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Abstract
Federated learning (FL) has emerged as a 

prominent solution that enables distributed train-
ing of machine learning (ML) models at multiple 
end-devices with their own data samples. The FL 
performance, and in particular, the training con-
vergence speed, are limited by the device with 
the lowest computation and communication capa-
bilities typically referred to as a straggler. In this 
work, we address the issues related to the pres-
ence of communication stragglers, that is, devices 
experiencing poor channel conditions. By leverag-
ing named data networking (NDN) and customiz-
ing its forwarding fabric to improve the ML model 
delivery in the presence of lossy communications, 
our solution allows potential stragglers to bene-
ficially participate in the FL application. Results 
show the advantages of the conceived solution in 
terms of reduced training time when compared 
to a conventional host-centric FL approach, and 
higher accuracy with reference to the case in 
which stragglers are not selected.

Introduction
Federated Learning (FL) has been proposed by 
Google to enable distributed Machine Learn-
ing (ML) model execution [1]. According to this 
paradigm, distributed clients (typically mobile 
devices), coordinated by an aggregator server, 
collaboratively train a shared ML model by using 
their own private data. The training results, instead 
of raw datasets, are sent to the aggregator server 
to update the global model. The same process 
continues iteratively for many rounds, until the 
requested accuracy is reached.

Despite the well-known advantages, FL faces 
communication challenges. In particular, some 
clients may experience connectivity issues due 
to unreliable and lossy links, thus becoming com-
munication stragglers that deteriorate the FL con-
vergence [1]. To mitigate such effect, a variety of 
client selection mechanisms have been proposed 
that exclude stragglers from training [2]. This how-
ever results in a decrease in the amount of exploit-
ed training data and a consequent slow down of 
the FL convergence. An alternative solution to 
avoid learning performance loss is not to exclude 
the communication stragglers but to improve their 

performance [3]. In this context, some physical 
or medium access control (MAC) layer strate-
gies optimize data transmissions and recover fast 
from losses caused by the presence of stragglers 
[1]. Other recent works investigated synergies 
with technologies like collaborative relays [3], 
Reconfigurable Intelligent Surfaces (RISs) [4], and 
Unmanned Aerial Vehicles (UAVs) [5].

In this article, we discuss a new approach to 
enhance the FL performance and cope with the 
slow convergence caused by communication 
stragglers. Our solution is based on the Named 
Data Networking (NDN) future Internet paradigm 
[6], which provides name-based data dissemina-
tion through the exchange of Interest and Data 
packets and natively supports multicast data deliv-
ery and in-network caching.

In [7] NDN is argued as a key enabler for 
in-network intelligence; requests are expressed as 
unique names conveyed in Interest packets and 
are satisfied by intermediate nodes. In our previ-
ous work in [8], the strengths of NDN in support-
ing FL procedures were theoretically discussed 
and a framework, named NDN-FL, was conceived 
to enhance NDN routines and enable FL client 
discovery and selection. Moreover, there, early 
encouraging results showed the improvements 
achieved by the vanilla NDN procedures against 
a conventional application-layer approach, under 
the simplified assumption of homogeneous clients.

This article provides the following main original 
contributions:
•	 We design enhanced NDN-FL, eNDN-FL, 

which builds upon our previous work in[8] 
for what concerns client discovery and selec-
tion; and goes beyond that by customizing 
the NDN forwarding and caching routines 
to make the model and its parameters 
exchange between FL clients and aggregator 
more robust and quicker. Heterogeneous 
clients are explicitly considered, with some 
of them experiencing poor connectivity and 
potentially acting as communication strag-
glers. To this aim, nodes located nearby the 
straggler (both intermediate nodes in the 
path toward the aggregator as well as neigh-
boring clients) may serve it with a cached 
copy of the global model and/or its updates. 
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Moreover, caching FL data at intermediate 
nodes is judiciously adapted to the dynamics 
of the training rounds, not to waste precious 
storage resources. 

•	 We assess the performance of the proposal, 
through a validation study conducted with 
the ndnSIM simulator and realistic datasets, 
and analyze the results in terms of training 
round latency and accuracy.

Federated Learning
Basics

The vanilla FL protocol follows a synchronous pro-
cess based on the following steps in each training 
round, re-iterated until the global training is com-
plete [1].

Initialization: When a training task has to be 
performed, the server prepares the initial global 
model and training parameters, such as the learn-
ing rate and the number of training iterations. 
Then, it selects K clients, randomly or according 
to a specific policy, for example, based on the 
available computation capabilities and/or network 
conditions [8], or even the quality of the owned 
dataset [9]. Indeed, the clients’ training data are 
usually non-independently and identically distrib-
uted (non-IID), and imbalanced, that is, some 
clients can have large datasets, while others can 
have only a few records.

Model Dissemination and Local Training: The 
server disseminates the global model and settings 
to the selected K clients, which train the model on 
their local dataset and, after completion, push the 
model update to the server.

Aggregation: After receiving the updates from 
all K clients, the server performs the model aggre-
gation and possibly instructs the next round of 
training by sending the updated global model to 
the selected clients.

The Straggler Issue
In a realistic environment, the communication 
channel is not perfect and clients may experience 
poor and heterogeneous connectivity conditions 
[1]. Synchronous FL can be significantly affected 
by communication stragglers, since the slowest 
client dictates the training pace: the server must 
wait until receiving the training updates from all 
participants.

Current FL designs typically leverage the reli-
able Transport Control Protocol (TCP), which 
re-transmits all the incorrectly received packets 
[10], thus preserving the model accuracy but 
causing extra delays. Normally, synchronous FL 
relies on a maximum training round time, Tmax: 
if the model update from a client is not received 
by the aggregator before the Tmax deadline, then 
the contribution from that client is excluded from 
the training round. To understand the TCP per-
formance under diverse network and packet 
loss conditions, we considered a simple scenario 
with clients directly connected to the aggrega-
tor through the 3G, 4G or WiFi technologies. For 
each of them, we assumed bandwidth limits set, 
respectively, equal to 5, 20 and 60 Mb/s [10], 
and packet losses from 0.2% to 10%.

Figure 1 shows, for each technology, the aver-
age training round duration achieved by a TCP-
based FL, for different packet loss values. It can be 

observed that the training round time increases 
with the packet losses, whatever the considered 
technology. Different Tmax values, in the range 
between 100 and 350 s, are reported in the fig-
ure. For packet losses below 1% and Tmax values 
below 300 s, the average training round duration, 
for all technologies, is within the deadlines. This 
means that all clients would be able to download 
the model, train it locally and report the update 
before being excluded by the aggregator. This 
also implies that, within the mentioned loss and 
Tmax ranges, accuracy remains unaffected. Out 
of these ranges, accuracy will gradually decrease 
because some clients will no longer be able to 
complete the training round within Tmax.

Related Work
To cope against the straggler effect, previous 
efforts in the literature proposed asynchronous 
FL schemes, which however may limit the model 
utility or also diverge the training process, due to 
the potential staleness of client’s updates, unless 
properly handled [11].

Compression techniques encompassing, 
among others, quantization, sparsification, knowl-
edge distillation, may reduce the amount of trans-
mitted bits, by addressing the communication 
issues [1, 12]. However, such solutions require 
substantial changes at the application, since they 
are directly implemented at the algorithmic level 
of FL and may come at the expenses of a loss of 
accuracy [10].

With similar objective of reducing the pressure 
on the network, semantic communications can 
deliver data more efficiently over wireless links 
by differentiating the usefulness of training data 
samples from different clients [13]. Such solutions 
may require computationally intensive ML mod-
els, in their turn, to understand which information 
is of interest before transmitting it.

The proposals in [3] and references there-
in introduce collaborative relays, which receive 
updates from nearby stragglers and forward them 
to the aggregator. However, these works do not 
present a specific communication protocol sup-
porting the nodes’ relaying capability. In addition, 
the focus is on model updates delivery (i.e., uplink 
transmissions), while communication issues during 
the global model distribution (i.e., downlink trans-
missions) are not considered.

As a result, FL still needs a robust and effec-
tive communication architecture that improves 

FIGURE 1. Training round time vs. packet loss rate for different communica-
tion technologies.
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client-server content distribution. In the follow-
ing, we introduce how the NDN paradigm may 
address the mentioned issues.

Named Data Networking
Basics

NDN is an information-centric communication 
architecture based on the exchange of two 
named packets: the Interest, sent by consumers 
to request contents, and the Data, sent by any 
content provider, that is, the original source or a 
cacher, to answer the request [6]. Interests carry 
application-level Uniform Resource Identifier 
(URI)-like content names that are directly used 
by network routers to forward the request toward 
the source of the corresponding Data.

Each NDN node n maintains three tables:
•	 A Forwarding Information Base (FIB) that 

lists, per each name prefix, the outgoing 
interface(s) and the corresponding perfor-
mance metric(s), for example, the round-trip-
time (RTT)

•	 A Pending Interest Table (PIT), listing the for-
warded Interests that are waiting to be con-
sumed by a Data packet

•	 A Content Store (CS) to cache incoming 
Data packets.
Upon receiving an Interest, n first looks in the 

CS for a matching packet to immediately serve 
the consumer. If the CS matching fails, n looks 
in the PIT. If a matching is found, n discards the 
Interest, since an equal request has been already 
transmitted and it is waiting to be consumed by 
the data. As a result, the node aggregates the 
same requests in the PIT and forwards a single 
one over the same link, thus reducing the load in 
the network and on the server. If the PIT matching 
fails, n creates a new entry in the PIT and looks in 
the FIB to forward the Interest.

Stateful Forwarding and on-path caching are 
two notable and highly customizable NDN fea-
tures, directly provided at the network layer, that 
can largely improve communication performance.

Stateful Forwarding
The PIT allows filtering unsolicited Data packets, 
that is, Data without a matching PIT entry are dis-
carded, and aggregating Interests for the same 
content, thus enforcing multicast delivery. This 
largely reduces the traffic congestion and the load 
on the original source. In parallel, stateful forward-
ing allows fast recovery from losses. If a pending 

Interest is not consumed by the Data within the 
expected time interval related to an outgoing 
face, the node can try alternative request paths. 
The request is finally discarded when the pre-de-
fined time-to-live of the Interest (TTLInt) expires.

Caching
In-network caching can be crucial to speed up 
content delivery, especially in challenging commu-
nication scenarios, for example, in case of pack-
et losses. Unlike existing systems based on the 
TCP/IP protocols, where caching is supported in 
specific nodes at the application layer, NDN data 
can be re-transmitted by any on-path cacher, that 
is, any node in the delivery path between con-
sumers and sources. Several caching policies can 
be defined according to the reference applica-
tion and network environment. NDN caching can 
also deal with transient contents, that is, data that, 
after a certain time period, become invalid.

The NDN source can specify the TTL of its 
contents and include it in the FreshnessPeriod 
field of the Data packets’ header. When the TTL 
expires, the CS removes the cached packets.

Our Proposal
Main Assumptions

Reference Scenario: A hierarchical edge network 
topology is considered, where leaf nodes act as 
Access Points (APs) for a set of mobile devices 
which may act as clients for the sake of a model 
training task (Fig. 2). The server is co-located with 
the edge root node and may reach the clients via 
multi-hop paths. The approach can be however 
applied to any edge network topology.

We assume that synchronous FL is implement-
ed, with training round deadline set to Tmax [2].

Potential clients are equipped with multiple 
network access interfaces, for example, fourth 
generation (4G) / fifth generation (5G) cellular, 
WiFi, to connect to the closer AP or to other 
neighboring clients. In the following, we will refer 
to the interface toward the AP as long-range, and 
to the one toward a nearby client as short-range.

NDN Architecture: All the nodes in the refer-
ence scenario implement NDN and use Interest 
and Data packets for the exchange of the glob-
al model and local model updates. NDN can be 
implemented as a clean-slate solution if the edge 
domain is a greenfield deployment, where new 
networking solutions can be easily implement-
ed from scratch over the access layer technolo-

FIGURE 2. Reference scenario and NDN forwarding plane at client c2.
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gies. Alternatively, thanks to softwarized network 
designs, which facilitate the implementation of 
multiple protocol stacks over the same device, the 
NDN paradigm could co-exist with other network-
ing solutions, for example, IP-based, thus avoiding 
any additional hardware cost.

A legacy NDN routing protocol is run by 
each node to discover and maintain adjacency 
relations with the neighbors, build paths toward 
model sources and detect link failures. Depending 
on the phase of the FL process, clients may act as 
NDN data consumers or sources: they are con-
sumers during the global model retrieval, and they 
behave as sources when transmitting the model 
updates to the server. Similarly, the server acts as 
a source of the global model and as a consumer 
of model updates.

Contributions: eNDN-FL boosts FL data dis-
semination by enabling multi-path forwarding and 
off-path caching. Clients can retrieve the glob-
al model in a multi-path fashion, that is, from 
the server; from an intermediate node acting as 
on-path cacher; or from a neighboring client act-
ing as off-path cacher. The latter option is enabled 
by eNDN-FL by leveraging the existing NDN 
routing advertisement messages, without intro-
ducing additional signalling overhead. This is an 
important departure from conventional TCP-like 
approaches, where FL clients have to establish an 
end-to-end session with the server in order to get 
the global model. In addition, eNDN-FL defines a 
round-limited cache reservation mechanism that 
promptly releases the storage resources used for 
the global model as soon as it becomes obso-
lete, that is, after a given training round deadline. 
eNDN-FL also supports model updates retrieval 
from the clients via multiple uplink paths, that is 
from the client through the AP when the link qual-
ity is good; or through a neighboring client acting 
as a relay over a higher-quality link.

There is a twofold reward for clients acting as 
cachers and relays. By contributing to make the 
overall FL convergence faster: they get an updat-
ed better trained version of the model in a short-
er time; and they reduce the number of training 
rounds, by saving their computing resources at 
the expenses of the forwarding operation.

The conceived extensions are detailed in the 
following.

Initialization
Before starting the FL task, the server has to dis-
cover and select the set of clients to involve in. To 
this aim, it follows the procedure devised in our 
previous work [8], which is based on the exchange 
of special Interest and Data packets, respectively 
advertising the FL application and its main param-
eters (e.g., task type, required accuracy) and the 
potential clients’ capabilities. In this work, we con-
sider that the set of clients has been already discov-
ered and selected by the FL server as in [8], and 
we focus on the next steps for model sharing and 
updating, and on naming convention. 

eNDN-FL exploits the NDN hierarchical nam-
ing scheme to identify the global model and its 
updates. The following naming convention is 
used for the global model: FL_app/global/round_i, 
where the name prefix FL_app identifies the 
type of FL application running at the server (e.g., 
speech recognition, object detection), the label 

global refers to the aggregated model generated 
by the FL server, and the last name component 
round_i identifies the specific training round i. 
As an example, the name speechRecog/global/
round_1 identifies the global model at the first 
round of an FL speech recognition application. 
Conversely, the naming scheme of the model 
updates generated by a given client k consists 
of the same name prefix, namely FL_app, used 
by the server, followed by the label update that 
refers to the updated model trained locally, and 
by the identifiers of the client producing the con-
tent and the corresponding training round, that is, 
FL_app/update/client_k/round_i.

FIB Configuration and Forwarding
Once the clients join the FL application, they add 
a new FIB entry coupling the global model name 
prefix with the default outgoing interface to reach 
the server, for example, through the AP. Then, 
they start periodically advertising themselves as 
(future) producers of model updates by sending 
routing messages over all the available short-/
long-range interfaces. In eNDN-FL, the advertise-
ments of a client c1 have a twofold target:
•	 Allowing the other receiving edge nodes 

(including the server and neighboring cli-
ents) to identify a source of model updates 
and, therefore, to fill their FIB accordingly

•	 Making the other clients aware of its availability 
to act as: off-path cacher of the global model; 
or relay for model updates from neighboring 
clients (potential communication stragglers).
Therefore, when receiving the advertisement 

from a client c1, the forwarding strategy of a 
neighboring client c2 will include in the FIB a new 
entry for reaching the model updates, and modify 
the existing entry for the global model, by adding 
the short-range outgoing interface toward client 
c1. Entries are removed if advertisements are no 
longer received, for example, due to mobility. In 
terms of overhead in the FIB, compared to the 
traditional NDN implementation, eNDN-FL intro-
duces additional outgoing interfaces information, 
that is, a few bytes, per each FIB entry. Therefore, 
the required memory cost is contained.

As an example, in Fig. 2, c2 has three entries 
in its FIB related to the running FL application. 
The first one, <speechRecog/global, NetFace1, 
NetFace2>, records the main prefix of the glob-
al model and the corresponding outgoing net-
work interfaces over which sending Interests to 
retrieve it. In addition to the long-range connectiv-
ity toward the AP, c2 has recorded the short-range 
connectivity toward c1, which participates in the 
same FL application and therefore, it may become 
also a provider of the global model. There are not 
a priori guarantees that c1 will be able to return 
the global model, but it could be queried by c2 in 
case of communication issues over the direct con-
nectivity link toward the AP. The second entry, 
<speechRecog/update/c1, NetFace2>, records the 
main prefix of the updates provided by c1 and 
the corresponding outgoing network interface. 
This also implies that the AP has two options for 
retrieving the updates from c1: through the direct 
link, or through c2 acting as relay. Finally, the third 
entry, <speechRecog/update/c2, AppFace>, sim-
ply indicates that c2 is the original source of con-
tent speechRecog/update/c2.

A legacy NDN routing 
protocol is run by each node 

to discover and maintain 
adjacency relations with 

the neighbors, build paths 
toward model sources and 

detect link failures. Depend-
ing on the phase of the FL 
process, clients may act 

as NDN data consumers or 
sources: they are consum-

ers during the global model 
retrieval, and they behave 
as sources when transmit-
ting the model updates to 
the server. Similarly, the 

server acts as a source of 
the global model and as a 

consumer of model updates.
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Global Model Retrieval
At each training round i, clients request the glob-
al model by sending Interest packets with name 
FL_app/global/round_i toward the server. Inter-
mediate nodes can aggregate in the PIT the same 
Interests and transmit in multicast the Data to 
distinct clients, as natively supported by NDN. 
For instance, the AP in Fig. 2 could aggregate the 
same requests for the global model from the two 
clients at a given training round i and then serve 
them with the same Data packets.

However, due to adverse channel conditions, 
the direct communication link between the AP 
and a client could be unavailable. When a client 
detects this issue, it requests the missing Data to 
other neighboring clients, according to the FIB 
configuration. To improve the caching perfor-
mance and cope against the straggler issue, we 
introduce a round-limited cache reservation mech-
anism. Each client participating in the FL applica-
tion must reserve the storage space for caching 
the global model. At each round the model is 
cached for a time equal to the training round 
deadline, Tmax.

As an example, Fig. 2 shows that c2 maintains 
in its CS the global model of the current round 
with a certain Tmax duration. If c1 is experiencing 
some communication issues with the AP, it can 
retrieve the global model from c2.

The NDN Forwarding Strategy module at each 
client is in charge of handling the Interest retrans-
missions to retrieve the global model from other 
nearby clients. In our design, we introduce a cli-
ent-aided forwarding policy, according to which a 
straggler selects the best nearby client, that is, the 
one with the lowest RTT, to retrieve the model. If 
no Data is returned within the expected RTT, the 
straggler retransmits the Interest over the second 
best client, if any, and so on. It gives up if the for-
warding options run out.

Model Updates Retrieval
To retrieve the model updates at each train-
ing round i, the server transmits Interest pack-
ets toward the selected clients according to the 
defined naming scheme. Each Interest carries 
a TTLInt equal to the maximum tolerable time 
that the server may wait before aggregating the 
model updates. By doing so, possible late data 
transmissions are treated as unsolicited packets 
and are discarded by intermediate nodes, with-
out unnecessarily overloading the server. Indeed, 
in agreement with the assumed synchronous FL 

approach, they would have been deleted at the 
server in any case.

In parallel, to quickly recover from possible 
data losses and further limit the load on the server, 
the forwarding strategy of APs and (intermediate) 
edge nodes is configured to enforce autonomous 
retransmissions of unsatisfied pending Interests 
with Negative Acknowledgment (NACK) feedback. 
When the Data packet is not returned within the 
expected interface RTT, the AP retransmits the 
unsatisfied Interest over the alternative interfaces, 
if available. If no Data is received, the AP sends 
back a NACK to announce that the Data cannot 
be retrieved. At the NACK reception, the previous 
edge node can further try alternative routes (if 
available) toward the client. The same process 
is repeated until either all the available routes 
are tested or the Interest TTL expires. Figure 3 
shows an example of model update retrieval in 
the presence of:  no-loss connectivity toward c1; 
data recovery through c2; failed loss recovery and 
NACK transmission.

Performance Evaluation
Simulation Tools and Settings

We consider an edge-based FL approach, where 
a set of clients connect to the edge server, acting 
as global model aggregator, through an edge net-
work domain, Fig. 2. This latter is modelled as a 
three-layer infrastructured hierarchical tree topol-
ogy where the root node is connected to the 
aggregator. Wired links have latency in the range 
[1–3 ms]. Clients are wirelessly connected to the 
leaf nodes, acting as APs, and may experience 
adverse channel conditions thus becoming com-
munication stragglers. In particular, we simulate 
the presence of 10 clients and randomly select 
some of them to act as communication stragglers. 
They experience a variable packet loss rate over 
the long-range 4G interface toward the AP, and 
may establish short-range connectivity with near-
by clients acting as relays. All clients are assumed 
with homogeneous computing capabilities. We 
compare eNDN-FL against:
•	 The legacy FL approach, where clients estab-

lish TCP-based end-to-end connections with 
the server

•	 The relaying approach, where legacy FL is 
augmented with relaying in the uplink path, 
like in [3], 

•	 The NDN baseline approach, where all the 
nodes implement the NDN architecture with 
in-network caching and the default best-
route forwarding strategy.
To realistically simulate the mentioned approach-

es in the considered topology, we leverage ndn-
SIM, a module deployed within ns-3 by the NDN 
research community. Results are reported with 95% 
confidence intervals computed over 20 runs.

Dataset and Training Model
We focus on an object recognition learning task 
when considering the CIFAR-10 dataset [14], 
which includes 60,000 color images, tagged with 
one of 10 available, mutually exclusive classes, for 
example, airplane, automobile. The total size of the 
dataset is 57 MB. The used neural network (NN) 
model is ResNet-50 [15] and its size is 98 MB. The 
learning rate has been set to 0.22, the number of 

FIGURE 3. Model update retrieval.
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local epochs to 5 and the mini-batch size to 30.
Two different data distributions are considered 

for training the NN. For the IID case, the starting 
dataset is divided equally among the clients, that 
is, the number of samples per class is identical on 
each client. For the non-IID distribution, the sam-
ples belonging to each class are not distributed 
equally on all clients; this leads to an imbalance. 
To avoid accuracy issues in the non-IID case, it is 
assumed that each client has a minimum number 
of samples for each class of the starting dataset.

Results
Figure 4 reports the accuracy obtained by setting 
the maximum number of rounds to 200, for the 
two different dataset distributions, regardless of 
the communication approach. We consider two 
distinct scenarios: the case where all 10 clients 
contribute to the training procedure (solid lines); 
and the case where 2 or 5 stragglers are excluded 
by the training procedure (dashed lines). In the 
latter case, only 8 or 5 out of 10 clients, respec-
tively, participate to the training; the stragglers are 
excluded due to communication issues.

As expected, a higher accuracy is achieved 
for the IID dataset distribution because individual 
clients have balanced subsets which allow the NN 
to train uniformly. In the non-IID case, instead, the 
subsets are unbalanced in terms of the number of 
samples associated with each class. Hence, the 
NN trains worse on classes that have fewer sam-
ples than others. Furthermore, when the stragglers 
are not involved in the training procedures, the 
accuracy performance gets worse. This is espe-
cially true for non-IID dataset distribution and for 
a higher number of stragglers. This confirms that 
improving communication conditions of all the 
clients is imperative to make the best of the data-
sets available at their premises and target high FL 
training accuracy.

To assess the benefits introduced by eNDN-
FL over the benchmark schemes, results in Fig. 
5 show the average duration of the training 
round under different loss conditions perceived 
by the communication stragglers. The metric is 
derived as the sum of the time taken on average 
by a client to retrieve the global model from the 
server, to train it locally and to send the updat-
ed model back to the server. We set the training 
round deadline, Tmax, equal to 600 s [2]. Hence, 
the proposal and the considered benchmarks 
achieve the same accuracy performance because 
the same population of clients contribute to the 
aggregation. The training measurements were 
performed on a machine equipped with an Intel 
Core i7-9750H CPU, 16 GB DDR4 RAM, and an 
NVIDIA GeForce GTX 1050 Ti GPU.

Only the non-IID case is considered in this anal-
ysis, being the most affected by the presence of 
communication stragglers. For all the considered 
networking solutions, we distinguish the average 
training round time of stragglers and non-strag-
glers, that is, clients affected by varying packet loss 
rate and clients that do not experience communi-
cation issues, respectively. It can be observed that 
the metric for stragglers highly increases with the 
loss rate and the worst performance is obtained 
by the legacy approach. Indeed, in a traditional 
networking solution, based on end-to-end com-
munications without in-network caching, clients 

must download the global model directly from 
the server and, in case of data losses, retransmis-
sions are enforced at the server-side. By providing 
in-network caching, instead, NDN outperforms 
the legacy and relaying approaches since data can 
be recovered from the closest on-path cacher, 
that is, the AP. However, stragglers can further 
reduce the time needed to download the global 
model by retrieving it from nearby clients. More-
over, APs can retrieve updates from the strag-
glers by leveraging nearby clients as intermediate 
forwarders. Interestingly, the time needed by an 
eNDN-FL straggler client to download the model, 
train it and update the server approaches the one 
experienced by a non-straggler client. This trend 
confirms the viability of the proposal to mitigate 
the communication straggler’s drawbacks.

For Tmax values lower than 600s, some strag-
glers can be excluded by the training round with 
a consequent reduction in the accuracy. In these 
cases, the advantages of our proposal are evident 
in Table 1, reporting the achieved accuracy by 
each compared solution for different Tmax and 
loss conditions. TCP-based solutions are adversely 
impacted by worsening the channel conditions 
and reducing Tmax.

Conclusion
In this article, we have proposed eNDN-FL, an 
NDN-based solution for FL that reduces the train-
ing round duration when stragglers are involved in 
the training procedures. eNDN-FL paves the way 
for FL client selection schemes that do not exclude 
stragglers and, instead, may benefit from their pres-
ence in terms of higher accuracy, without signifi-
cantly affecting the training convergence. Synergies 
of the proposal with compression techniques as 
well as with semantic communications to further 

FIGURE 5. Training round time vs. packet loss rate over the AP-straggler link.
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FIGURE 4. Accuracy vs. number of rounds for different number of stragglers.
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For all the considered 
networking solutions, we 
distinguish the average 

training round time of strag-
glers and non-stragglers, 
that is, clients affected by 

varying packet loss rate and 
clients that do not experi-

ence communication issues, 
respectively.
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reduce the network pressure will be also a subject 
matter of future works.
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TABLE 1. Accuracy achieved when varying the training round deadline (Tmax) for the compared schemes in the presence of 5 stragglers (out of 10 clients), experiencing varying loss rates.

Loss rate
Legacy Relaying NDN-FL eNDN-FL

Tmax = 300s Tmax = 120s Tmax = 300s Tmax = 120s Tmax = 300s Tmax = 120s Tmax = 300s Tmax = 120s

0.001 85% 85% 85% 85% 85% 85% 85% 85%

0.005 85% 85% 85% 85% 85% 85% 85% 85%

0.01 85% 59% 85% 85% 85% 85% 85% 85%

0.05 85% 59% 85% 59% 85% 85% 85% 85%

0.1 59% 59% 85% 59% 85% 59% 85% 85%
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