The doctoral thesis examines how knowledge management strategically drives innovation, sustainability and competitiveness in the information and data analysis economy. The first chapter examines the fundamental principles and structures of knowledge management (KM) and how they fit into corporate decision-making, highlighting the shift from a static to a dynamic vision of knowledge as a fluid resource necessary for sustainable solutions. The following section examines the challenges and opportunities of Science Parks as an ideal ecosystem for promoting the development and dissemination of knowledge, as well as the complex interaction between business intelligence, organizational learning, innovation and financial performance. This analysis has allowed the positive and non-positive critical relationships to emerge, on which it becomes strategic to focus, and to simulate such an ecosystem realistically, the application of an agent-based model is proposed. Moving on to an innovative proposal for managing the R&D function, in the third chapter, a literature analysis procedure is presented through backcasting, replacing the traditional forecasting approach, within a blockchain system to classify and select emerging technologies, frontier and dominant ones to support the corporate decision-making process on the choice of investments to be made. In the last chapter, the thesis discusses the relationship between KM, innovation, research, new technologies and organizational and economic performance, thanks to the development of the international research project "TalTech Industrial" and the analysis of Global Value Chains in emerging economies. This study and the reinterpretation of indicators such as the Catch-Up Performance Index show that knowledge-based policies have essential public and private economic implications to effectively reduce existing gaps and increase current company and sectoral performance. In conclusion, the transformative capacity of KM as a bridge between theoretical and practical fields is crucial to support economic growth and competitiveness in the contemporary, constantly evolving socio-economic context. The findings contribute to the academic discourse and serve as a guiding framework for organizations aiming to leverage KM for strategic advantage in the ever-evolving business environment.

La tesi di dottorato esamina come la gestione della conoscenza guida strategicamente l'innovazione, la sostenibilità e la competitività nell'economia basata sull'informazione e l’analisi dei dati. Il primo capitolo esamina i principi e le strutture chiave del knowledge management (KM) e il modo in cui si inseriscono nel processo decisionale aziendale, sottolineando il passaggio da una visione statica ad una visione dinamica della conoscenza come risorsa fluida necessaria per soluzioni sostenibili. La sezione successiva esamina sfide e opportunità dei Parchi Scientifici come ecosistema ideale per la promozione dello sviluppo e la diffusione della conoscenza, nonché la complessa interazione tra business intelligence, organizational learning, innovazione e performance finanziaria. Questa analisi ha consentito di far emergere le relazioni critiche positive e non su cui quindi diventa strategico puntare e per simulare in modo realistico un simile ecosistema si propone l’applicazione di un modello agent-based. Passando ad una proposta innovativa di gestione della funzione R&D, nel terzo capitolo viene presentata una procedura di analisi della letteratura attraverso il backcasting, in sostituzione del tradizionale approccio di forecasting, all’interno di un sistema di blockchain per classificare e selezionare tecnologie emergenti, di frontiera e dominanti al fine di supportare il processo decisionale aziendale sulla scelta degli investimenti da realizzare. Nell'ultimo capitolo, la tesi discute la relazione tra KM, innovazione, ricerca, nuove tecnologie e prestazioni organizzative ed economiche, grazie allo sviluppo del progetto di ricerca internazionale “TalTech Industrial” ed all’analisi delle Catene del Valore Globali nelle economie emergenti. Attraverso tale studio e la reinterpretazione di indicatori come il Catch-Up Performance Index, si mostra che le politiche basate sulla conoscenza hanno importanti implicazioni economiche pubbliche e private per ridurre efficacemente i divari esistenti ed incrementare le attuali performance aziendali e settoriali. In conclusione, la capacità trasformativa del KM come ponte tra ambiti teorici e pratici è cruciale per sostenere la crescita economica e la competitività nel contemporaneo contesto socio-economico in continua evoluzione. I risultati contribuiscono al dibattito accademico e fungono da quadro di riferimento per le organizzazioni che mirano a sfruttare il KM per ottenere un vantaggio strategico in un ambiente aziendale in continua evoluzione.

A path through knowledge management and artificial intelligence modeling: a focus on sustainability, science park's dynamics, backcasting on emerging technologies and the implementation of TalTech industrial project / Mallamaci, Valentina. - (2024 Apr 23).

A path through knowledge management and artificial intelligence modeling: a focus on sustainability, science park's dynamics, backcasting on emerging technologies and the implementation of TalTech industrial project

Mallamaci Valentina
2024-04-23

Abstract

The doctoral thesis examines how knowledge management strategically drives innovation, sustainability and competitiveness in the information and data analysis economy. The first chapter examines the fundamental principles and structures of knowledge management (KM) and how they fit into corporate decision-making, highlighting the shift from a static to a dynamic vision of knowledge as a fluid resource necessary for sustainable solutions. The following section examines the challenges and opportunities of Science Parks as an ideal ecosystem for promoting the development and dissemination of knowledge, as well as the complex interaction between business intelligence, organizational learning, innovation and financial performance. This analysis has allowed the positive and non-positive critical relationships to emerge, on which it becomes strategic to focus, and to simulate such an ecosystem realistically, the application of an agent-based model is proposed. Moving on to an innovative proposal for managing the R&D function, in the third chapter, a literature analysis procedure is presented through backcasting, replacing the traditional forecasting approach, within a blockchain system to classify and select emerging technologies, frontier and dominant ones to support the corporate decision-making process on the choice of investments to be made. In the last chapter, the thesis discusses the relationship between KM, innovation, research, new technologies and organizational and economic performance, thanks to the development of the international research project "TalTech Industrial" and the analysis of Global Value Chains in emerging economies. This study and the reinterpretation of indicators such as the Catch-Up Performance Index show that knowledge-based policies have essential public and private economic implications to effectively reduce existing gaps and increase current company and sectoral performance. In conclusion, the transformative capacity of KM as a bridge between theoretical and practical fields is crucial to support economic growth and competitiveness in the contemporary, constantly evolving socio-economic context. The findings contribute to the academic discourse and serve as a guiding framework for organizations aiming to leverage KM for strategic advantage in the ever-evolving business environment.
23-apr-2024
Settore SECS-P/08 - ECONOMIA E GESTIONE DELLE IMPRESE
Settore SECS-S/06 - METODI MATEMATICI DELL'ECONOMIA E DELLE SCIENZE ATTUARIALI E FINANZIARIE
FERRARA, Massimiliano
GORASSINI, Attilio
Doctoral Thesis
File in questo prodotto:
File Dimensione Formato  
Mallamaci Valentina.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: DRM non definito
Dimensione 8.85 MB
Formato Adobe PDF
8.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/144411
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact