The evolution of telecommunication technologies, the ever-increasing demand for new services, and the exponential growth of smart devices fuel the development of Non-Terrestrial Network (NTN) systems as an effective solution to complement the terrestrial network (TN) in providing services anytime and anywhere. Since covering many verticals (i.e., transport, eHealth, energy, automotive, public safety) and new applications (i.e., maritime, aeronautical, railway) and offering benefits over uncovered or underserved geographical areas, the NTN gains importance in the Fifth-Generation (5G) New Radio (NR) wireless technology. This growing interest in NTNs confirms the will to integrate all existing networks in air, space, and on-ground into a unified system to provide service continuity and scalability in 5G & beyond networks. However, managing the ever-increasing demand for certain types of service, handling numerous devices, and integrating space-air-ground networks could be challenging in terms of both capacity and radio spectrum management. In light of the above, this Ph.D. thesis provides the recent progress in the standardization and development of the Non-Terrestrial Network in 5G NR and beyond technology, reviews the importance of NTN in wireless systems, and investigates new challenges and open issues concerning the management of mobility, propagation delay, and radio resources. In particular, on these last, this work proposes two novel Radio Resource Management (RRM) approaches to provide valid research contributions and innovation to the state-of-art. The Single-Frequency Multi-Beam Transmission (SF-MBT) scheme overcomes the limitations of frequency reuse-based techniques by introducing the SF-MBT, where beams are synchronized in time to perform a simultaneous transmission of a certain service over the same radio resources to avoid inter-beam interference. Finally, to limit inter-radio access network interference, the Cooperative Terrestrial/Non-Terrestrial Network (TN-NTN) scheme exploits the principles of multicast subgrouping to significantly improve the performance of an integrated TN-NTN system, wherein TN-NTN terminals are under both terrestrial and NTN coverage.

L'evoluzione delle tecnologie di telecomunicazione, la domanda sempre crescente di nuovi servizi e la crescita esponenziale di dispositivi intelligenti alimentano lo sviluppo di sistemi di reti non-terrestri (NTN) come soluzione efficace per integrare la rete terrestre (TN) nella consegna dei servizi sempre e ovunque. Coprendo molti settori verticali (ad esempio, trasporti, sanità elettronica, energia, automobilistico, sicurezza pubblica) e nuove applicazioni (marittime, aeronautiche, ferroviarie) e offrendo vantaggi su aree geografiche scoperte o sotto-servite, le NTN acquistano importanza nella tecnologia wireless di quinta generazione (5G) New Radio (NR). Questo crescente interesse per le NTN conferma la volontà di integrare tutte le reti esistenti in aria, spazio e terra in un sistema unificato per fornire continuità di servizio e scalabilità nelle reti 5G e oltre. Tuttavia, potrebbe essere difficile gestire la crescente domanda per determinati tipi di servizio, maneggiare numerosi dispositivi e integrare le reti spazio-aria-terra, sia in termini di capacità che di gestione dello spettro radio. Alla luce di quanto sopra, questa tesi di dottorato di ricerca si focalizza sui recenti progressi nella standardizzazione e nello sviluppo della rete non-terrestre nella tecnologia 5G NR e oltre, esamina l'importanza delle NTN nei sistemi wireless, e indaga nuove sfide e questioni aperte che riguardano la gestione della mobilità, del ritardo di propagazione e delle risorse radio. In particolare, su queste ultime, questo lavoro propone due nuovi approcci di Radio Resource Management (RRM) che offrono validi contributi di ricerca e innovazione allo stato dell'arte. Lo schema Single-Frequency Multi-Beam Transmission (SF-MBT) supera le limitazioni delle tecniche basate sul riuso della frequenza introducendo la trasmissione multi-beam a singola frequenza, dove i beam sono sincronizzati nel tempo per eseguire la trasmissione simultanea di un determinato contenuto sulle stesse risorse radio per evitare interferenza tra beam. Infine, per limitare l’interferenza tra reti di accesso radio, lo schema Cooperative Terrestrial/Non-Terrestrial Network (TN-NTN) sfrutta i principi dei sottogruppi multicast per migliorare significativamente le prestazioni di un sistema TN-NTN integrato, in cui i terminali TN-NTN si trovano sotto la copertura sia terrestre che NTN.

Non-terrestrial networks in 5G & beyond / Rinaldi, Federica. - (2021 Apr 16).

Non-terrestrial networks in 5G & beyond

Rinaldi, Federica
2021-04-16

Abstract

The evolution of telecommunication technologies, the ever-increasing demand for new services, and the exponential growth of smart devices fuel the development of Non-Terrestrial Network (NTN) systems as an effective solution to complement the terrestrial network (TN) in providing services anytime and anywhere. Since covering many verticals (i.e., transport, eHealth, energy, automotive, public safety) and new applications (i.e., maritime, aeronautical, railway) and offering benefits over uncovered or underserved geographical areas, the NTN gains importance in the Fifth-Generation (5G) New Radio (NR) wireless technology. This growing interest in NTNs confirms the will to integrate all existing networks in air, space, and on-ground into a unified system to provide service continuity and scalability in 5G & beyond networks. However, managing the ever-increasing demand for certain types of service, handling numerous devices, and integrating space-air-ground networks could be challenging in terms of both capacity and radio spectrum management. In light of the above, this Ph.D. thesis provides the recent progress in the standardization and development of the Non-Terrestrial Network in 5G NR and beyond technology, reviews the importance of NTN in wireless systems, and investigates new challenges and open issues concerning the management of mobility, propagation delay, and radio resources. In particular, on these last, this work proposes two novel Radio Resource Management (RRM) approaches to provide valid research contributions and innovation to the state-of-art. The Single-Frequency Multi-Beam Transmission (SF-MBT) scheme overcomes the limitations of frequency reuse-based techniques by introducing the SF-MBT, where beams are synchronized in time to perform a simultaneous transmission of a certain service over the same radio resources to avoid inter-beam interference. Finally, to limit inter-radio access network interference, the Cooperative Terrestrial/Non-Terrestrial Network (TN-NTN) scheme exploits the principles of multicast subgrouping to significantly improve the performance of an integrated TN-NTN system, wherein TN-NTN terminals are under both terrestrial and NTN coverage.
16-apr-2021
Settore ING-INF/03 - Telecomunicazioni
ARANITI, Giuseppe
ISERNIA, Tommaso
Doctoral Thesis
File in questo prodotto:
File Dimensione Formato  
Rinadi Federica.pdf

Open Access dal 28/05/2022

Tipologia: Tesi di dottorato
Licenza: DRM non definito
Dimensione 5.7 MB
Formato Adobe PDF
5.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/106137
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact