14th International Congress on Yeasts

September 11-15, 2016

Program & Abstracts

Venue: Awaji Yumebutai
International Conference Center, Hyogo, JAPAN
P-075 Influence of nutrients upon the ethanol production and major volatile compounds during fermentation using no-Saccharomyces yeasts
Melchor Arellano-Plaza (CIATEJ, Mexico)

P-076 Comparison of behavior of S. cerevisiae and K. marxianus in continuous fermentation
Anne Gschaedler (CIATEJ, Mexico)

P-077 Proteolytic and antibacterial activities of isolated yeasts from animal tissues
Roostita L. Balia (Universitas Padjadjaran, Indonesia)

P-078 Mechanism of the pigment excretion in red refined sake strain derived from Nara-Yaezakura yeast, Saccharomyces cerevisiae
Shin-Ichi Iwaguchi (Nara Women's University, Japan)

P-079 Investigation of genes responsible for suppression of sugar-induced cell death in Saccharomyces cerevisiae
Osamu Kobayashi (KIRIN Co., Ltd., Japan)

P-080 Effects of the training system of adult vines of cv. Sangiovese (Vitis vinifera L.) on grape and must yeast population
Lorenzo Sirioli (University of Bologna, Italy)

P-081 Variation in adhesion properties and surface hydrophobicity of wine Pichia manshurica strains
Rosanna Tofalo (University of Teramo, Italy)

P-082 Preliminary study by molecular methods on yeast population of differently fermented green table olives of the cultivar Nocellara messinese
Rossana Sidari (Mediterranea University of Reggio Calabria, Italy)

P-083 Isolation and characterization of awamori yeast mutants with l-leucine accumulation that overproduce isoamyl alcohol
Hiroshi Takagi (Nara Institute of Science and Technology, Japan)

P-084 Phosphate homeostasis as a novel regulatory mechanism of alcoholic fermentation by Saccharomyces cerevisiae
Naoya Yoshioka (Nara Institute of Science and Technology, Japan)

P-085 Physiological role of lactic acid bacteria in traditional sake brewed with sake yeast Saccharomyces cerevisiae
Minao Ita (Nara Institute of Science and Technology, Japan)

5 Yeasts in health science

P-086 In vivo imaging of the progression and treatment of yeast infections – from preclinical studies to diagnostic tools
Uwe Himmelreich (University of Leuven, Belgium)

P-087 Comparative methodologies for extraction of carotenoids produced by Rhodotorula glutinis P4N422
Ayerim Hernández-Almanza (Universidad Autonoma de Coahuila, Mexico)

P-088 Probiotic yeast Saccharomyces boulardii (nom. nud.) modulates adhesive properties of Candida glabrata
Peter Raspor (retired from University of Ljubljana, Slovenia)

P-089 Application of non-homologous end joining to gene manipulations in yeasts and mammalian cells
Mikiko Nakamura (Yamaguchi University, Japan)

P-090 A case of kerion elderly patient
Xin Ran (China)

P-091 Production of im Albicans-Pseudoa.
Carolina H. P.

P-092 Characterization as surface active
Akiko Ueda

P-093 Identification of Ca signaling pathway
Chulhee Yoon

P-094 Association among formation in Ca
Ying-Chieh Yu

P-095 Kinase mediated with drug tolerance
Kaushal Kans

P-096 Effect of altered adhesion of Crypt
Jung Ho Kim

P-097 Functional analysis and virulence of neoformans
Jun Jung Thai

P-098 Non-invasive assay cerebral crypts
Uwe Himmelreich

P-099 Assessment of an Candida albicans
Greetje Vande

P-100 Antigenotoxic pot
Rosanna Tofalo

6 Chromatin, cell e

P-101 Involvement of S of damage dependent
Masahiko Har

P-102 Reconstitution of Hideki Nak

P-103 The RSC complex
Grant W. Brus

P-104 Temporal regulation
Helen Lai Chiu

P-105 Mating-type specific
Takahiko Yoko

Japans
Preliminary study by molecular methods on yeast population of differently fermented green table olives of the cultivar Nocellara messinese

Rossana Sidari, Alessandra Martorana, Alessandra De Bruno, Amalia Piscopo, Marco Poliana, Andrea Caridi
Department of AGRARIA, Mediterranea University of Reggio Calabria, Italy
rossana.sidari@unirc.it

Introduction: Main microorganisms involved in table olive fermentations are lactic acid bacteria and yeasts. During fermentation the presence and the dominance of microorganisms are affected by factors such as pH and salt concentration. Aim of the present study was to investigate the yeast population in fermentations with brine at different concentration of NaCl, also artificially acidified.

Materials and Methods: Vats containing olives of Nocellara messinese cultivar were filled with brines formulated as follow: a) 8% NaCl (w/v), b) 8% NaCl acidified to pH 4.3, c) 5% NaCl for 20 days and then brought to 8% NaCl, d) 5% NaCl for 20 days, then brought to 8% NaCl and acidified to pH 4.3. Fermentations were carried out at room temperature for 8 months. Yeasts were isolated on YPD medium throughout the fermentation time. The yeast identifications were performed by PCR-RFLP of the internal transcribed spacer region; DNA was extracted from the different olive trials.

Results and Discussion: A total of 100 yeasts was isolated; they belong mainly to the species Kluyveromyces marxianus, Pichia kudriavzevii, and Wycherhamomyces anomalus. These species were confirmed by culture-independent method that allowed tracing the yeast population. Throughout the 8 months, different evolution of the yeast population was observed; this is mainly related to the technological parameters used in the fermentations. The main yeast technological traits will be studied; the correlation between the yeast population and the brine formulation will be useful to improve the quality and the shelf life of the fermented olives.

KEYWORDS: table olives, brine, yeast population, molecular methods

This work was supported by PON 03 PE_00090 - Modelli sostenibili e nuove tecnologie per la valorizzazione delle olive e dell’olio extra vergine di oliva prodotto in Calabria.