𝐴1 =“Token length
for password reset”, 𝐴2 =“Token duration (hours) for password reset”,
𝑤1 = 30, 𝑤2 = 3, and 𝑤 = 40.

Requirement R5 ensures that the policies cannot contain useless
“short circuits”, as shown in Example 5.

Example 5. Consider a scenario where policy(𝑆 ,“Token length for pass-
word reset”) is

F. Buccafurri et al.

Fig. 2. Example system policy with an inadmissible cycle.

(50, ∅)
(30, {(“Single use token for password reset”, true),

(“Token duration (hours) for password reset”,3)})

and policy(𝑆 ,“Single use token for password reset”) is

(true, {(“Token duration (hours) for password reset”,5)})

As Fig. 3 shows, the policy must be considered inadmissible because:

• when “Token length for password reset” has a value of 30, the policy
would require “Token duration (hours) for password reset” to be at
least 3 and “Single use token for password reset” to be 𝑡𝑟𝑢𝑒;

• the fact that “Single use token for password reset” is 𝑡𝑟𝑢𝑒 in turn re-
quires “Token duration (hours) for password reset” to be at least 5;

• thus, requiring “Token duration (hours) for password reset” to be at
least 3 would be a “short-circuit” not actually applied.

The policy would indeed violate Requirement R5 with 𝐴1 =“Token length
for password reset”, 𝐴2 =“Single use token for password reset”, 𝐴3 =“Token
duration (hours) for password reset”, 𝑤1 = 30, 𝑤2 = 𝑡𝑟𝑢𝑒, 𝑤3 = 5, and
𝑤 = 3.

Requirement R6 ensures that (i) no attributes are used that are
voided by the values of other attributes and (ii) if an attribute appears
in 𝐶𝑝, then it must appear in all 𝐶𝑖’s with 𝑖 > 𝑝 with a higher minimum
value (unless it is voided). The former case is shown in Example 6. The
latter case is a “common-sense” consequence of Requirement R1 which
imposes 𝑚𝑖 ⪯𝑚𝑝.

Example 6. Consider a scenario where “PIN length for password reset” ∈
voided-by(“Method for password reset”, URL token) and policy(𝑆 ,“Method
for password reset”) is

(Offline methods, ∅)
(PINs, {(“PIN length for password reset”,6)})

(URL token, {(“PIN length for password reset”,6),
(“Single use token for password reset”,

𝑡𝑟𝑢𝑒)})

The policy must be considered inadmissible because 𝐶3 fixes a minimum
value for “PIN length for password reset” even if this attribute is voided by the
value used for “Method for password reset” (URL token). The policy would
violate Requirement R6 (first bullet) with 𝐴′ =“PIN length for password
reset”, 𝑣 = 6, 𝑖 = 3, and “PIN length for password reset” ∈ 𝑉 .

Consider now a scenario where:

• “Method for password reset” ∉ voided-by(“Password length”, 8);
• “PIN length for password reset” ∉ voided-by(“Password length”, 8);
• “PIN length for password reset” ∈ voided-by(“Method for password re-

set”, URL token);
4

and policy(𝑆 ,“Password length”) is
Computers & Security 140 (2024) 103771

(16, ∅)
(8, {(“Method for password reset”, URL token),

(“PIN length for password reset”,6)})

Again, the policy must be considered inadmissible because 𝐶2 fixes a
minimum value for “PIN length for password reset” even if this attribute
is voided by the value used for “Method for password reset” (URL token).
However, differently from the previous scenario, the latter value is used in 𝐶2
itself. The policy would violate Requirement R6 (first bullet) with 𝐴′ =“PIN
length for password reset”, 𝑣 = 6, 𝑖 = 2, and “PIN length for password reset”
∈ 𝑉 .

3. User registration

Suppose 𝑈 ∈ U wants to create an account on system 𝑆 ∈ S. For
each 𝐴 ∈A𝑢𝑠𝑟, we write

usr-val(𝑆,𝐴,𝑈) ∈ values(𝐴)

to denote the value of attribute 𝐴 that user 𝑈 wants to use for their
registration.

To make the notation more compact, in the following we use a sin-

gle verification value function for both system and attribute values. In
particular, we define ver-val(𝑆, 𝐴, 𝑈) as sys-val(𝑆, 𝐴) if 𝐴 ∈ A𝑠𝑦𝑠, and
usr-val(𝑆, 𝐴, 𝑈) if 𝐴 ∈A𝑢𝑠𝑟. Observe that, in the former case, the user is
not taken into account — this is equivalent to assuming a single value
for all users on system attributes.

System 𝑆 will perform the registration of 𝑈 only if, ∀𝐴 ∈ A𝑎𝑢𝑡ℎ,
∃(𝑚𝑖, 𝐶𝑖) ∈ policy(𝑆, 𝐴) such that

• ver-val(𝑆, 𝐴, 𝑈) ⪰𝑚𝑖2;

• ∀(𝐴′, 𝑣) ∈ 𝐶𝑖, ver-val(𝑆, 𝐴′, 𝑈) ⪰ 𝑣.

Intuitively, the registration will be verified iff, for each authentication
attribute 𝐴, we can find a pair (𝑚𝑖, 𝐶𝑖) in the policy for 𝐴 such that the
value of 𝐴 is at least 𝑚𝑖 and all attributes in 𝐶𝑖 have a value that is
higher than or equal to their associated minimum accepted value.

Example 7. Consider a system 𝑆 with policy(𝑆 ,“Password length”) consist-

ing of the following pairs:

(20, ∅)
(8, {(“Method for password reset”, PINs)})

In this case, for a given user 𝑈 , we could have:

• usr-val(𝑆 ,“Password length”, 𝑈) = 20 and usr-val(𝑆 ,“Method for pass-

word reset”, 𝑈) = Security questions. In this case, the registration of 𝑈
can be performed because (20, ∅) ∈ policy(𝑆 ,“Password length”) and
ver-val(𝑆 ,“Password length”, 𝑈) ⪰ 20.

• usr-val(𝑆 ,“Password length”, 𝑈) = 10 and usr-val(𝑆 ,“Method for pass-

word reset”, 𝑈) = Offline methods. In this case, the registration of 𝑈
can be performed because (8, {(“Method for password reset”, PINs)}) ∈
policy(𝑆 ,“Password length”), ver-val(𝑆 ,“Password length”, 𝑈) ⪰ 8,
and ver-val(𝑆 ,“Method for password reset”, 𝑈) ⪰ PINs.

4. Modeling and verifying interactions

In this section we provide our formalization of the interactions
among authentication systems in the form of dependencies. Then, we
develop an algorithm to verify whether such dependencies can be es-

tablished given the policies of the involved systems.

2 The condition can be equivalently written as ver-val(𝑆, 𝐴, 𝑈) =𝑚𝑖 if we use

exp-policy(𝑆, 𝐴) instead of policy(𝑆, 𝐴).

Computers & Security 140 (2024) 103771F. Buccafurri et al.

Fig. 3. Example system policy with a useless “short-circuit”.
4.1. Dependencies

We model interactions among authentication systems by means of a
dependency relation “←←→ ”. In particular, given two systems 𝑆, 𝑆′ ∈ S and
a user 𝑈 ∈U, we write

𝑆
𝑈
←←←←←←←←→ 𝑆′

to denote the fact that system 𝑆 depends on system 𝑆′ for the authen-

tication of user 𝑈 . In the following, we discuss two main kinds of
dependencies that may arise in real world scenarios.

Multiple dependencies Consider two dependencies 𝑆
𝑈
←←←←←←←←→ 𝑆′ and 𝑆

𝑈
←←←←←←←←→

𝑆′′, that is system 𝑆 depends on both systems 𝑆′ and 𝑆′′ for the
authentication of user 𝑈 . These models, e.g., those scenarios where au-

thentication relies on other (sub)systems.

Example 8. A few years ago, Apple’s iCloud system allowed authentication
through various interfaces (file repo, find-my-iPhone, app data sync, etc.).
However, it did not enforce the same security policy at all interfaces (in
particular, it did not throttle password attempts at the find-my-iPhone in-

terface). In our framework, after fixing policy(iCloud,“Throttling applied to
passwords”) = {(𝑡𝑟𝑢𝑒, ∅)}, we expect any system 𝑆′ with sys-val(𝑆′,“Throt-

tling applied to passwords”) = 𝑓𝑎𝑙𝑠𝑒 to be ineligible for a dependency
iCloud

𝑈
←←←←←←←←→ 𝑆′.

Derived dependencies Consider two dependencies 𝑆
𝑈
←←←←←←←←→ 𝑆′ and 𝑆′ 𝑈

←←←←←←←←→
𝑆′′, that is system 𝑆 depends on system 𝑆′ which in turn depends on
system 𝑆′′ for the authentication of user 𝑈 . This implies a dependency
of system 𝑆 on system 𝑆′′, which we call a derived dependency — such
dependencies must be verified as well.

Example 9. A few years ago, a famous gmail account was hacked using a
password reset performed though a link sent to a recovery email @me.com
(managed by Apple). The latter allowed resetting the password using a billing
address and the last 4 digits of a credit card number. The user had an Ama-

zon account, and Amazon’s account management system did not require
login to purchase — in addition, users could add credit cards to other users’
accounts. Finally, resetting a password in Amazon required one of the credit
card numbers, and after login, the website showed the last 4 digits of all
the registered cards. In our framework, we would need to establish both the
dependencies 𝑔𝑚𝑎𝑖𝑙

𝑈
←←←←←←←←→ 𝑚𝑒.𝑐𝑜𝑚 (since gmail relies on me.com for password

recovery) and 𝑚𝑒.𝑐𝑜𝑚
𝑈
←←←←←←←←→ 𝐴𝑚𝑎𝑧𝑜𝑛 (since the user shares the same secret

— the last 4 digits of a credit card number — with the two systems). How-

ever, after fixing policy(gmail,“Method for password reset”) = {(𝑎, ∅)} with
any 𝑎 ≻Security questions, the dependency 𝑔𝑚𝑎𝑖𝑙

𝑈
←←←←←←←←→ 𝑚𝑒.𝑐𝑜𝑚 could not be

established.

In the following, we use 𝑆
𝑈
⇝ 𝑆′′ to denote both direct and derived

dependencies, i.e.,

𝑈 𝑈 𝑈 𝑈
5

𝑆 ⇝ 𝑆′′ if 𝑆 ←←←←←←←←→ 𝑆′′ or 𝑆 ←←←←←←←←→ 𝑆′ and 𝑆′ ⇝ 𝑆′′.
4.2. Dependency verification

In our framework, Algorithm VERIFY-DEPENDENCY is invoked be-

fore establishing every new dependency 𝑆
𝑈
←←←←←←←←→ 𝑆′. The algorithm verifies

whether all the required conditions are met. The process start with
(𝑆, 𝑆′, 𝑈, policy, ver-val, ∅) as input.

Algorithm 1 Verify-Dependency.

Input: Systems 𝑆, 𝑆 ′ ∈ S, user 𝑈 ∈U, functions policy and ver-val, set S ⊆ S
of systems

Output: true if 𝑆 𝑈
←←←←←←←←→ 𝑆 ′ can be established, false otherwise

1: if 𝑆
𝑈
⇝ 𝑆 ′ then

2: return true

3: S.𝑎𝑑𝑑(𝑆)
4: for all 𝑆 ′′ ∈ S s.t. 𝑆 ′′ 𝑈

←←←←←←←←→ 𝑆 and 𝑆 ′′ ∉ S ∪ {𝑆 ′} do

5: if not VERIFY-DEPENDENCY(𝑆′′, 𝑆 ′, 𝑈, policy, ver-val, S) then

6: return false

7: Ŝ← {𝑆}
8: for all 𝑆 ′′ ∈ S s.t. 𝑆

𝑈
⇝ 𝑆 ′′ do

9: Ŝ.𝑎𝑑𝑑(𝑆 ′′)
10: if not VERIFY-FORWARD(𝑆, 𝑆′, 𝑈, policy, ver-val, Ŝ) then

11: return false

12: return true

Algorithm 2 Verify-Forward.

Input: Systems 𝑆, 𝑆 ′ ∈ S, user 𝑈 ∈U, functions policy and ver-val, set S ⊆ S
of systems

Output: true if 𝑆 𝑈
←←←←←←←←→ 𝑆 ′ can be established, false otherwise

1: for all 𝐴 ∈A𝑎𝑢𝑡ℎ do

2: 𝑣𝑎𝑙← ver-val(𝑆 ′, 𝐴, 𝑈)
3: verified ← false

4: {(𝑚1, 𝐶1), … , (𝑚𝑛, 𝐶𝑛)} ← policy(𝑆, 𝐴)
5: for 𝑖 in 1, … , 𝑛 do

6: if 𝑣𝑎𝑙 ⪰𝑚𝑖 and ∀(𝐴′, 𝑣) ∈ 𝐶𝑖 , ver-val(𝑆 ′, 𝐴′, 𝑈) ⪰ 𝑣 then

7: verified ← true // can also break the loop started on Line 5

8: if not verified then

9: return false

10: S.add(𝑆 ′)

11: for all 𝑆 ′′ ∈ S s.t. 𝑆 ′ 𝑈
←←←←←←←←→ 𝑆 ′′ and 𝑆 ′′ ∉ S do

12: if not VERIFY-FORWARD(𝑆, 𝑆′′, 𝑈, policy, ver-val, S) then

13: return false

14: return true

The algorithm immediately returns 𝑡𝑟𝑢𝑒 if a dependency of 𝑆 on 𝑆′

already exists (Lines 1–2). Lines 3–6 traverse the dependencies back-

wards, with recursive invocations that verify whether the systems that
depend on 𝑆 are allowed to depend on 𝑆′ as well. Finally (Lines 7–11),
the algorithm builds the set Ŝ of systems that already depend on 𝑆
(i.e., before adding 𝑆

𝑈
←←←←←←←←→ 𝑆′) and invokes Algorithm VERIFY-FORWARD

to verify whether the dependency can be established, considering such

systems as already verified.

F. Buccafurri et al.

In Algorithm VERIFY-FORWARD, Lines 1–9 verify whether system 𝑆′

and user 𝑈 satisfy system 𝑆 ’s policy for all authentication attributes. In
particular, the loop starting on Line 5 tries to find a pair (𝑚𝑖, 𝐶𝑖) such
that the verification value of 𝐴 under 𝑆′, along with the verification
values of all attributes in 𝐶𝑖 under 𝑆′, satisfy the policy requirements
stated by 𝑆 .3 If the verification succeeds, then 𝑆′ is added to the set
S of verified systems (Line 10). Finally, for all systems that depend on
𝑆′ and have not been verified (Line 11), the algorithm invokes itself
recursively.

4.3. Towards strong dependencies

A possible alternative notion of dependency could just look at poli-

cies instead of considering the actual values used for authentication
attributes.

We start by introducing a partial order on policies. Given two sys-

tems 𝑆, 𝑆′ ∈ S and an attribute 𝐴 ∈A𝑎𝑢𝑡ℎ, we write

policy(𝑆,𝐴) ≤𝑃 policy(𝑆′,𝐴)

iff ∀(𝑚𝑗, 𝐶𝑗) ∈ policy(𝑆′, 𝐴), ∃(𝑚𝑖, 𝐶𝑖) ∈ policy(𝑆, 𝐴) such that:

• 𝑚𝑖 ⪯𝑚𝑗 ;
• ∀(𝐴′, 𝑣) ∈ 𝐶𝑖, ∃(𝐴′, 𝑣′) ∈ 𝐶𝑗 such that 𝑣 ⪯ 𝑣′.

In other words, every pair (𝑚𝑗, 𝐶𝑗) in policy(𝑆′, 𝐴) is “stronger” than
at least one pair (𝑚𝑖, 𝐶𝑖) in policy(𝑆, 𝐴). In order to consider (𝑚𝑗, 𝐶𝑗)
stronger than (𝑚𝑖, 𝐶𝑖), we obviously require that 𝑚𝑖 ⪯ 𝑚𝑗 — but in ad-

dition, each attribute that is mentioned in 𝐶𝑖 must be mentioned in 𝐶𝑗
as well, with a greater or equal associated minimum value.

With the above definition at hand, it is easy to see that if a user
satisfies the policy of 𝑆′ (i.e., they can perform the registration under
𝑆′), then they also satisfy the policy of 𝑆 . We can then introduce the
concept of strong dependency. Specifically, a strong dependency of 𝑆 on

𝑆′ for the authentication of user 𝑈 , denoted 𝑆
𝑈
←←←←←←←→ 𝑆′, can be established

iff ∀𝐴 ∈A𝑎𝑢𝑡ℎ, policy(𝑆, 𝐴) ≤𝑃 policy(𝑆′, 𝐴).
The main advantage of strong dependencies is that they are tran-

sitive by definition, so 𝑆
𝑈
←←←←←←←→ 𝑆′ and 𝑆′

𝑈
←←←←←←←→ 𝑆′′ implies 𝑆

𝑈
←←←←←←←→ 𝑆′′. Thus,

there is no need to verify derived dependencies — when a new de-

pendency is established between two systems, no interaction with other
systems is needed. On the other hand, strong dependencies could end up
being too “conservative” and less capable of modeling real world use
cases. One possible option to overcome this drawback could be that of
introducing an (also partial) order among the authentication attributes
in order to derive a less restrictive definition of order on policies. We
plan to investigate this in future work.

5. Security analysis

In this section, we provide a formal analysis of the security of au-

thentication in our proposed framework.

We start by introducing the concept of capability of an adversary.
Given an adversary Adv and an attribute 𝐴, we define the capability

of Adv on 𝐴 as 𝑐𝑎𝑝(Adv, 𝐴) ∈ 𝑣𝑎𝑙𝑢𝑒𝑠(𝐴). Intuitively, 𝑐𝑎𝑝(Adv, 𝐴) is the
maximum value of 𝐴 that Adv is able to compromise. For instance,
consider 𝐴 =“Password length” with 𝑐𝑎𝑝(Adv, 𝐴) = 10. This means that
Adv is able to break users’ passwords of length at most 10.

Observe that, in principle, the actual capability of an adversary may
depend on the value of other attributes. For example, Adv may not be
able to bypass a throttling mechanism (𝑐𝑎𝑝(Adv,“Throttling applied to
password”) = 𝑓𝑎𝑙𝑠𝑒), so when throttling is applied, the actual length of
the passwords that Adv can break is lower than 10. We make the worst

3 The first condition on Line 6 can be equivalently written as 𝑣𝑎𝑙 = 𝑣𝑖 instead
6

of 𝑣𝑎𝑙 ⪰ 𝑣𝑖 if we use exp-policy(𝑆, 𝐴) instead of policy(𝑆, 𝐴).
Computers & Security 140 (2024) 103771

case assumption that the capability on an attribute is independent of the
values assumed by other attributes.

We now give our definition of vulnerable policy. Given a system
𝑆 ∈ S and an attribute 𝐴, we say that policy(𝑆, 𝐴) is vulnerable if there
exists an adversary Adv and a pair (𝑚𝑖, 𝐶𝑖) ∈ policy(𝑆, 𝐴) such that:

• 𝑐𝑎𝑝(Adv, 𝐴) ⪰𝑚𝑖
• ∀(𝐴′, 𝑣) ∈ 𝐶𝑖, 𝑐𝑎𝑝(Adv, 𝐴′) ⪰ 𝑣.

In other words, policy(𝑆, 𝐴) is vulnerable if it contains a pair (𝑚𝑖, 𝐶𝑖) and
an adversary is able to compromise attribute 𝐴 with value 𝑚𝑖 together
with all the attributes in 𝐶𝑖.

Example 10. Assume policy(𝑆 ,“Password length”) = {(10, ∅), (8, {(“Throt-

tling applied to password”, 𝑡𝑟𝑢𝑒)})}. Suppose there exists an adversary Adv

with 𝑐𝑎𝑝(Adv,“Password length”) = 10 and 𝑐𝑎𝑝(Adv,“Throttling applied to
password”) = 𝑓𝑎𝑙𝑠𝑒. In this case, the policy is vulnerable based on the first
pair. Observe that, this may represent an issue for 𝑆 — indeed, even if the
system applies a throttling mechanism, it may establish a dependency with a
system 𝑆′ which does not throttle, and thus be potentially vulnerable.

In order to take into account the values actually used for at-

tributes, we define function 𝑏𝑟𝑒𝑎𝑘. Given a system 𝑆 , an attribute 𝐴,
a set of attributes A∗ ⊂ A𝑎𝑢𝑡ℎ, and a user 𝑈 ∈ U, 𝑏𝑟𝑒𝑎𝑘(𝑆, 𝐴, A∗, 𝑈)
is 𝑡𝑟𝑢𝑒 iff ∃Adv such that 𝑐𝑎𝑝(Adv, 𝐴) ⪰ ver-val(𝑆, 𝐴, 𝑈) and ∀𝐴∗ ∈
A∗, 𝑐𝑎𝑝(Adv, 𝐴∗) ⪰ ver-val(𝑆, 𝐴∗, 𝑈). Observe that the function works
on a set of attributes A∗ — in the following, they will correspond to the
attributes in a pair in policy(𝑆, 𝐴).

We leverage function 𝑏𝑟𝑒𝑎𝑘 to define the concept of directly vul-

nerable system. We say that a system 𝑆 ∈ S is directly vulnerable on an
attribute 𝐴 ∈A𝑎𝑢𝑡ℎ for a user 𝑈 ∈U if

∀(𝑚𝑖,𝐶𝑖) ∈ policy(𝑆,𝐴), 𝑏𝑟𝑒𝑎𝑘(𝑆,𝐴,A∗,𝑈) = 𝑡𝑟𝑢𝑒

where A∗ = {𝐴∗ ∈A𝑎𝑢𝑡ℎ ∶ (𝐴∗, 𝑣) ∈ 𝐶𝑖}. Observe that:

• The notion of direct vulnerability does not take into account the
system’s dependencies — the latter will be considered in the defi-

nition of indirect vulnerability.

• The definition looks at all pairs (𝑚𝑖, 𝐶𝑖) ∈ policy(𝑆, 𝐴). This is due
to the fact that if the attacker is not capable of breaking the pair(s)
(𝑚𝑖, 𝐶𝑖) used during user registration, then 𝑆 is secure on 𝐴 for 𝑈 .

Theorem 1 states that, as long as the policy set by a system on a
given attribute is sufficiently strong, the user registration procedure pre-

vents an attacker from breaking the system for that user.

Theorem 1. Consider a system 𝑆 , an attribute 𝐴, and a user 𝑈 performing
user registration as defined in Section 3. If policy(𝑆, 𝐴) is not vulnerable,
then 𝑆 is not directly vulnerable on 𝐴 for 𝑈 .

Proof. By definition, 𝑆 is not directly vulnerable on 𝐴 for 𝑈 if
∃(𝑚𝑖, 𝐶𝑖) ∈ policy(𝑆, 𝐴) such that 𝑏𝑟𝑒𝑎𝑘(𝑆, 𝐴, A∗, 𝑈) = 𝑓𝑎𝑙𝑠𝑒 where
A∗ = {𝐴∗ ∈A𝑎𝑢𝑡ℎ ∶ (𝐴∗, 𝑣) ∈ 𝐶𝑖}. After the user registration process, we
have ∃(𝑚, 𝐶) ∈ policy(𝑆, 𝐴) such that ver-val(𝑆, 𝐴, 𝑈) ⪰𝑚 and ∀(𝐴′, 𝑣) ∈
𝐶, ver-val(𝑆, 𝐴′, 𝑈) ⪰ 𝑣. By definition, if 𝑝𝑜𝑙𝑖𝑐𝑦(𝑆, 𝐴) is not vulnera-

ble, then ∀(𝑚, 𝐶) and for any adversary Adv, 𝑐𝑎𝑝(Adv, 𝐴) ≺ 𝑚 and
∀(𝐴′, 𝑣) ∈ 𝐶, 𝑐𝑎𝑝(Adv, 𝐴′) ≺ 𝑣. Then, for any adversary Adv, it holds
that ver-val(𝑆, 𝐴, 𝑈) ≻ 𝑐𝑎𝑝(Adv, 𝐴) and ∀(𝐴′, 𝑣) ∈ 𝐶 , ver-val(𝑆, 𝐴′, 𝑈) ≻
𝑐𝑎𝑝(Adv, 𝐴′). This corresponds to 𝑏𝑟𝑒𝑎𝑘(𝑆, 𝐴, A∗, 𝑈) = 𝑓𝑎𝑙𝑠𝑒 where
A∗ = {𝐴∗ ∈A𝑎𝑢𝑡ℎ ∶ (𝐴∗, 𝑣∗) ∈ 𝐶}. □

We now introduce the notion of indirect vulnerability, which may
happen when a system can be compromised through other systems on

which it depends. We say that a system 𝑆 ∈ S is indirectly vulnerable

F. Buccafurri et al.

on an attribute 𝐴 ∈A𝑎𝑢𝑡ℎ for a user 𝑈 ∈U if ∃𝑆𝑘 ∈ S ⧵ {𝑆} with 𝑆
𝑈
⇝

𝑆𝑘 such that ∀(𝑚𝑖, 𝐶𝑖) ∈ policy(𝑆, 𝐴), 𝑏𝑟𝑒𝑎𝑘(𝑆𝑘, 𝐴, A∗, 𝑈) = 𝑡𝑟𝑢𝑒 where
A∗ = {𝐴∗ ∈A𝑎𝑢𝑡ℎ ∶ (𝐴∗, 𝑣) ∈ 𝐶𝑖}.

Theorem 2 states that, as long as the policy set by a system on a
given attribute is sufficiently strong, the system cannot be compromised
through other systems on which it depends.

Theorem 2. Consider a system 𝑆 , a user 𝑈 , a system 𝑆𝑘 ∈ S ⧵ {𝑆} such

that 𝑆
𝑈
⇝ 𝑆𝑘, and an attribute 𝐴. If policy(𝑆, 𝐴) is not vulnerable, then 𝑆

is not indirectly vulnerable on 𝐴 for 𝑈 .

Proof. Since by hypothesis 𝑆
𝑈
⇝ 𝑆𝑘, 𝑆 is not indirectly vulnerable

on 𝐴 for 𝑈 if ∃(𝑚𝑖, 𝐶𝑖) ∈ policy(𝑆, 𝐴) such that 𝑏𝑟𝑒𝑎𝑘(𝑆𝑘, 𝐴, A∗, 𝑈) =

𝑓𝑎𝑙𝑠𝑒 where A∗ = {𝐴∗ ∈ A𝑎𝑢𝑡ℎ ∶ (𝐴∗, 𝑣) ∈ 𝐶𝑖}. The fact that 𝑆
𝑈
⇝ 𝑆𝑘

implies that Algorithm VERIFY-FORWARD returns 𝑡𝑟𝑢𝑒 when invoked
with 𝑆 and 𝑆𝑘 as input. Therefore, ∃(𝑚, 𝐶) ∈ policy(𝑆, 𝐴) such that
ver-val(𝑆𝑘, 𝐴, 𝑈) ⪰ 𝑚 and ∀(𝐴′, 𝑣) ∈ 𝐶, ver-val(𝑆𝑘, 𝐴′, 𝑈) ⪰ 𝑣. By defini-

tion, if 𝑝𝑜𝑙𝑖𝑐𝑦(𝑆, 𝐴) is not vulnerable then ∀(𝑚, 𝐶) and for any adver-

sary Adv, 𝑐𝑎𝑝(Adv, 𝐴) ≺ 𝑚 and ∀(𝐴′, 𝑣) ∈ 𝐶, 𝑐𝑎𝑝(Adv, 𝐴′) ≺ 𝑣. Then,
for any adversary Adv, it holds that ver-val(𝑆𝑘, 𝐴, 𝑈) ≻ 𝑐𝑎𝑝(Adv, 𝐴)
and ∀(𝐴′, 𝑣) ∈ 𝐶 , ver-val(𝑆𝑘, 𝐴′, 𝑈) ≻ 𝑐𝑎𝑝(Adv, 𝐴′). This corresponds
to 𝑏𝑟𝑒𝑎𝑘(𝑆𝑘, 𝐴, A∗, 𝑈) = 𝑓𝑎𝑙𝑠𝑒 where A∗ = {𝐴∗ ∈ A𝑎𝑢𝑡ℎ ∶ (𝐴∗, 𝑣∗) ∈
𝐶}. □

6. Implementation of the framework

In this section we define a reference set of authentication attributes
that could be used when adopting our proposed framework. Then, after
providing some background notions on the Self-Sovereign Identity (SSI)
paradigm, we propose an SSI-based implementation of our framework.
Finally, we discuss a possible extension to encompass identification at-

tributes.

6.1. Reference authentication attributes

Tables 1 and 2 report a possible reference set of authentication at-

tributes derived from the OWASP authentication cheat sheet (OWASP,
2024) and NIST Digital Identity Guidelines: Authentication and Lifecycle
Management (NIST, 2017a). The set is not meant to be exhaustive, but
just to show how our approach can be applied in real world scenar-

ios. We selected 6 user attributes and 26 system attributes. Below, we
provide additional details on some of the attributes.

𝐴1 denotes the means through which the user authenticates. It is
considered a user attribute because systems may offer multiple types of
authenticators and the user can choose which one to use. NIST (2017a)

identifies 9 types of authenticators that can be used in combination:
Password, Look-Up Secret, Out-of-Band Device, Single-Factor (SF) One-

time Password (OTP) Device, SF Crypto Software, SF Crypto Device,
Multi-Factor (MF) OTP Device, MF Crypto Software, and MF Crypto De-

vice. We only considered the combinations reported in (NIST, 2017a) –
other combinations are possible. The order of values(𝐴1) derives from
the following reasoning. First, a single-factor authenticator is less secure
than a multi-factor authenticator of the same type. Similarly, we con-

sider a Crypto Software authenticator less secure than a Crypto Device
authenticator. Moreover, NIST (2017a) defines the three Authenticator
Assurance Levels (AAL) reported below.

• At AAL1, any of the 9 authenticator types above can be adopted.

• At AAL2, the following authenticator types can be adopted: MF
OTP Device, MF Crypto Software, MF Crypto Device, Password plus
Look-Up Secret, Password plus Out-of-Band, Password plus SF OTP
Device, Password plus SF Crypto Software, and Password plus SF
7

Crypto Device.
Computers & Security 140 (2024) 103771

• At AAL3, the following authenticator types can be adopted: MF
Crypto Device, Password plus SF Crypto Device, SF OTP Device
plus SF Crypto Software plus Password, MF OTP Device plus SF
Crypto Software, SF OTP Device plus MF Crypto Software, and MF
OTP Device plus SF Crypto Device.

Based on the above AALs, a partial order can be derived. For example,
since the MF Crypto Device authenticator is allowed by all of the three
AALs, it can be considered more (or at least equally) secure than all
other authenticator types. Similarly, since the MF OTP Device authen-

ticator is allowed by AAL2, it can be considered more secure than the
Look-Up Secret authenticator allowed (when not in combination with
other authenticators) by AAL1. However, to obtain a total order, some
assumptions were made also based on qualitative reasoning. For exam-

ple, we considered the use of an out-of-band device more secure than
a Look-Up Secret since it relies on an external communication channel.
Under this assumption, a Password plus Look-Up Secret authenticator
precedes a Password plus Out-of-Band authenticator in the total order.
By applying a similar reasoning, we obtained the values for 𝐴1 ordered
as reported in Table 1.

𝐴6 models the cases where the password is chosen by the subscriber
(as in the most common authentication methods) or by the verifier.
Example 11 shows a use of the attribute.

Example 11. NIST Special Publication 800-63B (NIST, 2017a) recom-

mends the following:

“Memorized secrets SHALL be at least 8 characters in length if chosen by
the subscriber. Memorized secrets chosen randomly by the CSP or verifier
SHALL be at least 6 characters in length and MAY be entirely numeric.”

We can express the above policy by using the attributes in Table 1 and
making policy(𝑆, 𝐴6) consist of the following pairs:

(verifier, {(𝐴2,6)})
(subscriber, {(𝐴2,8),

(𝐴3, true)})

For 𝐴9, we assume that each system maintains a dictionary and
checks whether the password contains words from the dictionary. We
assume it is not mandatory for the system to reject a password in this
case (it could simply show a warning to the user).

It should also be observed that attributes such as 𝐴12 and 𝐴22 ap-

pear similar, and this needed for exact compliance with the notation
introduced in Section 2.2. Indeed, a single “Salt length” attribute would
not suffice for two main reasons:

• According to our definition of policy, “Salt length” may be used
without specifying the authenticator type in 𝐴1. However, with a
single “Salt length” attribute, it would not be clear whether it refers
to the salt for the password or for the look-up secret.

• When the value of 𝐴1 is Password plus Look-Up Secret, two differ-

ent values for “Salt length” should be specified.

The same considerations apply, e.g., to attributes 𝐴13 and 𝐴23 – for
brevity, we do not report all the attributes with such properties.

To conclude this section, we report in Tables 3 and 4, for each at-

tribute 𝐴 in Tables 1 and 2, the corresponding set of voided attributes
for each possible value of 𝐴. For example, when the value of attribute
𝐴1 is Password, the attributes 𝐴19–𝐴32 cannot be used as they are
not related to password-based authentication. When more authentica-

tor types are used in combination, the voided attributes are obtained
as the intersection of the voided attributes of the single authenticator
types. In the tables, “(Any)” denotes any attribute in values(𝐴) – in other
words, the set of voided attributes is the same regardless of the value of

𝐴. For example, for any value of 𝐴2 (“Password Length”), attribute 𝐴30

Computers & Security 140 (2024) 103771F. Buccafurri et al.

Table 1

Reference authentication attributes (1/2).

Attribute 𝐴 Name values(𝐴)

𝐴1 ∈A𝑢𝑠𝑟 “Permitted authenticator type” ⟨Password,

Look-Up Secret,

Out-of-Band,

SF OTP Device,

SF Crypto Software,

SF Crypto Device,

Password plus Look-Up Secret,

Password plus Out-of-Band,

Password plus SF OTP Device,

Password plus SF Crypto Software,

MF OTP Device, MF Crypto Software,

Password plus SF Crypto Device,

SF OTP Device plus SF Crypto Software

plus Password,

MF OTP Device plus SF Crypto Software,

SF OTP Device plus MF Crypto Software,

MF OTP Device plus SF Crypto Device,

MF Crypto Device⟩
𝐴2 ∈A𝑢𝑠𝑟 “Password length” ⟨4, . . . , 256⟩
𝐴3 ∈A𝑠𝑦𝑠 “No password character limit” ⟨false, true⟩
𝐴4 ∈A𝑠𝑦𝑠 “No password composition rules” ⟨false, true⟩
𝐴5 ∈A𝑠𝑦𝑠 “Transmit password over TLS” ⟨false, true⟩
𝐴6 ∈A𝑠𝑦𝑠 “Password chooser” ⟨subscriber, verifier⟩
𝐴7 ∈A𝑠𝑦𝑠 “Explicit limited password length” ⟨false, true⟩
𝐴8 ∈A𝑠𝑦𝑠 “No silent password truncation” ⟨false, true⟩
𝐴9 ∈A𝑢𝑠𝑟 “No dictionary words used for passwords” ⟨false, true⟩
𝐴10 ∈A𝑠𝑦𝑠 “Throttling applied to passwords” ⟨false, true⟩
𝐴11 ∈A𝑠𝑦𝑠 “Method for storing password” ⟨cleartext, one-way function,

salted one-way function,

one-way key derivation function⟩
𝐴12 ∈A𝑠𝑦𝑠 “Salt length for storing password” ⟨10,… ,100⟩
𝐴13 ∈A𝑠𝑦𝑠 “Cost count key derivation function

for storing password”

⟨10000,… ,100000⟩
𝐴14 ∈A𝑢𝑠𝑟 “Method for password reset” ⟨Security questions, URL token,

PINs, Offline methods⟩
𝐴15 ∈A𝑠𝑦𝑠 “Token length for password reset” ⟨1,… ,1000⟩
𝐴16 ∈A𝑠𝑦𝑠 “Single use token for password reset” ⟨false, true⟩
(“Second factor protection for MF OTP Device”) cannot be used. This is
the only voided attribute because 𝐴30 is the only attribute that refers
to a single authenticator type (MF OTP Device) that cannot be used in
combination with the password.

6.2. Background notions on self-sovereign identity

Self-Sovereign Identity is a decentralized paradigm for manag-

ing digital identities. In real-world implementations, it is based on
blockchain technology (Mühle et al., 2018). In this section, we discuss
the most relevant features of each building block of SSI used in our
framework.

Verifiable credentials A Verifiable Credential (VC) is a set of claims about
a subject representing information issued by a certain authority. Such
authority is called the issuer while the subject of the VC is called the
holder. At a high level, the VC includes three sections:

• VC’s metadata (e.g., date of issue, expiration date, state of the cre-

dential, and so on);

• VC’s claims about the subject;

• Proof, i.e., the digital signature made by the issuer of the credential.

The VCs are stored by the holder in a digital wallet. The holder can
8

prove something about themselves by presenting a Verifiable Presenta-
tion (VP) to a verifier that consists of data derived from one or more
VCs. The verifier can define an access control policy to provide a given
service to the holder whose VPs satisfy its policy.

VCs often coincide with VPs. However, for privacy reasons, VPs may
disclose less information than VCs. For example, the selective disclo-

sure (Mukta et al., 2020) and ZKP proofs (Preukschat and Reed, 2021)
mechanisms can be adopted. With selective disclosure, the holder can
make fine-grained decisions about what information (among all the
claims in the VCs) to share with the verifier. ZKP proofs consist in cryp-

tographic methods that the holder can adopt to prove to the verifier
that they know a certain value without actually disclosing the value.

Verification process After the presentation, the verifier performs the
verification process through the following steps:

• VC’s state verification: the verifier checks that the VC is still valid,
i.e., it has not been revoked.

• VC’s claims verification: the verifier checks that the information
contained in the VC satisfies the access control policy. In our pro-

posal, this step is performed by Algorithm 1.

• VC’s issuer verification: the verifier checks the authenticity of the
VC’s issuer. The VC contains the Decentralized Identifier (DID) of the

issuer. Based on this value, the verifier accesses the blockchain to

Computers & Security 140 (2024) 103771F. Buccafurri et al.

Table 2

Reference authentication attributes (2/2).

Attribute 𝐴 Name values(𝐴)

𝐴17 ∈A𝑠𝑦𝑠 “Token duration (hours) for password reset” ⟨24,… ,1⟩
𝐴18 ∈A𝑠𝑦𝑠 “PIN length for password reset” ⟨4,… ,12⟩
𝐴19 ∈A𝑠𝑦𝑠 “Bits of entropy for look-up secret” ⟨20,… ,200⟩
𝐴20 ∈A𝑠𝑦𝑠 “Throttling applied to look-up secrets” ⟨false, true⟩
𝐴21 ∈A𝑠𝑦𝑠 “Method for storing look-up secret” ⟨cleartext, one-way function,

salted one-way function,

one-way key derivation function⟩
𝐴22 ∈A𝑠𝑦𝑠 “Salt length for storing look-up secret” ⟨10,… ,100⟩
𝐴23 ∈A𝑠𝑦𝑠 “Cost count key derivation function

for storing look-up secret”

⟨10000,… ,100000⟩
𝐴24 ∈A𝑢𝑠𝑟 “Out-of-band device protection” ⟨no protection, biometric, PIN, passcode⟩
𝐴25 ∈A𝑠𝑦𝑠 “Bits of entropy of out-of-band secrets” ⟨20,… ,200⟩
𝐴26 ∈A𝑠𝑦𝑠 “Maximum Authentication time

(minutes)

for out-of-band device”

⟨100,… ,10⟩

𝐴27 ∈A𝑠𝑦𝑠 “Secret key length for OTP devices” ⟨64,… ,1024⟩
𝐴28 ∈A𝑠𝑦𝑠 “Nonce length for OTP devices” ⟨4,… ,16⟩
𝐴29 ∈A𝑠𝑦𝑠 “Nonce expiration (minutes) for OTP devices” ⟨10,… ,1⟩
𝐴30 ∈A𝑢𝑠𝑟 “Second factor protection for MF OTP devices” ⟨biometric, passcode⟩
𝐴31 ∈A𝑠𝑦𝑠 “Key storage for Crypto Software” ⟨TEE, TPM, HSM⟩
𝐴32 ∈A𝑠𝑦𝑠 “Phisical input for Crypto Device” ⟨false, true⟩
obtain the public key of the issuer, so they can verify the proof of
the VC.

Credential revocation The issuer can revoke the VC by leveraging a
cryptographic accumulator, stored in the blockchain, that allows the ac-

cumulation of elements from a finite set into a concise value by means
of a one-way hash function. When the verifier performs the verifica-

tion of the VCs provided by the holder it should check that they are not
revoked by testing their presence in the cryptographic accumulator.

6.3. SSI-based implementation

Our SSI-based implementation is based on the Trinsic Ecosys-

tems (Trinsic, 2024), implementing the Sovrin Framework (Tobin and
Reed, 2016). This is a reference technology adhering to the main SSI
standards in terms of format of the verifiable credentials (compliant
with W3C specifications (W3C, 2022a,b)) and ToIP stack (Davie et al.,
2019). An advantage of this SSI implementation is its capability to sup-

port ZKP proofs and selective disclosure mechanisms. However, our
solution does not strongly rely on a specific SSI implementation, but dif-

ferent implementations of the SSI framework can be adopted.

We recall that S represents the set of systems, U the set of users,
and A𝑎𝑢𝑡ℎ =A𝑢𝑠𝑟 ∪A𝑠𝑦𝑠 the set of authentication attributes.

System attributes certification Suppose the existence of trusted authori-

ties in charge of certifying the system attributes for each system 𝑆 ∈ S.

In our implementation, system 𝑆 contacts a trusted authority to ob-

tain a verifiable credential 𝑉 𝐶𝑆 containing the values of its system
attributes. According to the W3C specification, 𝑉 𝐶𝑆 can be expressed
in JSON-LD format and includes (in the claim part), for each 𝐴 ∈A𝑠𝑦𝑠,
a pair {𝑛𝑎𝑚𝑒 ∶ 𝑣𝑎𝑙𝑢𝑒} where 𝑛𝑎𝑚𝑒 = 𝐴 and 𝑣𝑎𝑙𝑢𝑒 = sys-val(𝑆, 𝐴). Ob-

serve that, according to the SSI terminology, the trusted authority is the
issuer of 𝑉 𝐶𝑆 while 𝑆 is the holder.

After receiving 𝑉 𝐶𝑆 , 𝑆 makes it publicly available through an end-

point (reachable, e.g., through HTTPS). The endpoint will be accessed
by other systems during the dependency verification phase (see below)
9

to verify compliance with their policy.
An aspect that deserves further consideration is the role of the
trusted authorities that release the verifiable credentials. These actors
have a relevant role in our protocol, but in real-life applications of
the protocol, their presence could be considered implausible at a first
glance. An important question is therefore: How to transfer the concep-

tual role of these authorities into a real-life implementation of our solution?

To answer this, we start by noting that the verifiable credentials are
in fact self-signed by the authentication systems and, if the latter ad-

here to the whole system, they are subject to audits and checks carried
out by independent bodies (i.e., trusted parties). As a matter of fact,
the trend outlined by EU regulation (eIDAS, 2014) is to ground the se-

curity of digital identity systems on the presence of trusted services.
In addition, checks do not always require specific inspections, but can
also be performed in a black-box fashion (as for penetration testing) for
most of the system attributes. For instance, the fact that a system imple-

ments a throttling mechanism or not can be detected by measuring the
time elapsed between consecutive failed authentication attempts. Thus,
a system wrongly declaring to implement a throttling mechanism can
be easily spotted and thus lose its reputation. On the other hand, black
box evaluations are not helpful in some other cases, such as back-end
attributes. In these cases, the combination of audits, (remote) inspec-

tions, and open source intelligence (to find traces that prove falsity of
some claims about authentication attributes) can represent an effective
way to prevent self promotion of untrustworthy authentication systems.

User attributes certification This procedure is similar to that described
in the previous section. The main difference is that, in this case, the
issuer’s role is played by the system while the holder is represented by
the user.

At the end of the user registration (and dependency verification) to a
system 𝑆 ∈ S, a user 𝑈 ∈U receives a verifiable credential 𝑉 𝐶𝑆

𝑈
. The

latter includes (in the claim part), for each 𝐴 ∈ A𝑢𝑠𝑟, a pair {𝑛𝑎𝑚𝑒 ∶
𝑣𝑎𝑙𝑢𝑒} where 𝑛𝑎𝑚𝑒 = 𝐴 and 𝑣𝑎𝑙𝑢𝑒 = usr-val(𝑆, 𝐴, 𝑈). Furthermore, a
claim is stored in 𝑉 𝐶𝑆

𝑈
to identify the set of systems S = {𝑆′ ∈ S ∶

𝑆
𝑈
←←←←←←←←→ 𝑆′}. In JSON format, the claim is a pair {𝑛𝑎𝑚𝑒 ∶ 𝑣𝑎𝑙𝑢𝑒} where
𝑛𝑎𝑚𝑒 =“Dependent on” and 𝑣𝑎𝑙𝑢𝑒 is a list containing the DID of each

F. Buccafurri et al.

Table 3

Voided authentication attributes (1/2).

Attribute 𝐴 Value 𝑣 voided-by(𝐴,𝑣)

𝐴1

Password {𝐴19 ,… ,𝐴32}

Look-Up Secret {𝐴2,… ,𝐴18 ,𝐴24 ,… ,𝐴32}

Out-of-Band {𝐴2,… ,𝐴23 ,𝐴27 ,… ,𝐴32}

SF OTP Device {𝐴2,… ,𝐴26 ,𝐴30 ,… ,𝐴32}

SF Crypto Software {𝐴2,… ,𝐴26 ,𝐴32}

SF Crypto Device {𝐴2,… ,𝐴31}

Password

plus

Look-Up Secret

voided-by(𝐴1, Password)
∩ voided-by(𝐴1, Look-Up

Secret) = {𝐴24 , … , 𝐴32}
Password

plus

SF OTP

Device

voided-by(𝐴1, Password)
∩ voided-by(𝐴1, SF OTP

Device) = {𝐴19 , … , 𝐴26,

𝐴30 , 𝐴32}
Password

plus

SF Crypto

Software

voided-by(𝐴1,Password)
∩ voided-by(𝐴1, SF

Crypto Software) =
{𝐴19 , … , 𝐴30 , 𝐴32}

MF OTP Device {𝐴2,… ,𝐴26 ,𝐴31 ,𝐴32}

MF Crypto Software {𝐴2,… ,𝐴26 ,𝐴30}

Password

plus

SF Crypto Device

voided-by(𝐴1, Password)
∩ voided-by(𝐴1, SF Crypto

Device) = {𝐴19 , … , 𝐴31}
SF OTP Device

plus SF Crypto

Software

plus

Password

voided-by(𝐴1, SF OTP

Device) ∩ voided-by(𝐴1,

SF Crypto Software) ∩
voided-by(𝐴1, Password) =
{𝐴19 , … , 𝐴30}

MF OTP

Device plus

SF Crypto

Software

voided-by(𝐴1, MF OTP

Device) ∩ voided-by(𝐴1,

SF Crypto Software) =
{𝐴2, … , 𝐴26 , 𝐴32}

SF OTP

Device plus

MF Crypto

Software

voided-by(𝐴1, SF OTP

Device) ∩ voided-by(𝐴1,

MF Crypto Software) =
{𝐴2, … , 𝐴26 , 𝐴30}

MF OTP

Device plus

SF Crypto

Device

voided-by(𝐴1, MF OTP

Device) ∩ voided-by(𝐴1,

SF Crypto Device) =
{𝐴2, … , 𝐴26 , 𝐴31}

MF Crypto Device {𝐴2,… ,𝐴31}

𝐴2 (Any) {𝐴30}

𝐴3 (Any) {𝐴30}

𝐴4 (Any) {𝐴30}

𝐴5 (Any) {𝐴30}

𝐴6 (Any) {𝐴30}

𝐴7 (Any) {𝐴30}

𝐴8 (Any) {𝐴30}

𝐴9 (Any) {𝐴30}

𝐴10 (Any) {𝐴30}

𝑆′ ∈ S. Observe that S = ∅ when no dependency is established for 𝑆
and 𝑈 .

After receiving 𝑉 𝐶𝑆
𝑈

, 𝑈 stores it in their digital wallet so that it
can be provided to another system during the dependencies verification
10

phase.
Computers & Security 140 (2024) 103771

Table 4

Voided authentication attributes (2/2).

Attribute 𝐴 Value 𝑣 voided-by(𝐴,𝑣)

𝐴11

cleartext {𝐴12,𝐴13,𝐴30}

one-way function {𝐴12,𝐴13,𝐴30}

salted one-way function {𝐴13,𝐴30}

one-way key derivation

function

{𝐴30}

𝐴12 (Any) {𝐴30}

𝐴13 (Any) {𝐴30}

𝐴14

Security questions {𝐴15,… ,𝐴18,𝐴30}

URL token {𝐴18,𝐴30}

PINs {𝐴15,𝐴16,𝐴17,𝐴30}

Offline methods {𝐴15,… ,𝐴18,𝐴30}

𝐴15 (Any) {𝐴18,𝐴30}

𝐴16 (Any) {𝐴18,𝐴30}

𝐴17 (Any) {𝐴18,𝐴30}

𝐴18 (Any) {𝐴15,𝐴16,𝐴17,𝐴30}

𝐴19 (Any) {𝐴24,… ,𝐴32}

𝐴20 (Any) {𝐴24,… ,𝐴32}

𝐴21

cleartext {𝐴22,… ,𝐴32}

one-way function {𝐴22,… ,𝐴32}

salted one-way function {𝐴23,… ,𝐴30}

one-way key derivation

function

{𝐴24,… ,𝐴32}

𝐴22 (Any) {𝐴24,… ,𝐴32}

𝐴23 (Any) {𝐴24,… ,𝐴32}

𝐴24 (Any) {𝐴27,… ,𝐴32}

𝐴25 (Any) {𝐴27,… ,𝐴32}

𝐴26 (Any) {𝐴27,… ,𝐴32}

𝐴27 (Any) {𝐴19,… ,𝐴26}

𝐴28 (Any) {𝐴19,… ,𝐴26}

𝐴29 (Any) {𝐴19,… ,𝐴26}

𝐴30 (Any) {𝐴19,… ,𝐴26}

𝐴31 (Any) {𝐴19,… ,𝐴26,𝐴32}

𝐴32 (Any) {𝐴19,… ,𝐴26,𝐴31}

User registration and dependency verification The user registration phase
is performed as described in Section 3 and does not require the ex-

change of verifiable credentials.

On the other hand, an SSI-based protocol that implements Algorithm

VERIFY-DEPENDENCY includes the following steps.

1. 𝑆 contacts the endpoint of 𝑆′ to obtain 𝑉 𝐶𝑆′ .

2. After performing the SSI-verification of 𝑉 𝐶𝑆′ (see the Verifica-

tion Process in Section 6.2), 𝑆 retrieves (from the credential itself)
sys-val(𝑆′, 𝐴) for each 𝐴 ∈A𝑠𝑦𝑠.

3. 𝑈 provides 𝑆 with 𝑉 𝐶𝑆′
𝑈

, stored in their digital wallet.

4. After performing the SSI-verification of 𝑉 𝐶𝑆′
𝑈

, 𝑆 retrieves (from

the credential itself) usr-val(𝑆′, 𝐴, 𝑈) for each 𝐴 ∈A𝑢𝑠𝑟.

F. Buccafurri et al.

5. For each 𝐴 ∈A𝑎𝑢𝑡ℎ, 𝑆 checks that 𝐴 is compliant with policy(𝑆, 𝐴).
This is performed by Algorithm VERIFY-FORWARD (Lines 1–9).

6. 𝑆 retrieves the set S = {𝑆′′ ∈ S ∶ 𝑆′ 𝑈
←←←←←←←←→ 𝑆′′} from 𝑉 𝐶𝑆′

𝑈
. Then for

each 𝑆′′ ∈ S, 𝑆 repeats Steps 1–6 with 𝑆′′ in place of 𝑆′ (if 𝑆′′ has
been already contacted by 𝑆 , the procedure ends).

7. 𝑆 retrieves the set Ŝ = {𝑆′′ ∈ S ∶ 𝑆′′ 𝑈
←←←←←←←←→ 𝑆} (stored by 𝑆 when

each 𝑆′′ ∈ Ŝ contacts 𝑆 to establish a dependency). Then, for each
𝑆′′ ∈ Ŝ, 𝑆 contacts 𝑆′′ by providing the endpoint of 𝑆′. Finally,
𝑆′′ (in place of 𝑆) repeats Steps 1–7 with 𝑆′.

From a technological point of view, in Steps 1 and 3, the credentials
can be exchanged off-chain through the DIDComm protocol (Hardman,
2019) supported by Trinsic. In addition, in Step 4, selective disclo-

sure and ZKP proof mechanisms can be adopted. Specifically, for each
attribute 𝐴 ∈ A𝑢𝑠𝑟 such that policy(𝑆, 𝐴) = {(min-val(𝐴), ∅)} (i.e., no
constraint for 𝐴), 𝑆 does not require the claim related to 𝐴. Then, the
selective disclosure mechanism allows 𝑈 to provide 𝑆 with just the val-

ues for the attributes needed to satisfy the policy of 𝑆 .

Another issue concerns the presence of sensitive user attributes
whose exact value should not be revealed. For example, “Password
length” is a sensitive attribute since the actual length of the password
should not be revealed. On the other hand, for a system, it is typically
sufficient to know that the password length is in a specific range (e.g.,
greater than a given number of characters). In this case, ZKP proofs can
be forged by 𝑈 starting from the credentials of 𝑈 to prove that the
value of an attribute is in a range without providing the exact value.

Login procedure We assume that during the user registration and de-

pendency verification process, 𝑆 locally stores all the VCs provided by
both the user 𝑈 and all the systems 𝑆 depends on. Then, every time
𝑈 authenticates with 𝑆 , the latter should verify if any of the creden-

tials has been revoked. If this is the case, then 𝑆 performs the process
described in the previous section again, in order to retrieve the new
credentials and check whether they are compliant with its policy.

Attribute revocation Suppose the value of a user attribute 𝐴, for a sys-

tem 𝑆 , changes over time. Two cases can occur:

• The new usr-val(𝑆, 𝐴, 𝑈) is greater than the old one. In this case,
𝑆 should provide 𝑈 with a new credential 𝑉 𝐶𝑆

𝑈
with an updated

claim 𝐴. The old credential is not revoked so it can still be verified
during the login phase. On the other hand, the new credential can
be used by 𝑈 with other systems, to establish new dependencies.

• The new usr-val(𝑆, 𝐴, 𝑈) is smaller than the old one. In this case,
𝑆 should revoke the old 𝑉 𝐶𝑆

𝑈
and issue a new credential. When

the user attempts to login with a system that depends on 𝑆 , since
the credential is not valid, the user registration and dependency
verification is repeated as described for the login procedure.

6.4. Identification attributes

The discussion carried out so far is focused on the authentication do-

main — we assume that a system depends on another when the former
relies on the latter for an authentication procedure, such as in the cases
of federated authentication and authenticator recovery.

It could also be important to consider dependencies that are estab-

lished when a system relies on another for the identification process
(possibly, together with authentication). For instance, the Facebook Lo-

gin Plugin allows users to authenticate to other systems using their
Facebook credentials. When a user authenticates, Facebook provides
additional attributes (e.g., full name, hometown, and birthday), which
are in turn used to identify the user. In these cases, a system might want
to define a policy that includes its requirements regarding user identifi-
11

cation.
Computers & Security 140 (2024) 103771

Table 5

Reference identification attributes.

Attribute 𝐴 Name values(𝐴)

𝐴1 “Presence verification” ⟨No, remote

unsupervised, remote

supervised, in presence⟩
𝐴2 “Address confirmation

proofing”

⟨no, remote, in person⟩

𝐴3 “In person enrollment

code validity (days)”

⟨7,. . . ,1⟩

𝐴4 “Means to send remote

enrollment code”

⟨email, telephone,

postal address⟩
𝐴5 “Enrollment code reset

after first use”

⟨false, true⟩

𝐴6 “Biometric collection” ⟨false, true⟩
𝐴7 “Number of consecutive

failed attemps

in biometric systems”

⟨2,. . . ,10⟩

𝐴8 “Presentation Attack

Detection (PAD)

implementation in
biometric systems”

⟨false, true⟩

𝐴9 “Throttling applied

to biometric systems”

⟨false, true⟩

To this aim, our proposed framework can be easily extended to the
identification domain. Specifically, we can define a set A𝑖𝑑 of identifica-

tion attributes and re-apply the definitions of policies (Section 2.2) and
dependencies (Section 4.1) after just replacing A𝑎𝑢𝑡ℎ with A𝑖𝑑 . Hence,
for each 𝐴 ∈ A𝑎𝑢𝑡ℎ, each system 𝑆 additionally defines policy𝑖𝑑 (𝐴, 𝑆)
for each 𝐴 ∈A𝑖𝑑 . The verification process is then applied when a de-

pendency 𝑆
𝑈
←←←←←←←←→𝑖𝑑 𝑆

′ in the identification domain has to be established.

Table 5 reports a possible reference set of identification attributes
derived from the NIST Digital Identity Guidelines: Enrollment and Identity
Proofing Requirements (NIST, 2017b).

7. Related work

Interactions among authentication systems often happen when the
authenticator used for a system is lost (i.e., fallback authentication (Al-

Husain and Alkhalifah, 2021)), when a “main” system delegates authen-

tication to a “secondary” system (e.g., federated authentication Boehm
et al., 2008), or when a user relies on the same secret (e.g., password,
PIN, and so on) on different systems (Das et al., 2014; Ives et al., 2004).

From a security point of view, such cases (and many other ones)
are equivalent, since a vulnerability in the secondary system may be
exploited to compromise the main one. This problem is well acknowl-

edged in the literature (NIST, 2017a; Hang, 2016) — however, to the
best of our knowledge, no fully suitable solution is currently available.

A lot of related work focuses on security issues in authentication
systems (Ross et al., 2005; Zhao and Li, 2007; Shirvanian et al., 2021;
Buccafurri et al., 2022; Binbeshr et al., 2021; Zimmermann and Gerber,
2020; Javed et al., 2014; Alomar et al., 2017). However, they are mostly
focused on specific authenticator types and do not consider possible
interactions among different systems.

Zimmermann and Gerber (2020); Quermann et al. (2018); Markert
et al. (2020); Stavova et al. (2016) focus on examining existing fall-

back authentication systems in the wild. For instance, Quermann et
al. (2018) reports authentication methods adopted in 48 different ser-

vices, including websites, IoT/smart home devices, and mobile devices.
The paper shows that one of the most common fallback authentica-

tion systems for recovering users’ passwords still consists in answering
security questions. The latter are known to be unsuitable as recov-

ery mechanisms — they have important security issues (Rabkin, 2008;
Sagar and Waghmare, 2016) that make them exploitable to bypass the

main authentication system. Markert et al. (2020) makes a long-term

F. Buccafurri et al.

comparative analysis of the usability provided by five fallback authenti-

cation systems (email, SMS, security questions, designated trustees, and
browser fingerprint). No comparison from the security point of view is
provided. Maqbali and Mitchell (2019) provides an overview of the se-

curity issues for all the mechanisms commonly adopted to recover users’
passwords. Overall, these works only consider a relatively narrow set of
methods for fallback authentication.

Other works are aimed at proposing frameworks to compare authen-

tication schemes. They are related to ours since the definition of an or-

der among authentication systems, capturing security capabilities, may
prevent a system from relying on a less secure one. Among these pro-

posals, the most relevant ones are (Bonneau et al., 2012; Velásquez et
al., 2018). Specifically, Bonneau et al. (2012) is considered the state-of-

the-art framework for comparing authentication systems. The authors
consider 25 requirements, along three main categories (usability, de-

ployability, and security). They evaluate 35 authentication mechanisms
and, for each mechanism, classify each requirement as satisfied, par-

tially satisfied, or not satisfied. However, as the authors themselves
acknowledge, an important limitation of the proposed approach is that
all the requirements are treated equally when comparing mechanisms,
while instead, to be more realistic, different requirements should have
different weights — without the latter, authentication mechanisms ap-

pear still hard to compare in real settings. Velásquez et al. (2018), along
these lines, is aimed at finding the “best” authentication system for a
given application. However, the requirements defined by the authors
are relatively vague, and the approach based on assigning weights to
each of them is not clearly defined.

None of the above works directly address the security issues related
to interacting authentication systems. Moreover, all the above frame-

works present important practical limitations in the comparison strate-

gies. Overcoming the above limitations, also by enabling transitivity of
dependencies and by introducing a way to compare system policies (and
thus authentication systems), as we have discussed in Section 4.3, is an
important direction for future work.

Differently from the domain of authentication systems, the problem
of enforcing security policies when dealing with interacting systems is
widely covered in the domain of web services composition (Boumlik
and Mejri, 2019; Ranchal et al., 2018). However, these solutions can-

not find direct applications in our domain since they are based on a
centralized policy definition. On the contrary, we deal with a more
challenging situation in which each interacting system specifies its own
policy. Thus, in this paper we proposed a solution tailored to this con-

text.

8. Conclusions and future work

This paper proposes a formal approach to the problem of interacting
authentication systems and provides an SSI-based implementation. Fu-

ture work will be devoted to issues related to real-life adoption of a sys-

tem based on our solution – specifically, those discussed in Section 6.3

regarding the way in which verifiable credentials of system authentica-

tion attributes are released. Indeed, a more general perspective could
be considered, framing the entire solution in a business/market setting,
possibly combining it with a trust and reputation (decentralized) based
approach. In particular, a detailed business model, based on incentives,
trust, and reputation can be designed, to provide new insights and pos-

sibly highlight a fruitful integration of our approach with the European
framework of digital identities outlined by the current evolution of the
eIDAS regulation (eIDAS, 2014).

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
12

the work reported in this paper.
Computers & Security 140 (2024) 103771

Data availability

No data was used for the research described in the article.

Acknowledgements

This work was partially supported by project SERICS (PE00000014)
under the MUR National Recovery and Resilience Plan funded by the
European Union – NextGenerationEU.

References

AlHusain, R., Alkhalifah, A., 2021. Evaluating fallback authentication research: a system-

atic literature review. Comput. Secur. 111, 102487.

Alomar, N., Alsaleh, M., Alarifi, A., 2017. Social authentication applications, attacks, de-

fense strategies and future research directions: a systematic review. IEEE Commun.
Surv. Tutor. 19 (2), 1080–1111.

Alshamrani, A., Myneni, S., Chowdhary, A., Huang, D., 2019. A survey on advanced per-

sistent threats: techniques, solutions, challenges, and research opportunities. IEEE
Commun. Surv. Tutor. 21 (2), 1851–1877. https://doi .org /10 .1109 /COMST .2019 .
2891891.

Binbeshr, F., Kiah, M.L.M., Por, L.Y., Zaidan, A.A., 2021. A systematic review of pin-entry
methods resistant to shoulder-surfing attacks. Comput. Secur. 101, 102116.

Boehm, O., Caumanns, J., Franke, M., Pfaff, O., 2008. Federated authentication and au-

thorization: a case study. In: 12th International IEEE Enterprise Distributed Object
Computing Conference. ECOC 2008, 15-19 September 2008, Munich, Germany. IEEE
Computer Society, pp. 356–362.

Bonneau, J., Herley, C., van Oorschot, P.C., Stajano, F., 2012. The quest to replace pass-

words: a framework for comparative evaluation of web authentication schemes. In:
IEEE Symposium on Security and Privacy. SP 2012, 21-23 May 2012, San Francisco,
California, USA. IEEE Computer Society, pp. 553–567.

Boumlik, L., Mejri, M., 2019. Security enforcement on web services compositions. In: 2019
IEEE Symposium on Computers and Communications (ISCC). IEEE, pp. 1010–1015.

Buccafurri, F., De Angelis, V., Lazzaro, S., 2022. The ginger: another spice to hinder
attacks on password files. In: Proceedings of the 18th International Conference on
Web Information Systems and Technologies. WEBIST 2022, Valletta, Malta, October
25-27, 2022. SCITEPRESS, pp. 166–173.

Campobasso, M., Allodi, L., 2020. Impersonation-as-a-service: characterizing the emerg-

ing criminal infrastructure for user impersonation at scale. In: Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1665–1680.

Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X., 2014. The tangled web of pass-

word reuse. In: 21st Annual Network and Distributed System Security Symposium.
NDSS 2014, San Diego, California, USA, February 23-26, 2014. The Internet Society.

Davie, M., Gisolfi, D., Hardman, D., Jordan, J., O’Donnell, D., Reed, D., 2019. The trust
over IP stack. IEEE Commun. Stand. Mag. 3 (4), 46–51.

eIDAS, 2014. eIDAS: electronic IDentification, Authentication and trust Services. http://

data .europa .eu /eli /reg /2014 /910 /oj. (Accessed 20 February 2024).

Hang, A., 2016. Exploiting autobiographical memory for fallback authentication on smart-

phones. Ph.D. thesis. LMU Munchen.

Hardman, D., 2019. Aries RFC 0005: DID communication. https://github .com /
hyperledger /aries -rfcs /blob /main /concepts /0005 -didcomm /README .md. (Ac-

cessed 20 February 2024).

Ives, B., Walsh, K.R., Schneider, H., 2004. The domino effect of password reuse. Commun.
ACM 47 (4), 75–78.

Javed, A., Bletgen, D., Kohlar, F., Dürmuth, M., Schwenk, J., 2014. Secure fallback
authentication and the trusted friend attack. In: 34th International Conference on
Distributed Computing Systems Workshops (ICDCS 2014 Workshops). Madrid, Spain,
June 30 - July 3, 2014. IEEE Computer Society, pp. 22–28.

Li, Y., Dai, W., Bai, J., Gan, X., Wang, J., Wang, X., 2018. An intelligence-driven security-

aware defense mechanism for advanced persistent threats. IEEE Trans. Inf. Forensics
Secur. 14 (3), 646–661.

Maqbali, F.A., Mitchell, C.J., 2019. Web password recovery: a necessary evil? In: Proceed-

ings of the Future Technologies Conference (FTC). Springer, pp. 324–341.

Markert, P., Golla, M., Stobert, E., Dürmuth, M., 2020. A comparative long-term study
of fallback authentication. In: 27th Annual Network and Distributed System Security
Symposium. The Internet Society.

Mühle, A., Grüner, A., Gayvoronskaya, T., Meinel, C., 2018. A survey on essential compo-

nents of a self-sovereign identity. Comput. Sci. Rev. 30, 80–86.

Mukta, R., Martens, J., Paik, H., Lu, Q., Kanhere, S.S., 2020. Blockchain-based verifiable
credential sharing with selective disclosure. In: 19th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications, TrustCom 2020.
TrustCom 2020, Guangzhou, China, December 29, 2020 - January 1, 2021. IEEE,
pp. 959–966.

NIST, 2017a. NIST special publication 800-63b: Digital identity guidelines – au-

thentication and lifecycle management. https://nvlpubs .nist .gov /nistpubs /

specialpublications /nist .sp .800 -63b .pdf. (Accessed 20 February 2024).

http://refhub.elsevier.com/S0167-4048(24)00072-5/bibBF24FA76450E9DBDD109CDEE77B33F11s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibBF24FA76450E9DBDD109CDEE77B33F11s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib4A3CB135B2B0B6119D06D45B09F97FD5s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib4A3CB135B2B0B6119D06D45B09F97FD5s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib4A3CB135B2B0B6119D06D45B09F97FD5s1
https://doi.org/10.1109/COMST.2019.2891891
https://doi.org/10.1109/COMST.2019.2891891
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibBA797D8032EDEDB81D8681391D875F8Fs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibBA797D8032EDEDB81D8681391D875F8Fs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib8C96428A9B701243E8C2E39B02AF4F6Cs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib8C96428A9B701243E8C2E39B02AF4F6Cs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib8C96428A9B701243E8C2E39B02AF4F6Cs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib8C96428A9B701243E8C2E39B02AF4F6Cs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibFFC242865A2835970B3C4DC21F51D6FFs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibFFC242865A2835970B3C4DC21F51D6FFs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibFFC242865A2835970B3C4DC21F51D6FFs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibFFC242865A2835970B3C4DC21F51D6FFs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib0B7629CD7548920C0A6425058CD2CD6Cs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib0B7629CD7548920C0A6425058CD2CD6Cs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib8FFFBCA86E654DC976FD5E04231612EDs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib8FFFBCA86E654DC976FD5E04231612EDs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib8FFFBCA86E654DC976FD5E04231612EDs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib8FFFBCA86E654DC976FD5E04231612EDs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib86F51ECAD96CA3FA77110DDCAC1A8296s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib86F51ECAD96CA3FA77110DDCAC1A8296s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib86F51ECAD96CA3FA77110DDCAC1A8296s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib86F51ECAD96CA3FA77110DDCAC1A8296s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibDBD14D0ED88E831825E0C888ECB7BF61s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibDBD14D0ED88E831825E0C888ECB7BF61s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibDBD14D0ED88E831825E0C888ECB7BF61s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib19717F4396FC5D9FE752D3867BD6C459s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib19717F4396FC5D9FE752D3867BD6C459s1
http://data.europa.eu/eli/reg/2014/910/oj
http://data.europa.eu/eli/reg/2014/910/oj
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib6A8B0180F6AFD97B2826B6382A3CA624s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib6A8B0180F6AFD97B2826B6382A3CA624s1
https://github.com/hyperledger/aries-rfcs/blob/main/concepts/0005-didcomm/README.md
https://github.com/hyperledger/aries-rfcs/blob/main/concepts/0005-didcomm/README.md
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibB6B0DC925C1F803244ED72DBE53DFA2Cs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibB6B0DC925C1F803244ED72DBE53DFA2Cs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibF7B9011483C2B384BD6F64EC3E2C2CFDs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibF7B9011483C2B384BD6F64EC3E2C2CFDs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibF7B9011483C2B384BD6F64EC3E2C2CFDs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibF7B9011483C2B384BD6F64EC3E2C2CFDs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib7DBA80E736D7545D5DC0DF236816DF37s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib7DBA80E736D7545D5DC0DF236816DF37s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib7DBA80E736D7545D5DC0DF236816DF37s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib48111898AA1F8ED94131FAC094BED19Ds1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib48111898AA1F8ED94131FAC094BED19Ds1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib16E278A25A7E9A7D37EFC5CCF30A53FCs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib16E278A25A7E9A7D37EFC5CCF30A53FCs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib16E278A25A7E9A7D37EFC5CCF30A53FCs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibD3C5ACB0C63320B6132A48F06496845Fs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibD3C5ACB0C63320B6132A48F06496845Fs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibA323A070487C287CB1521AF6A7FC79DFs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibA323A070487C287CB1521AF6A7FC79DFs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibA323A070487C287CB1521AF6A7FC79DFs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibA323A070487C287CB1521AF6A7FC79DFs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibA323A070487C287CB1521AF6A7FC79DFs1
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-63b.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-63b.pdf

Computers & Security 140 (2024) 103771F. Buccafurri et al.

NIST, 2017b. NIST special publication 800-63a: Digital identity guidelines – enrollment
and identity proofing. https://nvlpubs .nist .gov /nistpubs /specialpublications /nist .sp .
800 -63a .pdf. (Accessed 20 February 2024).

Oberle, A., Larbig, P., Marx, R., Weber, F.G., Scheuermann, D., Fages, D., Thomas, F.,
2016. Preventing pass-the-hash and similar impersonation attacks in enterprise in-

frastructures. In: 2016 IEEE 30th International Conference on Advanced Information
Networking and Applications (AINA), pp. 800–807.

OWASP, 2024. OWASP authentication cheat sheet. https://cheatsheetseries .owasp .org /
cheatsheets /Authentication _Cheat _Sheet .html. (Accessed 20 February 2024).

Preukschat, A., Reed, D., 2021. Self-Sovereign Identity. Manning Publications.

Quermann, N., Harbach, M., Dürmuth, M., 2018. The state of user authentication in the
wild. In: Who Are You? Adventures in Authentication Workshop 2018.

Rabkin, A., 2008. Personal knowledge questions for fallback authentication: security ques-

tions in the era of Facebook. In: Proceedings of the 4th Symposium on Usable Privacy
and Security. SOUPS 2008, Pittsburgh, Pennsylvania, USA, July 23-25, 2008. In: ACM
International Conference Proceeding Series. ACM, pp. 13–23.

Ranchal, R., Bhargava, B., Angin, P., ben Othmane, L., 2018. Epics: a framework for
enforcing security policies in composite web services. IEEE Trans. Serv. Comput. 12
(3), 415–428.

Ross, B., Jackson, C., Miyake, N., Boneh, D., Mitchell, J.C., 2005. Stronger password
authentication using browser extensions. In: Proceedings of the 14th USENIX Security
Symposium. Baltimore, MD, USA, July 31 - August 5, 2005.

Sagar, K., Waghmare, V., 2016. Measuring the security and reliability of authentication
of social networking sites. Proc. Comput. Sci. 79, 668–674.

Sakimura, N., Bradley, J., Jones, M., De Medeiros, B., Mortimore, C., 2014. Openid con-

nect core 1.0. The OpenID Foundation, p. S3.

Shirvanian, M., Price, C.R., Jubur, M., Saxena, N., Jarecki, S., Krawczyk, H., 2021. A
hidden-password online password manager. In: SAC ’21: The 36th ACM/SIGAPP Sym-

posium on Applied Computing, Virtual Event. Republic of Korea, March 22–26, 2021.
ACM, pp. 1683–1686.

Squicciarini, A.C., Bhargav-Spantzel, A., Bertino, E., Czeksis, A.B., 2007. Auth-sl-a system
for the specification and enforcement of quality-based authentication policies. In:
Information and Communications Security: 9th International Conference, ICICS 2007,
Zhengzhou, China, December 12-15, 2007. Proceedings 9. Springer, pp. 386–397.

Stavova, V., Matyas, V., Just, M., 2016. Codes v. people: a comparative usability study
of two password recovery mechanisms. In: Information Security Theory and Prac-

tice - 10th IFIP WG 11.2 International Conference. WISTP 2016, Heraklion, Crete,
Greece, September 26-27, 2016, Proceedings. In: Lecture Notes in Computer Science,
vol. 9895. Springer, pp. 35–50.

Tobin, A., Reed, D., 2016. The inevitable rise of self-sovereign identity. Sovrin Found. 29
(2016), 18.

Trinsic, 2024. https://github .com /trinsic -id. (Accessed 20 February 2024).

Velásquez, I., Caro, A., Rodríguez Kontun, A., 2018. A framework for recommendation of
authentication schemes and methods. Inf. Softw. Technol. 96, 27–37.

Wilson, Y., Hingnikar, A., 2019. Solving Identity Management in Modern Applications:
Demystifying OAuth 2.0, OpenID Connect, and SAML 2.0. Springer.

W3C, 2022a. Decentralized Identifiers (DIDs) v1.0. https://www .w3 .org /TR /did -core.
(Accessed 20 February 2024).

W3C, 2022b. Verifiable Credentials Data Model v1.1. https://www .w3 .org /TR /vc -data -
model. (Accessed 20 February 2024).

Zhao, H., Li, X., 2007. S3PAS: a scalable shoulder-surfing resistant textual-graphical pass-

word authentication scheme. In: 21st International Conference on Advanced Infor-

mation Networking and Applications. AINA 2007, Workshops Proceedings, Volume
2, May 21-23, 2007, Niagara Falls, Canada. IEEE Computer Society, pp. 467–472.

Zimmermann, V., Gerber, N., 2020. The password is dead, long live the password - a
laboratory study on user perceptions of authentication schemes. Int. J. Hum.-Comput.
Stud. 133, 26–44.
13

https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-63a.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-63a.pdf
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib467159608A776E1DEE5DFD6F26FB8545s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib467159608A776E1DEE5DFD6F26FB8545s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib467159608A776E1DEE5DFD6F26FB8545s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib467159608A776E1DEE5DFD6F26FB8545s1
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib1A745FA66B455329ED84C233B4B36462s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib1C69166680C6D40BB44753F2135E4521s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib1C69166680C6D40BB44753F2135E4521s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib1ADCA8D46A5D88763003911BB07465BFs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib1ADCA8D46A5D88763003911BB07465BFs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib1ADCA8D46A5D88763003911BB07465BFs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib1ADCA8D46A5D88763003911BB07465BFs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib80968D6895EA062E7E4F5BDC38A76339s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib80968D6895EA062E7E4F5BDC38A76339s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib80968D6895EA062E7E4F5BDC38A76339s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib1B8C9AD6089B18933F360A76A2B8EBAFs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib1B8C9AD6089B18933F360A76A2B8EBAFs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib1B8C9AD6089B18933F360A76A2B8EBAFs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibBBEC9EE68D506D3CFF32D0CA981036C5s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibBBEC9EE68D506D3CFF32D0CA981036C5s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibA69A448188415A8FF6943632E34F5E5Bs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibA69A448188415A8FF6943632E34F5E5Bs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibF8A8CD6750A52018B9DEBE1F73D531A1s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibF8A8CD6750A52018B9DEBE1F73D531A1s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibF8A8CD6750A52018B9DEBE1F73D531A1s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibF8A8CD6750A52018B9DEBE1F73D531A1s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib4DBF584E89CBBA4ED920779B51BB0E70s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib4DBF584E89CBBA4ED920779B51BB0E70s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib4DBF584E89CBBA4ED920779B51BB0E70s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib4DBF584E89CBBA4ED920779B51BB0E70s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibC5FC32AB14ACE36FC2A3D151ABE42C3Cs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibC5FC32AB14ACE36FC2A3D151ABE42C3Cs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibC5FC32AB14ACE36FC2A3D151ABE42C3Cs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibC5FC32AB14ACE36FC2A3D151ABE42C3Cs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bibC5FC32AB14ACE36FC2A3D151ABE42C3Cs1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib778A32AC45632808591ECF8438240F29s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib778A32AC45632808591ECF8438240F29s1
https://github.com/trinsic-id
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib06854C8F0F799051BF589F0D964E1BC1s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib06854C8F0F799051BF589F0D964E1BC1s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib35F6A5272DD0968593968F988D07EB5As1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib35F6A5272DD0968593968F988D07EB5As1
https://www.w3.org/TR/did-core
https://www.w3.org/TR/vc-data-model
https://www.w3.org/TR/vc-data-model
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib435DA98C6D6895BA736F08DADBBAAE82s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib435DA98C6D6895BA736F08DADBBAAE82s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib435DA98C6D6895BA736F08DADBBAAE82s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib435DA98C6D6895BA736F08DADBBAAE82s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib875478A170FEDD85CA7BE88EAAA954A1s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib875478A170FEDD85CA7BE88EAAA954A1s1
http://refhub.elsevier.com/S0167-4048(24)00072-5/bib875478A170FEDD85CA7BE88EAAA954A1s1

	Enforcing security policies on interacting authentication systems
	1 Introduction
	2 Modeling authentication systems
	2.1 Authentication attributes
	2.2 System policies
	2.3 Policy requirements

	3 User registration
	4 Modeling and verifying interactions
	4.1 Dependencies
	4.2 Dependency verification
	4.3 Towards strong dependencies

	5 Security analysis
	6 Implementation of the framework
	6.1 Reference authentication attributes
	6.2 Background notions on self-sovereign identity
	6.3 SSI-based implementation
	6.4 Identification attributes

	7 Related work
	8 Conclusions and future work
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

