Nitrogen (N) is a limiting factor of plant growth, crop yield and quality being a structural component of amino acids, nucleic acids, and other N-containing biomolecules. In the last decades, to maintain high yield for meeting global food demands, the N fertilizers have been massively applied with a negative impact on environment and human health. In this regard, understanding and improving the nitrogen use efficiency (NUE) of crop plants is an important challenge for a sustainable agriculture. Modern varieties of many crops, including tomato, have been selected under high input conditions with a possible decline of the N uptake and utilization efficiency. Thus, exploiting the genetic diversity in traditional cultivars, as long storage tomato ecotypes, represent a promising strategy to identify useful traits for improving NUE. In this respect, the morpho-physiological and molecular responses of different tomato genotypes in response to nitrate (NO3-) limiting condition were assessed. In the first step, a NUE contrasting pair, Regina Ostuni (RO, high-NUE) and UC82 (low-NUE), based on morpho-physiological traits and biomass production, was identified. To understand the molecular mechanisms conferring high NUE, several NO3- metabolism related genes (assimilation, transport, remobilization, and storage/sequestration), at short and long-term limiting NO3- exposure, in root and shoot, were assayed. At short-term, RO exhibited a higher NO3- storage (SlCLCa) and remobilization (SlNRT1.7) abilities compared to UC82, whereas at long-term, the N-use efficient genotype seemed to store less NO3-, which was more allocated and assimilated into the shoot (SlNRT1.5 and SlNR). In the second step, after 5 days of N-deprivation, RO and UC82 short-term (0h, 8h and 24h) transcriptomic responses to low (LN) and high (HN) NO3- resupply, in both root and shoot, were compared. The significant Differentially Expressed Genes (DEGs) for G (Genotype), G×N (N supply) and G×N×T (sampling Time) were identified by the analysis of variance (ANOVA) using a multivariate linear model. The N-responsive genes were selected according to their expression profiles across the time-course. In addition, to detect the modules significantly correlated to LN in RO, a Weighted Gene Co-expression Network Analysis (WGCNA) was performed. In both tissues, one co-expressed module was highly correlated to 24h LN resupply in RO. In shoot, the hub genes were enriched in vegetative phase change, carbohydrate mediated signaling, response to nutrient, cytokinin biosynthetic process and carbon fixation in photosynthetic organism’s biological process GO terms, while, in root, any metabolic process was significantly enriched. In addition, the regulatory network analysis identified the key LN-related genes in each module, which might be responsible for the differential regulation of early LN responses between genotypes. In the last step, RO and UC82 transcriptomes in response to long-term (7 d) LN and HN resupply and the co-expression modules correlated to the phenotypic traits, in both tissues, were investigated by WGCNA. Different comparisons were performed to identify both genotype and NO3- effects. Interestingly, most of the LN-induced differential expression in RO compared to UC82 affected genes involved in the photosynthetic process. Finally, the WGCNA revealed the co-expression modules highly correlated with the morpho-physiological traits including NUE and its components, in both tissues. Functional analysis of the hub modules showed a significant enrichment in photosynthesis and transmembrane transport activity biological process GO terms in shoot and root, respectively, and some key NUE and NUpE related genes were also identified. In conclusion, our study provided a detailed framework of the molecular regulatory networks modulating tomato responses to N limiting condition, identifying novel key genes useful for improving NUE in tomato.

L’azoto (N) è il nutriente maggiormente limitante la crescita, la produttività e la qualità delle piante, in quanto componente strutturale di amminoacidi, acidi nucleici e biomolecole. Nelle ultime decadi, i fertilizzanti azotati sono stati utilizzati in modo massiccio per garantire un’alta produzione rispondendo alla crescente richiesta di cibo, causando un impatto negativo sull’ambiente e sulla salute umana. A tal fine, comprendere e migliorare l’efficienza d’uso dell’azoto (NUE) nelle specie coltivate è fondamentale per un’agricoltura sostenibile. Le moderne varietà, incluso il pomodoro, sono state selezionate in condizioni di alto N determinando una riduzione dell’efficienza di assorbimento e utilizzazione. In quest’ottica, esplorare la diversità genetica di landraces, quali le varietà da serbo in pomodoro, rappresenta una strategia vincente per identificare tratti utili per migliorare la NUE. A tale scopo, sono stati comparati differenti genotipi di pomodoro sulle base delle loro risposte morfo-fisiologiche e molecolari a limitanti livelli di nitrato. Nel primo step sono stati identificati due genotipi contrastanti per la NUE, Regina Ostuni (RO, alta-NUE) and UC82 (bassa-NUE) in base ad analisi morfo-fisiologiche e produzione di biomassa. Successivamente, per individuare i meccanismi molecolari alla base della diversa efficienza, sono stati analizzati i livelli di espressione di alcuni geni del metabolismo dell’azoto (assimilazione, trasporto, rimobilizzazione e stoccaggio) in radice e germoglio, in risposta a breve- e lungo termine di esposizione a basso (LN) ed alto (HN) NO3-. Nelle prime ore di esposizione a LN, RO mostrava un alto livello di espressione dei geni relativi allo stoccaggio (SlCLCa) ed alla rimobilizazione (SlNRT1.7), mentre a lungo termine, evidenziava alti livelli di espressione dei geni SlNRT1.5 e SlNR, suggerendo una maggiore assimilazione. Nel secondo step, e dopo 5 giorni in assenza di N, sono state analizzate le risposte trascrittomiche a breve-termine (0, 8, 24h) dei due genotipi esposti a LN ed HN, in radici e germoglio. Sono stati individuati DEGs per G (Genotipo) e le interazioni G×N (livello di N) e G×N×T (Tempo di campionamento) con l’analisi della varianza (ANOVA), adottando un modello multivariato lineare. Inoltre, attraverso una WGCNA (Weighted Gene Co-expression Network Analysis), sono stati rilevati i moduli correlati al trattamento LN nel genotipo RO. Nel germoglio come nelle radici è stato identificato un modulo correlato al trattamento LN dopo 24h di esposizione. I maggiori biological process GO terms del modulo identificato nel germoglio erano vegetative phase change, carbohydrate mediated signaling, response to nutrient and cytokinin biosynthetic process e carbon fixation in photosynthetic organisms, mentre nella radice nessun GO term era significativo. L’analisi network ha permesso di identificare i geni piu connessi in ciascun modulo, che potrebbero spiegare le differenti risposte tra genotipi. Nell’ultimo step, la risposta trascrittomica è stata analizzata dopo lunga esposizione a LN ed è stata effettuata una correlazione tra moduli e caratteri morfo-fisiologici tramite WGCNA. Diversi confronti sono stati effettuati per determinare gli effetti di G e N, ed individuare risposte (DEGs) genotipo e LN-specifiche, molti dei geni identificati mostravano un coinvolgimento nel processo fotosintetico. L’analisi WGCNA ha permesso di identificare i moduli altamente correlati con tratti morfo-fisiologici inclusa la NUE e le sue componenti in entrambi i tessuti. I GO terms significativi erano photosynthesis process nel germoglio e transmembrane transport activity nella radice, e geni correlati alla NUE e NUpE sono stati identificati. In conclusione, questo studio fornisce un quadro dettagliato della regolazione a livello molecolare che modula la crescita e lo sviluppo del pomodoro a limitata disponibilità azotata, identificando alcuni geni candidati utili al miglioramento della NUE in pomodoro.

Dissecting in the physiological and molecular mechanisms of nitrogen use efficiency (NUE) in tomato / Aci, Meriem Miyassa. - (2022 May 02).

Dissecting in the physiological and molecular mechanisms of nitrogen use efficiency (NUE) in tomato

ACI, Meriem Miyassa
2022-05-02

Abstract

Nitrogen (N) is a limiting factor of plant growth, crop yield and quality being a structural component of amino acids, nucleic acids, and other N-containing biomolecules. In the last decades, to maintain high yield for meeting global food demands, the N fertilizers have been massively applied with a negative impact on environment and human health. In this regard, understanding and improving the nitrogen use efficiency (NUE) of crop plants is an important challenge for a sustainable agriculture. Modern varieties of many crops, including tomato, have been selected under high input conditions with a possible decline of the N uptake and utilization efficiency. Thus, exploiting the genetic diversity in traditional cultivars, as long storage tomato ecotypes, represent a promising strategy to identify useful traits for improving NUE. In this respect, the morpho-physiological and molecular responses of different tomato genotypes in response to nitrate (NO3-) limiting condition were assessed. In the first step, a NUE contrasting pair, Regina Ostuni (RO, high-NUE) and UC82 (low-NUE), based on morpho-physiological traits and biomass production, was identified. To understand the molecular mechanisms conferring high NUE, several NO3- metabolism related genes (assimilation, transport, remobilization, and storage/sequestration), at short and long-term limiting NO3- exposure, in root and shoot, were assayed. At short-term, RO exhibited a higher NO3- storage (SlCLCa) and remobilization (SlNRT1.7) abilities compared to UC82, whereas at long-term, the N-use efficient genotype seemed to store less NO3-, which was more allocated and assimilated into the shoot (SlNRT1.5 and SlNR). In the second step, after 5 days of N-deprivation, RO and UC82 short-term (0h, 8h and 24h) transcriptomic responses to low (LN) and high (HN) NO3- resupply, in both root and shoot, were compared. The significant Differentially Expressed Genes (DEGs) for G (Genotype), G×N (N supply) and G×N×T (sampling Time) were identified by the analysis of variance (ANOVA) using a multivariate linear model. The N-responsive genes were selected according to their expression profiles across the time-course. In addition, to detect the modules significantly correlated to LN in RO, a Weighted Gene Co-expression Network Analysis (WGCNA) was performed. In both tissues, one co-expressed module was highly correlated to 24h LN resupply in RO. In shoot, the hub genes were enriched in vegetative phase change, carbohydrate mediated signaling, response to nutrient, cytokinin biosynthetic process and carbon fixation in photosynthetic organism’s biological process GO terms, while, in root, any metabolic process was significantly enriched. In addition, the regulatory network analysis identified the key LN-related genes in each module, which might be responsible for the differential regulation of early LN responses between genotypes. In the last step, RO and UC82 transcriptomes in response to long-term (7 d) LN and HN resupply and the co-expression modules correlated to the phenotypic traits, in both tissues, were investigated by WGCNA. Different comparisons were performed to identify both genotype and NO3- effects. Interestingly, most of the LN-induced differential expression in RO compared to UC82 affected genes involved in the photosynthetic process. Finally, the WGCNA revealed the co-expression modules highly correlated with the morpho-physiological traits including NUE and its components, in both tissues. Functional analysis of the hub modules showed a significant enrichment in photosynthesis and transmembrane transport activity biological process GO terms in shoot and root, respectively, and some key NUE and NUpE related genes were also identified. In conclusion, our study provided a detailed framework of the molecular regulatory networks modulating tomato responses to N limiting condition, identifying novel key genes useful for improving NUE in tomato.
2-mag-2022
Settore AGR/07 - GENETICA AGRARIA
SUNSERI, Francesco
ABENAVOLI, Maria Rosa
POIANA, MARCO
Doctoral Thesis
File in questo prodotto:
File Dimensione Formato  
Aci Meriem Miyassa.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: DRM non definito
Dimensione 4.09 MB
Formato Adobe PDF
4.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/129552
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact