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A mathematical model 
and numerical simulation 
for SARS‑CoV‑2 dynamics
Antonino Amoddeo 

Since its outbreak the corona virus‑19 disease has been particularly aggressive for the lower 
respiratory tract, and lungs in particular. The dynamics of the abnormal immune response leading 
to lung damage with fatal outcomes is not yet fully understood. We present a mathematical model 
describing the dynamics of corona virus disease‑19 starting from virus seeding inside the human 
respiratory tract, taking into account its interaction with the components of the innate immune 
system as classically and alternatively activated macrophages, interleukin‑6 and ‑10. The numerical 
simulations have been performed for two different parameter values related to the pro‑inflammatory 
interleukin, searching for a correlation among components dynamics during the early stage of 
infection, in particular pro‑ and anti‑inflammatory polarizations of the immune response. We found 
that in the initial stage of infection the immune machinery is unable to stop or weaken the virus 
progression. Also an abnormal anti‑inflammatory interleukin response is predicted, induced by the 
disease progression and clinically associated to tissue damages. The numerical results well reproduce 
experimental results found in literature.

The Severe Acute Respiratory Syndrome (SARS)–Corona Virus-2 (CoV-2) appeared at the end of 2019, and can 
be responsible for a severe inflammation of the human respiratory tract (HRT), a disease also known as Corona 
Virus Disease-2019 (COVID-19): it is characterized by an abnormal response of the immune system which 
induces the production of several inflammatory molecules going in circulation and giving rise to a so-called 
cytokines  storm1,2, an event with outcome often lethal, and whose occurrence is shared with previous coronavi-
ruses such as SARS-CoV and Middle East Respiratory Syndrome (MERS)-CoV2,3.

In general, upon infection, the host response begins with the detection of the pathogen associated molecular 
patterns (PAMP) through the pattern recognition receptors (PRR), allowing the recognition of the external 
pathogen and leukocytes activation, then triggering the response of the innate  immunity1,4. This is the first source 
of inflammation as response of the host to the pathogen exposure. At the same time the innate immune system, 
which includes monocytes, macrophages, dendritic cells, mast cells, natural killer cells, neutrophils, eosinophils 
and basophils, represents the first barrier of the host opposing to an external thread. Since the outbreak of the 
COVID-19, works have put in evidence the peculiarity of the disease as well the similarities with SARS-CoV, 
MERS-CoV2,5, while previous studies and mathematical  models6–9 can be a foundation from which to build a 
mathematical modelling for SARS-CoV-2 infection. In this work we are concerned with a mathematical model 
trying to shed some light on the COVID-19 dynamics during the early stage of the disease progression, taking 
into account the virus interaction with the host innate immune response. We summarize the essential biological 
background needed for the model presentation and discussion, while for more details as well as review papers 
it is very difficult to select among a wealth of excellent ones which are present in literature, then we address the 
interested reader to papers cited time to time and references therein.

When a pathogen intrudes a host, it is faced by monocytes, which consequently differentiate into macrophages 
(M) or dendritic cells (DC)10. Such cells, once captured the pathogen, interact with T lymphocytes, which in 
turn are grouped into four types of population, among which there is the family of the effector T lymphocytes: 
the latter includes cytotoxic T-lymphocytes or  CD8+ T-cells, regulator T-lymphocytes or  Treg cells, and helper 
T-lymphocytes or  CD4+ T-cells11. Cytokines, a broad class of peptides that includes chemokines (CK) and inter-
leukins (IL)1, are important mediator of the immune response and play a significant role in cell signalling and 
activation of the immune  response12,13.

Once activated as a consequence of an external threat,  CD4+ T-cells start producing a variety of  ILs12 that are 
responsible of the cell signalling, producing a broad immune response.
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Macrophages differentiate from monocytes in classically activated macrophages (M1), or in alternatively 
activated macrophages (M2)4,14–16. The former are associated to a pro-inflammatory activity since they produce 
pro-inflammatory ILs as, for example in tumour  progression17: tumour necrosis factor (TNF), IL-1, IL-6 and 
IL-12. On the other hand, M2 macrophages are responsible of an anti-inflammatory activity since they produce 
anti-inflammatory ILs, such as IL-10, and perform a restorative and healing function for damaged  cells18.

ILs are molecules that can exert both pro- and anti-inflammatory  functions13,19 and are produced not only by 
macrophages, but also by  CD4+-T cells. Pro-inflammatory ILs are produced by M1 activated macrophages, and 
high levels of in particular IL-6 are present in severe COVID-19 patients, as well in SARS and MERS  ones2. In a 
very recent  review20 the immunoregulatory role of IL-10 in many infections has been summarized, while it has 
been found that IL-10 secreted in the tumour environment encourage differentiation of macrophages towards 
the M2  phenotype21.

In Lai et al.7 a model for the dynamics of  CD8+-T cells during Human Immunodeficiency Virus (HIV) -1 
infection at a quasi-steady state has been presented, considering contributions from both healthy and infected 
 CD4+-T cells, and introducing a chemotactic contribution due to infected  CD4+-T cells. It is found that the steady 
state stability depends upon attractive or repulsive nature of the chemotactic  movement22.

In a recent work of Quirouette et al.8, the spread of influenza A virus (IAV) in the HRT has been modelled in 
terms of partial differential equations (PDEs), considering diffusion and advection terms in one spatial dimen-
sion as well the interaction of virions with both healthy and infected target cells. Models formulated in term of 
ordinary differential equations (ODE) have been constructed for Dengue Virus (DV) spread coupled with the 
immune  response23, while a review for the viral dynamics of HIV, Hepatitis C Virus (HCV), IAV, Ebola Virus 
(EV), DV and Zika Virus (ZV) has been presented in Zitzmann &  Kaderali6.

Less recently, a model describing the space–time evolution of cancer cells has been formulated in terms of 
PDEs, taking into account their interaction with  CD8+-T cells, IL-27, IL-10 and interferon-γ (IFN-γ)9, in one 
spatial dimension, highlighting the role of pro- and anti-inflammatory ILs.

At the turn of the pandemic declaration of the World Health Organization, a couple of paper reported clini-
cal results of studies carried out on COVID-19 patients in Wuhan, China, in which the plasma levels of IL-6 
and IL-1024, and of IL-625 were measured. In this frame, the present work is aimed at: (1) investigate a possible 
IL-6 role on M1 polarization of macrophages while they undergo chemotaxis from SARS-CoV-2 infected T 
cells; hence, (2) reproduce clinical observations on SARS-CoV-2 patients, linked to the dynamics of ILs and 
the role they play in lung damages. To build our model we were inspired by the works of Chousterman et al.1, 
Rossi et al.2, Channappanavar et al.3, while the numerical simulations were compared with clinical findings 
contained in Huang et al.24, Zhou et al.25, taking some points of discussion and comparison also from previous 
experimental works on  mice26,27.

The mathematical model
We consider a portion of the HRT as the domain in which an initial amount of virus (V) explicitly interacts with 
 CD4+-T cells, from now on simply T cells (T), and in which the immune response involves classically (M1) and 
alternatively (M2) activated macrophages, IL-6 (L) and IL-10 (N). From the mass conservation we derive the 
model equations for the interacting species inside the considered biological domain, in terms of reaction–diffu-
sion PDEs. We consider the spatial position identified by the vector x = (x,y), while t denotes the variable time.

We therefore introduce the relative model equations, together with a model equation accounting for infected 
T cells (I). Moreover, the parameters entering in the model are detailed and quantified in the accompanying 
Supplementary Information online.

Once SARS-CoV-2 intrudes the host, it binds to angiotensin-converting enzyme 2 (ACE2)  receptors25, sub-
sequently its presence is revealed by the toll-like receptors (TLR) from which the immune response begins with 
the associated  inflammation2. ACE2 have been proven to be the receptors of SARS-CoV and SARS-CoV-211,28, 
both targeting T cells, a trait shared with HIV-17,29. Then considering only infection of such cells, the virus evo-
lution accounts for diffusion with a coefficient DV, production by infected T cells at a rate p; the virus is cleared 
by immune  elimination6 at a rate c:

T cells diffuse at rate DT, undergo natural decay according to dT, and are infected by virus at rate k6,7; are 
activated by IL-630,31, promoted by  M110, inhibited by IL-1020,32,33 and  M210 according to ϕ21, ϕ22, ϕ23 and ϕ24, 
respectively.

M1 produce, among others, IL-12 driving T cell  polarization34; the presence in the airways inflammatory 
microenvironment of IL-4 and IL-13 induces M2 polarization of  macrophages35, in turn expressing IL-10 which 
increases T cell deactivation. On the other hand  Treg cells, which differentiation is stimulated by IL-10, inhibit 
T cell and DC  activation35,36. In the lung,  Treg are promoted by alveolar macrophages, with a predominant M2 
 phenotype37. Given the common features evidenced, for example, in Mannar et al.38 and Fardoos et al.39 between 
SARS-CoV-2 and HIV-1, along with the fact that T cells are decreased in critical COVID-19  patients40, we sup-
pose that, similarly to what happens for HIV-17,22,41, depending on the concentration of some CKs, in presence 
of the SARS-CoV-2 infection, T cells undergo chemoattraction (chemotaxis) or chemorepulsion (fugetaxis). 
We then assume that T cells are attracted towards infected T cells, but are repulsed by virions, allowing SARS-
CoV-2 immune evasion. In Eq. (2), χI and χV are, respectively, chemotaxis and fugetaxis coefficients for T cells; 
TM, instead, represents the maximum carrying capacity of T cells population. Hence

(1)
∂V

∂t
= ∇ · (DV∇V)+ pI − cV
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Infected T cells are supposed to diffuse at the same rate of T cells; they are produced by the virus/T cells 
interaction at rate k, and decay at rate δ; it is also conceivable that the infected Tcells/IL-6 interaction can pro-
mote activation of effector T cells and deactivation of  Treg  cells27, contributing to a hyper-inflammation further 
reducing infected T cells at rate ϕ32:

Classically activated macrophages diffuse according to DM1. High levels of pro-inflammatory ILs, in particular 
IL-6, characterize the biological milieu of the SARS-CoV-2  infection1,2. From one hand it can be hypothesized 
that, similarly to what happens in chronic wounds, where the shift from M1 to M2 phenotype is dis-regulated 
with a prolonged inflammatory  state14, a persistence of M1 macrophages and their predominance over M2 phe-
notypes can occur. On the other side, in Hadjadj et al.42 it has been found that in severe and critical COVID-19 
patients an excessive inflammatory response occurs with increased levels of IL-6 which can act as a chemoat-
tractant for macrophages and consequent tissue damage. Moreover, in COVID-19 patients an extreme increase 
of pro-inflammatory cytokines and other factors has been observed, among which IL-6 and IFN-γ43. Therefore, 
although in the literature we have not found evidence that IL-6 induces or promotes M1 directly, due to the 
peculiarity of the SARS-CoV-2 infection we assume that the abnormal expression of IL-6 and IFN-γ promotes 
M1 at a rate ϕ41. Further, the inflammation resolution involves the release of anti-inflammatory  ILs18,20,21, then 
M1 are inhibited by IL-10 at rate ϕ42.

In critical COVID-19 patients a common feature is that in lung lesions the predominant infiltrated immune 
cells are constituted by monocytes and  macrophages28,40. The deeper penetration in tumour lesions of M1 mac-
rophages with respect to M2 subtypes has been simulated in Leonard et al.17, Mahlbacher et al.21, accounted 
for introducing a chemotactic movement towards the lesion. The macrophage chemotaxis has been introduced 
also in Owen et al.44, studying macrophages-based therapies for drug delivery to tumour sites. M1 phenotype 
predominates in the early stage of inflammation and wound  repair14, with a shift from M1 to M2 within 5–7 days 
post injury, being such behaviour dis-regulated in presence of chronic wounds. Given the pro-inflammatory 
nature of M1 macrophages, we then assume that they move chemotactically towards infected cells according to 
a chemotactic coefficient χI:

where M1M is the maximum carrying capacity of the M1 population.
Alternatively activated macrophages M2 diffuse at rate DM2, and are promoted by IL-10, which induce mac-

rophages differentiation towards  M22,21 at a rate ϕ51; the spike protein in SARS-CoV-2 is responsible of hyper 
production of IL-645, and in general of a complicated frame of hyper-inflammation leading to the cytokines 
storm, but also excess of IFN- γ has been  observed43. We assume here that the level of IL-6 is representative of 
inflammation and therefore reflects proportionally that of IFN- γ, which in turn can repolarize M2 macrophages 
towards M1  phenotype46. Hence, M2 are inhibited at rate ϕ52 according to the IL-6 increase:

IL-6 diffuses at rate DL, it is produced by M1 at rate ϕ61
1,10,14,17; on the other hand, IL-6 is inhibited by IL-10 

at rate ϕ63
1,20,21,47:

Finally, IL-10 diffuses at rate DN, is produced by M2 macrophages at rate ϕ71
14,20, while it is inhibited by IL-6 

at rate ϕ73
1:

Methods
We performed numerical simulations of the above PDE system using the COMSOL Multiphysics™ package based 
on the finite element method (FEM)48, a technique already applied to the study of biological  systems49,50 and 
in presence of strong  anisotropies51, referring to the supplementary material for details. In Eqs. (2) and (4), we 
set TM = Tr and M1M = M1r, respectively, where Tr and M1r are reference quantities: Table 1 groups all the used 
parameters in dimensional and non-dimensional form, together with a short description and estimate, while 
once again we refer to the Supplementary Information online for details and used sources.

