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Abstract 15 

In Sicily, small differences exist between wild and cultivated rosemary biotypes; VOCs and genetic 16 

profiles may be a useful tool to distinguish them. A germplasm collection of Rosmarinus officinalis 17 

L. was harvested from 15 locations in Sicily. Eleven wild and four cultivated populations were 18 

collected and, due to the surveyed area covered, they can be considered as a representative panel of 19 

Sicilian genetic background of the species. Ex situ plant collection was transferred to the field 20 

cultivation in homogeneous conditions for characterizing through a multidisciplinary approach. The 21 

study included morphological traits observations (growth habitus, flower color, number and size of 22 

leaves, length and number of internodes), VOC profiles using HS-SPME, genome size by flow 23 

cytometry analysis, and genetic characterization by means of DNA and nuclear microsatellite (nSSR) 24 

investigation. To detect any pattern within- and among-populations variability, all morphological and 25 

chemical data were submitted to ANOVA, while clustering and structure population analysis were 26 

carried out using genetic profiles. The present work allowed us to distinguish rather well between 27 

wild and cultivated genotypes and to underline the biodiversity richness among rosemary Sicilian 28 

germplasm, never highlighted, useful for future breeding programs addressed to exploit this important 29 

resource. 30 
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Introduction 39 

Rosemary (Rosmarinus officinalis L.) is a xeromorphic, evergreen shrub belonging to Lamiaceae, 40 

including wild and cultivated forms distributed throughout the Mediterranean area, classified in three 41 

subspecies: R. officinalis subsp. officinalis, R. officinalis subsp. palaui (Bolòs and Molinier) Malag., 42 

native to Maiorca and Minorca, and R. officinalis subsp. Valentinus Ferrer, Guillén and Gómez Nav., 43 

recently described in the coastal area around Valencia, in South-Eastern Spain (Ferrer-Gallego et al. 44 

2014). Rosemary is commonly used for culinary and ornamental purposes since ancient times (Mateu-45 

Andrés et al. 2013), and being rich in bioactive compounds, it has many important medicinal and 46 

functional properties, ranging from antibacterial to antidiabetic, antiinflammatory, antitumor and 47 

antioxidant (Sánchez-Camargo and Herrero 2017; Andrade et al. 2018). Moreover, rosemary is also 48 

a source of natural compounds with allelopathic potential (Alipour and Saharkhiz 2016; Atak et al. 49 

2016) as many other Mediterranean species (Mamoci et al. 2011; Araniti et al. 2013, 2014; Mercati 50 

et al. 2019). Three Rosmarinus species grow wild in the Mediterranean area: (1) R. officinalis, 51 

widespread throughout the Basin; (2) R. eriocalix Jord. and Fourr., present in the South-Eastern of 52 

Spain, Morocco, Algeria and Libya; and (3) R. tomentosus Hub.- Mor. and Maire, native to the coastal 53 

area between Granada and Malaga, in Southern Spain. Several hybrids were alsofound, including 54 

Rosmarinus × lavandulaceus De Noé (R. eriocalix × R. officinalis) and R. x mendizabalii Sagredo ex 55 

Rosúa (R. officinalis × R. tomentosus) (Rosúa 1981; Morales 2010; Euro+Med 2018). More recently, 56 

a new classification included the three species within the genus Salvia, with the denominations Salvia 57 

rosmarinus Schleid., Salvia jordanii J.B.Walker, and Salvia granatensis B.T. Drew, respectively 58 

(Drew et al. 2017). In Italy, R. officinalis is the only native plant of the genus (Pignatti 1982), 59 

occurring with a variety of growth habits, morphological traits, flower colors, and aromatic features 60 

(Nunziata et al. 2019). In Sicily, wild populations of R. officinalis may be found in a specific 61 

phytocoenosis (Rosmarinetea officinalis) located in rocky ridges and eroded slopes of carbonate 62 

nature mostly along the North-Eastern sea coast, from which they sometimes extend into the inland 63 

(Gianguzzi et al. 2015). The interested area is one of the 52 glacial refugia identified within the 64 

Mediterranean basin, and, together with Sardinia, Corsica and Balearic Islands, represents one of the 65 

10 regional hotspots of plant biodiversity (Tyrrhenian islands; Médail and Quézel 1999; Médail and 66 

Diadema 2009). The need to favor the safeguard and the crop exploitation of wild Sicilian rosemary 67 

is a critical point, due to two major aspects. The first is related to the concrete risk that wild Sicilian 68 

populations may be further reduced due to the increased harvesting for domestic self-supply, 69 

addressed to food or self-medical purposes. Under ecological balance conditions, the collection from 70 

wild or semi-wild populations is usually able to cope with the demand from market, provided it is 71 

limited and steady. However, the increase in demand, due to the enhancement of researches that 72 

enlarge the exploitation opportunities for the species, often leads to the impossibility to cope with it 73 

by means of a simple increase of collection from wild populations. The increasing interest of industry 74 

towards wild plants has in some cases contributed to a decline in natural populations, and many 75 

species all around the world are presently at risk of extinction. Such depletion model, described in 76 

the early 90s (Homma 1992, 1996), has been extensively validated for many spontaneous populations 77 

belonging to different species. In such conditions, especially for slowly growing species and in the 78 

absence of specialized cultivations, wild populations may severely decline (Lamrani Alaoui and 79 

Hassikou 2018). This issue has a great importance for many species native to the rainy forests of 80 

Amazonia, but it is also relevant for many Mediterranean plants, since depletion in natural stands was 81 

claimed already for some wild population of Spanish Arnica, Gentian, and others (Schippmann et al. 82 

2002). Indeed, an extensive decrease of rosemary wild populations due to the excessive pressure of 83 
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gathering practices has been already described in Sardinia (Mulas and Mulas 2005), and could 84 

become a concrete possibility alsoin Sicily. A medium-large scale cultivation of the plants that bear a 85 

major interest for industrial purposes, such as rosemary, could be an important step to safeguard their 86 

natural populations. The second reason for addressing efforts in the exploitation of Sicilian rosemary 87 

germplasm is due to a lack of homogeneity in the marketed material. Even when plant material is 88 

supplied by means of nurseries and multiplication centers, limited attention is paid to its genetic 89 

characterization with the aim to avoid a large heterogeneity. The lack of genetic knowledge about 90 

rosemary germplasm hampers breeding programs for an efficient exploitation of this species. The 91 

available literature offers a great deal of references about rosemary’s morphological variability. 92 

Notwithstanding, in contrast to other medicinal and aromatic plants, an official descriptors list for 93 

rosemary is not available as far, making it difficult to compare literature data collected from different 94 

environments. To date, two different descriptor lists were proposed by the Italian Council for 95 

Research in Agriculture (CREA 2013) and the International Union for the Protection of new Varieties 96 

of Plants (UPOV 2000). Although they are substantially different in the approach to data 97 

measurements and in the importance assigned to each character, both proposals discriminate varieties 98 

mainly for ornamental purposes, insofar as the UPOV list sets as reference varieties the two 99 

ornamental Barbecue and Blue Lagoon (Hatch 2013). In addition to morphological and agronomic 100 

traits, several efforts were addressed to explore rosemary chemical variability. Based on their essential 101 

oil profile, three main chemotypes of rosemary were identified: cineoliferum (with a high occurrence 102 

of 1,8-cineole), verbenoniferum (with verbenone > 18%) and camphoripherum (> 20% camphor) 103 

(Pintore et al. 2002; Napoli et al. 2010). Many other chemotypes were further defined, but a large part 104 

of this variability appeared to be related to harvest season, geographic origin, and climatic pattern 105 

(Salido et al. 2003; Zaouali et al. 2005; Varela et al. 2009; Napoli et al. 2010; Jordán et al. 2011). By 106 

combining chemical and agro-morphological data from a wild rosemary collection from southern 107 

Italy, three biotypes were also classified (De Mastro et al. 2004): (1) long shoots, high number of 108 

axillary shoots, small-sized leaves and a high yield of camphor-rich (> 40%) essential oils; (2) 109 

medium-sized shoots and leaves, low number of small-sized axillary shoots, low essential oil yield 110 

with the predominance of α-pinene/verbenone; and (3) low number of largesized leaves, a fair number 111 

of axillary shoots and quite small shoots, intermediate essential oil yield, with a predominance of α-112 

pinene (> 20%), verbenone, and 1,8-cineole. However, due to the polygenic fashion and the 113 

environment effects on many agro-morphological and chemical traits, they cannot be easily used to 114 

distinguish closely related samples (Zaoualiet al. 2012). Therefore, a more robust and stable 115 

characterization of rosemary germplasm might include more reliable plant descriptors and markers, 116 

such as floral morphology, genome size and molecular profiles. Nuclear DNA content showed a key 117 

role in systematics and a useful tool in biodiversity estimation (Kellogg 1998; Leitch et al. 2005). 118 

Flow cytometry is an effective and fast approach to assess the amount of nuclear DNA and relative 119 

genome size in all biological species (Dolezel and Bartos 2005; Dolezel et al. 2007). Genome 120 

variation could be an indicator of genetic divergence and speciation process (Murray 2005; Garnatje 121 

et al. 2007), highlighting possible molecular mechanisms involved in these processes (Petrov et al. 122 

2000; Bennetzen et al. 2005; Harkess et al. 2016). Among molecular markers, microsatellites 123 

(SSRs—Simple Sequence Repeats) are co-dominant and highly informative markers, abundant and 124 

uniformly distributed throughout plant genomes, and broadly used to genotype a wide range of plant 125 

species (Carimi et al. 2011; Jiao et al. 2012; Mercati et al. 2015; Fu et al. 2017). Until now, studies 126 

on R. officinalis genetic diversity are limited, both for wild germplasm and cultivated varieties. 127 

Currently, only few works report the characterization of limited collection using different types of 128 

molecular markers, such as Random Amplified Polymorphic DNA (RAPD) (Angioni et al. 2004; 129 

Zaouali et al. 2012), nuclear ribosomal sequences (ITS) (Rosselló et al. 2006), allozymes (Zaouali 130 
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and Boussaid 2008; Zaouali et al. 2012), nuclear (nSSR) and plastidial (cpSSR) Simple Sequence 131 

Repeat (Segarra-Moragues and Gleiser 2009; Mateu-Andrés et al. 2013). Preliminary information 132 

available about the genetic variability of rosemary in western Mediterranean basin support the 133 

hypothesis that this area could be a diversification center of R. officinalis (Mateu-Andrés et al. 2013). 134 

More recently, High Resolution Melting (HRM) approach was also proposed as a cost- and time 135 

effective system to characterize rosemary populations (Nunziata et al. 2018, 2019). The system is an 136 

alternative method to capillary electrophoresis, providing percentage of HRM curves confidence for 137 

each locus, named GCP (genotype confidence percentage), as a direct measure of the genetic 138 

similarities, but HRM method is not able to furnish “true” genetic profiles. Indeed, HRM approach 139 

assumes that melting curves should be as different as fragments are diverse. As well known, the 140 

system shows many sources of error, and GCP, based on a Euclidean and non-genetic distance, is not 141 

linearly proportional to similarity of sequences (Hewson et al. 2009; Chagné 2015). As a 142 

consequence, many common statistical analyses adopted in population genetics, based on allele 143 

frequency, cannot be developed (e.g., expected and observed heterozygosity, fixation index, genetic 144 

differentiation, structure analysis etc.). Finally, unlike more common capillary electrophoresis 145 

approach and the widespread PCR instruments, easily available in all molecular biology laboratories, 146 

the HRM system requires specific qPCR equipment and software. To our knowledge, a 147 

comprehensive characterization of rosemary, including morphological, chemical and genetic analyses 148 

is missing. In the present work, a R. officinalis collection, counting wild and cultivated genotypes, 149 

representing the whole Sicilian genetic background for this species, has been characterized by means 150 

of a multidisciplinary approach. With this purpose, morphological traits and VOCs patterns were 151 

evaluated, flow cytofluorimetric analysis was performed, and the entire collection was genotyped by 152 

a panel of nuclear SSRs. These are still the most accessible, fast and low-cost system (being able to 153 

work in multiplex) currently available. This technique is able to furnish unique and repeatable profiles 154 

for each genotype and population, useful also to build a reference dataset in rosemary. 155 

Methods 156 

Arrangement of plants collection and sampling for morphological observations 157 

With the aim to cover the lack of knowledge about wild and cultivated rosemary from Sicily, a 158 

collection activity started in the 2013 winter season. Vegetative parts of both wild and cultivated 159 

plants were collected, mostly growing in the Northern coastal area of Sicily (Fig. 1; Table 1). Since 160 

the surveyed area covered most of the basiphilous rocky substrates where native R. officinalis 161 

populations may be retrieved (Rosmarinetea officinalis class), the collected samples may be 162 

considered representative of the genetic background of R. officinalis from Sicily. To sample a 163 

representative collection, according to plant density, almost 3–15 plants for each population were 164 

collected. As suggested by Zaouali et al. (2005), since R. officinalis propagates vegetatively, plants 165 

were considered different when growing at a distance > 20 m; from each mother plant, 5–10 stem 166 

cuttings were picked up and soon inserted into 104-cells polystyrene trays filled with a mixed soil:peat 167 

(70:30 v:v) substrate. The trays were constantly surveyed to evaluate the survival and establishment 168 

of plants. After plant rooting, they were transplanted into a collection field in the experimental farm 169 

“Sparacia” (Department of Agricultural, Food and Forest Sciences, University of Palermo, 170 

Cammarata, Agrigento, Italy, 37°38°06″ N; 13°45′47″ E), with the aim to preserve the genetic 171 

collection of rosemary. In the field site, both climatic pattern and soil conditions are typical of the 172 

Mediterranean dry environments, with 350–600 mm average annual rainfall, mainly distributed 173 

throughout the fall-winter period, dry and hot summers, and typically clayey soils. Prior to transplant, 174 

1 t ha−1 organic pelletized fertilizer was spread and buried by soil work; transplant was done 175 
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arranging plants at a 1 × 1 m distance. Growth and development of established plants were 176 

periodically surveyed. In December 2017, representative samples for each population (1–9 plants 177 

each) were harvested (Table 1). Fresh young herbaceous twigs were used for genome size, flow 178 

cytometry and morphological traits evaluation, using the most important traits: number of nodes 179 

within 10 cm, mean internode length (cm), number of leaves for whorl, average dimensions (length 180 

and width in mm) of leaves (Table 2). The same leaf samples were furthermore collected for molecular 181 

analysis, directly frozen in liquid nitrogen and then stored at − 80° C until use. 182 

Analysis of VOCs 183 

In late spring 2017, when plants were at a vegetative stasis after blooming, samples from young 184 

herbaceous twigs (2–3 for each individual, amounting about 20 g of fresh material) were collected to 185 

perform VOCs (volatile organic compounds) analyses. They were identified through the HS-SPME 186 

(Head Space-Solid Phase MicroExtraction) coupled with GC–MS. This technique, already 187 

successfully used to analyze volatiles in many medicinal and aromatic plants (Carrillo and Tena 2006; 188 

Carrubba et al. 2009, 2011; D’Auria and Racioppi 2015; Sgorbini et al. 2015), may allow a quick and 189 

effective qualitative screening among individuals based on major VOCs emitted by plants. Since no 190 

solvent is required, this procedure may allow reducing the size of sample and its manipulation. The 191 

fiber was the 2 cm, 50 μm DVB/CAR/PDMS (divinylbenzene/carboxen/polydimethylsiloxane from 192 

Supelco). Before its use, the SPME fiber was conditioned for 2 h at 250 °C in the inlet of a gas-193 

chromatograph. With this purpose, leaves were separated from the collected twigs and put (approx. 194 

0.5 g for each sample) in a 5 mL vial, immediately sealed with a silicon septum and left for at least 195 

24 h at 25 °C for stabilization and achievement of equilibrium conditions. Thereafter, the SPME fiber 196 

was inserted, with the help of a manual holder system, in the silicon septum of the vial. After 30 min 197 

at 25 °C, the SPME fiber was recovered and immediately inserted into the injector port of the gas 198 

chromatograph allowing for 2 min desorption at 250 °C. Three replicates of each sample were made. 199 

A GC–MS Thermo with autosampler was used for the chromatographic analyses. A capillary column 200 

SLB-5MS from Supelco (30 m × 250 μm × 0.25 μm film thickness) was used as stationary phase 201 

under the following experimental chromatographic conditions: the injector was in splitless mode with 202 

a temperature of 250 °C, helium carrier gas at 1 mL min−1; oven temperature program: 5 min 203 

isotherm at 40 °C followed by a linear temperature increase of 4 °C min−1 up to 200 °C held for 2 204 

min. MS scan conditions: source temperature 230 °C, interface temperature 280 °C, EI energy 70 eV, 205 

mass scan range 33–350 amu. The Retention Indexes (R.I.) were experimentally determined relatively 206 

to the retention time of a series of n-alkanes (C10–C24) with linear interpolation and they were 207 

compared with retention index NIST database on-line (https ://webbook.nist.gov/chemi stry/name-208 

ser/). Identification of the individual components was based on comparison of both the retention time 209 

and the mass spectrum with those of authentic compounds. Tentatively identification of other 210 

components was based on a matching with a score over 90% with mass spectra reported in Wiley7 211 

and NIST05 library. Standards, required to confirm some assignments, were obtained from Merck 212 

(Milano, Italy) and used without further purification. 213 

Genome size and flow cytometry evaluation 214 

One hundred mg of fresh leaf tissue was used to determine the ploidy level, while 150 mg of the same 215 

tissue were collected to determine DNA content per nucleus, using 50 mg of fresh pea (Pisum sativum 216 

L.) leaf tissue as internal standard (2C = 9.07 pg DNA). The legume was chosen from a list of 217 

recommended plants as excellent standard for DNA content evaluation (Johnston et al. 1999; Dolezel 218 

et al. 2007). To separate nuclei from rosemary cells, leaf tissues were chopped and dispersed into the 219 

nuclei extraction buffer (Partec solution CyStain ® UV Precise P, 250 tests) added with one drop of 220 
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Tween 20 and 1% w/v PVP, which was subsequently filtered (30-μm Cell-Trics filter). To reduce 221 

mechanical damage, the scalpel blades used for chopping were replaced every three samples. The 222 

nuclei were stained in 4,6-diamidino-2-phenylindole (DAPI) staining buffer (Partec Cystain UV 223 

precise P). Routinely, 3000–4000 nuclei were measured per sample and histograms of DNA content 224 

were generated using Partec software package (Partec-Flow-Max®). The 2C DNA content was 225 

calculated based on the fluorescence intensity of the G1 peaks of both the internal standard and 226 

rosemary samples. The same operator on the same machine, adopting three biological replicates for 227 

each sample, performed the analyses. 228 

DNA extraction and microsatellite analysis 229 

Genomic DNA was extracted and purified from leaves (100 mg) using DNeasy Plant Mini Kit 230 

(Qiagen, Milan, Italy). Stock solutions of DNA were resuspended in 70 μL Nuclease-free water (Merk 231 

Millipore Corporation). DNA quantity and quality were measured using Biophotometer ® D30 232 

(Eppendorf, Hamburg, Germany) and stored at − 20 °C. Molecular investigations were carried out by 233 

amplifying seven nuclear microsatellites (nSSR) Roff101, Roff135, Roff246, Roff424, Roff438, 234 

Roff515 and Roff850, from Segarra-Moragues and Gleiser (2009). PCRs were performed in 20 μl 235 

reaction mixture starting from 50 ng DNA as described in Mercati et al. (2013a), using different 236 

annealing temperatures (Ta), depending on primer pairs used. The fragments were analyzed on an 237 

ABI PRISM 3500 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). 238 

Data analysis 239 

All quantitative data, including morphological traits and VOCs, were submitted to statistical analysis 240 

by means of the statistical package Minitab ® v 17.1.0. A preliminary univariate ANOVA by location 241 

was carried out, and whenever the ANOVA showed a significant result, mean differences were 242 

validated through Tukey’s test. The differences between wild and cultivated populations were 243 

detected by calculating a single DF contrast within the factor “locations” (Gomez and Gomez 1984). 244 

The alleles were sized by Gene Mapper v. 4.1 software (Table S1). The main genetic parameters, 245 

including the number of alleles per locus (N), number of effective alleles (Ne), major allele frequency 246 

(M), observed (Ho) and expected heterozygosity (He), Inbreeding coefficient (F), Polymorphism 247 

Information Content (PIC), were evaluated for each SSR used using GenAlEx6 (Peakall and Smouse 248 

2006) and PowerMarker (Liu and Muse 2005) software. Principal Component Analysis (PCA) of 249 

both morphological traits and VOCs was carried out using R/FactoMiner (Le et al. 2008). A Pearson’s 250 

correlation analysis (p < 0.05) was also carried out by Hmisc R/package (https ://cran.r-proje 251 

ct.org/web/packa ges/Hmisc /index .html) to confirm PCA results. A scatter plot showing correlation 252 

coefficients between traits and their significance was developed by R/Performance Analytic (https 253 

://cran.r-proje ct.org/web/packa ges/Perfo rmanc eAnalytics /index .html). To study the genetic 254 

relationships among rosemary populations, cluster analysis based on UPGMA (Unweighted Pair 255 

Group Method with Arithmetic Mean) algorithm was performed. The phylogenetic tree was 256 

developed by R/poppr (Kamvar et al. 2014) with Bruvo’s distance (Bruvo et al. 2004). The bootstrap 257 

analysis was performed based on 1000 re-samplings. A model-based (Bayesian) clustering was 258 

performed to estimate genetic relationship among samples and the population structure by 259 

STRUCTURE software (Pritchard and Wen 2003). The program was set as previous reported in 260 

Mercati et al. (2013b) and twenty independent runs for K ranging from 1 to 10 were carried out. An 261 

ad hoc statistic, proposed by Evanno et al. (2005), was used to determine the most probable K value, 262 

to compensate for overestimation of subgroup number by STRUCTURE. Samples with membership 263 

probabilities ≥ 0.8 were assigned to the corresponding subgroups and lines with membership < 0.8 264 

were assigned to a mixed subgroup. Finally, a Discriminant Analysis of Principal Components 265 
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(DAPC), implemented in the R/adegenet (Jombart and Ahmed 2011), was also carried out to validate 266 

and confirm cluster and STRUCTURE results. The number of PCs (principal components) retained 267 

was evaluated using the cross validation approach. To verify the assignment of individuals to clusters, 268 

the K-means algorithm, ‘find.clusters’, was used. 269 

Availability of germplasm specimens 270 

The rosemary genotypes used for the trial are available at the germplasm ex situ collection maintained 271 

in the experimental farm “Sparacia” (Cammarata, Agrigento, Italy, 37°38°06″ N; 13°45′47″ E). The 272 

collection is cured by the Department of Agricultural, Food and Forest Sciences, University of 273 

Palermo in compliance with the Regional Sicilian Government Project “Biodiversity preservation—274 

Public Conservation Centers—Safeguard and exploitation of Sicilian herbaceous crop populations 275 

and varieties”. PSR Sicilia 2007–2013: Misura 214/2, Azione A. (https ://bancagermoplasma.it/psr-276 

misura-2142a/). Specimens are available upon request to the authors. 277 

Results 278 

Morphological traits and volatile organic compounds analysis 279 

Three years after transplanting, many plants showed an erect growth habitus (Table 2). All exhibited 280 

a pale violet corolla ground color (except MAR population, whose corolla was mainly light blue). 281 

Analysis of variance (ANOVA) highlighted significant differences among populations for only two 282 

morphological traits (length of leaves—LL, and number of leaves per whorl—NL), while no 283 

significant difference was observed between wild and cultivated plants. The cultivated population 284 

named CAS showed the longest leaves, with a mean leaf length of 18.5 mm, whereas the cultivated 285 

population PA exhibited the shortest (11.8 mm) leaves arranged in dense whorls (Table 2). The means 286 

for each VOC detected by HSSPME and the related univariate ANOVA are reported in Table 3. Seven 287 

volatiles out of twelve showed significant differences among populations; α-pinene showed the 288 

largest differences, averaging 20.4% and 40.2% in wild and cultivated populations, respectively. 289 

Many compounds that were showing significant differences among populations, also highlighted 290 

significant differences between groups (“W vs. C”). By contrast, 1,8-cineole did not show significant 291 

differences among populations at univariate ANOVA, but a significant differentiation between wild 292 

and cultivated plants was detected by single DF contrast (Table 3). In detail, rather all wild 293 

populations exhibited a 1,8-cineole content higher than 40% (on average 46.2%) with an outstanding 294 

higher value in plants from L7 population, whereas cultivated plants showed a 30.5% average content 295 

of the same compound (Table 3). PCA on morphological traits did not allow us to define distinct 296 

clusters for wild and cultivated populations, although about 70% variability was explained (Figure 297 

S1). As a whole, the first axis seemed to be more related with leaves width, whereas the second PC 298 

with their length. As expected, mean length of internodes and number of nodes per 10 cm, being 299 

inversely correlated, were located on opposite quadrants of the PCA score plot; number of leaves per 300 

whorl followed the same trend of number of nodes (Figure S1). By contrast, although the multivariate 301 

analysis on VOCs explained a lower value of total variability (49%), PCA results allowed us to 302 

distinguish wild from cultivated rosemary populations (Fig. 2a). Indeed, six out of seven samples, 303 

belonging to the cultivated populations, were clearly separated by PCA first component (Dim1). In 304 

addition, 62% of samples collected in Torrenova (ME) (all TOR samples, and one plant each 305 

belonging to L1 and L2 populations), were separated by the second component (Dim2) from the 306 

others. Limonene, α-pinene, and γ-terpinene were most weighing for Dim1 able to separate wild and 307 

cultivated populations. Sabinene, camphene, 1,8-cineole and linalool mainly contributed to the 308 

variability explained by Dim2 (Fig. 2a). These evidences were confirmed by Pearson’s correlation 309 
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analysis (Fig. 2b), showing positive and negative significant correlations (p < 0.05). Among these, 310 

1,8-cineole vs. α-pinene and limonene showed the higher (negative) correlation coefficients (Fig. 2b). 311 

Flow cytometry and genome size evaluation 312 

To evaluate the genome size and ploidy level/genetic stability among accessions, belonging to Sicilian 313 

R. officinalis germplasm, flow cytometry approach was used. No significant differences in the ploidy 314 

level estimation were detected in our collection. In all plants studied, the genome size recorded was 315 

2C values ± 2.50 pg (1227 Mbp/C) (Figure S2). 316 

Genetic diversity of rosemary Sicilian germplasm 317 

Variation at seven nuclear SSR loci was evaluated on rosemary collection from Sicily. All the loci 318 

were polymorphic scoring a high mean PIC value (0.701) with an allele number ranging from 5 to 14 319 

alleles per locus (Table 4) and a mean of major allele frequency of 0.427. Overall, genetic diversity, 320 

measured as expected heterozygosity, appeared high (He = 0.731) with an observed heterozygosity 321 

(Ho) ranging from 0.511 to 0.956 (Table 4). The inbreeding coefficient (F = − 0.070) was negative, 322 

but could be considered in equilibrium. A phylogenetic tree was defined based on genetic distances, 323 

cluster analysis and UPGMA algorithm (Fig. 3). Five main clusters were defined (I, II, III, IV and V), 324 

and the accessions were clustered based on their geographic origins (Fig. 3). Interestingly, all 325 

cultivated samples were grouped in cluster I, assembled in two private sub-clusters. The remaining 326 

four plants, belonging to cluster I, were from AL population. In cluster II, three private sub-clusters 327 

were found including all samples from Levanzo (LEV), Cefalù (L7) and two accessions from Castel 328 

di Tusa (ME) (L6). Clusters III and IV grouped plants from L3 and L4 populations, respectively. 329 

Finally, the largest numbers of samples (42%) were grouped in cluster V, divided into two smaller 330 

sub-clusters: the first one included all samples (9) from L5 population, while the second included the 331 

samples belonging to L5 population and all the samples from Torrenova (ME) (L1, L2 and TOR 332 

populations) and S. Stefano di Camastra (ME). To infer population structure by determining the 333 

number of groups in the germplasm collection, STRU CTU RE analysis was performed. Following 334 

the Evanno et al. (2005) statistic, K = 7 was identified as the optimum number of genetic groups (K). 335 

Using the admixture coefficient (Q) ≥ 0.8 as cutoff of probability to assign each sample to a group 336 

identified, 33 out of 45 samples (73%) were assigned to a specific group (Table S2). In detail, all 337 

plants collected in Levanzo (LEV population) were assigned to group 1 (pink); L5 and L6 populations 338 

belonged to group 4 (orange) and group 5 (light red), respectively; four out of 5 plants from L4 339 

population were assigned to group 6 (dark red); and finally, seven out of 8 plants collected in 340 

Torrenova (ME) and STEF population from S. Stefano di Camastra (ME) belonged to group 7 (light 341 

blue) (Table S2; Fig. 4). The other samples showed an admixture genetic structure. Although samples 342 

from cultivated plants have an admixture profile (blue and green groups), they showed a typical shape, 343 

that is very similar to samples belonging to AL population, in agreement to cluster analysis. In the 344 

DAPC analysis, cross-validation indicated that seven PCs and five DAs were useful to describe the 345 

genetic diversity of rosemary collection. These results agreed with both phylogenetic and STRU CTU 346 

RE analysis. The samples were clustered based on their origin. In particular samples showing the 347 

admixture profiles K2/K3 (all cultivated genotypes and AL wild population; Fig. 4; Table S1), 348 

belonging to cluster I (Fig. 3), were separated from the other groups (Fig. 5). Similarly, LEV, L6, and 349 

L7 populations, belonging to K1, K5 and K1/K5 (Fig. 4; Table S1), respectively, and grouped in the 350 

cluster II (Fig. 3), were more genetically different than the other wild populations (Fig. 5). Finally, 351 

although the samples belonging to L1, L2, L4, L5, STEF and TOR showed different genetic pools 352 

(Fig. 4; Table S1), they were very closely related (Fig. 5). DAPC analysis allowed us to split the 353 

Sicilian germplasm in three main groups, separated in the different quadrants (Fig. 5): group I, 354 
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representedby cultivated genotypes and AL wild population; group II, contained LEV, L6, and L7 355 

population; and group III with samples belonging to L1, L2, L3, L4, L5, STEF and TOR populations. 356 

Interestingly, based on Fst and Nei genetic distance (Nei 1978), the differences between group I and 357 

group II were similar to the values obtained comparing group II and III, both represented by wild 358 

populations. In addition, group I was closer to group III (Nei = 0.383) than II to III (Nei = 0.628) 359 

(Table 5). 360 

Discussion 361 

A significant number of papers were addressed to explore many aspects of morphological, 362 

phytochemical and genetic variability of R. officinalis. To our knowledge, few efforts were devoted 363 

as far to characterize this species through a multidisciplinary approach. In Sicily, rosemary is used 364 

since ancient times, for both medicinal and food purposes (Lentini and Venza 2007). The main sources 365 

for local supply are the collection from wild populations and cultivated individuals. However, most 366 

of the traditional rosemary cultivations are represented by single individuals, mostly grown in gardens 367 

and orchards in the close surroundings of human settlements, whereas specialized and intensive 368 

cultivations are only limited to afew hectares (Migliore and Saggio Scaffidi 2007). 369 

Our results allowed arguing that most of cultivated plants/populations derived from native wild 370 

mother plants. Since most of the wild biotypes are widespread in hardly accessible mountainous and 371 

steeply sloping areas, it is possible that a number of valuable individuals were brought to cultivation 372 

with the purpose to have more easy-to-use available plant material (Burkhart and Jacobson 2009). It 373 

seems likely that the choice was concerned mainly with leaves size (the major source of aromatic 374 

stuff), and this hypothesis may probably explain the larger size of the leaves in the cultivated 375 

individuals, and the extensive homogeneity for this trait of the cultivated populations. Otherwise, 376 

since limited interest was paid to other aspects, the other morphological traits, such as the colour of 377 

corolla, showed homogeneity across all samples. At the same time, it would be not surprising that 378 

some individuals, classified among the “wild” biotypes, would otherwise belong to formerly 379 

cultivated (“escaped to cultivation” and naturalized) plants. Although some distinction could be made 380 

at population level based on plant leaves size, morphological traits were not able to achieve a 381 

satisfactory discrimination among groups. This lack of discrimination among populations suggests 382 

that, once brought to cultivation in homogeneous conditions (hence, once minimized the variability 383 

due to the environment), the remaining fluctuations among the major morphological traits are not 384 

high enough to discriminate genotypes. Most variations in such traits seem to be due to the 385 

environment (as expected), rather than under genetic control. Thus, the perplexity expressed by 386 

Zaouali et al. (2012) as concerns the utility of morphological traits for assessing differences among 387 

populations sounds reasonable. The VOC content seems more able to discriminate among 388 

populations. Of course, the available data did not allow us to distinguish among chemotypes, whose 389 

proper determination in rosemary requires a different experimental procedure (Napoli et al. 2010). 390 

Notwithstanding, VOCs obtained by HS-SPME showed a sharp separation among groups of 391 

populations, mainly noticeable in the relative content in α-pinene (on average, 40.7% in cultivated 392 

biotypes and 20.4 in wild ones) and 1,8-cineole (46.2 in wild biotypes and 30.5 in cultivated ones). 393 

Therefore, they can be classified as cineoliferum (or A) chemotype, as reported in previous studies 394 

(Li et al. 2016; Nunziata et al. 2019). Flow cytometry revealed stable genome size in our collection, 395 

both in wild and cultivated populations. The genome size recorded (± 2.50 pg) was in agreement to 396 

the values available in the literature for the species (Pellicer et al. 2010). However, the procedure 397 

adopted in this study could be used as a reference for all species experiencing separation difficulties, 398 

including many medicinal plants (Greilhuber et al. 2007). Indeed, this procedure allowed to isolate 399 
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the nuclei coping with the complexity of the substances contained in rosemary cells. Microsatellite 400 

analysis underlined a suitable and significant biodiversity among Sicilian germplasm. Comparing the 401 

genetic variability of our collection to that reported by Segarra-Moragues and Gleiser (2009), the 402 

unique available report utilizing nSSR in rosemary, number of alleles per locus, observed and 403 

expected heterozygosity agreed. A more recent study based on cpSSR markers identified ten 404 

haplotypes among a widespread germplasm collection belonging to whole Mediterranean basin 405 

(Mateu-Andrés et al. 2013), but biased towards populations from Spain (23 out of 47). Samples 406 

collected from different Italian regions, including plants from Agrigento and Messina (Sicily), 407 

belonged to the two most common haplotypes (H2 and H4) and clustered in two main branches, 408 

together with Algerian, French, Moroccan and Spanish genotypes (Mateu-Andrés et al. 2013), 409 

highlighting a close genetic background. These results were confirmed by Nunziata et al. (2019) using 410 

HRM technique. However, due to the limits of this last approach, the genetic background of Sicilian 411 

populations included in that study could be partially misclassified. Indeed, genotypes from Torrenova 412 

(TOR) and S. Stefano di Camastra (STEF), two very close locations, showed high genetic diversity 413 

able to classify these genotypes in different clusters, while STEF population appeared very close to 414 

samples belonging to AL population from Vittoria (RG), a location on the other side of Sicily 415 

(Nunziata et al. 2019). Our molecular analysis, through “standard” genotyping by SSRs, supported 416 

for the first time the evidences of well distinguished genetic profiles belonging, respectively, to wild 417 

and cultivated populations. In addition, clustering and the identification of genetic pools (K = 7) are 418 

correlated to geographic origins of populations. Therefore, they seem somehow dependent upon the 419 

anthropization (disturbance level) of the original collection site. Hence, the AL population, although 420 

belonging to the wild collection, lies close to the cultivated groups, probably due to the high level of 421 

disturbance of the original AL grown area. DAPC analysis confirmed previous results, highlighting a 422 

clear genetic diversity that allowed us to distinguish three main groups in the collection. In particular, 423 

group I represented by cultivated genotypes and AL wild population, with K2/K3 admixture profile, 424 

showed a major similarity to group II (K1, K5, and the admixture K1/K5) than what emerged from 425 

the comparison between the two wild population groups (II and III). To note, within group III (K4, 426 

K6, K7, admixture K4/K6 and K5/K7) L3 individuals, collected from a high and hardly accessible 427 

calcareous rock, were distinguished from all the other populations. In summary, the genetic analysis 428 

underlined an interesting richness of biodiversity among Sicilian germplasm, so far never highlighted, 429 

that can be useful to plan future breeding programs to exploit this important resource. 430 

Conclusions 431 

The multidisciplinary approach applied in this work has been able to fully characterize the Sicilian 432 

germplasm collection, covering the lack of knowledge about its genome size and stable SSR genetic 433 

profiles. Morphological, chemical and genetic observations, offered distinct points of view of 434 

rosemary’s diversity; however, taking into account all data together allowed us to depict the 435 

relationships among populations that would have not been possible otherwise. The Sicilian rosemary 436 

has been confirmed as an important component of plant biodiversity in the Tyrrhenian region, whose 437 

conservation has been possible due to the limited and—by far—sustainable use by local populations. 438 

The new inputs from R&D sector have, however, opened an impressive series of new opportunities 439 

for rosemary utilization, and it is easy to foresee that, as soon as requirements become higher, this 440 

equilibrium condition will soon show its weakness. Until now, the local germplasm did not seem to 441 

be mixed with genetic material from outside. However, further studies through nSSR genotyping of 442 

a wider rosemary germplasm collection will support the preservation that will probably become 443 

necessary in a near future. 444 
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Table 1 List of rosemary (Rosmarinus officinalis) populations collected 656 

 657 

N number of plants analyzed in the present study, w wild, c cultivated 658 

 659 

 660 

  661 
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Table 2 Morphological traits recorded in the rosemary germplasm collection 662 

 663 

For the quantitative traits, the F values obtained both from univariate ANOVA and from the single DF contrast “wild vs. 664 
cultivated” are indicated; when reported, means in each column followed by the same letter are significantly not different 665 
at p ≤ 0.05 (Tukey’s test) 666 

GH growth habit, FC ground color of the corolla, LL leaf length (mm), LW leaf width (mm), L/W leaf length/width ratio, 667 
NL number of leaves per whorl (n.), IL length of internode (cm), NN number of nodes/10 cm twig 668 

*0.01 < p < 0.05; **0.001 < p < 0.01; ***p < 0.001 669 

 670 

  671 
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 672 

Table 3 Relative content (%), retention time (RT; min) and experimental retention indices (RI) of 673 

VOCs detected by HS-SPME in the rosemary germplasm collection 674 

 675 

1: α-pinene; 2: camphene; 3: sabinene; 4: α-phellandrene; 5: limonene; 6: 1,8-cineole; 7: δ-terpinene; 8: γ-terpinene; 9: 676 
linalool; 10: camphor; 11: borneol; 12: isobornyl-acetate. For each compound, the F values obtained both from univariate 677 
ANOVA and from the single DF contrast “wild vs. cultivated” (“W vs. C”) are indicated; when reported, means in each 678 
column followed by the same letter are significantly not different at p ≤ 0.05 (Tukey’s test) 679 

*0.01 < p < 0.05; **0.001 < p < 0.01; ***p < 0.001 680 

 681 

  682 
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 683 

Table 4 Main genetic parameters from the seven polymorphic SSR loci used 684 

 685 

Number of alleles per locus (N), number of effective alleles (Ne), major allele frequency (M), observed (Ho) and expected 686 
heterozygosity (He), inbreeding coefficient (F), polymorphic information content (PIC) 687 

  688 
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 689 

Table 5 Fst (below diagonal) and Nei (1978) genetic distance (above diagonal) evaluated among 690 

groups identified by DAPC analysis 691 

 692 

 693 

 694 
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 696 

 697 

 698 

 699 

Fig. 1 Collection sites of the wild (yellow pins) and cultivated (red pins) samples of R. officinalis 700 

studied in this work 701 

 702 

  703 
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 704 

Fig. 2 a Principal Component Analysis (PCA) referred to main VOCs detected on wild (blue triangles) 705 

and cultivated (red circles) populations of R. officinalis. VOCs associated to samples separation were 706 

indicated (green arrows) in the plot, underlining their significance values (0.2 < cos2 < 0.8). b 707 

Pearson’s correlation matrix of selected VOCs. Positive and negative correlations are displayed in 708 

blue and red color, respectively. Size and color intensity are proportional to the correlation 709 

coefficients. The significant correlations (p < 0.05) were highlighted. 710 
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 712 

 713 

Fig. 3 Genetic relationships among wild and cultivated plants belonging to Sicilian R. officinalis 714 

germplasm. In the figure, five main clusters were highlighted. 715 
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 717 

 718 

Fig. 4 Admixture proportions of wild and cultivated plants belonging to Sicilian R. officinalis 719 

germplasm. Each vertical bar represents a sample and the color proportion for each bar represents the 720 

posterior probability of assignment of each individual to one of seven groups identified. The range of 721 

assignment probability varies from 0 to 100%. 722 

 723 

  724 
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 725 

 726 

Fig. 5 DAPC scatter plot for the rosemary collection studied. Different colors represent the genetic 727 

pools identified in the STRUCTURE analysis. The samples showing admixture profiles) were 728 

grouped in specific panels representing the main pools (K1/K5, K2/K3, K4/K6, and K5/K7; see Table 729 

S2). 730 


