Recently, the popularity of Millimeter Wave (mmWave) wireless networks has increased due to their capability to cope with the escalation of mobile data demands caused by the unprecedented proliferation of smart devices in the fifth-generation (5G). Extremely high frequency or mmWave band is a fundamental pillar in the provision of the expected gigabit data rates. Hence, according to both academic and industrial communities, mmWave technology, e.g., 5G New Radio (NR) and WiGig (60 GHz), is considered as one of the main components of 5G and beyond networks. Particularly, the 3rd Generation Partnership Project (3GPP) provides for the use of licensed mmWave sub-bands for the 5G mmWave cellular networks, whereas IEEE actively explores the unlicensed band at 60 GHz for the next-generation wireless local area networks. In this regard, mmWave has been envisaged as a new technology layout for real-time heavy-traffic and wearable applications. This very work is devoted to solving the problem of mmWave band communication system while enhancing its vantages through utilizing the direct communication radio interface for NR multicasting, cooperative positioning, and mission-critical applications. The main contributions presented in this work include: (i) a set of mathematical frameworks and simulation tools to characterize multicast traffic delivery in mmWave directional systems; (ii) sidelink relaying concept exploitation to deal with the channel condition deterioration of dynamic multicast systems and to ensure mission-critical and ultra-reliable low-latency communications; (iii) cooperative positioning techniques analysis for enhancing cellular positioning accuracy for 5G+ emerging applications that require not only improved communication characteristics but also precise localization. Our study indicates the need for additional mechanisms/research that can be utilized: (i) to further improve multicasting performance in 5G/6G systems; (ii) to investigate sidelink aspects, including, but not limited to, standardization perspective and the next relay selection strategies; and (iii) to design cooperative positioning systems based on Device-to-Device (D2D) technology
Di recente, la popolarità delle reti wireless Millimeter Wave (mmWave) è aumentata grazie alla loro capacità di far fronte all’aumento della richiesta di dati mobili causata dalla proliferazione senza precedenti di dispositivi intelligenti nelle reti di quinta generazione (5G). La banda ad altissima frequenza, o mmWave, è un pilastro fondamentale per consentire di fornire la velocità di trasmissione dati dell’ordine dei gigabit prevista. Pertanto, secondo le comunità accademiche e industriali, la tecnologia mmWave, come 5G New Radio (NR) e WiGig (60 GHz), è considerata uno dei componenti principali delle reti 5G e oltre. In particolare, all’interno del 3rd Generation Partnership Project (3GPP) si prevede l’uso di sottobande mmWave con licenza per le reti cellulari 5G mmWave, mentre la IEEE valuta la possibilità di sfruttare la banda senza licenza a 60 GHz per le reti locali wireless di prossima generazione. A questo proposito, mmWave è stato concepito come un nuovo layout tecnologico per applicazioni wearable e real-time ad alto carico. Questo lavoro di tesi si focalizza sui sistemi di comunicazione in banda mmWave, allo scopo di migliorare al contempo i vantaggi derivanti dall’utilizzo dell’interfaccia radio di comunicazione diretta per il multicasting in sistemi NR, dal posizionamento cooperativo e dalle applicazioni mission-critical. I principali contributi presentati in questo lavoro includono: (i) un insieme di modelli matematici e strumenti di simulazione per caratterizzare la fornitura di traffico multicast in sistemi direzionali mmWave; (ii) l’utilizzo della possibilità di inoltrare dati mediante comunicazioni sidelink per far fronte al deterioramento delle condizioni del canale dei sistemi multicast dinamici e per garantire comunicazioni missioncritical e ultra-affidabili a bassa latenza; (iii) l’analisi di tecniche di posizionamento cooperativo per migliorare l’accuratezza del posizionamento cellulare per le emergenti applicazioni 5G+ che richiedono non solo migliori caratteristiche in termini di comunicazione ma anche una localizzazione precisa. Lo studio condotto fa emergere la necessità di ulteriori meccanismi/ricerche che possano essere utilizzati per: (i) migliorare ulteriormente le prestazioni del multicasting nei sistemi 5G/6G; (ii) studiare aspetti secondari come, ad esempio, prospettive di standardizzazione e strategie per la selezione dei nodi che operano come relay, e (iii) progettare sistemi di posizionamento cooperativo basati sulla tecnologia Device-to-Device (D2D)
Direct communication radio interface for new radio multicasting and cooperative positioning / Chukhno, Nadezda. - (2023 Apr 03).
Direct communication radio interface for new radio multicasting and cooperative positioning
2023-04-03
Abstract
Recently, the popularity of Millimeter Wave (mmWave) wireless networks has increased due to their capability to cope with the escalation of mobile data demands caused by the unprecedented proliferation of smart devices in the fifth-generation (5G). Extremely high frequency or mmWave band is a fundamental pillar in the provision of the expected gigabit data rates. Hence, according to both academic and industrial communities, mmWave technology, e.g., 5G New Radio (NR) and WiGig (60 GHz), is considered as one of the main components of 5G and beyond networks. Particularly, the 3rd Generation Partnership Project (3GPP) provides for the use of licensed mmWave sub-bands for the 5G mmWave cellular networks, whereas IEEE actively explores the unlicensed band at 60 GHz for the next-generation wireless local area networks. In this regard, mmWave has been envisaged as a new technology layout for real-time heavy-traffic and wearable applications. This very work is devoted to solving the problem of mmWave band communication system while enhancing its vantages through utilizing the direct communication radio interface for NR multicasting, cooperative positioning, and mission-critical applications. The main contributions presented in this work include: (i) a set of mathematical frameworks and simulation tools to characterize multicast traffic delivery in mmWave directional systems; (ii) sidelink relaying concept exploitation to deal with the channel condition deterioration of dynamic multicast systems and to ensure mission-critical and ultra-reliable low-latency communications; (iii) cooperative positioning techniques analysis for enhancing cellular positioning accuracy for 5G+ emerging applications that require not only improved communication characteristics but also precise localization. Our study indicates the need for additional mechanisms/research that can be utilized: (i) to further improve multicasting performance in 5G/6G systems; (ii) to investigate sidelink aspects, including, but not limited to, standardization perspective and the next relay selection strategies; and (iii) to design cooperative positioning systems based on Device-to-Device (D2D) technologyFile | Dimensione | Formato | |
---|---|---|---|
Chukhno Nadezda.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
DRM non definito
Dimensione
9.02 MB
Formato
Adobe PDF
|
9.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.