Equations (1)–(7) have been integrated in a two-dimensional square domain with 1  mm2 area, simulat-
ing a surface of HRT, in the 0–60 non-dimensional time interval. A t = 0 we assume the following set of initial 
conditions:

(2)
∂T

∂t
= ∇·

{

DT∇T − T

[

χI

(

1−
T

TM

)

∇I − χV

(

1−
T

TM

)

∇V

]}

−dTT−kVT+φ21L+φ22M1−φ23N−φ24M2

(3)
∂I

∂t
= ∇ · (DT∇I)+ kVT − δI − φ32IL

(4)
∂M1

∂t
= ∇ ·

[

DM1∇M1−M1χI

(

1−
M1

M1M

)

∇I

]

+ φ41L− φ42N ,

(5)
∂M2

∂t
= ∇ · (DM2∇M2)+ φ51N− φ52L.

(6)
∂L

∂t
= ∇ · (DL∇L)+ φ61M1− φ63N .

(7)
∂N

∂t
= ∇ · (DN∇N)+ φ71M2− φ73L.
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In the above equations ε = 0.02, then we admit that the initial viral load is centred on x = (0,0) with Gaussian 
shape. Moreover, a fraction of T cells is initially infected, while the M1 activated macrophages are a small fraction 
of the viral load. At t = 0 the M2 activation is not yet started then we assume that a small Gaussian distribution 

(8)

V(x, 0) = exp
(

−|x|2ε−1
)

T(x, 0) = 1− 0.5V(x, 0)

I(x, 0) = 0.5V(x, 0)

M1(x, 0) = 0.05V(x, 0)

M2(x, 0) = 0.1exp
(

−|x|2ε−1
)

L(x, 0) = 0.05V(x, 0)

N(x, 0) = 0

Table 1.  Summary of the reference quantities and parameters used in the model. Details can be found in the 
Supplementary Information online.

Reference quantity Symbol Units Value

Virus Vr n  cm−3 1 ×  107

T cells Tr cell  cm−3 5 ×  106

T cells maximum carrying capacity TM cell  cm−3 5 ×  106

Infected T cells Ir cell  cm−3 5 ×  106

M1 macrophages M1r cell  cm−3 6.9 ×  106

M1 macrophages maximum carrying capacity M1M cell  cm−3 6.9 ×  106

M2 macrophages M2r cell  cm−3 6.9 ×  106

IL-6 Lr cell  cm−3 2.87 ×  109

IL-10 Nr cell  cm−3 2.87 ×  109

Characteristic length l cm 0.1

Characteristic diffusion coefficient D cm  s−1 1 ×  10–6

Characteristic time scale τ s 1 ×  104

Parameter description Symbol Units Non-Dimensional Parameter Value

Virus diffusion coefficient DV cm2  s−1 DVD−1 1 ×  10–2

T cells diffusion coefficient DT cm2  s−1 DTD−1 5 ×  10–3

Infected T cells diffusion coefficient DI cm2  s−1 DID−1 5 ×  10–3

M1 diffusion coefficient DM1 cm2  s−1 DM1D−1 5 ×  10–5

M2 diffusion coefficient DM2 cm2  s−1 DM2D−1 5 ×  10–5

IL-6 diffusion coefficient DL cm2  s−1 DLD−1 1.45 ×  10–2

IL-10 diffusion coefficient DN cm2  s−1 DND−1 1.45 ×  10–2

Virus production coefficient p s−1 pτIrVr
−1 1.16 ×  10–1

Virus clearing coefficient c s−1 cτ 6.94 ×  10–2

Infected T cells chemotactic coefficient χI cm5  s−1  cell−1 χIIrD−1 1 ×  10–3

Virus fugetactic coefficient χV cm5  s−1  cell−1 χVVrD−1 5 ×  10–2

T cells decay rate dT s−1 dTτ 2 ×  10–2

T cells infection rate k cm3  s−1  cell−1 kτVr 7.4 ×  10–4

T cells activation rate by IL-6 ϕ21 s−1 ϕ21τLrTr
−1 11.5

T cells production rate by M1 ϕ22 s−1 ϕ22τM1rTr
−1 2.3 ×  107

T cells inhibition rate by IL-10 ϕ23 s−1 ϕ23τNrTr
−1 22.96

T cells inhibition rate by M2 ϕ24 s−1 ϕ24τM2rTr
−1 9.5 ×  104

Infected T cells decay rate δ s−1 δτ 2 ×  10–2

Infected T cells reduction rate by hyper-inflammation ϕ32 cm3  s−1  cell−1 ϕ32τLr 10

M1 production rate by IL-6 ϕ41 s−1 ϕ41τLrM1r
−1 1 ×  10–3

M1 inhibition rate by IL-10 ϕ42 s−1 ϕ42τNrM1r
−1 1 ×  10–4

M2 promotion rate by IL-10 ϕ51 s−1 ϕ51τNrM2r
−1 0.1

M2 inhibition rate by IL-6 ϕ52 s−1 ϕ52τLrM2r
−1 1 ×  10–3

2 ×  10–3

IL-6 production rate by M1 ϕ61 s−1 ϕ61τM1rLr
−1 0.5

IL-6 inhibition rate by IL-10 ϕ63 s−1 ϕ63τNrLr
−1 1 ×  10–2

IL-10 production rate by M2 ϕ71 s−1 ϕ71τM2rNr
−1 0.1

IL-10 inhibition rate by IL-6 ϕ73 s−1 ϕ73τLrNr
−1 9.26 ×  10–5
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of alternatively activated macrophages is centred at x = (0,0), IL-6 is produced according to the M1 macrophages 
while IL-10 is not yet produced by M2.

During the simulations the model has been tested for robustness by allowing each parameter to vary 
within ± 10% of the selected value, with no significant changes observed in the virus amount in the domain at 
t = 60. Instead, the numerical simulations have been performed as a function of the ϕ52 parameter, in order to 
test the biological milieu change capable to polarize macrophages towards M1 or M2  phenotype46, and for this 
reason we imposed ϕ52 = 1 ×  10–3, 2 ×  10–3.

Results and discussion
We performed the numerical simulation of Eqs. (1)–(7), plotting the variables spatial distribution for selected 
time steps in colour scale between the blue (minimum) and the red (maximum), which at t = 0 obey to the initial 
conditions imposed with Eqs. (8). Moreover, each variable distribution has been normalized to its maximum 
value assumed during the time evolution, and was mapped in the [0,1] × [0,1] non-dimensional square domain. 
The variables evolution has been computed at t = 10 (~ 1.16 days), t = 20 (~ 2.3 days), t = 30 (~ 3.47 days), t = 40 
(~ 4.63 days), t = 50 (~ 5.79 days) and t = 60 (~ 6.94 days): for each time step the results are shown in a single 
panels row, while the first and second column of panels refer to ϕ52 = 1 ×  10–3 and ϕ52 = 2 ×  10–3, respectively. We 
start showing in Fig. 1 the virus dynamics inside the simulated domain, and on going from t = 10 to t = 40 no 
features can apparently be observed, because of the damping due to the intensity normalization. At t = 50 the 
growing virus spatial distribution becomes visible as it has invaded almost half of the domain, while at t = 60 it has 
spread over the entire domain. No appreciable differences can be noted depending on the ϕ52 value. As expected, 
directly correlated to the virus dynamics is that of infected T cells, as shown in Supplementary Fig. S1 online. 
The dynamical evolution of the T cells is shown in Fig. 2: they progressively invade the domain as a spherical 
wave propagating from the origin up to t = 40; at t = 50 the primary front decreases while a secondary one starts 
to form, well visible at t = 60, insensitive to ϕ52 values.

The M1 density evolution is shown in Supplementary Fig. S2 online, damped and visible only close to the 
origin due to the intensity normalization, and for both ϕ52 values decreases up to t = 40, slightly growing from 
t = 50 on. More pronounced, instead, appears the density variation of the alternatively activated macrophages 
M2, which dynamical evolution is shown in Supplementary Fig. S3 online: for both ϕ52 values the M2 density 
grows progressively across the domain starting from the initial cluster at the origin, which close to the origin 
initially decreases up to t = 40, then from t = 50 increases again.

The IL-6 dynamics, see Supplementary Fig. S4 online, grows without appreciable differences for both ϕ52 
values until t = 40, while the intensity at the origin remains almost unchanged during the propagation across the 
domain, then slightly decreases.

The IL-10 dynamical evolution shown in Supplementary Fig. S5 online, instead, appears more defined and 
seems a little faster for the lower ϕ52 value, and exhibits a monotonic growth.

The computed densities shown in Figs. 1, 2 and in Supplementary Figs. S1–S5 online, have been integrated in 
order to obtain, at each time step, the total amount of each species present in the domain.The results are shown 
in Fig. 3, except for the infected T cells which total quantity is shown in Supplementary Fig. S6 online. In each 
panel we plot the total amount of the species present in the domain at the simulated time steps, for ϕ52 = 1 ×  10–3 
(blue dashed curve), and ϕ52 = 2 ×  10–3 (red continuous curve). First of all, the plots put in evidence the small 
differences existing between the quantities of each species present in the domain as a function of the ϕ52 value, 
sometimes not even graphically resolved. The virus amount present in the domain grows progressively as a 
function of time, and increases dramatically above t = 50, while infected T cells behave very similarly. T cells 
increases up to t = 50, then start decreasing, and very similarly behave also M1 macrophages. IL-6 grows dur-
ing the time evolution but reaches a maximum at t = 40, and then dramatically decreases up to t = 60. Both M2 
macrophages and IL-10 behave very similarly to the virus, and unexpectedly assume also very close values. As 
expected, it can be said that anti-inflammatory contributions should be promoted at low ϕ52 values, and vice 
versa for pro-inflammatory ones.

These results are consistent from a biological point of view, as M1 macrophages induce T cells activation and 
IL-6 production, while activated M2 macrophages induce IL-10 production.

In order to gain more insights on the density spatial distribution, we extract the density profiles for each 
species along the diagonal line cutting the 2D density maps, hence the domain, from (x1 = 0, y1 = 0) to (x2 = 1, 
y2 = 1), from now on referred to as the diagonal cutline, i.e., along the line splitting each density plot into two 
symmetric domains with respect the diagonal line. In Fig. 4 we show the obtained cross-sectional densities for 
virus, T cells and infected T cells. Each row of panels refers to the simulated species labelled at the beginning of 
the row, while first and second column of panels refer to ϕ52 = 1 ×  10–3 and ϕ52 = 2 ×  10–3, respectively. Inside each 
panel, curves referring to different time step are diversified by colour. The variable ‘r’ on the abscissa represents 
the distance along the diagonal cutline. The plots referring to virus and to infected T cells are very similar, as they 
reflect those of Fig. 1 and Supplementary Fig. S1 online, respectively, and show a growing density from t = 10 to 
t = 60, quite insensitive to the ϕ52 values. The cross-sectional density for T cells, instead, shows a predominant 
cells redistribution: in fact, starting from a huge peak located around the origin at t = 10, during the time evolu-
tion such feature decreases while broadening, and a t = 60 a new peak arises located along the diagonal cutline 
at about r = 0.9 (0.9 mm), consistent with the secondary propagation front visible in Fig. 2.

We choose to group the cross-sectional densities for macrophages and interleukins in Fig. 5 and Fig. 6, 
respectively, where each row of panels refers to the simulated time step, while the first and second column of 
panels refer to ϕ52 = 1 ×  10–3 and ϕ52 = 2 ×  10–3, respectively. Moreover, the variable ‘r’ has the same meaning as the 
previous figure. In Fig. 5, curves referring to the M1 macrophages are plotted with a magenta continuous line, 
while curves in cyan dashed line refer to M2 phenotype. Instead, in Fig. 6, curves referring to IL-6 are plotted 
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Figure 1.  Snapshots of the virus density. The density is linearly mapped in colour scale between the blue and 
red colours in the [0,1] × [0,1] square domain. Starting from the top panels row, the variable evolution has been 
computed at t = 10 (~ 1.16 days), t = 20 (~ 2.3 days), t = 30 (~ 3.47 days), t = 40 (~ 4.63 days), t = 50 (~ 5.79 days) 
and t = 60 (~ 6.94 days), while the first and second column of panels refer to ϕ52 = 1 ×  10–3 and ϕ52 = 2 ×  10–3, 
respectively. All the other parameters are as in Table 1.
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Figure 2.  Snapshots of the T cells density. The density is linearly mapped in colour scale between the blue and 
red colours in the [0,1] × [0,1] square domain. Starting from the top panels row, the variable evolution has been 
computed at t = 10 (~ 1.16 days), t = 20 (~ 2.3 days), t = 30 (~ 3.47 days), t = 40 (~ 4.63 days), t = 50 (~ 5.79 days) 
and t = 60 (~ 6.94 days), while the first and second column of panels refer to ϕ52 = 1 ×  10–3 and ϕ52 = 2 ×  10–3, 
respectively. All the other parameters are as in Table 1.
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with red dotted line, while those referring to IL-10 are plotted with blue dash-dotted line. The peak in the density 
of M1 phenotype around r = 0 decreases up to t = 40, then increases again from t = 50, indifferently for both ϕ52 
values, see Fig. 5. The M2 density peak centred at r = 0 decreases progressively up to t = 40 as it widens, while 
increases again for t = 50 and t = 60, superimposed on a growing background indicating the penetration of the 
cells into the domain. Such behaviour for M2 cells seems to be more defined at ϕ52 = 1 ×  10–3, as measured by the 
density peak at r = 0. Concerning interleukins, Fig. 6, it is evident as the IL-6 maximum intensity at r = 0 does not 
change on going from t = 10 to t = 60 along the diagonal cutline, but a background rises progressively up to t = 40, 
while at t = 60 it flattens towards zero. On the contrary, the IL-10 density grows progressively while infiltrating 
the domain and starting from t = 40 does it faster for ϕ52 = 1 ×  10–3.

Figure 3.  Calculated amount of the simulated species present in the domain at each time step. Points in each 
curve have been obtained by numerical integration over the spatial domain of the density maps shown in Figs. 1, 
2 and Supplementary Figs. S2–S5 online.
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Figure 4.  Cross-sectional densities for virions, T cells and infected T cells. Each curve refers to the density at 
the pertinent time step obtained along the diagonal cutline, see text for explanation. Top row refers to virions, 
middle row to T cells and bottom row to infected T cells; first and second panels column refer to ϕ52 = 1 ×  10–3 
and ϕ52 = 2 ×  10–3, respectively.
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Figure 5.  Cross-sectional densities for M1 and M2 macrophages. Each curve represents the density extracted 
along the diagonal cutline, see text for explanation: magenta continuous line refers to M1 macrophages, cyan 
dashed line to M2 macrophages; starting from the top panels row, the variables evolution have been computed 
at t = 10 (~ 1.16 days), t = 20 (~ 2.3 days), t = 30 (~ 3.47 days), t = 40 (~ 4.63 days), t = 50 (~ 5.79 days) and t = 60 
(~ 6.94 days), while the first and second column of panels refer to ϕ52 = 1 ×  10–3 and ϕ52 = 2 ×  10–3, respectively. All 
the other parameters are as in Table 1.
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According to what reported in Channappanavar et al.3, in patients with fatal SARS and MERS the lower 
respiratory tract is involved, with experimental evidences of lung infiltration by monocytes/macrophages, and 
low counts of CD4 T cells. Our model describes such feature adequately. In fact, as can be seen in Fig. 4, dur-
ing the time evolution the T cells cross-sectional density decreases in the seeding site redistributing in space 
with low proliferation and equally low infiltration of the simulated domain, except the weak secondary peak. 
At the same time, M2 macrophages, but not M1 phenotype, for r > 0 progressively infiltrate in the biological 
domain. Nicholls et al.52 and Gu et al.53 from one side, and Ng et al.54 from the other, reported lung infiltration 

Figure 5.  (continued)
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Figure 6.  Cross-sectional densities for IL-6 and IL-10. Each curve represents the density extracted along the 
diagonal cutline, see text for explanation: red dotted line refers to IL-6, blue dash-dotted line to IL-10; starting 
from the top panels row, the variables evolution have been computed at t = 10 (~ 1.16 days), t = 20 (~ 2.3 days), 
t = 30 (~ 3.47 days), t = 40 (~ 4.63 days), t = 50 (~ 5.79 days) and t = 60 (~ 6.94 days), while the first and second 
column of panels refer to ϕ52 = 1 ×  10–3 and ϕ52 = 2 ×  10–3, respectively. All the other parameters are as in Table 1.
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by macrophages from autopsy samples in patients with fatal SARS and MERS, respectively. In both cases the iden-
tification of the macrophages was conducted by means of the CD68 marker, a glycoprotein highly expressed by 
macrophages, in particular by M2 phenotypes, which characterize an anti-inflammatory and immunosuppressive 
micro-environment55. In light of these considerations we deduce that, although our model incorporates a chemo-
taxis term for M1 macrophages, it describes a macrophages dynamics with M2 subtypes infiltrating the domain 
faster with respect to M1 subtypes. Also, the immunosuppressive and anti-inflammatory microenvironment as 

Figure 6.  (continued)
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determined by the M2 predominance explains the low count of T cells as predicted by the model and reported 
by experimental findings in SARS and MERS  patients52–54.

Du et al.26 studied the regulatory effects on macrophages of cannabinoid 2 receptor (CB2R) during incised 
skin wound healing in mice: they measured the levels of mRNA of M1 and M2 macrophages activated markers, 
as well the levels of pro- and anti-inflammatory cytokines, IL-6 and IL-10 among others, in mice treated with 
JWH133, GP1a CB2R agonist and AM630 CB2R antagonist, which were compared to the results obtained on a 
vehicle group. Focusing on those latter, it can be seen as M1 macrophages increase in content up to three days 
from the wound, then decrease; a similar behaviour is observed for M2 subtypes, which initially increase at a 
low rate, and then accelerate thus demonstrating the initial predominance of the M1 activated subtypes. The M2 
content peaks 5 days post injury, then slightly decreases, still remaining higher than M1 subtypes. Overall, the 
content of both macrophages subtypes varies in the same range.

Concerning our predictions, as shown in Fig. 3, they are in part in agreement, although delayed, with the find-
ings of Du et al.26, considering their reported experimental error. In fact, the M1 content grows up to 5.79 days 
(t = 50), and then decreases; on the contrary, the content of M2 macrophages increases monotonically, soon 
overwhelming the M1 one. Concerning the IL-6 and IL-10 content in Du et al.26, they reflect the behaviour of 
M1 and M2, respectively, and once again, their variation is contained within the same order of magnitude. Also 
in our simulation IL-6 and IL-10 contents reflect M1 and M2 behaviour, but IL-10 content, compared to that of 
IL-6, has a variation one order of magnitude larger.

Huang et al.24 measured the initial plasma level of, among other, IL-6 and IL-10, in COVID-19 patients from 
Intensive Care Unit (ICU), non-ICU patients and healthy ones, on admission to hospitalization seven days after 
the onset of illness. In both ICU and non-ICU patients elevated level of both interleukins, with a predominance 
of IL-10 in ICU patients, were found.

Further, Zhou et al.25 measured the dynamics of several laboratory markers including IL-6 in COVID-19 
patients, survivors or with fatal outcome. Their findings, in the 4–7 days temporal range from the illness onset 
are in qualitative agreement with the predictions of our model, considering the reported experimental error.

Curiously, comparing the M2 and IL-10 contents in Fig. 3, they appear to be overlapping within the graphic 
resolution. The plots refer to the total protein amount at each time step, so we wonder if a similar correspond-
ence can be found in the density spatial distribution during the time evolution. The answer is in Figs. 5 and 6, 
for M2 and IL-10 cross-sectional densities along the diagonal cutline, respectively. M2 are initially clustered in 
the site of infection, and during the time evolution their density decreases and broadens while infiltrating the 
domain, thus indicating an initial depletion at the infection site, always predominating over M1, see Fig. 5. The 
IL-10 level, instead, is initially lower with respect to IL-6, but from the site of infection it grows continuously 
while infiltrating the domain, overwhelming the IL-6 density. Then, even if the total amount of both M2 and 
IL-10 species are strictly comparable at each time step, their spatial distributions are not, therefore indicating 
different, albeit correlated, dynamics. Globally, the simulations results confirm that the initial stage of infection 
is characterized by a pro-inflammatory response that during the time evolution dims in favour of the anti-
inflammatory reaction. While the inflammatory response is entrusted to M1 and IL-6, the anti-inflammatory 
reaction instead relies on M2 and IL-10, but during the initial stage of infection it is driven mainly by M2 and 
confined near the infection site.

Longhi et al.27 carried out experiments on influenza A infected mice assessing the role of IL-6 in limiting the 
activity of  Treg cells. In particular, they measured the number of  CD4+-T cells in lung, both primary and memory 
(after re-infection), in wild type and IL-6 deprived mice. It can be observed as the predicted quantity of T cell 
shown in Fig. 3 well reproduce qualitatively the measurements for memory  CD4+-T cells in IL-6 deprived mice 
reported in Longhi et al.27, for the corresponding time interval. It can be deduced that SARS-CoV-2 infection 
impairs T cells response as in an IL-6 deprived environment.

It seems that our model, accounting for SARS-CoV-2 infection, predicts some resistance to the immune 
machinery, as indeed the experimental results in Huang et al.24, and in Zhou et al.25 indicate. In fact, in presence 
of a wound healing triggered by a surgical  incision26, the M1 behaviour is consistent with their inflammatory 
role during the first stage post injury, while M2 behave consistently to their anti-inflammatory and repairing 
role post inflammation. In our study, in the presence of a severe infection such as that caused by SARS-CoV-2, 
both M1 and IL-6 drive the inflammatory response, although with some delay with respect to the initial insult. 
The infection grows progressively in the simulated time interval, apparently unaffected by the immune response: 
we observe that the inflammatory response weakens, while the anti-inflammatory response is strengthened, 
precisely when the viral production increases. Moreover, what it seems wrong in the immune machinery is the 
anti-inflammatory reaction with an excess of M2 activation and IL-10 production, which could eventually lead 
to a damage of the respiratory tract interested by the infection, i.e., pulmonary  fibrosis26.

We are aware that the presented model is a simplification of more complex biological mechanisms, but the 
qualitative agreement existing between our numerical results and clinical observations in severe COVID-19 
patients is convincing of a correct schematization. It therefore constitutes a baseline from which to start includ-
ing models aimed at treatments and possible therapeutic strategies.

After the manuscript submission a couple of articles appeared focusing on possible emerging epidemic threats, 
especially viruses coinfection, and new SARS-CoV-2 variants, indicating cutting edge research topics deserving 
attention. Haney et al.56 have conducted experiments on the coinfection of human lung cells with IAV and res-
piratory syncytial virus (RSV), finding the existence of hybrid virus particles (HVP) which are capable to evade 
anti-IAV neutralizing antibodies, thus defining in general an interaction between respiratory viruses such as 
SARS-CoV-2. Cao et al.57 have studied the evolution of the Omicron variant of SARS-CoV-2, demonstrating that 
mutations can evade neutralizing antibody drugs and convalescent plasma, suggesting that herd immunity and 
vaccine boosters could be inefficient to prevent infection from Omicron variants. We believe that mathematical 
modelling can give a valid contribution to such emerging research topics.
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