The predictive monitoring and maintenance of future transportation infra-structures will be based on intelligent technologies, such as smart wireless sensing devices. In order to efficiently manage the delivery of crucial information about the structural and environmental conditions detected by wireless sensing nodes, and to suddenly process or exchange the information above with different stake-holders (e.g., authorities, drivers, etc.), the forthcoming fifth-generation (5G) network should be properly exploited. Consequently, this paper aims at illustrating the main requirements for enabling the transmission of the information gathered by sensing devices specifically designed for monitoring the structural and environmental conditions of road pavements and carrying out maintenance and rehabilitation. Different types of sensors (i.e., able to detect accelerations, noise, temperature, humidity, fire and smoke) are included in each sensing device, located on the shoulder of the carriageway (non-destructive structural health monitoring method). Sensor data are sent to the Edge of the network for further data processing. Proper algorithms are used to derive the vibro-acoustic signature of the monitored road pavement from the vibrational and acoustical data, while environmental-related data are processed to carry out the real time detection of unexpected events (e.g., a fire or an accident) on/around the road infrastructure. To this end, based on the sensed data size and on the sensing nodes density, several network-side requirements (such as the amount of deliverable data and cell dimension) for enabling the transmission of sensing data over 5G networks are analyzed in this study. Results demonstrate that monitoring and maintenance activities should be designed bearing in mind communication and energy-related requirements and issues.

Predictive Monitoring and Maintenance of Transportation Infrastructures: Requirements for Delivering Sensing Data over 5G Networks

Filippo Praticò;Sara Pizzi;Rosario Fedele;Giuseppe Araniti
2020-01-01

Abstract

The predictive monitoring and maintenance of future transportation infra-structures will be based on intelligent technologies, such as smart wireless sensing devices. In order to efficiently manage the delivery of crucial information about the structural and environmental conditions detected by wireless sensing nodes, and to suddenly process or exchange the information above with different stake-holders (e.g., authorities, drivers, etc.), the forthcoming fifth-generation (5G) network should be properly exploited. Consequently, this paper aims at illustrating the main requirements for enabling the transmission of the information gathered by sensing devices specifically designed for monitoring the structural and environmental conditions of road pavements and carrying out maintenance and rehabilitation. Different types of sensors (i.e., able to detect accelerations, noise, temperature, humidity, fire and smoke) are included in each sensing device, located on the shoulder of the carriageway (non-destructive structural health monitoring method). Sensor data are sent to the Edge of the network for further data processing. Proper algorithms are used to derive the vibro-acoustic signature of the monitored road pavement from the vibrational and acoustical data, while environmental-related data are processed to carry out the real time detection of unexpected events (e.g., a fire or an accident) on/around the road infrastructure. To this end, based on the sensed data size and on the sensing nodes density, several network-side requirements (such as the amount of deliverable data and cell dimension) for enabling the transmission of sensing data over 5G networks are analyzed in this study. Results demonstrate that monitoring and maintenance activities should be designed bearing in mind communication and energy-related requirements and issues.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/120041
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact