The design of an energy harvester involves achieving the two following objectives: to install a safe structure with a reasonable safety margin; and to install an effective device which is able to capture energy in a variety of environmental conditions. In this context, the long-term modelling of the environmental variables plays a crucial role. In the context of wave energy harvesters, the occurrence of sea storms is a critical element in the design process. Indeed, its identification is required for determining extreme loads as well as controlled de-activations of the device for preserving the mechanical components into the device. Considering these issues, the paper proposes an analysis of the wave climate oriented to the determination of the downtime and of the energy losses. Specifically, the paper provides expressions: for calculating the average deactivation time of a wave energy device, given that it must be deactivated if the significant wave height is larger than a certain threshold; and for calculating the energy "lost" (as it is not absorbed by the device) during a storm in which the maximum wave height is larger than the mentioned threshold. The paper shows that closed-form expressions can be obtained by relying on the Equivalent Triangular Storm (ETS) model and that the adequacy of the estimations improves for larger values of the significant wave height threshold.

Modelling of sea storms associated with energy harvesters: downtime and energy losses / Arena, F; Laface, V; Malara, G; Romolo, Alessandra. - (2015). (Intervento presentato al convegno Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2015) tenutosi a St. John’s, NL, Canada, nel May 31 – June 5, 2015,).

Modelling of sea storms associated with energy harvesters: downtime and energy losses

ARENA F;LAFACE V;MALARA G;ROMOLO, Alessandra
2015-01-01

Abstract

The design of an energy harvester involves achieving the two following objectives: to install a safe structure with a reasonable safety margin; and to install an effective device which is able to capture energy in a variety of environmental conditions. In this context, the long-term modelling of the environmental variables plays a crucial role. In the context of wave energy harvesters, the occurrence of sea storms is a critical element in the design process. Indeed, its identification is required for determining extreme loads as well as controlled de-activations of the device for preserving the mechanical components into the device. Considering these issues, the paper proposes an analysis of the wave climate oriented to the determination of the downtime and of the energy losses. Specifically, the paper provides expressions: for calculating the average deactivation time of a wave energy device, given that it must be deactivated if the significant wave height is larger than a certain threshold; and for calculating the energy "lost" (as it is not absorbed by the device) during a storm in which the maximum wave height is larger than the mentioned threshold. The paper shows that closed-form expressions can be obtained by relying on the Equivalent Triangular Storm (ETS) model and that the adequacy of the estimations improves for larger values of the significant wave height threshold.
2015
Wave energy converter; Wave modelling
File in questo prodotto:
File Dimensione Formato  
OMAE2015-42178_02_non-finale.pdf

non disponibili

Licenza: Non specificato
Dimensione 178.24 kB
Formato Adobe PDF
178.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12318/16228
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact