Machine-Type Communications (MTC) or Internet of Things (IoT) communications refer to smart devices’ interconnections, with reduced human intervention enabling them to participate more actively in everyday life. Enhancing IoT connectivity solutions with timely, energy-efficient, and reliable group-based communications will bring tangible benefits to society by rapidly evolving healthcare, industry, and intelligent monitoring systems. In the last two decades, there have been efforts in academia and industry to enable IoT connectivity over the legacy communications infrastructure. It is becoming more and more evident that many IoT service characteristics and requirements hardly fit the legacy solutions designed for human interactions and intensive broadband traffic. Therefore, IoT-specific communications systems and protocols have gained profound attention. The commercial potential of cellular IoT and its exponentially growing market trend for upcoming years makes Narrowband-IoT (NB-IoT) and Long Term Evolution for Machines (LTE-M) the dominant technologies for massive MTC. In this context, the majority of IoT-based solutions have focused on access challenges and energy-efficiency of short packet transmissions from multiple sources to a common destination; on the contrary, network-originated transmissions to multiple destinations lacked sufficient attention. The increasing importance of group-based communications for disruptive IoT applications, such as remote control, monitoring, and sensing, calls for novel communication solutions addressing the challenges to provide Point-to-Multipoint (PTM) support for autonomous devices and coping with the inherent limitations of cellular IoT systems. The present work is devoted to characterizing state-of-the-art technologies to enable PTM connectivity in cellular IoT networks, identify their limitations, and contribute to their performance assessment and enhancements. We mainly focus on the group-based communications and their applications in supporting massive and critical IoT communications. The main contributions presented in this work include: (i) a novel PTM transmission framework for supporting critical services in cellular IoT systems; (ii) radio resource management techniques for servicing unicast and multicast MTC-users with heterogeneous service requirements; (iii) a set of analytical models of the group-based communications and methods for their key performance metrics evaluation; (iv) advanced analysis of the timeliness of information for the status update in cellular IoT application scenarios. Our study indicates the need for advanced and adaptive techniques for efficient information distribution in highly autonomous IoT systems with diverse requirements and capabilities.
Le comunicazioni Machine-Type Communications (MTC) o dell’Internet of Things (IoT) si riferiscono alle interconnessioni dei dispositivi intelligenti con intervento umano limitato che consente loro di partecipare più attivamente nella vita di tutti i giorni. Il miglioramento delle soluzioni di connettività IoT con comunicazioni di gruppo tempestive, efficienti dal punto di vista energetico e affidabili apporterà vantaggi tangibili alla società, alla sanità, alle industrie e ai sistemi di monitoraggio intelligenti in rapida evoluzione. Negli ultimi due decenni, il mondo accademico e industriale hanno fatto molti sforzi per abilitare la connettività IoT sull'infrastruttura di comunicazione legacy. Sta diventando sempre più evidente che le caratteristiche e i requisiti dei servizi IoT sono molto diversi dalle soluzioni legacy progettate per l'interazione umana e per l’intensivo traffico a banda larga. Pertanto, i sistemi di comunicazione e i protocolli specifici dell'IoT hanno guadagnato una profonda attenzione. Il potenziale commerciale dell'IoT cellulare e il suo trend di mercato in crescita esponenziale per i prossimi anni rendono le tecnologie Narrowband-IoT (NB-IoT) e Long Term Evolution for Machines (LTE-M) dominanti per le MTC massive. La maggior parte delle soluzioni basate sull'IoT si concentra sulle sfide di accesso e sull'efficienza energetica delle trasmissioni di piccoli pacchetti da più fonti a una destinazione comune, mentre le trasmissioni originate dalla rete verso più destinazioni mancano di attenzione. La crescente importanza delle comunicazioni basate sul gruppo per le applicazioni IoT dirompenti richiede nuove soluzioni che affrontino le sfide di fornire supporto Point-to-Multipoint (PTM) per dispositivi autonomi e inerenti alle limitazioni dei sistemi IoT cellulari. Il presente lavoro è dedicato alla caratterizzazione delle tecnologie all'avanguardia per abilitare la connettività PTM nell'IoT cellulare, alle loro limitazioni e ai nostri contributi nella valutazione e al miglioramento delle prestazioni. Ci concentriamo principalmente su soluzioni basate sul gruppo e sulle sue applicazioni per supportare comunicazioni IoT massive e critiche. I principali contributi presentati in questo lavoro includono (a) un nuovo framework di trasmissione PTM per supportare servizi critici nei sistemi IoT cellulari; b) tecniche di gestione delle risorse radio per fornire agli utenti MTC unicast e multicast dei servizi con requisiti eterogenei; (c) una serie di modelli analitici delle comunicazioni di gruppo e metodi per la valutazione delle relative metriche chiave di prestazione; (d) analisi avanzata della tempestività delle informazioni di aggiornamento di stato per gli scenari di applicazione IoT cellulare. Il nostro studio indica la necessità di tecniche ancora più avanzate e adattive per una distribuzione efficiente delle informazioni in sistemi IoT altamente autonomi con requisiti e capacità diversi.
Group-based communications in cellular IoT / Vikhrova, Olga. - (2021 Apr 16).
Group-based communications in cellular IoT
2021-04-16
Abstract
Machine-Type Communications (MTC) or Internet of Things (IoT) communications refer to smart devices’ interconnections, with reduced human intervention enabling them to participate more actively in everyday life. Enhancing IoT connectivity solutions with timely, energy-efficient, and reliable group-based communications will bring tangible benefits to society by rapidly evolving healthcare, industry, and intelligent monitoring systems. In the last two decades, there have been efforts in academia and industry to enable IoT connectivity over the legacy communications infrastructure. It is becoming more and more evident that many IoT service characteristics and requirements hardly fit the legacy solutions designed for human interactions and intensive broadband traffic. Therefore, IoT-specific communications systems and protocols have gained profound attention. The commercial potential of cellular IoT and its exponentially growing market trend for upcoming years makes Narrowband-IoT (NB-IoT) and Long Term Evolution for Machines (LTE-M) the dominant technologies for massive MTC. In this context, the majority of IoT-based solutions have focused on access challenges and energy-efficiency of short packet transmissions from multiple sources to a common destination; on the contrary, network-originated transmissions to multiple destinations lacked sufficient attention. The increasing importance of group-based communications for disruptive IoT applications, such as remote control, monitoring, and sensing, calls for novel communication solutions addressing the challenges to provide Point-to-Multipoint (PTM) support for autonomous devices and coping with the inherent limitations of cellular IoT systems. The present work is devoted to characterizing state-of-the-art technologies to enable PTM connectivity in cellular IoT networks, identify their limitations, and contribute to their performance assessment and enhancements. We mainly focus on the group-based communications and their applications in supporting massive and critical IoT communications. The main contributions presented in this work include: (i) a novel PTM transmission framework for supporting critical services in cellular IoT systems; (ii) radio resource management techniques for servicing unicast and multicast MTC-users with heterogeneous service requirements; (iii) a set of analytical models of the group-based communications and methods for their key performance metrics evaluation; (iv) advanced analysis of the timeliness of information for the status update in cellular IoT application scenarios. Our study indicates the need for advanced and adaptive techniques for efficient information distribution in highly autonomous IoT systems with diverse requirements and capabilities.File | Dimensione | Formato | |
---|---|---|---|
Vikhrova Olga.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
DRM non definito
Dimensione
4.62 MB
Formato
Adobe PDF
|
4.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.